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ABSTRACT

We present e�cient algorithms for shortest�path and minimum�link�path queries
between two convex polygons inside a simple polygon P � which acts as an obstacle to
be avoided
 Let n be the number of vertices of P � and h the total number of vertices of
the query polygons
 We show that shortest�path queries can be performed optimally in
time Ologh� logn� plus Ok� time for reporting the k edges of the path� using a data
structure with On� space and preprocessing time� and that minimum�link�path queries
can be performed in optimal time Ologh�logn� plus Ok� to report the k links�� with
On�� space and preprocessing time

We also extend our results to the dynamic case� and give a uni�ed data structure that
supports both queries for convex polygons in the same region of a connected planar
subdivision S
 The update operations consist of insertions and deletions of edges and
vertices
 Let n be the current number of vertices in S
 The data structure uses On�
space� supports updates in Olog� n� time� and performs shortest�path and minimum�
link�path queries in times Ologh�log� n� plus Ok� to report the k edges of the path�
and Ologh� k log� n�� respectively
 Performing shortest�path queries is a variation of
the well�studied separation problem� which has not been e�ciently solved before in the
presence of obstacles
 Also� it was not previously known how to perform minimum�link�
path queries in a dynamic environment� even for two�point queries
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�� Introduction

In this paper� we present e�cient algorithms for shortest�path and minimum�

link�path queries between two convex polygons inside a simple polygon� which acts

as an obstacle to be avoided� We give e�cient techniques for both the static and

dynamic versions of the problem�

Let R� and R� be two convex polygons with a total of h vertices that lie inside

a simple polygon P with n vertices� The �geodesic� shortest path �G�R�� R�� is

the polygonal chain with the shortest length among all polygonal chains joining a

point of R� and a point of R� without crossing edges of P � A minimum�link path

�L�R�� R�� is a polygonal chain with the minimum number of edges �called links�

among all polygonal chains joining a point of R� and a point of R� without crossing

edges of P � The number of links in �L�R�� R�� is called the link distance dL�R�� R���

The related problem of computing the length of the shortest path between two

polygons R� and R� without obstacle P has been extensively studied	 this prob�

lem is also known as 
nding the separation of the two polygons��� denoted by

��R�� R��� If both R� and R� are convex their separation can be computed in

O�logh� time ���������	 if only one of them is convex an O�h��time algorithm is given

in Ref� ���	 if neither is convex� an optimal algorithm is recently given by Amato��

who improves the previous result of Kirkpatrick�� from O�h logh� to O�h��

Although there has been a lot of work on the separation problem� the more

general shortest�path problem for two objects in the presence of obstacle P has

been previously studied only for the simple case when the objects are points� for

which there exist e�cient static�� and dynamic���� solutions� The static technique

of Ref� ���� supports two�point shortest�path queries in optimalO�logn� time �plus

O�k� if the k edges of the path are reported�� employing a data structure that

uses O�n� space and can be built in linear time� The dynamic technique of Ref� ���

performs shortest�path queries between two points in the same region of a connected

planar subdivision S with n vertices in O�log� n� time �plus O�k� to report the k

edges of the path�� using a data structure with O�n logn� space that can support

updates �insertions and deletions of edges and vertices� of S each in O�log� n� time�

The very recent result of Ref� ��� improves the query and update times toO�log� n��

with space complexity also improved to O�n��

The minimum�link path problem between two points has been extensively stud�

ied� In many applications� such as robotics� motion planning� VLSI and computer

vision� the link distance often provides a more natural measure of path complex�

ity than the Euclidean distance��������������� For example� in a robot system� a

straight�line navigation is often much cheaper than rotation� thus it is desirable to

minimize the number of turns in path planning������ Also� in graph drawing� it is

often desirable to minimize the number of bends������

All previously known techniques for the minimum�link path problem are re�

stricted to the static environment� where updates to the problem instance are not

allowed� The method of Ref� ���� computes a minimum�link path between two �xed

points inside a simple polygon in linear time� In Ref� ����� a scheme based on win�

dow partition can answer link distance queries from a �xed source in O�logn� time�
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after O�n� time preprocessing� The best known results are due to Arkin� Mitchell

and Suri�� Their data structure uses O�n�� space and preprocessing time� and sup�

ports minimum�link�path queries between two points and between two segments in

optimal O�logn� time �plus O�k� if the k links are reported�� Their technique can

also perform minimum�link�path queries between two convex polygons� however�

in non�optimal O�logh logn� time� Also� e�cient parallel algorithms are given in

Ref� ����

There are other results on the variations of the minimum�link�path problem� Ef�


cient algorithms for link diameter and link center are given in Refs� ����������������

and �������� A minimum�link path between two 
xed points in a multiply connected

polygon can be computed e�ciently��� Sequential and parallel algorithms for recti�

linear link distance are respectively given by de Berg� and Lingas et al���	 De Berg

et al�� study the problem of 
nding a shortest rectilinear path among rectilinear

obstacles� Mitchell et al��� consider the problem of 
nding a shortest path with

at most K links between two query points inside a simple polygon� where K is an

input parameter�

Our main results are outlined as follows�

� Let P be a simple polygon with n vertices� There exists an optimal data

structure that supports shortest�path queries between two convex polygons

with a total of h vertices inside P in time O�logh� logn� �plus O�k� if the k

links of the path are reported�� using O�n� space and preprocessing time	 all

bounds are worst�case�

� Let P be a simple polygon with n vertices� There exists a data structure

that supports minimum�link�path queries between two convex polygons with

a total of h vertices inside P in optimal time O�logh�logn� �plus O�k� if the

k links of the path are reported�� using O�n�� space and preprocessing time	

all bounds are worst�case�

� Let S be a connected planar subdivision whose current number of vertices is n�

Shortest�path and minimum�link�path queries between two convex polygons

with a total of h vertices that lie in the same region of S can be performed

in times O�logh � log� n� �plus O�k� to report the k links of the path� and

O�logh�k log� n�� respectively� using a fully dynamic data structure that uses

O�n� space and supports insertions and deletions of vertices and edges of S

each in O�log� n� time	 all bounds are worst�case�

The contributions of this work can be summarized as follows�

� We provide the 
rst optimal data structure for shortest�path queries between

two convex polygons inside a simple polygon P that acts as an obstacle� No

e�cient data structure was known before to support such queries� All previous

techniques either consider the case where P is not present or the case where

the query objects are points�

� We provide the 
rst data structure for minimum�link�path queries between

two convex polygons inside a simple polygon P in optimal O�logh � logn�
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time� The previous best result� has query time O�logh logn� �and the same

space and preprocessing time as ours��

� We provide the 
rst fully dynamic data structure for shortest�path queries

between two convex polygons in the same region of a connected planar subdi�

vision S� No such data structure was known before even for the static version�

� We provide the 
rst fully dynamic data structure for minimum�link�path

queries between two convex polygons in the same region of a connected planar

subdivision S� No such data structure was known before even for two�point

queries�

We summarize the comparisions of our results with the previous ones in Tables ��

��

Table �
 Results for static shortest�path queries


Static Shortest Paths Query Type Query Space Preprocess

Guibas�
Hershberger��

two query
points

logn � n � n �

This paper two query con�
vex polygons

logh� logn � n � n �

� optimal

Table �
 Results for dynamic shortest�path queries


Dynamic Shortest Paths Query Type Query Space Update

Chiang�Preparata�
Tamassia�

two query points log� n n logn log� n

Goodrich�Tamassia�� two query points log� n n � log� n

This paper two query con�
vex polygons

logh� log� n n � log� n

� optimal

We brie�y outline our techniques� Given the available static techniques with

optimal query time for shortest paths and minimum�link paths between two points�

our main task in performing the two�polygon queries is to 
nd two points p � R�

and q � R� such that their shortest path or minimum�link path gives the desired

path between R� and R�� As we shall see later� the notion of geodesic hourglass

between R� and R� is central to our method� The geodesic hourglass is open if R�

and R� are mutually visible� and closed otherwise� As for shortest�path queries� the

case where R� and R� are mutually visible is a basic case that� surprisingly� turns

out to be nontrivial �the complication comes from the fact that the shortest path

in this case may still consist of more than one link�� and our solution makes use

of interesting geometric properties� If R� and R� are not visible� then the geodesic

hourglass gives two points p� and p� that are respectively visible from R� and R�

such that the shortest path between any point of R� and any point of R� must go
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Table �
 Results for static minimum�link�path queries


Static Min�Link Paths Query Type Query Space Preprocess

Suri�� one 
xed point
and one query
point

logn � n � n �

Arkin�Mitchell�
Suri�

two query
points�segments

logn � n� n�

two query con�
vex polygons

logh logn n� n�

This paper two query con�
vex polygons

logh� logn � n� n�

� optimal

Table 	
 Results for dynamic minimum�link�path queries


Dynamic Min�Link Paths Query Type Query Space Update

This paper two query con�
vex polygons

logh� k log� n n � log� n

� optimal

through p� and p�� Then the shortest path between R� and R� is the union of the

shortest paths between R� and p�� between p� and R� �both are basic cases�� and

between two points p� and p�� The geodesic hourglass also gives useful information

for minimum�link�path queries� When it is open� a minimum�link path is just a

single segment	 if it is closed� then it gives two edges such that extending them

to intersect R� and R� gives the desired points p and q whose minimum�link path

is a minimum�link path �L�R�� R��� However� it seems di�cult to compute the

geodesic hourglass in optimal time� Interestingly� we can get around this di�culty

by computing a pseudo hourglass that gives all the information we need about the

geodesic hourglass� We also extend these results to the dynamic case� by giving the


rst dynamic method for minimum�link�path queries between two points�

The rest of this paper is organized as follows� In Section � we brie�y review

the basic geometric notions used by our method� Section � shows how to perform

shortest�path queries in the static environment� in particular how to compute the

pseudo hourglass and how to handle the nontrivial basic case where two query poly�

gons are mutually visible� Sections ��  and � are devoted to dynamic shortest�path�

static minimum�link�path� and dynamic minimum�link�path queries� respectively�

�� Preliminaries

For the geometric terminology used in this paper� see Ref� ����� A connected

planar subdivision S is a subdivision of the plane into polygonal regions whose

underlying planar graph is connected� Thus each region of S is a simple polygon P �

A polygonal chain � is monotone if any horizontal line intersects it in a single point

or in a single interval or not at all� A simple polygon P is monotone if its boundary





consists of two monotone chains� A cusp of a polygon P is a vertex v whose interior

angle is greater than � and whose adjacent vertices are both strictly above �lower

cusp� or strictly below �upper cusp� v� If we draw from a cusp v of P two horizontal

rays that terminate when they 
rst meet the edges of P � the resulting segments to

the left and right of v are called left lid and right lid of v� respectively� A polygon

is monotone if and only if it has no cusps�

The notion of window partition was introduced in Ref� ����� Given a point or

a line segment s in region P � let WP �s� denote the partition of P into maximally�

connected subregions with the same link distance from s	 WP �s� is called the

window partition of P with respect to s� Associated withWP �s� is a set of windows�

which are chords of P that serve as boundaries between adjacent subregions of the

partition�

Given two points p and q that lie in the same region P of S �or in the same

simple polygon P �� it is well known that their shortest path �G�p� q� is unique and

only turns at the vertices of P � On the contrary� a minimum�link path is not unique

and may turn at any point inside P � Adopting the terminology of Ref� ����� we

de
ne the �unique� greedy minimum�link path �L�p� q� to be the minimum�link path

whose 
rst and last links are respectively the extensions of the 
rst and last links of

�G�p� q�� and whose other links are the extensions of the windows of WP �p�� The

number of links in �L�p� q� is then the link distance dL�p� q�� In the following we

use the term �window� to refer to both a window and its extension�

Given a shortest path �G�p� q�� an edge e � �G�p� q� is an in�ection edge if its

predecessor and its successor lie on opposite sides of e� It is easily seen that an edge

e � �G�p� q� is an in�ection edge if and only if it is an internal common tangent of

the boundaries of P �

Given two convex polygons R� and R� inside P � we say that R� and R� are

mutually visible if there exists a line l connecting R� and R� without crossing any

edge of P 	 we call such line l a visibility link between R� and R�� Now we de
ne

the left and right boundaries BL and BR of P with respect to R� and R� when

they are not mutually visible through a horizontal line� For i � �� �� let ui and di

be the highest and lowest vertices of Ri� respectively� Without loss of generality�

we assume that y�u�� � y�u�� �otherwise we exchange the roles of R� and R���

We choose q� � fu�� d�g and q� � fu�� d�g such that �i� the subpolygon P � of P

delimited by both e� and e� contains both R� and R�� where ei is a horizontal chord

of P going through qi� i � �� �� and �ii� among the four shortest paths �G�u�� u���

�G�u�� d��� �G�d�� u�� and �G�d�� d��� �G�q�� q�� has the largest number of cusps

�see Fig� ��� Now P � is bounded by e�� e� and two polygonal chains� We de
ne BL

and BR as these two polygonal chains of P �� BL is the one to the left of �G�q�� q��

when we walk along �G�q�� q�� from q� to q�� and BR is the one to the right �see

Fig� ��� Clearly� any shortest path � between a point in R� and a point in R� can

only touch the vertices of P on BL and BR� and the in�ection edges of � are those

edges that have one endpoint on BL and the other endpoint on BR�
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Fig
 �
 Left and right boundaries BL and BR of P � a� several choices of
q�� q�� satisfy condition ii� but only one satis�es i�� b� several choices of
q�� q�� satisfy condition i� e
g
� u�� d�� is also valid� but only one satis�es
ii�� c� neither i� nor ii� alone enforces a unique choice of q�� q��� but their
conjunction does


�� Static Shortest Path Queries

In this section we show how to compute the shortest path �G�R�� R�� between

two convex polygons R� and R� with a total of h vertices inside an n�vertex simple

polygon P � The data structure of Guibas and Hershberger�� computes the shortest

path �G�p� q� between any two points p and q inside P in O�logn� time� where in

O�logn� time we get an implicit representation �a balanced binary tree� and the

length of �G�p� q�� and using additional O�k� time to retrieve the k links we get the

actual path� Point�location queries can also be performed in O�logn� time� The

data structure uses O�n� space and can be built in O�n� time after triangulating

P �again in O�n� time by Chazelle�s linear�time triangulation algorithm
�� We

modify this data structure so that associated with the implicit representation of

a shortest path �G� there are two balanced binary trees respectively maintaining

the in�ection edges and the cusps on �G in their path order� The balanced binary

tree representing �G and the two associated binary trees support split and splice

operations� so that we can extract a portion of �G in logarithmic time�
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With this data structure� our task is to 
nd points p � R� and q � R� such that

�G�p� q� � �G�R�� R��� We say that p and q realize �G�R�� R��� Note that p and q

lie on the boundaries of R� and R� but are not necessarily vertices�

To obtain a better intuition� let us imagine surrounding R� and R� with a

rubber band inside P � The resulting shape is called the relative convex hull of R�

and R�� It is formed by four pieces� shortest paths �� � �G�a�� a��� �� � �G�b�� b��

�a�� b� � R� and a�� b� � R��� and the boundaries of R� and R� farther away from

each other� We call a�� b�� a�� and b� the geodesic tangent points� and �� and ��

the geodesic external tangents of R� and R�� Note that if �� consists of more than

one link� then the 
rst �resp� last� link of �� is a common tangent between R�

�resp� R�� and the convex hull inside P of a portion of the boundary of P �see

Fig� ��� and similarly for ��� Let s� � �a�� b�� and s� � �a�� b��� If we replace R�

and R� with s� and s�� then the relative convex hull of s� and s� is the hourglass

H�s�� s�� bounded by s�� s�� ��� and ��� Note that �� and �� stay unchanged� We

call H�s�� s�� the geodesic hourglass between R� and R�� We say that H�s�� s�� is

open if �� and �� do not intersect� and closed otherwise� When H�s�� s�� is closed�

there is a vertex p� at which �� and �� join together� and a vertex p� at which the

two paths separate �possibly p� � p��	 we call p� and p� the apices of H�s�� s��

�see Fig� ��b��� Also� we say that �G�a�� p�� and �G�b�� p�� form a funnel F �s���

The only internal common tangent �� of P among all edges of F �s�� is called the

penetration of F �s��� and similarly for �� in funnel F �s�� �see Fig� ��b��� Hereafter

we use HG to denote the geodesic hourglass� and a�� b� �� R��� a�� b� �� R�� to

denote the geodesic tangent points�

R2
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ρ1

ρ2

s2

s1

R1

s2

R2

R1

s1

p1

p2

Fig
 �
 Geodesic hourglassHG and geodesic external tangents� a� HG is open�
b� HG is closed


Observe that HG is open if and only if R� and R� are mutually visible �see

Fig� ��a��� If HG is closed� then �G�p
�� q�� between any point p� � R� and any

point q� � R� must go through p� and p� �see Fig� ��b��� Thus �G�R�� R�� must go

through p� and p�� i�e�� �G�R�� R�� � �G�R�� p����G�p�� p����G�p�� R��� Since R�
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and p� are mutually visible� the algorithm for computing �G�R�� R�� when R� and

R� are mutually visible can be used to compute �G�R�� p�� as well� and similarly

for �G�p�� R��� In summary� we need to handle the following two main tasks� �i�

deciding whether HG is open or closed� and 
nding apices p� and p� when HG is

closed� and �ii� computing �G�R�� R�� when R� and R� are mutually visible�

���� The Pseudo Geodesic Hourglass

We 
rst discuss how to compute the information about geodesic hourglass HG in

optimalO�logh�log n� time� A straightforward method is to compute HG directly�

As shown in Ref� ���� we can compute the geodesic external tangents between R�

and R� �and hence HG� by a binary search mimicking the algorithm�� for 
nding

ordinary common tangents� where in each iteration we compute the shortest path

between two chosen points rather than the segment joining them� However� this

results in a computation of O�logh logn� time� Also� it seems di�cult to compute

HG in optimal time�

To overcome the di�culty� we notice that it is not necessary to compute HG

exactly� As for shortest�path queries� we only need to know whether HG is open

or closed� and the apices p� and p� of HG when it is closed	 as for minimum�link

path queries �see Section �� we only need to know a visibility link between R�

and R� when HG is open� and the penetrations �� and �� of HG when it is closed�

Interestingly� we can obtain the above information by computing a pseudo hourglass

H�� with the property that if H�� is open then HG is open� and if H�� is closed then

HG is closed with the same penetrations and apices� We 
rst describe the algorithm

and then justify its correctness�

Algorithm Pseudo�Hourglass

�� Ignore P and compute the ordinary external common tangents �a��� a
�
�� and

�b��� b
�
�� between R� andR�� using the algorithmof Overmars and van Leeuwen���

where a��� b
�
� � R� and a��� b

�
� � R�� Let s�� � �a��� b

�
�� and s�� � �a��� b

�
��� Com�

pute shortest paths �� � �G�a��� a
�
�� and �� � �G�b��� b

�
��� If they are disjoint

�i�e�� neither has an in�ection edge� then the hourglass H� � H�s��� s
�
�� is

open� In this case s�� and s�� are mutually visible� implying that R� and R�

are mutually visible� Use algorithm�� to compute an internal common tangent

l between �� and ��� report fopen with visibility link lg and stop�

�� Else ��� and �� are not disjoint� H � is closed� Now the geodesic external

tangents �which constitute HG� must go through vertices of P � and it is still

possible that HG is open� Let u� and d� be the highest and lowest vertices

of R�� respectively� and similarly for u� and d� in R�� Assume that y�u�� �

y�u�� �otherwise exchange the roles of R� and R��� Compute shortest paths

�G�u�� u��� �G�u�� d��� �G�d�� u�� and �G�d�� d��� Take � as the one with the

largest number of cusps �break ties arbitrarily�� Consider � as oriented from

R� to R��
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�� From Ri� i � �� �� compute horizontal projection points li and ri respectively

on the left and right boundaries BL and BR of P � by discriminating the

following cases�

�a� � has no cusp at all�

There are two subcases�

i� y�d�� � y�u��� i�e�� there is a vertical overlap between horizontal

projections of R� and R��

In this case the line l � y � y�u�� connects R� and R� without being

blocked �to be proved in Lemma ��� Report fopen with visibility

link lg and stop�

ii� There is no vertical overlap �see Fig� ���

Project u� horizontally to the left and right on the boundaries BL

and BR of P to get points l� and r�� respectively �via point location��

and similarly project d� to the left and right to get l� and r��

�b� � has cusps�

Consider R� �and symmetrically for R��� Look at cusp c� of � closest to

R�� and denote �� the portion of � from c� to the point on R�� Without

loss of generality� assume that c� is a lower cusp� There are two cases�

i� c� is lower than or as low as d� �y�c�� � y�d����

This means that R� is entirely blocked by c�� Project u� horizontally

to the left and right to get l� and r�� respectively�

ii� c� is higher than d� �y�c�� � y�d����

Then R� �stretches� beyond c�� Consider the following subcases�

A� The 
rst link of �� �oriented toward R�� goes toward left �see

Fig� �a��b���

Project both u� and d� to the right to get r� and l�� respectively�

Also a special�case checking is needed� if segment �d�� l�� inter�

sects R� at v� then report fopen with visibility link l � �d�� v�g

and stop�

B� The 
rst link of �� goes toward right�

Project both u� and d� to the left to get l� and r�� respectively�

Again perform a special�case checking� if segment �d�� r�� inter�

sects R� at v� then report fopen with visibility link l � �d�� v�g

and stop�

�� Compute shortest paths �l � �G�l�� l�� and �r � �G�r�� r��� Extract the �left

bounding convex chain� CL� for R� as the portion of �l from l� to x� where

x is the 
rst vertex v� on BR or the 
rst point c with y�c� � y�l�� or the

second cusp c�� whichever is closest to R�� or x � l� if none of v�� c and c�

exists� Note that CL� includes the 
rst in�ection edge if x � v�� Similarly

extract the �right bounding convex chain� CR� of R� from �r� The left and

right bounding convex chains CL� and CR� of R� are computed analogously

�see Fig� ���

��



� Compute pseudo tangent points a��� � b
��
� � R� and a��� � b

��
� � R� such that the

pseudo hourglass H�� formed by �G�a��� � a
��
��� �G�b

��
� � b

��
��� s

��
� � �a��� � b

��
�� and s��� �

�a��� � b
��
�� has the desired property� Point a��� is computed from R� and CL� by

the following steps �and analogously b��� � a
��
� and b��� are computed from R� and

CR�� from R� and CL�� and from R� and CR�� respectively��

�a� Check whether R� intersects CL� �viewing CL� � �G�l�� x� as a convex

polygon with edge �l�� x� added� using the algorithm�� which runs in

logarithmic time and also reports a common point g inside both R� and

CL� if they intersect� If R� � CL� � 	� then 
nd the internal common

tangent t � �v� w� between R� and CL�� v � R�� w � CL�� such that R�

lies on the right side of t if t is directed from w to v �see Fig� ��� Note

that only one of the two internal common tangents between R� and CL�

satis
es the criterion for t� Now check whether t intersects CR� via a

binary search on CR��

i� t �CR� � 	� Set a��� �� v�

ii� t � CR� � fy�� y�g� Let C�
R� be the portion of CR� between points

y� and y�� Find the external common tangent t� � �v�� w�� between

R� and C�
R�� v

� � R�� w
� � C�

R�� such that both R� and C�
R� lie on

the right side of t� if t� is directed from w� to v�� Set a��� �� v�� �See

Fig� ���

�b� Else �R��CL� 
� 	� with a commonpoint g inside both R� and CL��� then

there is only one edge of CL� intersecting R� �to be proved in Lemma ���

Compute this edge �u� b� by applying Lemma �� Suppose b is closer to

R� than u	 call b the blocking point� Consider the following two cases�

i� The blocking point b is on the left boundary BL�

Compute a��� as the tangent point from b to R� such that R� is on

the right side of �b� a���� when �b� a���� is directed toward a��� � �See

Fig� ��a��b���

ii� The blocking point b is on the right boundary BR�

Take C as the convex portion of �l �oriented from R� to R�� from b

to z� where z is the 
rst vertex v�� on BL again or the 
rst point c�

with y�c�� � y�b� or the second cusp c�� after b� whichever is closest

to R�� Note that such v�� always exists since �l � �G�l�� l�� 
nally

goes to l� � BL� and that C includes the 
rst in�ection edge after b

if z � v��� Find the external common tangent t�� � �v��� w��� between

R� and C� v�� � R�� w
�� � C� such that both R� and C lie on the

right side of t�� if t�� is directed from w�� to v��� Set a��� �� v��� �See

Fig� ��c���f���

�� Compute shortest paths �� � �G�a
��
� � a

��
�� and �� � �G�b

��
� � b

��
�� to form pseudo

hourglass H��� Check whether H�� is open or closed�

��



�a� H�� is open �neither �� nor �� has an in�ection edge��

Compute an internal common tangent l between �� and ��� report fopen

with visibility link lg and stop�

�b� H�� is closed�

Penetration �� � �w�� p�� is chosen from the 
rst in�ection edges of ��
and of �� �one of such edges might be missing� as the one that is closer

to R�� and the endpoint p� of �� farther away from R� is an apex� The

other penetration �� and apex p� are found similarly� Recall that an

in�ection edge has one endpoint on BL and the other on BR� To decide

whether the 
rst and last links of �� and �� are in�ection edges� points

a��� and a
��
� are viewed as on BL� and b��� and b

��
� as on BR� After computing

��� ��� p� and p�� report fclosed with penetrations �� and �� and apices

p� and p�g� and stop�

R2

l1 r1

l2 r2

u1

d2

a1"=v'

w'

w=y2

y1

BL

BR

x1

x2

CR1=πG(r1, x2)CL1=πG(l1, w)

C'R1=πG(y1, y2)

CL2=πG(l2, x1)

CR2=πG(r2, x2)

R1
v

Fig
 �
 A running example for Algorithm Pseudo�Hourglass in the case where
� has no cusps and CL� �R� � �


The correctness of the algorithm is justi
ed by the following lemmas�

Lemma � In step ��a	i of Algorithm Pseudo�Hourglass
 the line l � y � y�u��

connects R� and R� without being blocked�

Proof� Recall that there is a vertical overlap between the horizontal projections

of R� and R�� i�e�� y�u�� � y�u�� � y�d��� By the de
nition of � and the fact

��



that � has no cusp� the shortest path between u� and u� must have no cusp� Thus

any lower cusp c� of P in between R� and R� has y�c�� � y�u��� Similarly� any

upper cusp c�� of P in between R� and R� has y�c��� � maxfy�d��� y�d��g� Note

that y�u�� � maxfy�d��� y�d��g� therefore y�c��� � y�u�� � y�c��� i�e�� the line

l � y � y�u�� connects R� and R� without being blocked� �

a2
b2

l1

r1

l2 r2

R2

w1

w2

u1

d1
d2

w3

c

πl=πG(l1, l2) CL1=πG(l1, w3)

CR2=πG(r2, w3)

CL2=πG(l2, w1)

CR1=πG(r1, c)πr=πG(r1, r2)

a1

b1

R1

BRBL

Fig
 	
 Step 	 of Algorithm Pseudo�Hourglass and proof of Lemma 	
 As
for step 	� notice how we get the bounding convex chains CL�� CR�� CL� and
CR�� especially CR� and CR� � as for Lemma 	� note that R� and R� do not
intersect any of the bounding convex chains� S� � u�� r��� u�� d��� d�� l���
S� � l�� r��� and HG � a�� b��� a�� b����Ga�� a����Gb�� b�� is properly
contained in S� � S� � �l � �r


Lemma � The projection points li and ri� i � �� � obtained in step � of Algorithm

Pseudo�Hourglass lie on distinct boundaries of P 
 i�e�
 li � BL and ri � BR�

Proof� The claim is obvious for steps ��a�ii and ��b�i since li and ri are obtained

by projecting the same point to the left and right� Now consider step ��b�iiA

�step ��b�iiB is similar�� It is clear that r� is on BR� so we look at l�� If all points

on � are higher than d�� then the horizontal line y � y�d�� is not blocked by � and

thus is to the left of � �recall that � is oriented from R� to R��� So l� is on BL �see

Fig� �a��� On the other hand� if � contains some point c� lower than d�� then for

c� to be a lower cusp� there must be an upper cusp on � between c� and c� that is

higher than c� �see Fig� �b��� Let c�� be such upper cusp closest to c�� then the

line y � y�d�� is blocked by c�� and the projection point l� is on BL� �

Lemma � In step �b of Algorithm Pseudo�Hourglass
 where R� �CL� 
� 	 with a

common point g inside both R� and CL�
 there is only one edge of CL� intersecting

R�� Furthermore
 this edge �u� b� can be computed in O�logn� time�

��
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Fig
 �
 Step �b�iiA of Algorithm Pseudo�Hourglass and proof of Lemma �� r�
and l� are obtained by projecting u� and d� horizontally to the right� r� is on
BR and l� is on BL


Proof� We prove the 
rst part by contradiction� If there were more than one

edge of CL� intersecting R�� say �v�� v�� and �v�� v�� �see Fig� ��a��� then v� would

be inside R� and would also be a vertex of P � contradicting the fact that R� is in

a free space of P �

Now we show how to compute �u� b� in O�logn� time� Assume that l� is obtained

in step � of Algorithm Pseudo�Hourglass by projecting u�� Then u� is inside R�

but outside CL�� thus segment �g� u�� � R� intersects the boundary of CL� �see

Fig� ��b��� By the 
rst part of this lemma� there is only one edge �u� b� of CL� that

can be intersected by a segment inside R�� Performing a binary search on CL� to

identify the edge intersected by �g� u��� �u� b� can be found in O�logn� time� �

CL1

R1

v1

v2

v3

R1

u1

g

u

b

l1

CL1

(a) (b)

Fig
 �
 Proof of Lemma �� a� impossibility for CL� to have more than one
edge intersectingR�� b� �nding edge u� b�


��



Lemma � The pseudo hourglass H�� computed from steps � and � of Algorithm

Pseudo�Hourglass has the property that if H�� is open then the geodesic hourglass

HG is open
 and if H �� is closed with penetrations �� and �� and apices p� and p�

then HG is closed with the same penetrations and apices�

Proof� Recall that a�� b� � R� and a�� b� � R� are the geodesic tangent points�

We 
rst consider the case in which the bounding convex chains CL� and CR� do

no intersect R�� and CL� and CR� do not intersect R� either �see Fig� ��� De
ne

Si� i � �� �� as follows� If li and ri are obtained by projecting the same point

of Ri then Si � �li� ri�	 otherwise assuming without loss of generality that li is

obtained from projecting di and ri from ui� then Si � �ui� ri� � �ui� di� � �di� li��

We observe that the area bounded by S�� S�� �l � �G�l�� l�� and �r � �G�r�� r��

properly contains HG� therefore a� and b� are computed from the common tangents

between R� and CL��CR�� and similarly for a� and b� �see Fig� �� and also Fig� �

for one more example�� These are exactly what we compute in steps a��a�ii� i�e��

H�� � HG� and the lemma follows�

Next� look at the case where at least one of the bounding convex chains intersects

R� or R�� Since a
��
� � a

��
� � b

��
� and b

��
� are computed independently� we consider only a��� 	

the same argument applies for the others� As we have already seen� a��� � a� when

CL� does not intersect R�� so we consider a��� when CL� intersects R��

We claim that in this case either a��� � a�� or �G�a
��
� � a

��
�� and �G�a�� a�� join

together at a point before their 
rst in�ection edge �if any� closest to R�� This

implies that if �G�a�� a�� has no in�ection edge �a case where whether HG is open

or closed is decided by �G�b�� b��� then �G�a��� � a
��
�� has no in�ection edge either� and

if ��� is the 
rst in�ection edge of �G�a�� a�� �a case where HG is closed with ��� a

candidate for ��� then ��� is also the 
rst in�ection edge of �G�a��� � a
��
��� and thus the

lemma follows�

We now give the details for proving the above claim� Note that �G�a�� a�� joins

�l at some point then leaves �l later� and similarly for �G�a��� � a
��
��� First� look at

the case where the blocking point b is on BL �step �b�i� and refer to Fig� ��a��b�

to visualize the proof� By the de
nition of CL� and the fact that b is on BL�

�G�l�� b� � CL� is the convex hull inside P of the boundary of BL from l� to b

and it does not touch BR� so no vertex of BR lies to the left of �u� b� � �G�l�� b��

But a��� is to the left of �u� b�� thus �a��� � b� �BR � 	� We classify two subcases� �i�

�a��� � b�� �BL�fbg� � 	 and �ii� �a��� � b�� �BL�fbg� 
� 	� For �i�� let q be the vertex

on CL� � �G�l�� x� immediately after b� Such q always exists since b 
� x� for �u� b�

to intersect R�� b cannot be l� or the 
rst point c with y�c� � y�l�� or the second

cusp c�� and b cannot be the 
rst vertex v� on BR either since b � BL� Because CL�

is convex toward right� the chain �u� b� q� � CL� is convex toward right� but then

�a��� � b� q� is also convex toward right �see Fig� ��a��� This means that the shortest

path �G�a�� p�� � �G�a�� a�� from a� to any point p� on �l beyond bmust go through

b� Then the 
rst link of �G�a�� a�� is �a
��
� � b� since �a

��
� � b� is tangent to R� and does

not cross any boundary of P � Therefore a��� � a�� For �ii�� let CH be the convex

hull inside P of the boundary of BL between b and b�� where b� is the intersection

of BL and �a��� � b� such that CH is as large as possible while not intersecting R��

�



Clearly �G�a�� a�� goes through b� starting with a common tangent between R�

and CH then following CH up to b	 likewise� �G�a��� � a
��
�� goes through b starting

with a tangent from a��� to CH then following CH up to b �see Fig� ��b��� Observe

that �G�a��� � a
��
�� and �G�a�� a�� join together at a point on CH that is before b� and

neither path has an in�ection edge before reaching b� so the claim holds�

Now look at the case where b is on BR �step �b�ii�� There are four subcases� ���

w�� � BL and �w��� a������BL�fw��g� � 		 ��� w�� � BL and �w��� a������BL�fw��g� 
�

		 ��� w�� � BR and �w��� a���� � BL � 		 and ��� w�� � BR and �w��� a���� � BL 
� 	�

For ���� let x� and x� be the vertices on �l immediately before and after w�� �see

Fig� ��c��� Note that �x�� w
��� is an in�ection edge� so the chain �x�� w

��� x�� is convex

toward right �although �G�b� w��� is convex toward left�� But the slope of �w��� a���� is

even bigger than the slope of �w��� x��� thus �a��� � w
��� x�� is also convex toward right�

Similar to case �i�� this means that �G�a�� p
�� � �G�a�� a�� from a� to any point p�

on �l beyond w�� must go through w��� but �a��� � w
��� is a tangent to R� not blocked

by P and hence the 
rst link of �G�a�� a��� i�e�� a
��
� � a�� Case ��� is similar to

case �ii� as w�� plays the role of b� i�e�� both �G�a�� a�� and �G�a��� � a
��
�� go through

a convex hull CH inside P of some portion of BL then reach w��� with no in�ection

edge up to w�� �see Fig� ��d��� For ���� it is clear that �G�a�� p�� � �G�a�� a�� from

a� to any point p� on �l beyond w�� must go through w��� but �a��� � w
��� is a tangent

to R� not blocked by P � so �a��� � w
��� is the 
rst link of �G�a�� a�� and a��� � a� �see

Fig� ��e��� For ���� let CH� be the convex hull inside P of the boundary of BL from

q� to q�� where q� is the intersection of �w��� a���� and BL closest to w��� and q� is

the intersection of �w��� a���� and BL such that CH� is as large as possible while not

intersecting R�� Then �G�a�� a�� goes through w��� starting with a common tangent

between R� and CH�� followed by a portion of CH�� a common tangent s between

CH� and C � �G�b� z�� then a portion C� of C up to w��	 likewise� �G�a��� � a
��
�� goes

through w�� starting with a tangent from a��� to CH�� followed by a portion of CH �

then s then C � up to w�� �see Fig� ��f��� Clearly� the paths �G�a�� a�� and �G�a
��
� � a

��
��

join together at some point on CH� before reaching their 
rst in�ection edge s� This

completes our proof of the claim� �

We conclude with the following lemma�

Lemma � Algorithm Pseudo�Hourglass correctly decides whether the geodesic hour�

glass HG is open or closed
 giving a visibility link when it is open or giving the

penetrations and apices of HG when it is closed
 in O�logh� logn� time
 which is

optimal�

Proof� The correctness follows from Lemmas ���� As for time complexity� recall

from our data structure �described at the beginning of Section �� that we can extract

a portion of a shortest path �path extraction for short� via split�splice operations

in logarithmic time� Step � performs O��� tangent computations and shortest�path

queries� Step � performs four shortest�path queries� Step ��a�i can be done in

O��� time� and step ��a�ii involves O��� point�location queries to 
nd projection

points� In Step �b� we perform a path extraction	 in steps ��b�i and ��b�ii� we

perform O��� point�location queries to project points and also binary searches for

special�case checkings� We compute two shortest�path queries and extract four

��
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 Steps �b�i��b�ii of Algorithm Pseudo�Hourglass and proof of
Lemma 	� a� b � BL and b� a��

�
� � BL � fbg� � �� b� b � BL and

b� a��
�
��BL�fbg� �� �� c� b � BR�w

�� � BL and w��� a��
�
��BL�fw��g� � ��

d� b � BR� w
�� � BL and w��� a��

�
� � BL � fw��g� �� �� e� b � BR�w

�� � BR
and w��� a��

�
��BL � �� and f� b � BR� w

�� � BR and w�� � a��
�
� �BL �� �
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bounding convex chains in step �� Step a invloves O��� calls to algorithm�� and

O��� tangent computations and binary searches� Step �a�i can be done in O���

time� and step �a�ii performs O��� path extractions and tangent computations�

Step b applies the computation of Lemma �� which is a binary search� Steps �b�i�

�b�ii invlove O��� tangent computations ��b�i and �b�ii� and path extractions

��b�ii�� Finally� we perform O��� shortest�path queries� tangent computations

and binary searches in step �� In summary� we perform a constant number of

logarithmic�time computations� and the time complexity follows� �

��� The Case of Mutually Visible Query Polygons

We now discuss how to compute �G�R�� R�� when R� and R� are mutually

visible� i�e�� when the geodesic hourglass HG is open� Surprisingly� this case turns

out to be nontrivial� and its solution makes use of interesting geometric properties�

Note that �G�R�� R�� in this case may still consist of more than one link �see� e�g��

Fig� �� where �G�R�� R�� � �G�p� q���

Ignoring P and using any one of the methods for computing the separation of

two convex polygons�������� we can 
nd p� � R� and q� � R� with length�p�� q�� �

��R�� R�� in O�logh� time� Now we compute �G�p�� q��� If �G�p�� q�� has only

one link� then �p�� q�� is not blocked by P and thus is the desired shortest path

�G�R�� R��� Otherwise �G�p�� q�� must touch the boundary of P � and there are

two cases� ��� �G�p�� q�� touches only one of the two geodesic external tangents

�G�a�� a�� and �G�b�� b��	 or ��� �G�p�� q�� touches both �G�a�� a�� and �G�b�� b���

Lemma 	 Let the geodesic hourglass HG be open and �p�� q�� with p� � R� and

q� � R� be the shortest path between R� and R� without obstacle P � If �G�p�� q��

touches only one of �G�a�� a�� and �G�b�� b��
 say �G�a�� a��
 then �G�R�� R��

touches �G�a�� a�� but does not touch �G�b�� b���

Proof� We refer to Fig� � to visualize the proof� Let �w� z� be any segment tangent

to the convex chain �G�p�� q��� where w � R� and z � R�� Without obstacles C and

D� the distance between a point on the boundary of R� and a point on the boundary

of R� is a bimodal function� i�e�� it decreases and then increases� with the minimum

occurring at p� and q�� In particular� moving w downward along the boundary of

R� to any point w� and�or moving z downward along the boundary of R� to any

point z� will cause �w�� z�� � �w� z�� and �G�w�� z�� � �w�� z�� since �G�w�� z�� may

have to avoid obstacles� Thus if p � R� and q � R� satisfy �G�p� q� � �G�R�� R���

then p must lie on the boundary �w� ���� p�� of R� counterclockwise from w to p��

and q must lie on the clockwise boundary �z� ���� q�� of R�� It follows that �G�p� q�

touches �G�a�� a�� but does not touch �G�b�� b��� �

Therefore in the above situation �see Fig� ��� if t�� and t
�
� are the points of obstacle

C where �G�p�� q�� 
rst touches C and 
nally leaves C� respectively� and t� and t�

are the points of C where �G�p� q� 
rst touches C and 
nally leaves C �recall that

�G�p� q� � �G�R�� R���� then t� is the point where the shortest path �G�t��� R�� from

t�� to R� 
nally leaves C� and similarly for t�� We say that t� � C and q � R� realize

�G�t
�
�� R��� and similarly for the other side� It is clear that �G�R�� R�� consists of

�p� t��� �G�t�� t�� �which is a portion of �G�p�� q���� and �t�� q�� So we only need to

��
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 Lemma �

independently compute t� � C and q � R� that realize �G�t��� R��� and by a similar

algorithm to compute t� and p that realize �G�t��� R���

Before describing how to compute t� and q �and similarly for t� and p�� we 
rst

argue that the other case where �G�p�� q�� touches both �G�a�� a�� and �G�b�� b��

can be handled in the same way�

Lemma 
 Let the geodesic hourglass HG be open and �p�� q�� with p� � R� and

q� � R� be the shortest path between R� and R� without obstacle P � If �G�p�� q��

touches both �G�a�� a�� and �G�b�� b��
 say �rst �G�a�� a�� �entering at point t�
and leaving at point t�	 and then �G�b�� b�� �entering at t
 and leaving at t�	
 then

�G�R�� R�� � �G�R�� t�� � �t�� t
� � �G�t
� R��� �See Fig� ��	

Proof� We refer to Fig� �� We extend �t�� t
� on both directions to intersect

R� and R� at w and z� respectively� Notice that �w� z� is an internal common

tangent of two convex chains �G�a�� a�� and �G�b�� b��� Again� without obstacles

the distance between a point on R� and a point on R� is a bimodal function� In

particular� moving z upward along the boundary of R� to any point z� and�or

moving w downward along the boundary of R� to any point w� will make �w�� z�� �

�w� z�� Observe that �G�w�� z�� � �w�� z�� since it may have to avoid the obstacles�

Therefore the desired points p � R� and q � R� with �G�p� q� � �G�R�� R�� must lie

on the clockwise boundary �p�� ���� w� of R� and on the clockwise boundary �q�� ���� z�

of R�� respectively� It follows that �G�p� q� must be 
rst tangent to �G�a�� a��

at some point� coincide with �G�a�� a�� from there to t�� follow �t�� t
� to enter

�G�b�� b��� join �G�b�� b�� from t
 to some tangent point� which together with q are

the two endpoints of the last link� Therefore �G�R�� R�� � �G�R�� t�� � �t�� t
� �

�G�t
� R��� �

It is clear that for the above situation� what we need to do is to indepen�

dently compute the two points that realize �G�R�� t�� and two points that realize

�G�t
� R���

We now discuss how to compute two points t� � C and q � R� that realize

��
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�G�t��� R�� in the situation of Fig� �	 the other case �Fig� �� can be handled analo�

gously� Note that we only need to consider the two convex chains �G�u� t��� �denoted

by C�� and the clockwise boundary �v� ���� q�� of R� �denoted by C��� where �u� v�

is the external common tangent between the convex hull of C and R� with u � C

and v � R�� Our algorithm is based on the following useful properties�

Lemma � Let v�� v�� ���� vk be a sequence of points on C� in clockwise order
 and

e�i and e
��
i be the two segments of C� incident on vi with e�i following e

��
i in clockwise

order �e�i and e��i are on the same straight line if vi is not a vertex	� From each vi

draw a line li tangent to C�� Let 	i be the angle formed by li and e�i and measured

from li clockwise to e�i
 and 
i be the angle formed by e��i and li and measured from

e��i clockwise to li �see Fig� ��	� Then 	� � 	� � ��� � 	k and 
� � 
� � ��� � 
k�

Also
 if 	i �
�
�
then 
i�� �

�
�

 and similarly if 
i�� �

�
�
then 	i �

�
�
�

Proof� We extend tangent li�� to intersect li at some point r� and also extend

e�i on both directions so that 	�i�� and 
�i are both exterior angles of rvivi�� �see

Fig� ���� It follows that 	i�� � 	�i�� � 	i �the equality holds if vi�� is not a vertex��

and 
i � 
�i � 
i�� �the equality holds if vi is not a vertex�� For the last statement�

consider rvivi��� It is clear that at most one of 	i and 
i�� can be larger than or

equal to �
�
� �

Lemma � Let v�� v�� ���� vk and each 	i and 
i be as de�ned in Lemma �� If 
i �
�
�



then �G�vi� t��� � �G�vi��� t���� Similarly
 if 	i �
�
�

 then �G�vi� t��� � �G�vi��� t����

Proof� We refer to Fig� �� to visualize the proof� Let the tangent points on C� of li
and of li�� be uj and um� respectively� where u�� u�� ��� are the vertices of C� in coun�

terclockwise order� We extend each of �us� us��� to the right to intersect C� at some

point u�s� s � m�m � �� ���� j � �� In viuju
�
j��� �uj� u

�
j��� � �uj � vi� since 
i �

�
�

is the biggest angle� Adding �uj � uj��� to both sides of the inequality� we have

�G�vi� uj��� � �vi� uj� � �uj� uj��� � �u�j��� uj� � �uj � uj��� � �u�j��� uj���� thus

�G�vi� t��� � �G�vi� uj�����G�uj��� t��� � �u�j��� uj�����G�uj��� t
�
�� � �G�u

�
j��� t

�
���

i�e�� �G�vi� t
�
�� � �G�u

�
j��� t

�
��� Now� 
�i � � u�j��u

�
j��uj is an exterior angle of

��
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u�j��viuj� so 

�
i � 
i �

�
�
� By the previous argument� �G�u�j��� t

�
�� � �G�u�j��� t

�
���

Applying this process repeatedly� we have �G�vi� t��� � �G�u�j��� t
�
�� � �G�u�j��� t

�
�� �

��� � �G�vi��� t���� The other statement can be proved in the same way� �

C1

C2

uj

vi

vi-1

q'

t1'

φi

φi"

φi'

uj-1 li-1

li

uj-1'

um' (= uj-2')

um (= uj-2)

Fig
 ��
 Lemma �

Notice that for each vi � C�� 	i�
i �
�
�
since C� is a convex chain �the equality

holds when vi is not a vertex�� thus either 
i �
�
�
and �G�vi� t

�
�� � �G�vi��� t

�
�� �

�G�vi��� t
�
�� � ���� or 	i �

�
�
and �G�vi� t

�
�� � �G�vi��� t

�
�� � �G�vi��� t

�
�� � ����

by Lemmas � and �� If both 
i �
�
�
and 	i �

�
�
� then vi � q� i�e�� �G�vi� t��� �

�G�C�� t
�
��� We summarize this result in the following lemma�

Lemma � Let w be a point on C�� Moving w along C�
 the length of �G�w� t
�
�� is

a bimodal function
 i�e�
 it decreases and then increases� In particular
 the minimum

value occurs at w � vi with 
i �
�
�
and 	i �

�
�
� If this vi is not a vertex
 then


i � 	i �
�
�

 namely
 the line issuing from vi and tangent to C� is perpendicular to

��



the edge of C� containing vi�

Up to now we can compute t� � C� and q � C� that realize �G�t��� C�� by a

binary search on the vertices of C�� where at each step we compute a tangent of

C� from the current vertex of C�� check for angles 	 and 
 and then reduce the

search space� Finally� we also have to take care of the case where q is not a vertex�

Since tangent computation takes logarithmic time� this method has time complexity

O�logh logn�� To speed up the algorithm� we appeal to the properties from C��

Lemma �� Let u� � u� u�� ���� uk � t�� be the vertices of C� in counterclockwise

order� The extension of each edge �ui��� ui� intersects C� at some point vi
 i �

�� ���k� Let v�i and v��i be the two vertices of C� adjacent to vi
 with v�i following

v��i in clockwise order� Let 	i � � uiviv
�
i and 
i � � uiviv

��
i �see Fig� ��� Then

	� � 	� � ��� � 	k
 and 
� � 
� � ��� � 
k�

Proof� Since �q�� t��� is a tangent to C� �recall this from Fig� ��� its slope is larger

than the slope of �uk��� t���� which shows that the extension of �uk��� t��� is below q�

and thus intersects C�� Similar argument applies to the extension of �u�� u��� so all

such extensions intersect C�� We now prove that 	i � 	i��	 the proof of 
i � 
i�� is

similar� Let w�� ���� wl be the vertices of C� between vi and vi�� in clockwise order�

Draw a segment to connect ui with each of w�� ���� wl and de
ne 	�i � � uiwiwi��

�	�l � � uiwlvi���� Then 	i � 	�� � ��� � 	�l � 	i�� by the argument that an exterior

angle of a triangle is larger than each of the two far interior angles� �

C1=(u,..., t2')

ui
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φi-1

φi

ui-1
u1=u
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uk=t2'
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Lemma �� Let t� � C� and q � C� realize �G�t
�
�� C��
 where t� is some vertex uj�

Let each 	i be de�ned as in Lemma ��� Then 	j �
�
�
and 	j�� �

�
�
�

Proof� We refer to Fig� ��� Let v� and v�� be the two vertices ofC� adjacent to point

q� with v� following v�� in clockwise order� There are two cases� If q is not a vertex�

then by Lemma ��� �uj� q� is perpendicular to �v�� v��� �see Fig� ���a��� We extend

�v�� v��� to intersect rays �uj��� uj� and �uj � uj��� respectively at r�� and r�� and

��



make angles 	�� and 	� as shown� We see that 	� � � ujqr
� � �

�
since it is an exterior

angle of ujqr
�� and 	j�� � 	� �the equality holds when ray �uj� uj��� intersects

edge �v�� v����� so 	j�� � �
�
� Similarly 	�� � �

�
�since in ujqr

��� � ujqr
�� � �

�
�

and 	j � 	�� �again� the equality holds when ray �uj��� uj� intersects �v�� v����� so

	j �
�
�
� In the other case where q is a vertex� by Lemma �� � ujqv

�� � ujqv
�� � �

�

�see Fig� ���b��� Again we extend �q� v�� to intersect ray �uj � uj��� and make angle

	�� and extend �q� v��� to intersect ray �uj��� uj� and make angle 	�� as shown� By

the same argument� we have that 	j�� � 	� � � ujqv
� � �

�
and 	j � 	�� � �

�
� �

t2=uj
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Now we are ready to state the algorithm for computing t� � C� and q � C� that

realize �G�t��� C��� This is actually a double�binary search�

Algorithm Double�Search

�� If either j C� j� � or j C� j� � then go to step ��

�� Else� pick the median vertices v and w of current C� and C�� Let v� be the

vertex of C� that precedes v in counterclockwise order� and w� be the vertex

of C� that follows w in clockwise order� Intersect the ray r � �v�� v� with

the line extension l� of edge �w�w��� Let 	 be the angle made by r and l� by

measuring clockwise from r to l�� The actions �and the veri
cation� depend

on the following cases �see Fig� ����

�a� The intersection is below �w�w�� and 	 � �
�
� Fig� ���a��� prune the

wiggly portion �not including w��

Veri�cation� Draw a line l from w parallel to �v�� v�� Since l is above

�v�� v�� the tangent t from w to C� must make an angle 	� � 	 � �
�
�

Thus the tangent of C� from any point in the wiggly portion will make

an angle even bigger� so this portion can be pruned away by Lemma ���

��



�b� The intersection is below �w�w�� and 	 � �
�
� Fig� ���b��� prune the

wiggly portion �including v���

Veri�cation� The real intersection between ray �v�� v� and C� makes an

angle 	� � 	 � �
�
� By Lemmas �� and ��� any edge in the wiggly portion

will make an angle even smaller and thus this portion can be pruned

away�

�c� The intersection is above �w�w�� and 	 � �
�
�Fig� ���c��� prune the

wiggly portion �including v�� This is symmetric to case �b��

�d� The intersection is above �w�w�� and 	 � �
�
�Fig� ���d��� prune the

wiggly portion� This is symmetric to case �a�� Note that w itself is not

a candidate for q but w is not pruned away here� since q may still lie on

�w�w�� and thus w must be kept to retain �w�w���

�e� The intersection is on �w�w�� and 	 � �
�
� Fig� ���e��� prune the two

wiggly portions �including v but not w� so that �w�w�� is kept�� This is

a situation combining cases �a� and �c��

�f� The intersection is on �w�w�� and 	 � �
�
� Fig� ���f��� prune the two

wiggly portions �including v� but not w so that �w�w�� is kept�� Again

this is a situation combining cases �b� and �d��

After pruning the appropriate portions� go to step ��

�� Now j C� j� � or j C� j� �� a situation where the double�binary search in

step � cannot proceed �either j C� j� � and j C� j
� constant or j C� j� � and

j C� j
� constant� or may not make any progress �case �d� with j C� j� � and

j C� j
� constant�� The operations depend on the following cases�

�a� j C� j� �� The only vertex of C� is q� Compute the tangent from q to

C� and take t� as the tangent point� Report q and t�� and stop�

�b� j C� j� �� Let C� � fw�� w�g such that walking fromw� to w� the interior

of R� is to the right of �w�� w��� From w� and w� compute tangents

�w�� v�� and �w�� v�� of C�� where v�� v� � C�� Let 	� � � v�w�w� and


� � � v�w�w�� There are three subcases�

i� 	� �
�
�
� By Lemma ��� q � w� �and t� � v��� Report q and t�� and

stop� Note that 
� �
�
�
by Lemma ��

ii� 
� �
�
�
� Report q � w�� t� � v�� and stop� This is symmetric to

case i�

iii� 	� �
�
�
and 
� �

�
�
�and q 
� w�� w��� By Lemma ��� �t�� q� is per�

pendicular to �w�� w�� and is tangent to C�� Perform a binary search

on subchain �v�� ���� v�� of C� to 
nd such vertex t�� At each iteration

with current vertex v� compute its projection point v� on �w�� w���

check whether vertex v on C� is concave� re�ex or supporting with

respect to �v� v�� and branch appropriately� When v is supporting�

report t� � v� q � v� and stop�

��



�c� j C� j� �� The only vertex of C� is t�� Now perform a binary search on

C�� Let w�� ���� wk be the vertices of C� in clockwise order� At each step

with current vertex wi� let 	i � � t�wiwi�� and 
i � � t�wiwi��� Recall

that 	� � 	� � ��� � 	k by Lemma �� and if 	i �
�
�
and 
i �

�
�
then

wi � q by Lemma ��� The binary search proceeds to 
nd the smallest

index i such that 	i �
�
�
� If also 
i �

�
�
� then q � wi	 report q and

t�� and stop� Else� both 
i and 	i�� are less than �
�
� and thus t� has a

projection q on �wi� wi���� Report t� and q� and stop�
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 The cases a��f� in step � of Algorithm Double�Search


Note that the loop formed by steps � and � eventually makes either j C� j� �

or j C� j� �� and thus we 
nally exit the loop and go to step �� Indeed� when C�

is reduced �cases �b�� �c�� �e� and �f� of step ��� either v or v� is also pruned away�

so that C� with j C� j� � is further reduced to j C� j� �	 when only C� is reduced

�



�cases �a� and �d� of step ��� one of the two portions preceding and following w is

pruned away� so that C� with j C� j� � is further reduced to j C� j� ��

Lemma �� The time complexity of Algorithm Double�Search is O�logh� logn��

Proof� In each case of step �� we always discard half of C� and�or half of C��

so the loop formed by steps � and � takes O�logh � logn� time� Step � also takes

logarithmic time� since either j C� j or j C� j is a constant and a constant number

of simple binary searches are performed on the other chain� �

We now give an algorithm for computing the shortest path �G�R�� R�� between

R� and R� when they are mutually visible�

Algorithm Visible�Path

�� Ignore P and compute the separation ��R�� R�� of R� and R� by any one

of the methods�������� which gives two points p� � R� and q� � R� such that

length�p�� q�� � ��R�� R���

�� Compute �G�p�� q��� If �G�p�� q�� has only one link� then �p�� q�� is not blocked

by P 	 report �G�R�� R�� � �p�� q�� and stop�

�� Otherwise� �G�p�� q�� must touch the boundary of P � Let �p�� t��� and �t��� q
��

be the 
rst and last links of �G�p�� q��� Discriminate the two cases below�

�a� There is no in�ection edge in �G�p
�� q��� this is the case of Lemma �

�Fig� ��� Let C � �G�t��� t
�
��� Find the external common tangent �u� v�

between C and R�� where u � C and v � R�	 let C� be �G�u� t��� and

C� be the clockwise boundary �v� ���� q�� of R�� Compute t� � C and

q � R� that realize �G�t��� R�� by performing Algorithm Double�Search

on C� and C�� and similarly compute t� � C and p � R� that realize

�G�t
�
�� R��� Report �G�R�� R�� � �p� t�� � �G�t�� t�� � �t�� q� and stop�

�b� There is an in�ection edge �t�� t
� in �G�p
�� q��� this is the case of Lemma�

�Fig� ��� Use Algorithm Double�Search to compute two pairs of points

that respectively realize �G�R�� t�� and �G�t
� R��� Report �G�R�� R�� �

�G�R�� t�� � �t�� t
� � �G�t
� R�� and stop�

Lemma �� The time complexity of Algorithm Visible�Path is O�logh�logn� �plus

O�k� if the k links are reported	�

Proof� The separation computation in step � can be done in logarithmic time�

Other computations involve a shortest�path query �step ��� two tangent compu�

tations and two calls of Algorithm Double�Search �step ��a� or ��b��� each taking

logarithmic time� �

���� The Overall Algorithm

The overall algorithm for computing the shortest path �G�R�� R�� between R�

and R� is as follows�

��



Algorithm Shortest�Path

�� PerformAlgorithmPseudo�Hourglass to decide whether the geodesic hourglass

HG is open or closed �with apices p� �closer to R�� and p� �closer to R����

�� If HG is open� then apply Algorithm Visible�Path to report �G�R�� R�� and

stop�

�� Otherwise �HG is closed�� apply AlgorithmVisible�Path to 
nd shortest paths

�G�R�� p�� and �G�p�� R�� by treating p� and p� as �convex polygons� consist�

ing of only one vertex� Compute shortest path �G�p�� p��� report �G�R�� R�� �

�G�R�� p�� � �G�p�� p�� � �G�p�� R�� and stop�

Lemma �� Algorithm Shortest�Path has time complexity O�logh � logn� �plus

O�k� if the k links of the path are reported	
 which is optimal�

Theorem � Let P be a simple polygon with n vertices� There exists an optimal

data structure that supports shortest�path queries between two convex polygons with

a total of h vertices inside P in time O�logh � logn� �plus O�k� if the k links

of the path are reported	
 using O�n� space and preprocessing time� all bounds are

worst�case�

Remark� Although the case of mutually visible R� and R� is nontrivial�

our algorithms �Double�Search and Visible�Path� turn out to involve only simple

computations� by applying useful geometric properties� The other key technique�

Algorithm Pseudo�Hourglass� to decide whether HG between R� and R� is open

�and compute a visibility link� or closed �and compute apices and penetrations��

however� is more involved� We pose as an open problem whether there exist simpler

techniques to perform the same operations in the same �optimal� time bound� Also�

whether we can directly compute HG in optimal time is an open problem� and may

be of independent interest�

�� Dynamic Shortest Path Queries

In this section� we consider the shortest�path problem in a connected planar

subdivision S in a dynamic environment� The query operation is to compute the

shortest path �G�R�� R��� where the two query convex polygons R� and R� are

given in the same region P of S� In addition� we support edge�vertex insertions

and deletions on S in our data structure� Speci
cally� we de
ne the following update

operations on S�

InsertEdge�e� v� w� P 	P�� P��� Insert edge e � �v� w� into region P such that P is

partitioned into two regions P� and P��

RemoveEdge�e� v� w� P�� P�	P �� Remove edge e � �v� w� and merge the regions P�
and P� formerly on the two sides of e into a new region P �

InsertVertex�v� e	 e�� e��� Split the edge e � �u�w� into two edges e� � �u� v� and

e� � �v� w� by inserting vertex v along e�

��



RemoveVertex�v� e�� e�	 e�� Let v be a vertex with degree two such that its incident

edges e� � �u� v� and e� � �v� w� are on the same straight line� Remove v and

merge e� and e� into a single edge e � �u�w��

AttachVertex�v� e	w�� Insert edge e � �v� w� and degree�one vertex w inside some

region P � where v is a vertex of P �

DetachVertex�v� e�� Remove a degree�one vertex v and edge e incident on v�

The above repertory of operations is complete for connected subdivisions� That

is� any connected subdivision S can be constructed �from scratch� using only the

above operations�

We make use of the dynamic data structure of Goodrich and Tamassia��� Their

technique supports two�point shortest�path queries and ray�shooting queries� which

consist of 
nding the 
rst edge or vertex of S hit by a query ray� Their data

structure is based on geodesic triangulation of each region of S� Given three ver�

tices u� v� and w of a region P �a simple polygon�� which occur in that order�

the geodesic triangle they determine is the union of the shortest paths �G�u� v��

�G�v� w� and �G�w� u�� A geodesic triangulation of P is a decomposition of P �s

interior into geodesic triangles whose boundaries do not cross� The technique��

dynamically maintains such triangulations by viewing their dual trees as balanced

trees� Also� rotations in these trees can be implemented via a simple �diagonal

swapping� operation performed on the corresponding geodesic triangles� and edge

insertion and deletion can be implemented on these trees using operations akin to

the standard split and splice operations� Moreover� ray shooting queries are per�

formed by 
rst locating the ray�s endpoint and then walking along the ray from

geodesic triangle to geodesic triangle until hitting the boundary of some region of

S� The two�point shortest path is obtained by locating the two points and then

walking from geodesic triangle to geodesic triangle either following a boundary or

taking a shortcut through a common tangent���

Let n be the current number of vertices in S� Using the data structure of

Ref� ���� we can perform each of the above update operations as well as ray�

shooting and two�point shortest�path queries in O�log� n� time� using O�n� space�

where in O�log� n� time we get an implicit representation �a balanced binary tree�

and the length of the queried shortest path� and using additional O�k� time to

retrieve the k links we get the actual path��� Again we enhance this data structure

so that associated with the implicit representation of a shortest path �G� there

are two balanced binary trees respectively maintaining the in�ection edges and the

cusps on �G in their path order� Moreover� we can extract a portion of �G via

split�splice operations in logarithmic time� Using this data structure to support

two�point shortest�path queries as needed by Algorithm Shortest�Path� we get a

dynamic technique for shortest�path queries between two convex polygons in S�

Theorem � Let S be a connected planar subdivision whose current number of ver�

tices is n� Shortest�path queries between two convex polygons with a total of h

vertices that lie in the same region of S can be performed in time O�logh� log� n�

�plus O�k� to report the k links of the path	
 using a fully dynamic data structure

��



that uses O�n� space and supports updates of S in O�log� n� time� all bounds are

worst�case�

Remark� Our update operations are� in the usual dynamic setting� allowed

only on S� If R� and�orR� are also updated� say� by inserting an edge �u� v� between

vertices u and v of R� and removing the clockwise boundary of R� from u to v �or

by an inverse operation while preserving the convexity of R��� we can� of course�


rst update R� and�or R� and then re�compute �G�R�� R�� by our query algorithm�

in O�logh� log� n� time� An interesting open problem is whether we can support

such updates on R� and R� while maintaining �G�R�� R�� in time O�polylog�h���

�� Static Minimum�Link Path Queries

Given two convex polygons R� and R� with a total of h vertices inside an n�

vertex simple polygon P � we want to compute their minimum�link path �L�R�� R���

The data structure given by Arkin� Mitchell and Suri� supports minimum�link�path

queries between two points and between two segments inside P in optimal O�logn�

time� and between two convex polygons R� and R� in time O�logh logn� �plus O�k�

if the k links are reported�� using O�n�� space and preprocessing time� We show

in this section how to improve the two�polygon queries to optimal O�logh� logn�

time� using the same data structure�

Let HG be the geodesic hourglass of R� and R�� with geodesic tangent points

a�� b� � R� and a�� b� � R�� As shown in Ref� ���� a minimum�link path between

the two segments s� � �a�� b�� and s� � �a�� b�� gives a desired minimum�link path

between R� andR�� i�e�� �L�s�� s�� � �L�R�� R��� Note thatH�s�� s�� � HG� Recall

from Section ��� that when HG is open �R� and R� are mutually visible� Algorithm

Pseudo�Hourglass returns a visibility link l� which can serve as the desired link�one

path l � �L�R�� R��� So we look at the case where HG is closed� As we shall see in

Lemma �� �Section ��� if hourglass H�s�� s�� is closed with penetrations �� �closer

to s�� and �� �closer to s��� then there exists a minimum�link path �L�s�� s�� that

uses �� and �� as the 
rst and last links� This means that �L�p� q� � �L�s�� s�� �

�L�R�� R��� where points p and q are obtained by extending �� and �� to intersect

R� and R�� respectively� Therefore the two�polygon queries can be reduced to the

two�point queries� We summarize this result in the following lemma�

Lemma �	 Let the geodesic hourglass HG be closed with penetrations �� �closer to

R�	 and �� �closer to R�	
 and the line extensions of �� and �� intersect R� and R�

at points p and q
 respectively� Then �L�p� q� is a minimum�link path �L�R�� R��

between R� and R��

We now give the algorithm for computing a minimum�link path �L�R�� R��

between R� and R��

Algorithm Min�Link�Path

�� PerformAlgorithmPseudo�Hourglass to decide whether the geodesic hourglass

HG is open �with a visibility link l� or closed �with penetrations �� �closer to

R�� and �� �closer to R����
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�� If HG is open� then report �L�R�� R�� � l� dL�R�� R�� � � and stop�

�� Otherwise �HG is closed�� extend �� and �� to intersect R� and R� respectively

at p and q via binary searches on R� and R�� Compute �L�p� q� �and thus

also dL�p� q�� by the algorithm of Ref� ���� Report �L�R�� R�� � �L�p� q��

dL�R�� R�� � dL�p� q� and stop�

Lemma �
 The time complexity of Algorithm Min�Link�Path is O�logh � logn�

�plus O�k� if the k links are reported	
 which is optimal�

Theorem � Let P be a simple polygon with n vertices� There exists a data structure

that supports minimum�link�path queries between two convex polygons with a total

of h vertices inside P in optimal time O�logh � logn� �plus O�k� if the k links of

the path are reported	
 using O�n�� space and preprocessing time� all bounds are

worst�case�

	� Dynamic Minimum�Link Path Queries

In this section we show that the dynamic data structure given in Section � can

also support minimum�link�path queries between two convex polygons in the same

region of a connected planar subdivision S� As we have already seen from the last

section� we only need to support two�point queries and justify the correctness of

Lemma ��� which in turn establishes the correctness of Algorithm Min�Link�Path�

���� Basic Properties

Let p and q be two points that lie in the same region P of S� and �p� p�� and

�q�� q� be the 
rst and last links of the shortest path �G�p� q�� respectively �see

Fig� ��� If �G�p
�� q�� is not a monotone chain� there are some cusps c�� � � � � ci such

that �G�p�� c��� �G�c�� c��� � � � � �G�ci� q�� are the maximal monotone subchains of

�G�p�� q��� For c�� we draw a left or right lid l such that l and �G�p�� c�� lie on

opposite �left and right� sides of c�� Let w� � �p� u� be the extension of �p� p���

where u is obtained by ray shooting �see Fig� ��� We consider the subregion P �

of P delimited by w� and l� For each cusp v of P �� we draw both lids of v if they

do not intersect with �G�p�� c��� otherwise we draw left or right lid of v that does

not intersect with �G�p�� c��� Then P � is partitioned into a collection of monotone

polygons� among which we denote by sleeve�w�� the monotone sleeve that uses w�

as its boundary and contains �G�p�� c�� �see Fig� ��� Excluding segment w�� the

boundary of sleeve�w�� consists of left and right monotone chains C� and C�� We

say that a line t is an internal common tangent of sleeve�w�� if t is locally tangent

to two vertices a and b respectively on C� and C� �if t goes through u� then u is also

considered as a tangent point� and similarly for p��� If t intersects with w� and a is

closer to w� than b� we call t a left tangent of sleeve�w��	 a right tangent is de
ned

similarly�

Suppose that t� and t�� are two left �or right� tangents of sleeve�w��� Let �
�
G�p� q�

be the set of points on �G�p� q� each of which is visible from some point of t�� and

v� be the point of ��G�p� q� that is closest to q	 v
�� is de
ned similarly with respect
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to t��� We say that t� extends farther than t�� if v� is closer to q than v�� on �G�p� q��

Among the left tangents of sleeve�w��� the one that extends the farthest is called

the maximal left tangent of sleeve�w��	 similarly for the de
nition of maximal right

tangent� By the de
nitions of �L�p� q� and of window partition� we have the following

preliminary algorithm for computing �L�p� q�� when the shortest path �G�p� q� is

given �see Fig� ���
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c1

c2

c3

l

Fig
 ��
 Computing �Lp� q� by Algorithm Prelim� the window w� following
w� is chosen to be t� since it extends farther than t�� and so on


Algorithm Prelim

�� If �G�p� q� has only one link then report �L�p� q� � �p� q� and stop	 else if the

extensions of the 
rst and last links of �G�p� q� meet at some point v� then

report �L�p� q� � �p� v� q� and stop�

�� Otherwise� perform the following steps�

�a� Perform ray shooting to extend the 
rst link of �G�p� q�	 this gives the


rst window w��

�b� From w�� compute the monotone sleeve sleeve�w�� as described above�

and compute the maximal left tangent t� of sleeve�w�� and the maximal

right tangent t�� Choose t from t� and t� as the one that extends farther�

The second window w� is �p�� v��� where p� � w� � t� and v� is obtained

by performing ray shooting from p� along t toward q�
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�c� Repeat step �b to compute subsequent windows� until the current window

intersects with the extension of the last link of �G�p� q�� which is the last

window wk�

�d� Let pi � wi � wi��� Report �L�p� q� � �p� p�� � � � � pk��� q� and stop�

Let e�� � � � � ej be the in�ection edges of �G�p� q�� Then e�� � � � � ej partition

�G�p� q� into subchains that are always left�turning or always right�turning� namely�

into inward convex subchains �see Fig� ���� It is shown that every in�ection edge

e � �G�p� q� must be contained in �L�p� q�������� Hence� extending each in�ection

edge of �G�p� q� by ray shooting on both sides� together with the extensions of the


rst and last links of �G�p� q� �where the 
rst link extends towards q and the last

toward p�� we have 
xed windows W�� � � � �Wj�� �see Fig� ���� Now the task is

how to connect consecutive 
xed windows� In particular� each Wi has a portion

�u� v� � �G�p� q�� with u closer to p than v in �G�p� q�� Let the endpoints of Wi be

u� and v� such that Wi � �u�� u� v� v�� �note that u� � u � p if i � � and v� � v � q

if i � j � ��� We call �u�� u� the front of Wi and �v� v�� the rear of Wi� We want to

connect the rear of Wi with the front of Wi�� for each i � �� � � � � j � ��

p

q

W3

W5

W2

W1

W4

e1

e2

e3

P

Fig
 ��
 The shortest path �Gp� q� is partitioned by in�ection edges e�� e� and
e�
 The �xed windows W�� � � � �W� are obtained by extending the in�ection
edges as well as the �rst and last links of �Gp� q�
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Lemma �� Let Wi and Wi�� be consecutive �xed windows
 W the front of Wi��


and w the rear of Wi or a window between the rear of Wi and the front of Wi�� as

computed by Algorithm Prelim� If the hourglass H�w�W � is closed
 then the window

w� following w is the penetration of funnel F �w��

Proof� For any local portion of P � the boundary of P consists of two bounding

chains C� and C�� Let w � �a�� b�� and W � �a�� b��� where a� and a� are on

�G�p� q� �see Fig� ���� Then �G�a�� a�� is a convex hull inside P of a bounding chain�

say C�� of P � By Algorithm Prelim� there are two possible candidates for window

w�� the penetration of F �w� and some internal common tangent t intersecting with

w� Let p� be the apex of funnel F �w�� Note that p� � C� and thus the other tangent

point of the penetration lies on C�� Then t must be tangent to two vertices v� and

v� with v� � �G�a�� p�� and v� � C�� where v� is closer to w than v� when walking

along t� While extending towards q� the penetration has a slope closer to �G�a�� a��

than t� i�e�� anything blocking the penetration certainly blocks t �see Fig� ���� Thus

the penetration extends farther than t towards q and is chosen as the next window

w�� �

a1
a2

b1

b2

w

W

p

q

p1

v1

v2

t

P

Fig
 ��
 Proof of Lemma ��


��� Two Point Queries

The algorithm for computing �L�p� q� between two query points p and q is as

follows�

Algorithm Point�Query

�� Compute the shortest path �G�p� q�� If �G�p� q� has only one link� then

report �L�p� q� � �p� q�� dL�p� q� � � and stop�

�� Else� perform ray�shooting queries to extend the 
rst link of �G�p� q� in the

direction toward q� and the last link of �G�p� q� in the direction toward p� If

��



they intersect with each other at some point v� then report �L�p� q� � �p� v� q��

dL�p� q� � � �if p� v and q are collinear then dL�p� q� � �� and stop� Otherwise�

also extend each in�ection edge of �G�p� q� in both directions	 together with

the extensions of the 
rst and last links of �G�p� q�� this gives the 
xed windows

W�� � � � �Wj�

�� For each pair of consecutive 
xed windowsWi and Wi�� that do not intersect

with each other� repeat step � to compute the intermediate windows connect�

ing the rear of Wi and the front of Wi���

�� Initially� let w be the rear of Wi� Let W � �a�� b�� be the front of Wi�� with

a� � �G�p� q��

�a� Assume that w � �a�� b�� with a� on �G�p� q�� Compute the shortest

path �G�b�� b���

�b� If there is no in�ection edge in �G�b�� b��� then H�w�W � is an open

hourglass� Compute an internal common tangent t of the two inward

convex chains �G�a�� a�� and �G�b�� b��� Note that t connects w and W �

Set t to be the window following w and exit step ��

�c� Else �there are in�ection edges in �G�b�� b��� let � be the 
rst in�ection

edge of �G�b�� b��� then H�w�W � is a closed hourglass� one endpoint p�
of � is an apex and � is the penetration of funnel F �w�� Extend � in

the direction toward b� by ray shooting� which hits the boundary of P

at some point u	 also intersect line � with w at some point v� Set �v� u�

to be the window following w� Note that p� is in �v� u� and is a vertex

of P on �G�p� q�� Set w �� �p�� u� and go to step ��a��

� Now there are windows w�� � � � � wk connecting p and q� Let vi � wi � wi���

i � �� � � � � k � �� Report �L�p� q� � �p� v�� � � � � vk��� q�� dL�p� q� � k and stop�

It is easily seen that we perform O��� ray�shooting and shortest�path queries to

compute each link of �L�p� q�� Therefore� we have�

Lemma �� The time complexity of Algorithm Point�Query is O�k log� n�
 where k

is the number of links in the reported path�

Now we are ready to give the following lemma� which justi
es the correctness of

Lemma �� and thus also Algorithm Min�Link�Path given in Section �

Lemma � Suppose that two segments s� and s� inside a polygonal region P are

not mutually visible
 i�e�
 the hourglass H�s�� s�� �containing funnels F �s�� and

F �s��	 is closed� Let �� be the penetration of F �s�� and �� the penetration of

F �s��� Then there exists a minimum�link path �L�s�� s�� between s� and s� that

uses �� and �� as the �rst and last links�

Proof� To compute �L�s�� s��� we can view s� and s� as �
ctitious windows�

and apply the method for two�point queries� Let p� and p� be the apices of F �s��

and F �s��� respectively� If p� � p� then the lemma holds trivially� Otherwise� let

t be the 
rst internal common tangent in �G�p�� p��� and W be the extension of t�

If there is no such t� then let W � s�� Since the shortest path from any point of
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s� to any point of s� must go through p� and p�� s� and W serve as consecutive

�xed windows in �L�s�� s��� If H�s��W � is an open hourglass� then the penetration

�� is an internal common tangent connecting 
xed windows s� and W � and thus

is chosen as the window following s�� If H�s��W � is closed� then as computed by

Lemma ��� �� is the window following s�� In either case� �� is chosen as the 
rst

link of �L�s�� s��� Similarly �� �extends the farthest� from s� towards s�� Suppose

that �L�s�� s�� so computed does not use �� as the last link� and w and w� are the

last two windows of �L�s�� s��� Since �� extends no worse than the last link w�� ��
can also catch w� i�e�� replacing w� with �� still gives a minimum�link path between

s� and s�� �

Using Algorithm Point�Query to support two�point queries as needed by Algo�

rithm Min�Link�Path� we are now able to perform two�polygon queries�

Theorem � Let S be a connected planar subdivision whose current number of ver�

tices is n� Minimum�link�path queries between two convex polygons with a total of h

vertices that lie in the same region of S can be performed in time O�logh�k log� n�

�where k is the number of links in the reported path	
 using a fully dynamic data

structure that uses O�n� space and supports updates of S in O�log� n� time� all

bounds are worst�case�
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