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Abstract Piezoelectric actuators are effectively used to

control the response of light weight structures in shape,

vibration and buckling. Optimization for the shape control

of piezoelectric beam is the recent challenge which

requires proper numerical technique to perform. The shape

control of a composite beam using surface-bounded

piezoelectric actuators has been investigated in the present

work. The mathematical model is developed using two-

node Timoshenko beam element coupling with the theory

of linear piezoelectricity. First-order shear deformation

theory is employed in the formulation to consider the effect

of shear. In the analysis, the effect of the actuators position

for different set of boundary conditions is investigated.

For different boundary conditions which include clamped-

free-, clamped–clamped- and simply supported beam,

optimisation of piezoelectric patch location is investigated.

Moreover, a genetic algorithm is adopted and implemented

to optimize the required voltage to maintain the desired

shape of the beam. This optimization technique is applied

to different cases of composite beams with varying the

boundary condition.

Keywords Shape control � Piezolaminates beams � Genetic
algorithm

Introduction

In recent years, the piezoelectric materials and structures

have drawn much attention because of their potential

advantage in sensing and actuating. They are considered as

the most appropriate and perfect solution of many technical

issues such as shape and vibration control, buckling control

and noise reduction. They are also effectively used for

crack detention, damage identification and structural health

monitoring purposes. Smart piezolaminated composite

beams with self-monitoring and control capabilities are of

great technological interest due to the increasing require-

ments in structural engineering. The self-monitoring and

controlling capability of smart beams have numerous

applications in shape and vibration control of structures.

One main objective of piezoelectric shape control is to

optimize control parameters which include the number,

location and size of the piezoelectric patches and the

amount of electric potential to be applied so that the

desired shapes are achieved or best matched. Optimization

of such parameters and configurations of piezoelectric

actuators for acquiring efficient and precise shape control

has been an interesting subject of research in recent years

which is investigated in the present work. For this, an

accurate mathematical model for shape control is estab-

lished by considering a critical factor for the performance

of the smart beams. The determination of the optimal

location of the piezoelectric actuators together with the

optimal actuation voltages is worked out with optimization

technique.
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Various theories for analysis of thick beams were

developed in the earlier time. Kirchhoff (1850a, b) devel-

oped Classical plate theory which underestimates the

deflection and overestimates natural frequencies and

buckling loads. Mindlin (1951) developed displacement-

based first-order shear deformation theory. In these theo-

ries, the transverse shear strain distribution is assumed to

be constant through the thickness, and therefore, shear

correction factor is required to account for the strain energy

due to shear deformation.

In general, these shear correction factors are problem

dependent. Crawley and Anderson (1990) studied detailed

models of the piezoceramic actuation for beams. Tzou

and Tseng (1990) investigated performance of distributed

piezoelectric sensor/actuator design for dynamic mea-

surement/control of distributed parameter systems based

upon finite element approach. Pan et al. (1992) studied

the response of a simply supported beam which is excited

by a piezoelectric actuator. Onoda and Hanawa (1993)

first time applied and presented improved simulated

annealing approach for shape accuracy of space structures

using genetic algorithm. Friedman and Kosmatka (1993)

used an improved two-node Timoshenko beam finite

element.

Thomson and Loughlan (1995) investigated active

buckling control of some composite column using piezo-

ceramic actuators. Fuller et al. (1996) studied active control

of vibration. Dhonthireddy and Chandrashekhara (1996)

worked on modeling and shape control of composite beams

with embedded piezoelectric actuators. Chandrashekhara

and Varadarajan (1997) stressed upon adaptive shape

control of composite beams with piezoelectric actuators.

Han et al. (1997) extended work to an experimental study

of active vibration control of composite structures with a

pizo-ceramic actuator and a piezo-film sensor. Reddy

(1997) considered locking-free shear deformable beam

finite elements. Aldraihem et al. (1997) studied distributed

control of laminated beams with Timoshenko versus

Euler–Bernoulli theory. Soares et al. (1999) proposed

optimal design of piezolaminated structures. Faria and

Almeida (1999) investigated enhancement of pre-buckling

behavior of composite beams with geometric imperfections

using piezoelectric actuators. Agrawal and Treanor (1999)

provided the analytical and experimental results on optimal

placement of piezoceramic actuators for shape control of

beam structures. The objective achieved was to determine

the optimum piezoelectric actuator locations and voltage to

minimize the error between the desired shape and the

achieved shape.

Aldraihem and Khdeir (2000) studied smart beams with

extension and thickness-shear piezoelectric actuators.

Bruch et al. (2000) investigated optimal piezo-actuator

locations/lengths and applied voltage for shape control of

beams. Wang (2002) observed buckling of column struc-

tures with a pair of piezoelectric layers. Kang et al. (2002)

further put forth interaction of active and passive vibration

control of laminated composite beams with piezoceramic

sensors/actuators. Irschik Hans (2002) carried out review

on static and dynamic shape control of structures by

piezoelectric actuation. Kekana et al. (2003) considered

shape control model for piezo-elastic structures based on

divergence-free electric displacement International. Haupt

et al. (2004) investigated practical genetic algorithms. da

Mota et al. (2004) proposed the application of genetic

algorithms for shape control with piezoelectric patches

with an experimental comparison. Hadjigeorgiou et al.

(2006) investigated shape control and damage identifica-

tion of beams using piezoelectric actuation and genetic

optimization. Kayacik et al. (2008) developed integral

equation approach for piezopatch vibration control of

beams with various types of damping. Krommer et al.

(2008) proposed design of actuator networks for dynamic

displacement tracking of beams. Azrar et al. (2008) per-

formed nonlinear vibration analysis of actively loaded

sandwich piezoelectric beams with geometric imperfec-

tions. Yu et al. (2009) focused on optimal shape control of

a beam using piezoelectric actuators with low control

voltage. Dhuri and Seshu (2009) used multi-objective

optimization technique for piezo-actuator placement and

sizing using genetic algorithm. Kucuk et al. (2011) used

optimal vibration control to piezolaminated smart beams

by the maximum principle. Bajoria and Wankhade (2012)

effectively employed finite element method for free

vibration analysis of simply supported plates. Simply

supported plates were provided with piezoelectric patches

for controlling the response in vibration. Takács et al.

(2012) put model predictive vibration control with efficient

constrained MPC vibration control for lightly damped

mechanical structures. Wankhade and Bajoria (2012)

studied stability of simply supported smart piezolaminated

composite plates using finite element method. Beheshti-

Aval et al. (2013) developed finite element model based on

coupled refined high-order global–local theory for static

analysis of electromechanical-embedded shear-mode

piezoelectric sandwich composite beams with various

widths. Wankhade and Bajoria (2013a, b) focused on

buckling analysis of piezolaminated plates using higher-

order shear deformation theory. Elshafei and Alraiess

(2013) studied modeling and analysis of smart piezoelec-

tric beams using simple higher-order shear deformation

theory. Wankhade and Bajoria (2013a, b) carried out free

vibration and stability analysis of piezolaminated plates

using finite element method. Bajoria and Wankhade (2015)

further demonstrated vibration of cantilever piezolami-

nated beam with extension and shear-mode piezo-actua-

tors. Bendine and Wankhade (2016) proposed vibration
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control of FGM piezoelectric plate based on LQR genetic

search. Wankhade and Bajoria (2016) investigated shape

control and vibration analysis of piezolaminated plates

subjected to electromechanical loading. Wankhade and

Bajoria (2017) further proposed numerical optimization

of piezolaminated beams subjected to static and dynamic

excitations. For these different models of beams with

varying geometry and boundary conditions are

developed.

In this paper, we present an efficient finite element

approach based on shear deformable beam theory for the

case of laminated beam with bonded piezoelectric actua-

tors. The developed model is used to investigate the shape

control of composite beam with three sets of boundary

condition clamped-free (C-F), clamped–clamped (C-C) and

simply supported (S-S). The effect of the actuator locations

on the beam shape is presented. For final study, the

required voltage to maintain a desired shape of beam is

optimized using genetic algorithm.

Constitutive equations and mathematical modeling

Displacement function

The displacement field equations at any point through the

thickness of the beam based on Timoshenko’s beam theory

(Reddy 1997; Hadjigeorgiou et al. 2006; Elshafei and

Alraiess 2013) are presented by:

u x; z; tð Þ ¼ zux x; tð Þ

w x; z; tð Þ ¼ w0 x; tð Þ ð1Þ

where w0 is the transverse deflection of the mid-plane

point, and ux denotes the rotation angle along the x-axis.

Using Eq. (1), the strain components can be expressed as:

exx ¼ z
oux

ox

cxz ¼ ux þ
ow0

ox
ð2Þ

The strain vector can be rewritten under the following

matrix form:

exx
cxz
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The coupling relationship between the electrical and

mechanical behavior (Tzou and Tseng 1990) can be

described by
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where r is the stress vector, D represents the electric dis-

placement components, E denotes the electric field com-

ponent, Q, e and 2 are the elastic, the piezoelectric

coupling and the dielectric permittivity constants, respec-

tively. In the case of a beam, the following assumptions are

made:

The width in the y direction is stress-free and the plane

stress assumption is used. Therefore, it is possible to set

ryy ¼ rzz ¼ syz ¼ sxy ¼ 0

The electric field is neglected along the x and y direc-

tions (Ex = Ey = 0). Thus, only Dz in Eq. (4) is

considered.

Therefore the constitutive relation Eq. (4) is reduced to:

rxx
sxz
Dz

8

<

:

9

=

;
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Q11 0 �e31
0 Q55 0

e31 0 233

2
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8

<

:
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=
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ð5Þ

Assuming that the voltage is applied only in thickness

direction, the electric field vector {E} can be expressed as

follows:

Ez ¼
Ve

ha
ð6Þ

The Lagrangian ‘P’ of the laminate beam can be

obtained by the summation of the kinetic energy w

potential energy / (including strain and electrical energies

of the piezoelectric):

P ¼

Z

v

w � uð Þ dv ð7Þ
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Using Eqs. (1) and (2) and integrating over the cross-

section of the beam, the kinetic energy term may be written

as

w ¼
1

2

Z

y

_u

_w

� �T
_u

_w

� �

dv ¼
1

2

Z

L

0

I3 _u2
x

� �

þ I1 _wð Þ2

2

4

3

5dx

ð8Þ

where

I1; I3ð Þ ¼

Z

s

q 1; z2
� �

ds ð9Þ

The potential energy / (including strain and electrical

energies of the piezoelectric) is expressed as

/ ¼
1

2

Z

v

ef gT rf gdv

þ
1

2

Z

v

ef gT rf g � Ef gT Df g
� �

dv ð10Þ

Substituting Eqs. (1), (3), (5) and (6) in Eq. (10), the

potential term may be rewritten as

/ ¼

Z

L

0

1

2
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with

EIð Þ ¼

Z

S

z2Q11ds ð12:aÞ

GAð Þ ¼ k

Z

S

Q11 ds ð12:bÞ

Mel ¼

Z

S

ze31 Ez ds ð12:cÞ

The virtual work done by the external mechanical forces

is given by

dWe ¼

Z

Le

0

qw þ muxð Þ ð13Þ

Based on the equations above, the dynamic equations of

the laminated beam structure can be derived using

Hamilton’s principle:

d

Z

t2

t1

P � Weð Þ ¼ 0 ð14Þ

In this work, a two-node beam element (Fig. 1) with two

mechanical degrees of freedoms at each node is used

(Friedman and Kosmatka 1993; Reddy 1997).

The displacement components u and w in Eq. (1) will be

approximated using six mechanical nodal variables:

w x; tð Þ ¼
X

n

i¼1

Nwi xð Þ 8i tð Þ ð15:aÞ

ux x; tð Þ ¼
X

n

i¼1

N/i xð Þ 8i tð Þ ð15:bÞ

where (Nwi, N/i) are respectively the shape functions (see

‘‘Appendix’’) and V = [W1/x1, W2/x2] is element nodal

displacements for ith node.

Substituting Eqs. (15.a), (15.b) into Eq. (3), the gener-

alized strain vectors {e} at any point within the element are

obtained by

exx
cxz

� �

¼
Bw½ �
B/

� 	


 �

8f g ð16Þ

where [Bw] and [B/] are given in the ‘‘Appendix’’.

In the proposed model, the electric potential is a func-

tion of the length, it can be represented by:

Ve xð Þ ¼
X2

i¼1
Ve
i hj: ð17Þ

Numerical analysis

Numerical analysis using the developed methodology is

performed. The fitness function is developed to investigate

the optimal shape of the beams. A flow chart for genetic

algorithm is shown in Fig. 2.

Hence, the electric field intensity can be written as (Yu

et al. 2009):

Ez ¼
1

ha
1�

xe

Le

xe

Le


 �

Ve
1

Ve
2


 �

ð18Þ

The shape functions Eqs. (15a, 15b)–(18) are substituted

into the kinetic and potential equations. After performing the

integration of Hamilton’s principle [Eq. (14)], the dynamic

equation of the laminate beam can be expressed as:

Fig. 1 Two degrees of freedom element beam
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Me½ � €8
� 

þ Ke½ � 8f g ¼ f emec

� 

þ f eelec
� 

ð19Þ

where { €8} and {V} represent vector of double derivative of

displacement and vector of displacement, respectively.

[Me] and represent the element mass and stiffness

matrices corresponding to the vector of mechanical

displacement.

{fmec
e } and {felec

e } represent the external mechanical and

electric forces (i.e., all the matrices are expressed in

‘‘Appendix’’).

A fitness function is developed as a sum of the errors at

the node points. Chandrashekhara and Varadarajan (1997):

J ¼
X

n

i¼1

8i � wdi: ð20Þ

Results and discussions

In the present section, numerical examples which are car-

ried out for the shape control of beam with different

boundary conditions, the shape control is provided using

five piezoelectric actuators made of PZT G-1195 mounted

at the top and bottom surfaces of the beam, see Fig. 3. All

actuators are assumed to be perfectly bonded to the beam.

The material properties and the geometrical dimensions of

the beam and piezoelectric actuators are listed in Table 1.

In the first analysis case, a composite beam

(300 mm 9 40 mm 9 10 mm) with five distributed

piezoelectric patches on the top and the bottom of the beam

with a thickness of 0.2 mm serving as actuators. Three

cases of boundary conditions are considered (clamped-free

(C-F), clamped–clamped (C-C), and simply supported (S-

S). At first, we considered a clamped-free beam subjected

to a fixed point loading equal to 4 N at the free end at

y = b/2. Each actuator is subject to constant actuation

voltage of 200 V.

The effect of the actuators position on the beam shape

is studied for each single actuator. Each time one actuator

has been activated, from Fig. 4 we noticed that the effect

of actuation on beam shape is significant when the actu-

ator is closer to the free end of the beam. The results were

in good agreement with those presented by (Yuet al.

2009).

In the second example, we studied a clamped–clamped

beam subjected to a fixed point loading equal to 4 N acting

downward at the mid span of the beam (x = a/2, y = b/2).

Each actuator is subject to constant actuation voltage of

200 V, as it can be seen in Fig. 5, the actuators are suc-

ceeded to reduce the shape of the beam, and the shape

control is more significant when the actuator position is far

away from the centre on the beam.

It is also seen that deflection is symmetrical means, the

position of the actuators in the left and in the right of the

applied force gives the same shape of the beam.

The last example in this case, a simply supported beam

subjected to a fixed point loading equal to 4 N acting

downward at the mid span of the beam (x = a/2, y = b/2)

is considered. Each actuator is subject to constant actuation

voltage of 200 V as it can be seen in Fig. 6, the same notes

as the case of S-S beam can be noticed.

Fig. 2 Flow chart for genetic algorithm

Fig. 3 A beam with surface-bonded piezoelectric actuators
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The problem in shape control is to find the number and

the required piezoelectric actuator voltage to maintain the

desired shape. Several fitness functions are developed in

the literature and in present paper based on the errors

between the desired shape and the achieved shape. A fit-

ness function is developed as a sum of the errors at the

node points. Chandrashekhara and Varadarajan (1997):

J ¼
X

n

i¼1

8i � wdi ð20Þ

where wd is the desired displacement of the ith node and Vi
is the actual displacement.

The genetic algorithms (Haupt et al. 2004) are the most

known and efficient method for the optimization prob-

lems, it is based on four key functions; selection, cross-

over and mutation and elitism. In the present study, the

genetic algorithm is used to minimize the fitness function

of Eq. (20) for the goal of finding the required voltage for

a desired shape of the beam. The optimization procedure

is performed in Matlab with following configuration:

population size: 150, crossover rate: 0.4, generation

number: 50. The actuator voltage limit is taken as

-200\Vi\? 200.

Beam dimensions

In the second analysis case, the numerical study is carried

out for the case of composite beam with dimensions of

500 mm 9 40 mm 9 10 mm. The beam is discretized into

30 elements. Each six element is covered by one actuator.

The material proprieties are the same as the first case and it

is given in Table 1. Actuator voltage and fitness function

with respect to different boundary conditions are shown in

Table 2. Responses obtained are shown in Figs. 7, 8, 9,

respectively, for different support conditions of beam.

Table 1 Material properties
Proprieties T300/976 (Yu et al. 2009) PZT G-1195

Young’s modulus E (N m-2) 150 9 109 63 9 109

Poisson’s ratio 0.3 0.3

Shear modulus G 7.1 9 109 24.2 9 109

Density q (kg m-3) 1600 7600

Piezoelectric constant e31 (cm
-2) – 17.584

Dielectric constant e33 (F m-2) – 15.0 9 10-9

Fig. 4 The midline deflection of the C-F beam for each actuator

position with F = - 4, V = 200 v

Fig. 5 The midline deflection of the C-C beam for each actuator

position with F = - 4, V = 200 v

Fig. 6 The midline deflection of the S-S beam for each actuator

position with F = - 4, V = 200 v
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In the third analysis case, the numerical study is carried

out for the case of composite beam with dimensions of

600 mm 9 40 mm 9 10 mm. The beam is discretized into

30 elements. Each six element is covered by one actuator.

The material proprieties are the same as the first case and it

is given in Table 1. For this beam Actuator voltage and

fitness function with respect to different boundary condi-

tions are shown in Table 3.

Figure 10 presents the desired and the achieved shape of

the C-F beam. In this case, the desired deflection is taken as

Wd ¼ 1e�5 � ð1� cos px=Lð Þ where L is the length of the

beam. The required voltage and the fitness function value

obtained from the GA optimization are presented in

Table 3. It can be noticed that the required actuator voltage

decreases as the actuator position is far away from the

clamped edge.

Table 2 Actuator voltage and fitness function for different boundary

conditions

Actuator voltage C-F C-C S-S

V1 13.93 84.70 - 187.6

V2 10.03 - 16.95 - 90.02

V3 8.19 - 43.99 230

V4 4.17 18.76 - 43.35

V5 1.41 85.70 - 195.12

Best fitness 2.68e-10 2.90e-06 2.51e-05

Fig. 7 The desired and achieved shape for the C-F beam

Fig. 8 The desired and achieved shape for the C-C beam

Fig. 9 The desired and achieved shape for the S-S beam

Table 3 Actuator voltage and fitness function for different boundary

conditions

Actuator voltage C-F C-C S-S

V1 8.44 58.79 - 95.99

V2 9.66 3.56 - 97.93

V3 5.55 20.36 199.90

V4 1.42 48.36 - 61.02

V5 - 0.24 158.64 - 135.11

Best fitness 4.96e-8 6.77611e-06 1.21e-05

Fig. 10 The desired and achieved shape for the C-F beam
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As a second example, a C-C beam is considered. The

desired shape is assumed to be

Wd ¼ 1e�5 � ðcos �p=2þ px=Lð Þ.

The required voltage and the corresponding fitness

obtained by GA optimization technique are obtained.

Hence, the achieved shape corresponding to those voltages

is shown in Fig. 11. As it can be seen for the Figs. 11 and

12. A good response is observed between the achieved and

desired shape.

In the last example, a simply supported (S-S) beam is

considered. The desired shape is taken to be

Wd ¼ 1e�5 � sin 3p� px=Lð Þ.
The required voltage obtained by GA optimization

technique is presented in Table 3 for this also. The

achieved shape corresponding to those voltages is shown in

Fig. 11. As it can be seen from Fig. 11, a good response is

obtained between the achieved and desired shape.

Conclusions

In the present paper, a methodology using finite element

and genetic algorithms is proposed to investigate the shape

control of composite beam with surface-mounted

piezoelectric actuators. Three different geometry of beams

are examined for the optimal shape control with different

boundary condition and loading using presented genetic

algorithm technique. The numerical investigation reveals

the following points:

1. For the case of C-F beam, the effect of actuation on

beam shape is significant when the actuator is closer to

the free end of the beam. For the case of C-C and S-S

beam, the shape control is more significant when the

actuator position is far away from the centre of the

beam it is also seen that deflection is symmetrical.

2. An optimization of the required voltage actuation to

achieve a desired shape is developed based on genetic

algorithm; different cases of a desired function are

presented for the case of composite beam with three

boundary conditions.
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Appendix: Stiffness coefficients of the laminated

plate according to the higher-order shear defor-

mation theory
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Fig. 11 The desired and achieved shape for the C-C beam

Fig. 12 The desired and achieved shape for the S-S beam
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