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Abstract

This thesis investigates the use of genetic algorithms to optimize the shape of an ungrooved

fluid-film journal bearing under steady load and steady speed so that it can carry the

maximum possible load while constrained to maintaining an adequate minimum film

thickness. The shape of the bearing sleeve is assumed to vary only in the radial direction, and

the shape is represented by linear interpolation of three film thickness design specifications

along the bearing sleeve.

Each set of film thickness specifications in the design space is encoded into a binary string

called a chromosome, and a set of chromosomes makes up a current generation. The bearing

load is calculated for each chromosome, and the genetic algorithm creates a new generation

based on these loads using elitism selection and chromosome crossover and mutation

operators.

Several case studies are presented to investigate the effect of bearing geometric specifications

on the resulting optimal shape. For a given bearing diameter and bearing length, a random

generation of chromosomes is first constructed. Using recommended chromosome crossover

and mutation probabilities, it is shown that randomly created starting sets will eventually

converge to a common shape, suggesting that a global optimum may have been achieved.

Additional parametric studies show that the load results are dependent upon the mutation

operator to achieve global optimums. Further comparisons show that the load carried by the

optimal shape bearing can be much greater than that carried by a conventional cylindrical

bearing.
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Nomenclature

journal position (eccentricity);

h film thickness;

hmax maximal film thickness;

nmin minimal film thickness;

P film pressure;

P, nodal pressure;

pmax maximal film pressure;

Ii nodal net flow;

r journal radius;

0 one half of the journal angular velocity;

D bearing diameter;

F bearing load;

HI, H2, H3 - design variables;

[Kp] - fluidity matrix;

[Ku ] fluidity matrix;

L bearing length;

N_gen number of generations;

N_chrom number of chromosomes;

P resultant load acting on the converging film of fluid;

Px load components (relative to the X, Y system axis);
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P_cross - crossover probability;

P_mut - mutation probability;

<2i> Q2 tangential components of journal surface velocity;

Rdr radial clearance;

U j, U 2 normal components of journal surface velocity;

- eccentricity ratio;

6 angle of rotation;

6
m

angle of maximal pressure;

co angular velocity;

12



Chapter 1

Background

1.1 Introduction

Fluid-film journal bearings are used in a wide variety of applications, from automotive

engines to Micro Electro-Mechanical Systems (MEMS) devices, as they can carry radial

loads with minimal power loss and minimal wear. Most journal bearings are designed with

cylindrical geometry, as this shape is amenable to analytical treatment and is easiest to

manufacture. However, there is no evidence that the cylindrical shape is optimal in its ability

to carry a maximal steady or dynamic load.

Hence, the main objective of this thesis is to find the optimal shape of a steadily loaded

journal bearing so that it can carry the maximum load subject to the constraint of a specified

minimum film thickness value. We intend to meet to this objective by using new applications

of genetic algorithms as the optimization tool.

1.2 Historical Perspective ofGenetic Algorithms

Computer scientists first started investigating genetic algorithms in the 1950s and 1960s with

the concept of that evolution might be utilized as an optimization instrument for engineering

problems. The idea was to create a population of nominee solutions to a selected problem by

using genetic variation and natural selection operators found in nature.

13



Rechenberg (1965, 1973) presented Evolutions strategies, a method he used to optimize real-

valued parameters for devices such as airfoils. The concept later was developed further by

Schwefel (1975, 1977).

Also during this time, Box (1957), Friedman (1957), Bledsoe (1961), Bremermann (1962),

and Reed, Toombs, and Baricelli (1967) developed evolution-inspired algorithms for their

optimization problems. In addition, biologists began to use computers to simulate evolution

for the purpose of modeling controlled experiments (Baricelli 1957, 1962; Fraser 1957 a,b;

Martin and Cokerham 1960).

The modern viewpoint of genetic algorithms was initiated by John Holland in the 1960s, and

these algorithms were subsequently developed by Holland and his students and colleagues at

the University of Michigan in the 1960s and the 1970s. Holland's main goal was not to

create algorithms to solve some specific problems, but to investigate the natural phenomenon

of adaptation and to develop ways by which the mechanisms of natural adaptation might be

imported into computer systems. Holland's 1975 book Adaptation in Natural and Artificial

Systems introduced the genetic algorithm as a concept of natural evolution and introduced a

notional structure for adaptation. Holland's genetic algorithm method is a concept of moving

from one generation of "chromosomes", each chromosome encoded by a string of zeros and

ones (bits), to a new generation by using genetic operators such as crossover, mutation, and

inversion similar to that found in natural selection. These operations are clearly covered in

the recent book, An Introduction to GeneticAlgorithms byMelanie Mitchell (1999).

14



It is interesting that using genetic algorithms is similar to the biological evolution of a species

in that it picks up the good qualities of parents and transfers those qualities to their children.

The main reason for using genetic algorithms in any computational programming is to create,

through successive generations, the most reliable and best pattern of chromosomes.

1.3 Application ofGenetic Algorithms inMachine Design

Kotera et al. (2000) presented a design method for controlling the deflection of a micro-

membrane with the aid of its thickness distribution for realizing a prescribed design in

MEMS. They used as an example a micro air pump, which comprises a micro membrane

actuated by an electrostatic drive. Consequently, membrane deflects and therefore, the air

and electrostatic field affect the deflection. A genetic algorithm is used to find out an

adequate thickness distribution and to condense a stochastic solution search.

Kotera and Shima (2000) described a method to optimize the shape of a magnetic head

recording device using genetic algorithms in conjunction with the finite element method.

They defined the head shape using a second order spline function, and the chromosome

representing this shape was encoded from three design variables representing spline

reference points and first order derivatives.

Keane (1995) proposed the concept of using genetic algorithms to control passive structural

vibration through unusual geometries.

15



Chen et al. (1999) employed the genetic algorithms to optimize the designs of headstocks of

precision lathes. They took into account thermal deformations generated by the heat from

spindle bearings. The main goal was to reduce the overall deflection of the work piece at the

cutting point. An important point of the authors was their choice of constraint, which was to

make the fundamental natural frequency much larger that the working frequency to minimize

dynamic deflections. The authors chose the shape dimensions, the location of the spindle

bearing, the stiffness of the spindle bearings, the dimensions of the fins, and the locations of

the fins as design variables.

Hajela and Lee (1995) introduced the concept of genetic algorithms as a stochastic search

procedure in developing near-optimal topologies of load-bearing truss structures. Their

method adjusted the ground structure by topology optimization, using a two-level genetic

algorithm-based search.

Chapman et al. (1994) applied genetic algorithms to problems of topology design and gave

some overview of the genetic algorithm operators and its representations. A discretized

design representation and methods for mapping genetic algorithm
"chromosomes"

into this

design representation was detailed. The author addressed in general the optimization of

cantilevered plate structures and described research methods for optimizing finely-discretized

design domains. In addition, the author described several examples of genetic algorithm-

based structural topology optimization problems and some tests of genetic algorithm's ability

to find families of best fit designs.
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1.4 Review ofBearing Optimization

The main purpose of this section is to review the various methods employed in the shape

optimization of journal bearings and related machine components.

Montusiewicz and Osyczka (1997) presented a general model of a spindle system with

hydraulic bearings. They found the design shape by dividing the whole system into

subsystems and then model each subsystem to get the global response. To solve the problem,

a four-stage multicriterion optimization strategy was utilized. Based on this strategy, a

computer aided optimum design software package for spindle systems for grinding and lathe

machine tools was developed. The software was supported by computer graphics. Designing

of a grinding machine spindle system was presented as an example.

Wang et al. (2000) presented the idea of an engineering approach for optimizing the

performance of fluid-film lubricated bearings. The paper discussed standard optimization

schemes such as unconstrained nonlinear programming, lattice search and simplex methods

to improve the merit of fluid-film bearings with two or more design variables. Application to

elliptical bearings showed that high eccentricity ratio and two large pressure zones for high

speed stability could be attained by maximizing film pressures in the upper and lower lobes.

The authors used an automatic mesh generation technique to make the numerical

optimization as a flexible design tool.

17



Robert (1990) showed that the gap profile of a two-dimensional self-acting gas bearing could

be determined so as to maximize the static stiffness of the bearing system. Three fundamental

profiles were obtained according to the stiffness mode considered: normal, pitch, or roll. The

optimization process took place within the framework of compressible lubrication theory.

Elsharkawy and Guedouar (2000) presented a solution to an inverse problem for the

elastohydrodynamic lubrication of one-layered journal bearings. Eccentricity ratio, viscosity

of the lubricant, pressure viscosity coefficient, and lubricant bulk modulus were the

parameters to be estimated from a given pressure distribution. A least-squares optimization

technique was used to solve the proposed inverse problem. Results were presented only for

infinite-width journal bearings.

Haraldsson et al. (1997) showed that journal bearings with water as a lubricating fluid and a

rubber layer in the bearing housing could be considered for shape optimization. Their goal

was to vary the shape of the bearing housing in order to lower the high maximum pressure

and hence improve the durability life of the layer material. For their optimization process, a

design element technique is utilized applying NURBS for geometric modeling of the journal

bearing shape.

Kicinski and Haller (1994), using a complex thermoelastohydrodynamic model, presented

various models to assess the external fixation of a bushing in its supports, and they

investigated other models that considered deformation of the fixation itself. In addition, the

authors showed that the static and dynamic properties of the bearing in a simple rotor-bearing

18



system were dependent on the way in which the bushing was supported. The authors also

concluded that they obtained broader possibilities to improve system properties by

optimization of the fixation and clamping methods of the bushing in the bearing supports.

Hashimoto (1997) introduced an optimum design method for high-speed, short journal

bearings, based on quadratic programming. Bearing radial clearance, bearing slenderness

ratio, and the viscosity of lubricant were treated as design variables, and the characteristics of

these optimized design variables were examined under both laminar and turbulent flow

conditions.

Robert (1995) proposed the idea of a new class of sliders numerically designed for maximum

stiffness. The desired gap profile was based on the method of an iterative approach coupled

with a finite element solution of the pressure distribution. The canonical example of a plain

square slider is provided as an example.

1.5 Present ResearchWork

To the author's best knowledge, there are apparently no published shape optimization

methods for fluid-film bearings utilizing genetic algorithms. The main concept and goal of

the work in this thesis work is to employ genetic algorithms to maximize the load carried by

a steadily loaded fluid- film journal bearing subject to realistic geometric shape specifications

and constraints.

19



The genetic algorithm will be implemented in a FORTRAN computer program using a finite

element based lubrication module especially suited to model arbitrary sleeve geometry.

20



Chapter 2

Problem Formulation

The objective of this chapter is to explain theoretically the lubrication of the fluid-film

journal bearings in some detail, describe the problem statement of the research, and

present the genetic algorithm implementation.

2.1 Lubrication of cylindrical fluid-film bearings

Whenever one body slides upon another, frictional forces are generated. Such forces, in

general, must be considered in design calculations since it has been estimated that

between one-third and one-half of all the energy produced in the world is consumed in

overcoming various kinds of friction. In fluid-film bearings, a thin layer of lubricant

separates the moving parts and assists in reducing friction. The book Mechanical

Analysis and Design (Burr, 1982) gives a clear theoretical explanation of lubrication of

the journal bearings and is summarized as follows.

Most journal bearings are comprised of a cylindrical journal that interacts with a

cylindrical sleeve through a thin lubricant film, as shown in Fig. 2.1.1. A small lateral

shift of the journal, combined with journal and/or sleeve rotation, creates a converging oil

film which generates film pressure and hence, the means to support an external radial

load. The journal position (eccentricity) e is measured from the bearing center Ob to the

shaft center Oj (Fig. 2.1.1). The largest value that the eccentricity can attain is the radial

21



clearance Rcir, or one-half the difference in journal and sleeve diameters. It is more

convenient to utilize an eccentricity ratio e defined as

e

E =

clr

The eccentricity ratio is zero when journal and sleeve are concentric, and the eccentricity

ratio attains a maximum value of 1 when the journal contacts the bearing sleeve. The

film thickness h varies between

hmax=RclAl + ^

and

hmin =RclA1-^

This expression is obtained from the geometry of the given Fig. 2.1.1, where the journal

radius is r, the sleeve radius is r + Rcir, and 6 is measured counterclockwise from the

position of hmax . For typical production-level bearings, the radial clearance is of the order

of one thousandth of the diameter; thus, to a high approximation,

OOj =OOb +ecos9

or

h + r = r + Rclr +eco&0

h = Rclr + e cos 9

or finally

h = Rclr(l + cos8) (2.1)

22



Sleeve

Journal

Figure 2.1.1 Relationship between film thickness and eccentricity in a hydrodynamic

cylindrical journal bearing.
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In the analysis that follows, we assume that the journal and sleeve rotate at constant

angular velocities. In addition, we assume that a steady radial load is applied to the

journal, causing the journal to rotate at a fixed static eccentricity position. If the origin of

coordinates is taken at any position O on the surface of the bearing (Fig. 2.1.2), the X-

axis is tangent and the Z-axis is parallel to the axis of rotation. When the bearing sleeve

rotates, its surface velocity is Ui along the X-axis. The surface of the shaft has a velocity

~\

Q2 making with the X-axis an angle whose tangent is h and whose cosine is
dx

approximately 1. Hence the normal and tangential components of the journal surface

velocity are to a high approximation

v, = u-
( d

h
[dx

U2 = Q2

Assuming that the normal and axial surface velocities of the sleeve are zero, with zero

axial journal velocity results, in a special form of the Reynolds equation (Burr, 1982)

7 3
h

d

\dx

< d "

P
\OX j

)
+

h3

d

KOZ

{ OZ J

)-
= (ul-u2)

< d >

h
\ox j

+ 2V-

( d > ' )
Il = 1/ h

{ ox J K, ox j

(2.2)
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Figure 2.1.2. Surface velocity components in a journal bearing.
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where (J = U^ + U-, . The same result is obtained if the origin of coordinates is taken on

the journal surface with X tangent to it.

It has been found from experiments (e.g. Davies, 1964) that negative pressures cannot be

sustained in a lubricant film; thus, the film ruptures or cavitates. The pressure in this

cavitated region generally lies between zero and atmospheric (absolute) values. Thus, to

a high approximation, one way to address cavitation mathematically is to set negative

pressures to zero where they are encountered in the pressure solution.

Assuming cylindrical film thickness of the form in equation 2.1, a closed-form analytic

solution of equation 2.2 along with consideration of cavitation does not exist. Various

approximations have been suggested (Booker, 1965), depending on the application.

In the 1800s, journal bearing length to diameter ratios were generally large. Hence,

Reynolds in 1886 supposed an infinite length approximation for the bearing, assuming

3
zero endwise flow and thus making p = 0 . Together with ju constant, this simplifies

dz

equation 2.2 to the following expression (Burr, 1982)

d 3 d )
h

dx
JxP 6ut7

vuyv J

h
Kdx

\

(2.3)
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Reynolds obtained a series solution to equation 2.3 which was limited to small

eccentricity ratios. Later Sommerfeld found a suitable integral substitution that enabled

him to get a solution of equation 2.3 in closed form. The result was

juUr
6s sin 0(2 + cos 0)
(2 + 2)(1 +j5cos6>)2

R
(2.4)

clr

Together with experimentally determined end-leakage factors, equation 2.4 has been

broadly utilized to correct for finite bearing lengths. It will be called the Sommerfeld

solution or the long-bearing solution.

As discussed by Burr (1982), modern bearings are generally a lot shorter than those used

in the 1800s, with length-to-diameter ratios often less than 1. This makes the flow in the

Z direction and the end leakage a much larger portion than the circumferential flow.

Michell in 1929 and Cardullo in 1930 proposed that the p form of equation (2.2) be
dz

"\

kept and that the p term be dropped. Ocvirk in 1952 by neglecting the parabolic,
dx

pressure-induced circumferential flow, obtained Reynolds equation in the same form as

proposed byMichell and Cardullo, but with greater justification. This form is expressed

dz

( ;i A

, dz
= 6\.iU (d_

dx (2.5)
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If there is no flexure or misalignment of the shaft and bearing, h andh are independent of
dx

z and equation (2.5) may be readily integrated twice to give

3[iU

P =

{ o
\

h
[dx 1

C,z
+ + Cr.

From boundary conditions - p =0 at z = 0 and p = 0 at z = and z = -

, we

dz 2 2

obtain

3 u U

( i
r

,
4

( ;i \

\dx
(2.6)

d_
i

-,ah

, 3 ,
Rrlrsin6

Substitution into equation (2.6) the slope _^_

.

ov and h =
..
" - dx r

dx r

from equation (2.1) gives

3/uU
lz2

sin 9

(l + cos 9YrRtclr
(2.7)

Equation (2.7) shows that pressures will be distributed radially and axially as shown in

Fig. 2.1.3.a and Fig. 2.1.3.b, with the axial distribution being parabolic. The peak

pressure occurs in the central plane z = 0 at an angle

'l-71+24^
6L =
cos"1

4e
(2.8)
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p=0 (cavitation)

Figure 2.1.3.a. Radial pressure distribution p and resultant load P acting on converging film

of fluid in a steadily loaded journal bearing.
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z = + l/2

O

z = -l/2

Figure 2.1.3.b. Axial pressure distribution p and resultant load P acting on the converging

film of fluid in a steadily loaded journal bearing.
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and the value of maximum film pressure pmaxmay be found by substituting

9m into equation (2.6), namely

3/uU
?l2

z

r max

sin#

{l +cos9jrRclr2
(2.9)

Given pressure distribution (2.7), load components P
x

and P
Y (relative to the X,Y

system axis of Figure 2.1.3a) carried by the bearing can be found from integration:

Px
= pr cos 9d9dz

PY
= - \ |

c

pr sin 9d9dz

where 9C is the positive extent of the pressure region.
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2.2 Lubrication of finite-length journal bearings with non-cylindrical sleeve geometry.

With non-cylindrical sleeve geometry, numerical methods are the only resort to find the

pressure distribution from the Reynolds equation. Among the many numerical techniques,

the finite element method of solution allows great flexibility in representing lubricant films

with feed grooves and oil holes. The application of the finite element to lubrication is

discussed more in detail in Booker and Huebner (1972) and is summarized as follows.

Figure 2.2.1 shows a lubricant film represented as a system of finite elements interconnected

at a discrete set of nodes. At each node, nodal net flow qt and nodal pressure pi form a set of

complementary unknowns. In other words, at each node, either the nodal net flow qt is

specified, leaving the pressure pi as an unknown, or the nodal pressure p; is specified, leaving

the net flow qt to be determined. Nodal net flows are usually set to zero in the bearing interior

regions, and nodal pressure is usually specified on the boundary or in cavitated regions.

For steadily loaded journal bearings, the film pressure and net flow at each of n nodes can be

computed from the following system of equations (Booker and Huebner, 1972)
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'q, ^

< q;

r \
Pi

/"

=rKDi \

n x 1

P:

P-

r
Uj = M

U., = W

f + [Kun u, = u

V Pn /

n x n n x 1

V. un = m /

n x n n x 1

where fluidity matrices [Kp] and [Ku] depend on specified nodal film thickness values, and

where u is one-half of the journal surface velocity.
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Lubricant film attached to sleeve (unwrapped view)

Figure 2.2.1. Finite element meshing scheme for non-cylindrical journal bearings.
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2.3 Problem Statement

The task of this thesis is to find the optimal bearing sleeve shape of a steadily loaded

journal bearing under steady journal rotation. The objective function to be maximized is

defined as the bearing load subject to the constraint that the minimum film thickness is

equal to 1 micron.

This 1 micron target value is based on numerical studies (Wang, et al. 1997) which

suggest that asperity contacts for typical bearing materials can be ignored when the film

thickness to composite roughness ratio is greater than 3. Most bearing materials today

can be manufactured to have roughness values around 0.25 micron; hence, the reason for

choosing the 1 micron target is a conservative value.

Fig. 2.3.1 shows a fluid-film bearing where film thickness of 1 micron is specified at

bearing angle 0 = 0 (measured from the X axis), and thicknesses HI, H2, and H3 are

specified at bearing angles 0 = 7t/2, n, and 371/2 respectively. The following limits for the

values ofHI, H2, and H3 are specified as follows:

1 /am < HI < 127 /xm

1 /xm < H2 < 127 /xm

1 /am < H3 < 127 /tin.
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9 = 0

Figure 2.3.1. Steadily loaded journal bearing with design variables HI, H2, and H3.
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1 fim

Figure 2.3.2. Interpolated film thickness based on design variables.
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Hence, given values of HI, H2, and H3, the film thickness around the bearing can be found

by linear interpolation as shown in Figure 2.3.2. The film thickness is assumed not to vary in

the axial direction.

2.4 Genetic Algorithms

The method of solution for this optimization problem will be using genetic algorithms, and in

this section, we will introduce the genetic algorithms, how they operate and their important

key features.

The term chromosome generally refers to a contestant solution to a problem, often encoded

as a bit string, in genetic algorithms. The genes can be either single bits or short blocks of

contiguous bits that encode a particular element of the contestant solution. Another term, an

allele, is a bit in the string, which for our purposes can be either 0 or 1. However, note that

genetic algorithms in general are not limited to binary values.

Following the method proposed by Chapman (1994), the three design variables, HI, H2, and

H3 representing film thickness are encoded as one chromosome, which for our case consists

of 21 bits. Each design variable is represented as a seven bit string of binary numbers

representing the range of 0
- 127 //m in 1 micron increments.
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2.4.1. Genetic Algorithm Operators

The simplest form of the genetic algorithm involves three types of operators-selection,

crossover, and mutation.

Selection: This operator chooses chromosomes in the population for the future reproduction.

The fitter the chromosome, the more times it is likely to be chosen to reproduce (Melanie,

1999).

Elitism: The operator preserves some number of the best individuals at each generation. It is

very likely that if such best individuals are not chosen for reproduction, they can be lost or

destroyed by crossover and mutation operators (Melanie, 1999).

Crossover: This operator randomly picks a locus and exchanges the subsequences before and

after that locus between two chromosomes to create two offspring (Melanie, 1999). For

instance, the strings 1001111001 and 1111000011 can be crossed over after the second locus

in each to produce the two new generations 1011000011 and 1101111001. The operator of

crossover works very similarly to biological recombination between two single-chromosome

(haploid) organisms.

This operator is shown more clearly in detail in the following example, (Hillis; 1992), and it

is for numerically encoded chromosomes looks like the following:
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Parent l(diploid): Parent 2 (diploid):

A: 0000111001

B: 1111000010

10010100001110

10101111111000

1
Gametes:

000011100110101111111000

C: 11110000011010

D: 00001111100101

1010000110

0101001010

1

1 1 1 1000001 10100101001010

Offspring (diploid): 00001 1 1001 10101 11111 1000

1 1 1 1000001 10100101001010

Figure 2.4.1. An illustration of diploid recombination, (Hillis, 1992).
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Fig.2.4.1 shows an illustration of diploid recombination (Hillis, 1992), an individual's

genotype consisted of 13 pairs of chromosomes (for clarity only one pair of chromosomes for

each parent is shown in Figure 2.4.1). A crossover point was selected at random for each pair

of chromosomes or diploid. The codons before the crossover point in the first chromosome

and the codons after the crossover point in the second chromosome formed a gamete. Each

codon is representative of an integer number between 0 and 15, and gives a position in a 16-

element list. Figure 2.4.1 shows that parents of the gamete from parent 1 plus the gamete

from parent 2 creates an offspring diploid (chromosome pair). In general, the 13 gametes

from one parent were paired with the 13 gametes from the other parent to make a new

individual. (Again for the clarity point of view, only one gamete pairing is shown.)

The rate of crossover operator defines the probability of performing this operator. The rate

has independent values, which are different for the different size of the population; for the

population size of 20-30 it is typical to pick the crossover rate between the range 0.75-0.95

(Melanie, 1999) and for a population size of 50-100 individuals, it is the best to pick the

crossover rate ~ 0.6 per pair of parents. Hence, crossover rate does not apparently depend on

the problem itself.

Mutation: This operator randomly flips some of the bits in a chromosome. For instance, the

string: ll

101010101 in.

can be mutated to the following:

101010101100
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In the past, the crossover operator alone played a major tool in computation and innovation

of genetic algorithms, and mutation played a secondary role. However, in solving very

complex problems, the mutation operator in genetic algorithms is now considered one of the

key instruments of modern genetic algorithms. Similar to crossover, mutation also has a rate,

which differs depending on the population size. For the population size of 50 - 100,

mutation rate is typically recommended be 0.001 per bit, and for the population size of 20-30,

it is considered best practice to choose the mutation rate in the range of 0.005 - 0.01

(Melanie, 1999).

2.5 Implementation of the genetic algorithm for bearing shape optimization.

The FORTRAN computer program OPTJBG 1.3 (Boedo, 2000, see Appendix I) employs a

genetic algorithm to optimize the sleeve shape of a steadily loaded journal bearing. The

program works to perform sequences of the operations as noted in this section with

pseudocode presented in the Appendix I. The OPTJBG program initially creates a fixed

number of randomly generated chromosomes, each 21 binary digits long. Each chromosome

represents binary values of design variables HI, H2, and H3. Figure 2.5.1 shows the

encoding scheme for a sample randomly generated chromosome.
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HI = 19/n

0 10 10 0 1 110 10 11 0 0 10 0 10

(H3-1) /urn (H2-1) jum (Hl-1) jum

Figure 2.5.1 Encoding scheme for design variables.
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The bearing film is represented by a set of two-dimensional finite elements connected at a

discrete set of nodes attached to the sleeve surface, as shown in Figure 2.2.1 for a given set of

values HI, H2, H3 in the design space, the film thickness distribution at each node is found

by linear interpolation as shown in Figure 2.3.2. For boundary conditions, the nodal pressure

at the bearing ends and the nodal net flows in the bearing interior are set to zero.

Given film thickness distribution, bearing dimensions, journal speed, and boundary

conditions, either the unknown film pressure or the unknown flow at each node in Section

2.2 is found using the CUTMPD version 1.1 subroutine (Boedo and Booker, 2000). The

bearing load (journal to sleeve) is subsequently found by integration of nodal pressures.

For each chromosome, the bearing loads are recorded. The chromosomes are then sorted into

decreasing load magnitudes as shown in Figure. 2.5.2. This set of chromosomes and loads

represents the k-th generation.

In OPTJBG, to create the k+1 generation of chromosomes, chromosomes 1 and 2 (the best

and runner-up load bearing designs) are simply carried over to the next generation (elitism),

while crossover/mutation operators act on succeeding pairs of chromosomes, as shown in

Figures 2.5.3 and 2.5.4. This process is repeated for a specified number of generations,

whereupon the best design at the end is declared optimal. Our current selection criterion is

based solely on the number of generations typically 500 to 1000 as recommended by

Chapman (1994).

44



Chromosome Bearing Load

1 1100000000011 11111

1 110000 000001111100

1 110000 000001111000

1 110000 000001110000
Pj

p1>p2>p3>p4>...>pw

N 1 100000000000000000

Figure 2.5.2 Ordering of the A;-th generation prior to recombination.
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Generation k Generation k+1

000 1 1 1 0001 1 1
elitism

0001 1 10001 1 1

0001 1 1000 1 10
elitism

0001 1 10001 10

0001 1 1000000

1 1 1 000 111111 ^

crossover and

mutation

0001 11001111

0001 11001110

5.

101010101111 ^

111111 000000

crossover and

mutation

1010101011 00

00 101010 1100

Figure 2.5.3 Creation of a new generation.
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a) Crossover:

Parents:

HI H2 H3

1110 0 0 0 0 0 0 0 0 1 1 llll 0 0 1

1110 0 11 0 0 0 1111 llll 1 1 1

Children:

hi h2 h3

1110 0 0 0 0 0 0 0 0 11 1111111

1110 0 11 0 0 0 1111 11110 0 1

b) Mutation:

Before mutation:

HI H2 H3

1110 0 0 0 0 0 0 0 0 1 1 1111111

After mutation:

hi h2 h3

1110 0 0 0 0 0 0 0 0 0 0 1111111

Figure 2.5.4 Crossover and mutation operators.
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Chapter 3

Application

3.1 Introduction

Four case studies were performed. Each case study represents a particular bearing length and

diameter configuration, and the goal is to achieve an optimal shape of the form shown in

Figure 3.1.1. Table 1 lists bearing specifications and genetic algorithm parameters.

Given bearing specifications in Table 1, each case study started with an initial set (first

generation) ofNjohrom chromosomes. This set represented design variables HI, H2, H3 and

was randomly generated using a random number generator (Matsumoto and Nishimura,

1997) and a seed value (sv) taken from a set of randomly generated integers (Abramonitz and

Stegun, 1965). This initial set of chromosomes was allowed to evolve to 1000 generations

using crossover and mutation probabilities listed in Table 1.

For each generation, the maximum load among the N_chrom chromosomes was recorded.

The design variables that make up this best chromosome, along with maximal film pressure

power loss, were also recorded for each generation.

The process was repeated with two different randomly generated sets of N_chrom

chromosomes, and all three subcases were plotted and tabulated for comparison.
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6=0

Figure 3.1.1 Bearing geometry
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Table 1 . Case studies

Case # 1 Case # 2 Case # 3 Case # 4

Bearing Diameter, D (mm) 5 10 20 40

Bearing Length, L (mm) 5 10 10 10

Viscosity, m (mPa-s) 5 5 5 5

Cavitation Pressure, (Pa) 0 0 0 0

Ambient pressure, (Pa) 0 0 0 0
Journal angular velocity, oo

(rad/s) 104.72 104.72 104.72 104.72

Chromosomes per generation,
N_chrom 10,20,40 10,20,40 20 20

Number of generations, N_gen 1000 1000 1000 1000

Crossover probablity, Pcross 0.95 0.95 0.95 0.65, 0.78, 0.95

Mutation Probablity, Pmut 0.01 0.01 0.01 0,0.01,0.001

50



3.2 Case Study 1

This case study represents a bearing with diameter D = 5 mm, bearing length L = 5 mm, and

journal angular velocity co = 104.720 rad/s (Table 1). Three subcases are studied by

specifying the number of chromosomes per generation in sets of 10, 20, and 40, along with

crossover probability of 0.95 and mutation probability of 0.01.

With N_chrom =10, Figure 3.2.1 shows a plot of load evolutions for each of three randomly

selected sets. Figure 3.2.2 shows the plot of the resulting power loss with three randomly

selected sets. Figure 3.2.3 shows the maximum film pressure of the bearing. Figure 3.2.4 a,

b, c shows the resulting film thickness with three randomly selected seed values. All these

plots show that even after 1000 generations, there are still three distinctly different solutions

were found, suggesting that only local optimums were achieved.

With N_chrom =20, Figure 3.2.5 shows a plot of load evolutions for each of three randomly

selected sets. Figure 3.2.6 shows the plot of power loss with three randomly selected sets.

Figure 3.2.7 shows the maximum film pressure of the bearing. Figure 3.2.8 a, b, c shows the

film thickness with three randomly selected seed values. After 1000 generation, the

evolutions are approaching a common value, suggesting that a global optimum has been

achieved.

With N_chrom = 40, Figure 3.2.9 shows a plot of load evolutions for each of three randomly

selected sets. Figure 3.2.10 shows the plot of power loss with three randomly selected sets.
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Figure 3.2.11 shows the maximum film pressure of the bearing. Figure 3.2.12 a, b, c shows

the film thickness with three randomly selected seed values. The final results are very

similar to N_chrom = 20. Njchrom = 40 gave somewhat better final convergence at N_gen =

1000. There is a difference between these subcases, but this difference is approximately 5

%. However, the computation time is more than twice as long with chromosome size of 40

than with chromosome size of 20. Running this case took more than 8 hours for

computation.

3.3 Case Study 2

This case study represents a bearing with diameter D = 5 mm, bearing length L = 10 mm, and

journal angular velocity co = 104.720 rad/s (Table 1). As in case 1, three subcases are studied

by specifying the number of chromosomes in sets of 10, 20, and 40, along with crossover

probability of 0.95 and mutation probability of 0.01.

With N_chrom = 10, Figure 3.3.1 shows a plot of load evolutions for each of three randomly

selected sets. Figure 3.3.2 shows the plot of power loss with three randomly selected sets.

Figure 3.3.3 shows the maximum film pressure of the bearing. Figure 3.3.4 a, b, c shows the

film thickness with three randomly selected seed values. All these plots show that even after

1000 generations, still three distinctly different solutions were found, again suggesting that

local optimums were achieved.
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With N_chrom = 20, Figure 3.3.5 shows a plot of load evolutions for each of three randomly

selected sets. Figure 3.3.6 shows the plot of power loss with three randomly selected sets.

Figure 3.3.7 shows the maximum film pressure of the bearing. Figure 3.3.8 a, b, c shows the

film thickness with three randomly selected seed values. After 1000 generations, the

evolutions are approaching a common value, as with that found in case 1.

With N_chrom = 40, Figure 3.3.9 shows a plot of load evolutions for each of three randomly

selected sets. Figure 3.3.10 shows the plot of power loss with three randomly selected sets.

Figure 3.3.11 shows the maximal film pressure of the bearing. Figure 3.3.12 a, b, c shows

the film thickness with three randomly selected seed values. As in case 1, the final results

are very similar to N_chrom = 20, differing only by about 5 %. Hence, based on this and the

previous case study, it appears that using 20 chromosomes per generation with 1000

generations is sufficient for further computations.

3.4 Case Study 3

This case study represents a bearing with diameter D = 10 mm, bearing length L = 20 mm,

and journal angular velocity co = 104.720 rad/s (Table 1). This case differs from previous

cases studied in that only a chromosome size of 20, crossover probability of 0.95 and

mutation probability of 0.01 will be used.

Figure 3.4.1 shows a plot of load evolutions for each of three randomly selected sets. Figure

3.4.2 shows the plot of power loss with three randomly selected sets. Figure 3.4.3 shows the
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maximum film pressure of the bearing. Figure 3.4.4 a, b, c shows the film thickness with

three randomly selected seed values.

This study showed that the chromosome size of 20 with 1000 generations gives convergence

trends similar to Case Study # 2. Another interesting fact with this case is that by decreasing

the ratio of bearing length to diameter L/D, global optimal solutions in load evolutions,

maximal film pressure and power loss can be simultaneously attained, which was not

obtained in Case 1 or 2, with L/D =1.

3.5 Case Study 4

This case study represents a bearing with diameter D = 40 mm, bearing length L = 10 mm,

and journal angular velocity co = 104.720 rad/s (Table 1). This case is studied with only

chromosome size of 20, but with different crossover probability values (0.65, 0.78, 0.95) and

mutation probability values (0, 0.001, 0.01) to investigate the sensitivity of the probability

values of crossover and mutation operators. Crossover probability values are selected from

the minimum, average and maximum values suggested for the population size of 20-35 as

suggested byMelanie (1999).

Figure 3.5.1 shows a plot of load evolutions for each of three randomly selected sets with

crossover probability of 0.95 and mutation probability of 0.01. Figure 3.5.2 shows the plot of

power loss with three randomly selected sets crossover probability of 0.95 and mutation

probability of 0.01. Figure 3.5.3 shows the maximum film pressure of the bearing crossover
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probability of 0.95 and mutation probability of 0.01. Figure 3.5.4 a, b, c shows the film

thickness with three randomly selected seed values after 1000 generations.

This case study also showed that the chromosome size of 20 with 1000 generations gives

convergence trends similar to the previous case studies.

Figure 3.5.5 shows a plot of load evolutions for each of three randomly selected sets with

crossover probability of 0.65 and mutation probability of 0.01 . Figure 3.5.6 shows the plot of

power loss with three randomly selected sets crossover probability of 0.65 and mutation

probability of 0.01. Figure 3.5.7 shows the maximal film pressure of the bearing crossover

probability of 0.65 and mutation probability of 0.01. Figure 3.5.8 shows a plot of load

evolutions for each of three randomly selected sets with crossover probability of 0.78 and

mutation probability of 0.01.

Figure 3.5.9 shows the plot of power loss with three randomly selected sets crossover

probability of 0.78 and mutation probability of 0.01. Figure 3.5.10 shows the maximum film

pressure of the bearing crossover probability of 0.78 and mutation probability of 0.01 .

Figure 3.5.11 shows a plot of load evolutions for each of three randomly selected sets with

crossover probability of 0.95 and mutation probability of 0 (without mutation). Figure 3.5.12

shows the plot of power loss with three randomly selected sets crossover probability of 0.95

and mutation probability of 0 (without mutation). Figure 3.5.13 shows the maximal film
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pressure of the bearing crossover probability of 0.95 and mutation probability of 0 (without

mutation).

Figure 3.5.14 shows a plot of load evolutions for each of three randomly selected sets with

crossover probability of 0.95 and mutation probability of 0.001. Figure 3.5.15 shows the plot

of power loss with three randomly selected sets crossover probability of 0.95 and mutation

probability of 0.001. Figure 3.5.16 shows the maximal film pressure of the bearing crossover

probability of 0.95 and mutation probability of 0.001.

All these plots show that the acceptable values of crossover probability and mutation

probability are 0.95 and 0.01 respectively, along with chromosome size of 20.

3.6 Comparison with cylindrical bearings

Finally, comparison with conventional cylindrical bearing designs needs to be investigated.

Using the CUIMPD module, a cylindrical finite element mesh was constructed As Figure

3.6.1 shows, the film thickness at 9= 0 is fixed to 1 micron, and the film thickness /im^at 9=

180 is varied from 1 to 128 microns. For each case study, plots of specified hmax value, a

circular bearing sleeve is constructed and bearing load F is computed. F vs. film thickness

hmax were drawn, as shown in Figure 3.6.2 (Case 1), Figure 3.6.3 (Case 2), Figure 3.6.4 (Case

3), and Figure 3.6.2 (Case 4). The maximum values of F from each case study were tabulated

in Table 2.
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The comparison of results in Table 2 show that the investigated optimization technique gives

approximately 10 % improvement in a bearing maximal load with bearing size of D = 5 mm

and L = 5 mm Case 1, nearly 50 % improvement in a bearing with dimensions ofD = 10 mm

and L = 10 mm Case 2, approximately 7.1 % improvement in a bearing with dimensions ofD

= 20 mm and L = 10 mm Case 3, and approximately 5 % improvement in a bearing with

dimensions ofD = 40 mm and L = 10 mm Case 4.
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1 jum

Cylindrical
journal

Figure 3.6.1 Cylindrical bearing geometry.

Cylindrical
sleeve

58



Table 2. Comparison of optimal bearings with best cylindrical bearing

N_chrom = 20, P_mut = 0.01

P cross =0.95

Case# Maximum Optimal Load, F (N)
Best Cylindrical bearing,

Fcyl (N) Fmax / Fcyl
CASE # 1 21.704 19.958 1.08751914

CASE # 2 443.566 297.975 1.488602913
CASE # 3 903.028 843.2 1 .070953866

CASE # 4 2126.579 2045.745 1.039513475
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Chapter 4

Summary

This thesis has shown that genetic algorithms offer a most promising computational

technique for the optimal design of fluid film journal bearings. The algorithm is simple to

implement and is relatively fast in finding an optimal shape.

The case studies presented in this thesis have shown that the number of chromosomes per

generation and the number of generations to run are two of the key parameters of the genetic

algorithms. When running the algorithm with three randomly generated initial sets of 10

chromosomes per generation, three different solutions are typically obtained after 1000

generations. If the number of chromosomes per generation is increased to 20, randomly

generated initial sets converge to nearly identical answers after 1000 generations.

The case studies run with 10, 20, and 40 chromosomes per generation take approximately

2.25 hours, 4.5 hours, and 8 hours, respectively, with a 553 MHz Pentium III processor and

256 MB memory. This computational cost trend is expected, as most of the OPTJBG

program computations involve computation of bearing load. With 10, 20, and 40

chromosomes per generation, running each to 1000 generations require 10,000, 20,000 and

40,000 bearing load calculations, respectively.

Most noteworthy, the case studies show that running the algorithm with 40 chromosomes per

generation yields only a 5% improvement in load capacity when compared with results

obtained 20 chromosomes per generation. Even though the 40 chromosomes per generation
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size gives a somewhat better answer, from the computing time perspective, it is nearly twice

as slow as than 20 chromosome size.

As a final computing cost assessment, an exhaustive search over the design space would

require 2 = 2,097,152 bearing calculations. Assuming 40,000 calculations take 8 hours, an

exhaustive search for each case study would take approximately 419 hours, or 17.5 days

using the same computer configuration; hence, this study was not performed.

The importance of the mutation operator can be observed in case # 4 of mutation sensitivity

studies, which differs from case # 4 only with its zero mutation probability. The final results

of the case show that the lack of the mutation operator produces a load which is

approximately 20-30% lower than the optimal.

Further work will investigate the sensitivity of small perturbations of load and shape

deviations from the optimal, along with investigations of dynamic loads and speeds.
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Appendix I.

Pseudocode Algorithm for Program OPTJBG.

The following described pseudocode algorithm is used as a computation technique in our

research. The program works in the following pattern; first takes all necessary data for the

computation, in the input step, and then creates a number of output files for the output data.

Consequently, the program starts computation by creating random number sets with binary

numbers:

while (1 < i < nchrom) do

while (1 < j < nchrom) do

z < grnd( )

if ( 0<z <0.5 ) then

num < 0

else

num < /

Then Genetic Algorithm starts working in the loop. It decodes each of the chromosomes into

their design variables and stores in arrays HI, H2, and H3. For each generation one separated

set of design variables is created. On the following step, it calculates load for each set of

design variables - HI, H2, and H3.
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while (1 < k < numgen) do

while (1 < i < nchrom) do

I
'"

hx (i) <- 0

icount < 0
mm,

while (1 <j<7)do

hx (i) <- h. (i) + (2lcou"')* icount(ij)

icount < icount + 1

while (8 <j< 14) do

h2 (i) <- h2 (i) +(2icou"')* icount(ij)

icount < icount + I

while (15 <j< 21) do

h3 (i) <r~ h3 (i) +(2icoum)* icount(ij)

icount < icount + 1

write k

format

while (1 < i < nchrom) do

h Xdes
<- 1.0d-06 + h. (i) * 1.0d-06

h 2des
<- l.Od -06 + h2 (i) * 1.0d-06

h 3des
<- l.Od -06 + h3 (i) * 1.0d-06

write ichrom(i, j),hldes,h 2des , h 3des

0format
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After that the algorithm calculates load for each set of design variables and computes the

radial clearance at each mesh node based on values of the design variables using linear

interpolation. Also, in this step, the algorithm calculates the force magnitude, which will be

the basis for sorting chromosomes in the next step;

while (1 < i < nchrom) do

*h xdes
<- 1.0d-06 + hx (i) * 1.0d-06

h ides
<~ 10d ~06 + h2 (i) * 1.0d-06

h3des <r- 1.0d-06 + h3 (i) * 1.0d-06

call interp ( h xdes , h 2des , h 3des , d, x, numnod, rclr )

while (1 < 1 < nchrom) do

clrtbl (I, i) < rclr (I)

call mesh file
[
fmag(i) <- Jf2(x) + f2(y)

pmaxtbl (i) < pmax

plosstbl (i) < power

write ichrom(i, j), h xdes , h 2des , h 3des

format(1
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The following step sorts out chromosomes based on maximum load values to get

corresponding values of power loss, maximal pressure and nodal clearance. The coming

algorithm stores the chromosomes as parents in sorted order, that is, from the highest load to

the lowest load. Each time the algorithm carries the two highest load - carrying

chromosomes over the next generation without any modification or mutation at all. It

performs crossover operation on the remaining pairs of chromosomes picking the crossover

point randomly, and coping into the temporary storage, parents. Then it performs crossover

operation over the children at randomly selected points and stores in the storage of children.

Consequently, it starts hitting the children with mutation at random points in chromosomes

and leaving retained the first two chromosomes again without doing any operation over them.

It sets children for the next generation. A single crossover scheme is utilized in this program.

All these steps are repeated over and over the number of generation times;

135



call piksk2 (nchrom, fmag, fsort, index)

/ while (1 < i < numnod) do

press <r-

| clrmax (i) = clrtbl (i, index(nchrom))

pmaxtbl ( index(nchrom))

ploss < plosstbl ( index(nchrom))

while (1 < i < nchrom) do

while(l<j<21)do

V

iparent (i, j) <

while(l<j<21)do

ichild(lj) <- iparent (l,j)

ichild(2,j) <r- iparent (2, j)

ichrom (index(nchrom + I - i), j)
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while (3 < j < nchrom) do

/ while(l<j<21)do

iparl(j) < iparent (l,j)

ipar2 (2, j) < iparent (1+1, j)

z <- grnd ()

if ( z < pcross ) then
m

z <- grnd ( )

icross < z * 21 + 0.5

else

icross < 0

while (1 < j < icross) do

| ichild( i,j) <r- iparl(j)

[^ ichild ( i + l,j) < i>ar2 f j )

while (icross + 1 < j < 21) do

ichild ( i, j) <r- ipar2 ( j )

ichild ( i + l.j) <- iparl (j )
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while (3 < i < nchrom) do

/^while(l<j<21)do

fz <- grnd ( )

if ( z < pmutat ) then

if ( ichild =1 ) then

V.

[
else

[

ichild (i,j) < 0

ichild (i,j) < /

V.

while (3 < i < nchrom) do

while (1 <j <21)do

ichrom (i, j) < ichild(i, j)[

stop

end

In the previous algorithms, there are two subroutines,
"piksk2" for sorting of chromosomes

based on maximal load and
"interp" for supplying of interpolation data points. These

subroutines of the algorithm function in the following order:
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subroutine piksr2 ( n, b, arr, index )

implicit double precision (an, o-z )

dimension arr (n), b(n), index(n)

while (1 <i<n)do

arr (i) < b (i)

index (i) < i

* pick out each element in turn

while (2 <j <n) do

fa <- arr (j)

indval < index (j)

* look for the place to insert it

while (j-1 <i<l)do

if (arr(i) <a) goto while (j-1 < i < 1) do

arr(i+l)
< arr(i)

index (i+1) < index (i)

i <- 0

* insert it

arr (i+1) < a

index (i+1) <- indval

return

end
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subroutine interp ( h Xdes , h 2des , h 3des , d, %, numnod, rclr )

implicit double precision (a-n, o-z )

parameter ( kn = 1200 )

dimension xtable (5), ytable (5), % (kn), rclr (kn)

* design variable h xdes at x
= (d/2) *(n/2)

* design variable h 2des at x
= (d/2) *k

* design variable h3des at x = (d/2)*(3*ir/2)

* 1 urn clearance at %
= 0 and at %

= (d/2)*(2*7t)

ti
= 4*atan(1.0d + 0)

Xtable (1) = 0.

Xtable (2) = (d/2)*(*x/2)

Xtable (3) = (d/2)*7i

Xtable (4) = (d/2)*(3*7c/2)

Xtable (5) = (d/2)*(2*7i)

*

Ytable (1) = 1.0d-06

Ytable (2) = hxdes

Ytable (3) = h2des

Ytable (4) = h3des

Ytable (5) = 1.0d-06
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while (1 < i < numnod) do

/^~Xnode <-
x(0

* find xnode intable

* find rclr by linear interpolation

k <- l

ii (Xnode > Xtable (k) ) and (xnode < Xtable (k+1)) then

slope <r-
Ytable(k + \)-Ytable(k)

rclr

else

Xtable(k + 1) - Xtable(k)

<- ( Ytable(k) + slope * ( xnode -Xtable (k) )

goto while (1 < i < numnod) do

k <- k+ 1

goto while (1 <j<21)do

V
stop

return

end

As a final note, the random number generator grnd (Matsumoto and Nishimura, 1997) is used

to create the initial set of chromosomes and perform crossover and mutation operations.
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