OPTIMAL SHORTEST PATH AND MINIMUM-LINK PATH QUERIES BETWEEN TWO CONVEX POLYGONS INSIDE A SIMPLE POLYGONAL OBSTACLE *

YI-JEN CHIANG
Department of Computer Science, Brown University
Providence, R.I. 02912-1910, U.S.A.
yjc@cs.brorn.edu
and
ROBERTO TAMASSIA
Department of Computer Science, Brown University Providence, R.I. 02912-1910, U.S.A.
rt@cs.brown.edu
Received 6 December 1993
Revised 3 November 1994
Communicated by J. S. B. Mitchell

Abstract

We present efficient algorithms for shortest-path and minimum-link-path queries between two convex polygons inside a simple polygon P, which acts as an obstacle to be avoided. Let n be the number of vertices of P, and h the total number of vertices of the query polygons. We show that shortest-path queries can be performed optimally in time $O(\log h+\log n)$ (plus $O(k)$ time for reporting the k edges of the path) using a data structure with $O(n)$ space and preprocessing time, and that minimum-link-path queries can be performed in optimal time $O(\log h+\log n)$ (plus $O(k)$ to report the k links), with $O\left(n^{3}\right)$ space and preprocessing time. We also extend our results to the dynamic case, and give a unified data structure that supports both queries for convex polygons in the same region of a connected planar subdivision \mathcal{S}. The update operations consist of insertions and deletions of edges and vertices. Let n be the current number of vertices in \mathcal{S}. The data structure uses $O(n)$ space, supports updates in $O\left(\log ^{2} n\right)$ time, and performs shortest-path and minimum-link-path queries in times $O\left(\log h+\log ^{2} n\right)$ (plus $O(k)$ to report the k edges of the path) and $O\left(\log h+k \log ^{2} n\right)$, respectively. Performing shortest-path queries is a variation of the well-studied separation problem, which has not been efficiently solved before in the presence of obstacles. Also, it was not previously known how to perform minimum-linkpath queries in a dynamic environment, even for two-point queries.

Keywords: Computational geometry, shortest path, minimum-link path, static and dynamic data structures, analysis of algorithms.

[^0]
1. Introduction

In this paper, we present efficient algorithms for shortest-path and minimum-link-path queries between two convex polygons inside a simple polygon, which acts as an obstacle to be avoided. We give efficient techniques for both the static and dynamic versions of the problem.

Let R_{1} and R_{2} be two convex polygons with a total of h vertices that lie inside a simple polygon P with n vertices. The (geodesic) shortest path $\pi_{G}\left(R_{1}, R_{2}\right)$ is the polygonal chain with the shortest length among all polygonal chains joining a point of R_{1} and a point of R_{2} without crossing edges of P. A minimum-link path $\pi_{L}\left(R_{1}, R_{2}\right)$ is a polygonal chain with the minimum number of edges (called links) among all polygonal chains joining a point of R_{1} and a point of R_{2} without crossing edges of P. The number of links in $\pi_{L}\left(R_{1}, R_{2}\right)$ is called the link distance $d_{L}\left(R_{1}, R_{2}\right)$.

The related problem of computing the length of the shortest path between two polygons R_{1} and R_{2} without obstacle P has been extensively studied; this problem is also known as finding the separation of the two polygons, ${ }^{11}$ denoted by $\sigma\left(R_{1}, R_{2}\right)$. If both R_{1} and R_{2} are convex their separation can be computed in $O(\log h)$ time ${ }^{7,12,5,11}$; if only one of them is convex an $O(h)$-time algorithm is given in Ref. (7); if neither is convex, an optimal algorithm is recently given by Amato, ${ }^{1}$ who improves the previous result of Kirkpatrick ${ }^{18}$ from $O(h \log h)$ to $O(h)$.

Although there has been a lot of work on the separation problem, the more general shortest-path problem for two objects in the presence of obstacle P has been previously studied only for the simple case when the objects are points, for which there exist efficient static ${ }^{16}$ and dynamic ${ }^{6,15}$ solutions. The static technique of Ref. (16) supports two-point shortest-path queries in optimal $O(\log n)$ time (plus $O(k)$ if the k edges of the path are reported), employing a data structure that uses $O(n)$ space and can be built in linear time. The dynamic technique of Ref. (6) performs shortest-path queries between two points in the same region of a connected planar subdivision \mathcal{S} with n vertices in $O\left(\log ^{3} n\right)$ time (plus $O(k)$ to report the k edges of the path), using a data structure with $O(n \log n)$ space that can support updates (insertions and deletions of edges and vertices) of \mathcal{S} each in $O\left(\log ^{3} n\right)$ time. The very recent result of Ref. (15) improves the query and update times to $O\left(\log ^{2} n\right)$, with space complexity also improved to $O(n)$.

The minimum-link path problem between two points has been extensively studied. In many applications, such as robotics, motion planning, VLSI and computer vision, the link distance often provides a more natural measure of path complexity than the Euclidean distance. ${ }^{17,22,27,29,31}$ For example, in a robot system, a straight-line navigation is often much cheaper than rotation, thus it is desirable to minimize the number of turns in path planning. ${ }^{27,31}$ Also, in graph drawing, it is often desirable to minimize the number of bends. ${ }^{28,32}$

All previously known techniques for the minimum-link path problem are restricted to the static environment, where updates to the problem instance are not allowed. The method of Ref. (29) computes a minimum-link path between two fixed points inside a simple polygon in linear time. In Ref. (31), a scheme based on window partition can answer link distance queries from a fixed source in $O(\log n)$ time,
after $O(n)$ time preprocessing. The best known results are due to Arkin, Mitchell and Suri. ${ }^{2}$ Their data structure uses $O\left(n^{3}\right)$ space and preprocessing time, and supports minimum-link-path queries between two points and between two segments in optimal $O(\log n)$ time (plus $O(k)$ if the k links are reported). Their technique can also perform minimum-link-path queries between two convex polygons, however, in non-optimal $O(\log h \log n)$ time. Also, efficient parallel algorithms are given in Ref. (3).

There are other results on the variations of the minimum-link-path problem. Efficient algorithms for link diameter and link center are given in Refs. $(10,14,19,17,24)$ and $(23,30)$. A minimum-link path between two fixed points in a multiply connected polygon can be computed efficiently. ${ }^{22}$ Sequential and parallel algorithms for rectilinear link distance are respectively given by de Berg ${ }^{8}$ and Lingas et al.. ${ }^{20}$ De Berg et al. ${ }^{9}$ study the problem of finding a shortest rectilinear path among rectilinear obstacles. Mitchell et al. ${ }^{21}$ consider the problem of finding a shortest path with at most K links between two query points inside a simple polygon, where K is an input parameter.

Our main results are outlined as follows.

- Let P be a simple polygon with n vertices. There exists an optimal data structure that supports shortest-path queries between two convex polygons with a total of h vertices inside P in time $O(\log h+\log n)$ (plus $O(k)$ if the k links of the path are reported), using $O(n)$ space and preprocessing time; all bounds are worst-case.
- Let P be a simple polygon with n vertices. There exists a data structure that supports minimum-link-path queries between two convex polygons with a total of h vertices inside P in optimal time $O(\log h+\log n)$ (plus $O(k)$ if the k links of the path are reported), using $O\left(n^{3}\right)$ space and preprocessing time; all bounds are worst-case.
- Let \mathcal{S} be a connected planar subdivision whose current number of vertices is n. Shortest-path and minimum-link-path queries between two convex polygons with a total of h vertices that lie in the same region of \mathcal{S} can be performed in times $O\left(\log h+\log ^{2} n\right)$ (plus $O(k)$ to report the k links of the path) and $O\left(\log h+k \log ^{2} n\right)$, respectively, using a fully dynamic data structure that uses $O(n)$ space and supports insertions and deletions of vertices and edges of \mathcal{S} each in $O\left(\log ^{2} n\right)$ time; all bounds are worst-case.
The contributions of this work can be summarized as follows:
- We provide the first optimal data structure for shortest-path queries between two convex polygons inside a simple polygon P that acts as an obstacle. No efficient data structure was known before to support such queries. All previous techniques either consider the case where P is not present or the case where the query objects are points.
- We provide the first data structure for minimum-link-path queries between two convex polygons inside a simple polygon P in optimal $O(\log h+\log n)$
time. The previous best result ${ }^{2}$ has query time $O(\log h \log n)$ (and the same space and preprocessing time as ours).
- We provide the first fully dynamic data structure for shortest-path queries between two convex polygons in the same region of a connected planar subdivision \mathcal{S}. No such data structure was known before even for the static version.
- We provide the first fully dynamic data structure for minimum-link-path queries between two convex polygons in the same region of a connected planar subdivision \mathcal{S}. No such data structure was known before even for two-point queries.

We summarize the comparisions of our results with the previous ones in Tables 14.

Table 1. Results for static shortest-path queries.

Static Shortest Paths	Query Type	Query	Space	Preprocess
GuibasHershberger ${ }^{16}$	two query points	$\log n *$	n *	n *
This paper	two query convex polygons	$\log h+\log n *$	n *	n *

* optimal

Table 2. Results for dynamic shortest-path queries.

Dynamic Shortest Paths	Query Type	Query	Space	Update
Chiang-Preparata- Tamassia	two query points	$\log ^{3} n$	$n \log n$	$\log ^{3} n$
Goodrich-Tamassia				

* optimal

We briefly outline our techniques. Given the available static techniques with optimal query time for shortest paths and minimum-link paths between two points, our main task in performing the two-polygon queries is to find two points $p \in R_{1}$ and $q \in R_{2}$ such that their shortest path or minimum-link path gives the desired path between R_{1} and R_{2}. As we shall see later, the notion of geodesic hourglass between R_{1} and R_{2} is central to our method. The geodesic hourglass is open if R_{1} and R_{2} are mutually visible, and closed otherwise. As for shortest-path queries, the case where R_{1} and R_{2} are mutually visible is a basic case that, surprisingly, turns out to be nontrivial (the complication comes from the fact that the shortest path in this case may still consist of more than one link), and our solution makes use of interesting geometric properties. If R_{1} and R_{2} are not visible, then the geodesic hourglass gives two points p_{1} and p_{2} that are respectively visible from R_{1} and R_{2} such that the shortest path between any point of R_{1} and any point of R_{2} must go

Table 3. Results for static minimum-link-path queries.

Static Min-Link Paths	Query Type	Query	Space	Preprocess
Suri 31	one fixed point and one query point	$\log n *$	$n *$	$n *$
Arkin-Mitchell- Suri 2	two query points/segments	$\log n *$	n^{3}	n^{3}
	two query con- vex polygons	$\log h \log n$	n^{3}	n^{3}
This paper	two query con- vex polygons	$\log h+\log n *$	n^{3}	n^{3}

* optimal

Table 4. Results for dynamic minimum-link-path queries.

Dynamic Min-Link Paths	Query Type	Query	Space	Update
This paper	two query con- vex polygons	$\log h+k \log ^{2} n$	$n *$	$\log ^{2} n$

* optimal
through p_{1} and p_{2}. Then the shortest path between R_{1} and R_{2} is the union of the shortest paths between R_{1} and p_{1}, between p_{2} and R_{2} (both are basic cases), and between two points p_{1} and p_{2}. The geodesic hourglass also gives useful information for minimum-link-path queries. When it is open, a minimum-link path is just a single segment; if it is closed, then it gives two edges such that extending them to intersect R_{1} and R_{2} gives the desired points p and q whose minimum-link path is a minimum-link path $\pi_{L}\left(R_{1}, R_{2}\right)$. However, it seems difficult to compute the geodesic hourglass in optimal time. Interestingly, we can get around this difficulty by computing a pseudo hourglass that gives all the information we need about the geodesic hourglass. We also extend these results to the dynamic case, by giving the first dynamic method for minimum-link-path queries between two points.

The rest of this paper is organized as follows. In Section 2 we briefly review the basic geometric notions used by our method. Section 3 shows how to perform shortest-path queries in the static environment, in particular how to compute the pseudo hourglass and how to handle the nontrivial basic case where two query polygons are mutually visible. Sections 4,5 and 6 are devoted to dynamic shortest-path, static minimum-link-path, and dynamic minimum-link-path queries, respectively.

2. Preliminaries

For the geometric terminology used in this paper, see Ref. (26). A connected planar subdivision \mathcal{S} is a subdivision of the plane into polygonal regions whose underlying planar graph is connected. Thus each region of \mathcal{S} is a simple polygon P. A polygonal chain γ is monotone if any horizontal line intersects it in a single point or in a single interval or not at all. A simple polygon P is monotone if its boundary
consists of two monotone chains. A cusp of a polygon P is a vertex v whose interior angle is greater than π and whose adjacent vertices are both strictly above (lower cusp) or strictly below (upper cusp) v. If we draw from a cusp v of P two horizontal rays that terminate when they first meet the edges of P, the resulting segments to the left and right of v are called left lid and right lid of v, respectively. A polygon is monotone if and only if it has no cusps.

The notion of window partition was introduced in Ref. (31). Given a point or a line segment s in region P, let $W P(s)$ denote the partition of P into maximallyconnected subregions with the same link distance from s; $W P(s)$ is called the window partition of P with respect to s. Associated with $W P(s)$ is a set of windows, which are chords of P that serve as boundaries between adjacent subregions of the partition.

Given two points p and q that lie in the same region P of \mathcal{S} (or in the same simple polygon P), it is well known that their shortest path $\pi_{G}(p, q)$ is unique and only turns at the vertices of P. On the contrary, a minimum-link path is not unique and may turn at any point inside P. Adopting the terminology of Ref. (31), we define the (unique) greedy minimum-link path $\pi_{L}(p, q)$ to be the minimum-link path whose first and last links are respectively the extensions of the first and last links of $\pi_{G}(p, q)$, and whose other links are the extensions of the windows of $W P(p)$. The number of links in $\pi_{L}(p, q)$ is then the link distance $d_{L}(p, q)$. In the following we use the term "window" to refer to both a window and its extension.

Given a shortest path $\pi_{G}(p, q)$, an edge $e \in \pi_{G}(p, q)$ is an inflection edge if its predecessor and its successor lie on opposite sides of e. It is easily seen that an edge $e \in \pi_{G}(p, q)$ is an inflection edge if and only if it is an internal common tangent of the boundaries of P.

Given two convex polygons R_{1} and R_{2} inside P, we say that R_{1} and R_{2} are mutually visible if there exists a line l connecting R_{1} and R_{2} without crossing any edge of P; we call such line l a visibility link between R_{1} and R_{2}. Now we define the left and right boundaries B_{L} and B_{R} of P with respect to R_{1} and R_{2} when they are not mutually visible through a horizontal line. For $i=1,2$, let u_{i} and d_{i} be the highest and lowest vertices of R_{i}, respectively. Without loss of generality, we assume that $y\left(u_{1}\right) \geq y\left(u_{2}\right)$ (otherwise we exchange the roles of R_{1} and R_{2}). We choose $q_{1} \in\left\{u_{1}, d_{1}\right\}$ and $q_{2} \in\left\{u_{2}, d_{2}\right\}$ such that (i) the subpolygon P^{\prime} of P delimited by both e_{1} and e_{2} contains both R_{1} and R_{2}, where e_{i} is a horizontal chord of P going through $q_{i}, i=1,2$, and (ii) among the four shortest paths $\pi_{G}\left(u_{1}, u_{2}\right)$, $\pi_{G}\left(u_{1}, d_{2}\right), \pi_{G}\left(d_{1}, u_{2}\right)$ and $\pi_{G}\left(d_{1}, d_{2}\right), \pi_{G}\left(q_{1}, q_{2}\right)$ has the largest number of cusps (see Fig. 1). Now P^{\prime} is bounded by e_{1}, ϵ_{2} and two polygonal chains. We define B_{L} and B_{R} as these two polygonal chains of $P^{\prime}: B_{L}$ is the one to the left of $\pi_{G}\left(q_{1}, q_{2}\right)$ when we walk along $\pi_{G}\left(q_{1}, q_{2}\right)$ from q_{2} to q_{1}, and B_{R} is the one to the right (see Fig. 1). Clearly, any shortest path π between a point in R_{1} and a point in R_{2} can only touch the vertices of P on B_{L} and B_{R}, and the inflection edges of π are those edges that have one endpoint on B_{L} and the other endpoint on B_{R}.

Fig. 1. Left and right boundaries B_{L} and B_{R} of P : (a) several choices of $\left(q_{1}, q_{2}\right)$ satisfy condition (ii) but only one satisfies (i); (b) several choices of $\left(q_{1}, q_{2}\right)$ satisfy condition (i) (e.g., $\left(u_{1}, d_{2}\right)$ is also valid) but only one satisfies (ii); (c) neither (i) nor (ii) alone enforces a unique choice of (q_{1}, q_{2}), but their conjunction does.

3. Static Shortest Path Queries

In this section we show how to compute the shortest path $\pi_{G}\left(R_{1}, R_{2}\right)$ between two convex polygons R_{1} and R_{2} with a total of h vertices inside an n-vertex simple polygon P. The data structure of Guibas and Hershberger ${ }^{16}$ computes the shortest path $\pi_{G}(p, q)$ between any two points p and q inside P in $O(\log n)$ time, where in $O(\log n)$ time we get an implicit representation (a balanced binary tree) and the length of $\pi_{G}(p, q)$, and using additional $O(k)$ time to retrieve the k links we get the actual path. Point-location queries can also be performed in $O(\log n)$ time. The data structure uses $O(n)$ space and can be built in $O(n)$ time after triangulating P (again in $O(n)$ time by Chazelle's linear-time triangulation algorithm ${ }^{4}$). We modify this data structure so that associated with the implicit representation of a shortest path π_{G}, there are two balanced binary trees respectively maintaining the inflection edges and the cusps on π_{G} in their path order. The balanced binary tree representing π_{G} and the two associated binary trees support split and splice operations, so that we can extract a portion of π_{G} in logarithmic time.

With this data structure, our task is to find points $p \in R_{1}$ and $q \in R_{2}$ such that $\pi_{G}(p, q)=\pi_{G}\left(R_{1}, R_{2}\right)$. We say that p and q realize $\pi_{G}\left(R_{1}, R_{2}\right)$. Note that p and q lie on the boundaries of R_{1} and R_{2} but are not necessarily vertices.

To obtain a better intuition, let us imagine surrounding R_{1} and R_{2} with a rubber band inside P. The resulting shape is called the relative convex hull of R_{1} and R_{2}. It is formed by four pieces: shortest paths $\pi_{1}=\pi_{G}\left(a_{1}, a_{2}\right), \pi_{2}=\pi_{G}\left(b_{1}, b_{2}\right)$ ($a_{1}, b_{1} \in R_{1}$ and $a_{2}, b_{2} \in R_{2}$), and the boundaries of R_{1} and R_{2} farther away from each other. We call a_{1}, b_{1}, a_{2}, and b_{2} the geodesic tangent points, and π_{1} and π_{2} the geodesic external tangents of R_{1} and R_{2}. Note that if π_{1} consists of more than one link, then the first (resp. last) link of π_{1} is a common tangent between R_{1} (resp. R_{2}) and the convex hull inside P of a portion of the boundary of P (see Fig. 2), and similarly for π_{2}. Let $s_{1}=\left(a_{1}, b_{1}\right)$ and $s_{2}=\left(a_{2}, b_{2}\right)$. If we replace R_{1} and R_{2} with s_{1} and s_{2}, then the relative convex hull of s_{1} and s_{2} is the hourglass $H\left(s_{1}, s_{2}\right)$ bounded by s_{1}, s_{2}, π_{1}, and π_{2}. Note that π_{1} and π_{2} stay unchanged. We call $H\left(s_{1}, s_{2}\right)$ the geodesic hourglass between R_{1} and R_{2}. We say that $H\left(s_{1}, s_{2}\right)$ is open if π_{1} and π_{2} do not intersect, and closed otherwise. When $H\left(s_{1}, s_{2}\right)$ is closed, there is a vertex p_{1} at which π_{1} and π_{2} join together, and a vertex p_{2} at which the two paths separate (possibly $p_{1}=p_{2}$); we call p_{1} and p_{2} the apices of $H\left(s_{1}, s_{2}\right)$ (see Fig. 2(b)). Also, we say that $\pi_{G}\left(a_{1}, p_{1}\right)$ and $\pi_{G}\left(b_{1}, p_{1}\right)$ form a funnel $F\left(s_{1}\right)$. The only internal common tangent ρ_{1} of P among all edges of $F\left(s_{1}\right)$ is called the penetration of $F\left(s_{1}\right)$, and similarly for ρ_{2} in funnel $F\left(s_{2}\right)$ (see Fig. 2(b)). Hereafter we use H_{G} to denote the geodesic hourglass, and $a_{1}, b_{1}\left(\in R_{1}\right), a_{2}, b_{2}\left(\in R_{2}\right)$ to denote the geodesic tangent points.
(a)

(b)

Fig. 2. Geodesic hourglass H_{G} and geodesic external tangents: (a) H_{G} is open; (b) H_{G} is closed.

Observe that H_{G} is open if and only if R_{1} and R_{2} are mutually visible (see Fig. 2(a)). If H_{G} is closed, then $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ between any point $p^{\prime} \in R_{1}$ and any point $q^{\prime} \in R_{2}$ must go through p_{1} and p_{2} (see Fig. 2(b)). Thus $\pi_{G}\left(R_{1}, R_{2}\right)$ must go through p_{1} and p_{2}, i.e., $\pi_{G}\left(R_{1}, R_{2}\right)=\pi_{G}\left(R_{1}, p_{1}\right) \cup \pi_{G}\left(p_{1}, p_{2}\right) \cup \pi_{G}\left(p_{2}, R_{2}\right)$. Since R_{1}
and p_{1} are mutually visible, the algorithm for computing $\pi_{G}\left(R_{1}, R_{2}\right)$ when R_{1} and R_{2} are mutually visible can be used to compute $\pi_{G}\left(R_{1}, p_{1}\right)$ as well, and similarly for $\pi_{G}\left(p_{2}, R_{2}\right)$. In summary, we need to handle the following two main tasks: (i) deciding whether H_{G} is open or closed, and finding apices p_{1} and p_{2} when H_{G} is closed, and (ii) computing $\pi_{G}\left(R_{1}, R_{2}\right)$ when R_{1} and R_{2} are mutually visible.

3.1. The Pseudo Geodesic Hourglass

We first discuss how to compute the information about geodesic hourglass H_{G} in optimal $O(\log h+\log n)$ time. A straightforward method is to compute H_{G} directly. As shown in Ref. (2), we can compute the geodesic external tangents between R_{1} and R_{2} (and hence H_{G}) by a binary search mimicking the algorithm ${ }^{25}$ for finding ordinary common tangents, where in each iteration we compute the shortest path between two chosen points rather than the segment joining them. However, this results in a computation of $O(\log h \log n)$ time. Also, it seems difficult to compute H_{G} in optimal time.

To overcome the difficulty, we notice that it is not necessary to compute H_{G} exactly. As for shortest-path queries, we only need to know whether H_{G} is open or closed, and the apices p_{1} and p_{2} of H_{G} when it is closed; as for minimum-link path queries (see Section 5), we only need to know a visibility link between R_{1} and R_{2} when H_{G} is open, and the penetrations ρ_{1} and ρ_{2} of H_{G} when it is closed. Interestingly, we can obtain the above information by computing a pseudo hourglass $H^{\prime \prime}$ with the property that if $H^{\prime \prime}$ is open then H_{G} is open, and if $H^{\prime \prime}$ is closed then H_{G} is closed with the same penetrations and apices. We first describe the algorithm and then justify its correctness.

Algorithm Pseudo-Hourglass

1. Ignore P and compute the ordinary external common tangents ($a_{1}^{\prime}, a_{2}^{\prime}$) and ($b_{1}^{\prime}, b_{2}^{\prime}$) between R_{1} and R_{2}, using the algorithm of Overmars and van Leeuwen, ${ }^{25}$ where $a_{1}^{\prime}, b_{1}^{\prime} \in R_{1}$ and $a_{2}^{\prime}, b_{2}^{\prime} \in R_{2}$. Let $s_{1}^{\prime}=\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ and $s_{2}^{\prime}=\left(a_{2}^{\prime}, b_{2}^{\prime}\right)$. Compute shortest paths $\pi_{1}=\pi_{G}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ and $\pi_{2}=\pi_{G}\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$. If they are disjoint (i.e., neither has an inflection edge) then the hourglass $H^{\prime}=H\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ is open. In this case s_{1}^{\prime} and s_{2}^{\prime} are mutually visible, implying that R_{1} and R_{2} are mutually visible. Use algorithm ${ }^{25}$ to compute an internal common tangent l between π_{1} and π_{2}, report $\{$ open with visibility link $l\}$ and stop.
2. Else (π_{1} and π_{2} are not disjoint) H^{\prime} is closed. Now the geodesic external tangents (which constitute H_{G}) must go through vertices of P, and it is still possible that H_{G} is open. Let u_{1} and d_{1} be the highest and lowest vertices of R_{1}, respectively, and similarly for u_{2} and d_{2} in R_{2}. Assume that $y\left(u_{1}\right) \geq$ $y\left(u_{2}\right)$ (otherwise exchange the roles of R_{1} and R_{2}). Compute shortest paths $\pi_{G}\left(u_{1}, u_{2}\right), \pi_{G}\left(u_{1}, d_{2}\right), \pi_{G}\left(d_{1}, u_{2}\right)$ and $\pi_{G}\left(d_{1}, d_{2}\right)$. Take π as the one with the largest number of cusps (break ties arbitrarily). Consider π as oriented from R_{2} to R_{1}.
3. From $R_{i}, i=1,2$, compute horizontal projection points l_{i} and r_{i} respectively on the left and right boundaries B_{L} and B_{R} of P, by discriminating the following cases.
(a) π has no cusp at all.

There are two subcases.
i. $y\left(d_{1}\right) \leq y\left(u_{2}\right)$, i.e., there is a vertical overlap between horizontal projections of R_{1} and R_{2}.
In this case the line $l: y=y\left(u_{2}\right)$ connects R_{1} and R_{2} without being blocked (to be proved in Lemma 1). Report \{open with visibility link $l\}$ and stop.
ii. There is no vertical overlap (see Fig. 3).

Project u_{1} horizontally to the left and right on the boundaries B_{L} and B_{R} of P to get points l_{1} and r_{1}, respectively (via point location), and similarly project d_{2} to the left and right to get l_{2} and r_{2}.
(b) π has cusps.

Consider R_{1} (and symmetrically for R_{2}). Look at cusp c_{1} of π closest to R_{1}, and denote π^{\prime} the portion of π from c_{1} to the point on R_{1}. Without loss of generality, assume that c_{1} is a lower cusp. There are two cases.
i. c_{1} is lower than or as low as $d_{1}\left(y\left(c_{1}\right) \leq y\left(d_{1}\right)\right)$.

This means that R_{1} is entirely blocked by c_{1}. Project u_{1} horizontally to the left and right to get l_{1} and r_{1}, respectively.
ii. c_{1} is higher than $d_{1}\left(y\left(c_{1}\right)>y\left(d_{1}\right)\right)$.

Then R_{1} "stretches" beyond c_{1}. Consider the following subcases.
A. The first link of π^{\prime} (oriented toward R_{1}) goes toward left (see Fig. 5(a)(b)).
Project both u_{1} and d_{1} to the right to get r_{1} and l_{1}, respectively.
Also a special-case checking is needed: if segment $\left(d_{1}, l_{1}\right)$ intersects R_{2} at v, then report $\left\{\right.$ open with visibility link $\left.l=\left(d_{1}, v\right)\right\}$ and stop.
B. The first link of π^{\prime} goes toward right.

Project both u_{1} and d_{1} to the left to get l_{1} and r_{1}, respectively. Again perform a special-case checking: if segment $\left(d_{1}, r_{1}\right)$ intersects R_{2} at v, then report $\left\{\right.$ open with visibility link $\left.l=\left(d_{1}, v\right)\right\}$ and stop.
4. Compute shortest paths $\pi_{l}=\pi_{G}\left(l_{1}, l_{2}\right)$ and $\pi_{r}=\pi_{G}\left(r_{1}, r_{2}\right)$. Extract the "left bounding convex chain" $C_{L 1}$ for R_{1} as the portion of π_{l} from l_{1} to x, where x is the first vertex v_{1} on B_{R} or the first point c with $y(c)=y\left(l_{1}\right)$ or the second cusp c_{2}, whichever is closest to R_{1}, or $x=l_{2}$ if none of v_{1}, c and c_{2} exists. Note that $C_{L 1}$ includes the first inflection edge if $x=v_{1}$. Similarly extract the "right bounding convex chain" $C_{R 1}$ of R_{1} from π_{r}. The left and right bounding convex chains $C_{L 2}$ and $C_{R 2}$ of R_{2} are computed analogously (see Fig. 4).
5. Compute pseudo tangent points $a_{1}^{\prime \prime}, b_{1}^{\prime \prime} \in R_{1}$ and $a_{2}^{\prime \prime}, b_{2}^{\prime \prime} \in R_{2}$ such that the pseudo hourglass $H^{\prime \prime}$ formed by $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right), \pi_{G}\left(b_{1}^{\prime \prime}, b_{2}^{\prime \prime}\right), s_{1}^{\prime \prime}=\left(a_{1}^{\prime \prime}, b_{1}^{\prime \prime}\right)$ and $s_{2}^{\prime \prime}=$ $\left(a_{2}^{\prime \prime}, b_{2}^{\prime \prime}\right)$ has the desired property. Point $a_{1}^{\prime \prime}$ is computed from R_{1} and $C_{L 1}$ by the following steps (and analogously $b_{1}^{\prime \prime}, a_{2}^{\prime \prime}$ and $b_{2}^{\prime \prime}$ are computed from R_{1} and $C_{R 1}$, from R_{2} and $C_{L 2}$, and from R_{2} and $C_{R 2}$, respectively).
(a) Check whether R_{1} intersects $C_{L 1}$ (viewing $C_{L 1}=\pi_{G}\left(l_{1}, x\right)$ as a convex polygon with edge ($\left.l_{1}, x\right)$ added) using the algorithm, ${ }^{5}$ which runs in logarithmic time and also reports a common point g inside both R_{1} and $C_{L 1}$ if they intersect. If $R_{1} \cap C_{L 1}=\emptyset$, then find the internal common tangent $t=(v, w)$ between R_{1} and $C_{L 1}, v \in R_{1}, w \in C_{L 1}$, such that R_{1} lies on the right side of t if t is directed from w to v (see Fig. 3). Note that only one of the two internal common tangents between R_{1} and $C_{L 1}$ satisfies the criterion for t. Now check whether t intersects $C_{R 1}$ via a binary search on $C_{R 1}$.
i. $t \cap C_{R 1}=\emptyset$. Set $a_{1}^{\prime \prime}:=v$.
ii. $t \cap C_{R 1}=\left\{y_{1}, y_{2}\right\}$. Let $C_{R 1}^{\prime}$ be the portion of $C_{R 1}$ between points y_{1} and y_{2}. Find the external common tangent $t^{\prime}=\left(v^{\prime}, w^{\prime}\right)$ between R_{1} and $C_{R 1}^{\prime}, v^{\prime} \in R_{1}, w^{\prime} \in C_{R 1}^{\prime}$, such that both R_{1} and $C_{R 1}^{\prime}$ lie on the right side of t^{\prime} if t^{\prime} is directed from w^{\prime} to v^{\prime}. Set $a_{1}^{\prime \prime}:=v^{\prime}$. (See Fig. 3.)
(b) Else ($R_{1} \cap C_{L 1} \neq \emptyset$, with a common point g inside both R_{1} and $C_{L 1}$), then there is only one edge of $C_{L 1}$ intersecting R_{1} (to be proved in Lemma 3). Compute this edge (u, b) by applying Lemma 3 . Suppose b is closer to R_{2} than u; call b the blocking point. Consider the following two cases.
i. The blocking point b is on the left boundary B_{L}.

Compute $a_{1}^{\prime \prime}$ as the tangent point from b to R_{1} such that R_{1} is on the right side of $\left(b, a_{1}^{\prime \prime}\right)$ when $\left(b, a_{1}^{\prime \prime}\right)$ is directed toward $a_{1}^{\prime \prime}$. (See Fig. 7(a)(b).)
ii. The blocking point b is on the right boundary B_{R}.

Take C as the convex portion of π_{l} (oriented from R_{1} to R_{2}) from b to z, where z is the first vertex v_{1}^{\prime} on B_{L} again or the first point c^{\prime} with $y\left(c^{\prime}\right)=y(b)$ or the second cusp c_{2}^{\prime} after b, whichever is closest to R_{1}. Note that such v_{1}^{\prime} always exists since $\pi_{l}=\pi_{G}\left(l_{1}, l_{2}\right)$ finally goes to $l_{2} \in B_{L}$, and that C includes the first inflection edge after b if $z=v_{1}^{\prime}$. Find the external common tangent $t^{\prime \prime}=\left(v^{\prime \prime}, w^{\prime \prime}\right)$ between R_{1} and $C, v^{\prime \prime} \in R_{1}, w^{\prime \prime} \in C$, such that both R_{1} and C lie on the right side of $t^{\prime \prime}$ if $t^{\prime \prime}$ is directed from $w^{\prime \prime}$ to $v^{\prime \prime}$. Set $a_{1}^{\prime \prime}:=v^{\prime \prime}$. (See Fig. 7(c)-(f).)
6. Compute shortest paths $\pi_{1}=\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ and $\pi_{2}=\pi_{G}\left(b_{1}^{\prime \prime}, b_{2}^{\prime \prime}\right)$ to form pseudo hourglass $H^{\prime \prime}$. Check whether $H^{\prime \prime}$ is open or closed.
(a) $H^{\prime \prime}$ is open (neither π_{1} nor π_{2} has an inflection edge).

Compute an internal common tangent l between π_{1} and π_{2}, report \{open with visibility link $l\}$ and stop.
(b) $H^{\prime \prime}$ is closed.

Penetration $\rho_{1}=\left(w_{1}, p_{1}\right)$ is chosen from the first inflection edges of π_{1} and of π_{2} (one of such edges might be missing) as the one that is closer to R_{1}, and the endpoint p_{1} of ρ_{1} farther away from R_{1} is an apex. The other penetration ρ_{2} and apex p_{2} are found similarly. Recall that an inflection edge has one endpoint on B_{L} and the other on B_{R}. To decide whether the first and last links of π_{1} and π_{2} are inflection edges, points $a_{1}^{\prime \prime}$ and $a_{2}^{\prime \prime}$ are viewed as on B_{L}, and $b_{1}^{\prime \prime}$ and $b_{2}^{\prime \prime}$ as on B_{R}. After computing $\rho_{1}, \rho_{2}, p_{1}$ and p_{2}, report $\left\{\right.$ closed with penetrations ρ_{1} and ρ_{2} and apices p_{1} and $\left.p_{2}\right\}$, and stop.

Fig. 3. A running example for Algorithm Pseudo-Hourglass in the case where π has no cusps and $C_{L 1} \cap R_{1}=\emptyset$.

The correctness of the algorithm is justified by the following lemmas.
Lemma 1 In step 3(a)i of Algorithm Pseudo-Hourglass, the line l:y=y(u2) connects R_{1} and R_{2} without being blocked.
Proof. Recall that there is a vertical overlap between the horizontal projections of R_{1} and R_{2}, i.e., $y\left(u_{1}\right) \geq y\left(u_{2}\right) \geq y\left(d_{1}\right)$. By the definition of π and the fact
that π has no cusp, the shortest path between u_{1} and u_{2} must have no cusp. Thus any lower cusp c^{\prime} of P in between R_{1} and R_{2} has $y\left(c^{\prime}\right) \geq y\left(u_{2}\right)$. Similarly, any upper cusp $c^{\prime \prime}$ of P in between R_{1} and R_{2} has $y\left(c^{\prime \prime}\right) \leq \max \left\{y\left(d_{1}\right), y\left(d_{2}\right)\right\}$. Note that $y\left(u_{2}\right) \geq \max \left\{y\left(d_{1}\right), y\left(d_{2}\right)\right\}$, therefore $y\left(c^{\prime \prime}\right) \leq y\left(u_{2}\right) \leq y\left(c^{\prime}\right)$, i.e., the line $l: y=y\left(u_{2}\right)$ connects R_{1} and R_{2} without being blocked.

Fig. 4. Step 4 of Algorithm Pseudo-Hourglass and proof of Lemma 4. As for step 4 , notice how we get the bounding convex chains $C_{L 1}, C_{R 1}, C_{L 2}$ and $C_{R 2}$, especially $C_{R 1}$ and $C_{R 2}$; as for Lemma 4, note that R_{1} and R_{2} do not intersect any of the bounding convex chains, $S_{1}=\left(u_{1}, r_{1}\right) \cup\left(u_{1}, d_{1}\right) \cup\left(d_{1}, l_{1}\right)$, $S_{2}=\left(l_{2}, r_{2}\right)$, and $H_{G}=\left(a_{1}, b_{1}\right) \cup\left(a_{2}, b_{2}\right) \cup \pi_{G}\left(a_{1}, a_{2}\right) \cup \pi_{G}\left(b_{1}, b_{2}\right)$ is properly contained in $S_{1} \cup S_{2} \cup \pi_{l} \cup \pi_{r}$.

Lemma 2 The projection points l_{i} and $r_{i}, i=1,2$ obtained in step 3 of Algorithm Pseudo-Hourglass lie on distinct boundaries of P, i.e., $l_{i} \in B_{L}$ and $r_{i} \in B_{R}$.
Proof. The claim is obvious for steps 3 (a)ii and $3(\mathrm{~b}) \mathrm{i}$ since l_{i} and r_{i} are obtained by projecting the same point to the left and right. Now consider step 3(b)iiA (step $3(\mathrm{~b}) \mathrm{iiB}$ is similar). It is clear that r_{1} is on B_{R}, so we look at l_{1}. If all points on π are higher than d_{1}, then the horizontal line $y=y\left(d_{1}\right)$ is not blocked by π and thus is to the left of π (recall that π is oriented from R_{2} to R_{1}). So l_{1} is on B_{L} (see Fig. 5(a)). On the other hand, if π contains some point c^{\prime} lower than d_{1}, then for c_{1} to be a lower cusp, there must be an upper cusp on π between c_{1} and c^{\prime} that is higher than c_{1} (see Fig. 5(b)). Let $c^{\prime \prime}$ be such upper cusp closest to c_{1}, then the line $y=y\left(d_{1}\right)$ is blocked by $c^{\prime \prime}$ and the projection point l_{1} is on B_{L}.
Lemma 3 In step $5 b$ of Algorithm Pseudo-Hourglass, where $R_{1} \cap C_{L 1} \neq \emptyset$ with a common point g inside both R_{1} and $C_{L 1}$, there is only one edge of $C_{L 1}$ intersecting R_{1}. Furthermore, this edge (u, b) can be computed in $O(\log n)$ time.

Fig. 5. Step 3(b)iiA of Algorithm Pseudo-Hourglass and proof of Lemma 2: r_{1} and l_{1} are obtained by projecting u_{1} and d_{1} horizontally to the right; r_{1} is on B_{R} and l_{1} is on B_{L}.

Proof. We prove the first part by contradiction. If there were more than one edge of $C_{L 1}$ intersecting R_{1}, say $\left(v_{1}, v_{2}\right)$ and (v_{2}, v_{3}) (see Fig. 6(a)), then v_{2} would be inside R_{1} and would also be a vertex of P, contradicting the fact that R_{1} is in a free space of P.

Now we show how to compute (u, b) in $O(\log n)$ time. Assume that l_{1} is obtained in step 3 of Algorithm Pseudo-Hourglass by projecting u_{1}. Then u_{1} is inside R_{1} but outside $C_{L 1}$, thus segment $\left(g, u_{1}\right) \in R_{1}$ intersects the boundary of $C_{L 1}$ (see Fig. $6(\mathrm{~b})$). By the first part of this lemma, there is only one edge (u, b) of $C_{L 1}$ that can be intersected by a segment inside R_{1}. Performing a binary search on $C_{L 1}$ to identify the edge intersected by $\left(g, u_{1}\right),(u, b)$ can be found in $O(\log n)$ time.

Fig. 6. Proof of Lemma 3: (a) impossibility for $C_{L 1}$ to have more than one edge intersecting R_{1}; (b) finding edge (u, b).

Lemma 4 The pseudo hourglass $H^{\prime \prime}$ computed from steps 5 and 6 of Algorithm Pseudo-Hourglass has the property that if $H^{\prime \prime}$ is open then the geodesic hourglass H_{G} is open, and if $H^{\prime \prime}$ is closed with penetrations ρ_{1} and ρ_{2} and apices p_{1} and p_{2} then H_{G} is closed with the same penetrations and apices.
Proof. Recall that $a_{1}, b_{1} \in R_{1}$ and $a_{2}, b_{2} \in R_{2}$ are the geodesic tangent points. We first consider the case in which the bounding convex chains $C_{L 1}$ and $C_{R 1}$ do no intersect R_{1}, and $C_{L 2}$ and $C_{R 2}$ do not intersect R_{2} either (see Fig. 4). Define $S_{i}, i=1,2$, as follows. If l_{i} and r_{i} are obtained by projecting the same point of R_{i} then $S_{i}=\left(l_{i}, r_{i}\right)$; otherwise assuming without loss of generality that l_{i} is obtained from projecting d_{i} and r_{i} from u_{i}, then $S_{i}=\left(u_{i}, r_{i}\right) \cup\left(u_{i}, d_{i}\right) \cup\left(d_{i}, l_{i}\right)$. We observe that the area bounded by $S_{1}, S_{2}, \pi_{l}=\pi_{G}\left(l_{1}, l_{2}\right)$ and $\pi_{r}=\pi_{G}\left(r_{1}, r_{2}\right)$ properly contains H_{G}, therefore a_{1} and b_{1} are computed from the common tangents between R_{1} and $C_{L 1} / C_{R 1}$, and similarly for a_{2} and b_{2} (see Fig. 4, and also Fig. 3 for one more example). These are exactly what we compute in steps 5a-5(a)ii, i.e., $H^{\prime \prime}=H_{G}$, and the lemma follows.

Next, look at the case where at least one of the bounding convex chains intersects R_{1} or R_{2}. Since $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, b_{1}^{\prime \prime}$ and $b_{2}^{\prime \prime}$ are computed independently, we consider only $a_{1}^{\prime \prime}$; the same argument applies for the others. As we have already seen, $a_{1}^{\prime \prime}=a_{1}$ when $C_{L 1}$ does not intersect R_{1}, so we consider $a_{1}^{\prime \prime}$ when $C_{L 1}$ intersects R_{1}.

We claim that in this case either $a_{1}^{\prime \prime}=a_{1}$, or $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ and $\pi_{G}\left(a_{1}, a_{2}\right)$ join together at a point before their first inflection edge (if any) closest to R_{1}. This implies that if $\pi_{G}\left(a_{1}, a_{2}\right)$ has no inflection edge (a case where whether H_{G} is open or closed is decided by $\left.\pi_{G}\left(b_{1}, b_{2}\right)\right)$ then $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ has no inflection edge either, and if ρ_{1}^{\prime} is the first inflection edge of $\pi_{G}\left(a_{1}, a_{2}\right)$ (a case where H_{G} is closed with ρ_{1}^{\prime} a candidate for ρ_{1}) then ρ_{1}^{\prime} is also the first inflection edge of $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$, and thus the lemma follows.

We now give the details for proving the above claim. Note that $\pi_{G}\left(a_{1}, a_{2}\right)$ joins π_{l} at some point then leaves π_{l} later, and similarly for $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$. First, look at the case where the blocking point b is on B_{L} (step $\left.5(\mathrm{~b}) \mathrm{i}\right)$ and refer to Fig. 7(a)(b) to visualize the proof. By the definition of $C_{L 1}$ and the fact that b is on B_{L}, $\pi_{G}\left(l_{1}, b\right) \subseteq C_{L 1}$ is the convex hull inside P of the boundary of B_{L} from l_{1} to b and it does not touch B_{R}, so no vertex of B_{R} lies to the left of $(u, b) \in \pi_{G}\left(l_{1}, b\right)$. But $a_{1}^{\prime \prime}$ is to the left of (u, b), thus $\left(a_{1}^{\prime \prime}, b\right) \cap B_{R}=\emptyset$. We classify two subcases: (i) $\left(a_{1}^{\prime \prime}, b\right) \cap\left(B_{L}-\{b\}\right)=\emptyset$ and $(i i)\left(a_{1}^{\prime \prime}, b\right) \cap\left(B_{L}-\{b\}\right) \neq \emptyset$. For (i), let q be the vertex on $C_{L 1}=\pi_{G}\left(l_{1}, x\right)$ immediately after b. Such q always exists since $b \neq x$: for (u, b) to intersect R_{1}, b cannot be l_{2} or the first point c with $y(c)=y\left(l_{1}\right)$ or the second cusp c_{2}, and b cannot be the first vertex v_{1} on B_{R} either since $b \in B_{L}$. Because $C_{L 1}$ is convex toward right, the chain $(u, b, q) \subseteq C_{L 1}$ is convex toward right, but then $\left(a_{1}^{\prime \prime}, b, q\right)$ is also convex toward right (see Fig. 7(a)). This means that the shortest path $\pi_{G}\left(a_{1}, p^{\prime}\right) \subseteq \pi_{G}\left(a_{1}, a_{2}\right)$ from a_{1} to any point p^{\prime} on π_{l} beyond b must go through b. Then the first link of $\pi_{G}\left(a_{1}, a_{2}\right)$ is $\left(a_{1}^{\prime \prime}, b\right)$ since $\left(a_{1}^{\prime \prime}, b\right)$ is tangent to R_{1} and does not cross any boundary of P. Therefore $a_{1}^{\prime \prime}=a_{1}$. For (ii), let $C H$ be the convex hull inside P of the boundary of B_{L} between b and b^{\prime}, where b^{\prime} is the intersection of B_{L} and $\left(a_{1}^{\prime \prime}, b\right)$ such that $C H$ is as large as possible while not intersecting R_{1}.

Clearly $\pi_{G}\left(a_{1}, a_{2}\right)$ goes through b, starting with a common tangent between R_{1} and $C H$ then following $C H$ up to b; likewise, $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ goes through b starting with a tangent from $a_{1}^{\prime \prime}$ to $C H$ then following $C H$ up to b (see Fig. 7(b)). Observe that $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ and $\pi_{G}\left(a_{1}, a_{2}\right)$ join together at a point on $C H$ that is before b, and neither path has an inflection edge before reaching b, so the claim holds.

Now look at the case where b is on B_{R} (step $\left.5(\mathrm{~b}) \mathrm{ii}\right)$. There are four subcases: (1) $w^{\prime \prime} \in B_{L}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap\left(B_{L}-\left\{w^{\prime \prime}\right\}\right)=\emptyset ;(2) w^{\prime \prime} \in B_{L}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap\left(B_{L}-\left\{w^{\prime \prime}\right\}\right) \neq$ $\emptyset ;(3) w^{\prime \prime} \in B_{R}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap B_{L}=\emptyset$; and (4) $w^{\prime \prime} \in B_{R}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap B_{L} \neq \emptyset$. For (1), let x_{1} and x_{2} be the vertices on π_{l} immediately before and after $w^{\prime \prime}$ (see Fig. $7(\mathrm{c}))$. Note that $\left(x_{1}, w^{\prime \prime}\right)$ is an inflection edge, so the chain $\left(x_{1}, w^{\prime \prime}, x_{2}\right)$ is convex toward right (although $\pi_{G}\left(b, w^{\prime \prime}\right)$ is convex toward left). But the slope of ($w^{\prime \prime}, a_{1}^{\prime \prime}$) is even bigger than the slope of $\left(w^{\prime \prime}, x_{1}\right)$, thus $\left(a_{1}^{\prime \prime}, w^{\prime \prime}, x_{2}\right)$ is also convex toward right. Similar to case (i), this means that $\pi_{G}\left(a_{1}, p^{\prime}\right) \subseteq \pi_{G}\left(a_{1}, a_{2}\right)$ from a_{1} to any point p^{\prime} on π_{l} beyond $w^{\prime \prime}$ must go through $w^{\prime \prime}$, but $\left(a_{1}^{\prime \prime}, w^{\prime \prime}\right)$ is a tangent to R_{1} not blocked by P and hence the first link of $\pi_{G}\left(a_{1}, a_{2}\right)$, i.e., $a_{1}^{\prime \prime}=a_{1}$. Case (2) is similar to case (ii) as $w^{\prime \prime}$ plays the role of b, i.e., both $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ go through a convex hull $C H$ inside P of some portion of B_{L} then reach $w^{\prime \prime}$, with no inflection edge up to $w^{\prime \prime}$ (see Fig. $7(\mathrm{~d})$). For (3), it is clear that $\pi_{G}\left(a_{1}, p^{\prime}\right) \subseteq \pi_{G}\left(a_{1}, a_{2}\right)$ from a_{1} to any point p^{\prime} on π_{l} beyond $w^{\prime \prime}$ must go through $w^{\prime \prime}$, but ($a_{1}^{\prime \prime}, w^{\prime \prime}$) is a tangent to R_{1} not blocked by P, so $\left(a_{1}^{\prime \prime}, w^{\prime \prime}\right)$ is the first link of $\pi_{G}\left(a_{1}, a_{2}\right)$ and $a_{1}^{\prime \prime}=a_{1}$ (see Fig. $7(\mathrm{e})$). For (4), let $C H^{\prime}$ be the convex hull inside P of the boundary of B_{L} from q_{1} to q_{2}, where q_{1} is the intersection of $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right)$ and B_{L} closest to $w^{\prime \prime}$, and q_{2} is the intersection of $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right)$ and B_{L} such that $C H^{\prime}$ is as large as possible while not intersecting R_{1}. Then $\pi_{G}\left(a_{1}, a_{2}\right)$ goes through $w^{\prime \prime}$, starting with a common tangent between R_{1} and $C H^{\prime}$, followed by a portion of $C H^{\prime}$, a common tangent s between $C H^{\prime}$ and $C=\pi_{G}(b, z)$, then a portion C^{\prime} of C up to $w^{\prime \prime}$; likewise, $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ goes through $w^{\prime \prime}$ starting with a tangent from $a_{1}^{\prime \prime}$ to $C H^{\prime}$, followed by a portion of $C H^{\prime}$ then s then C^{\prime} up to $w^{\prime \prime}$ (see Fig. $7(\mathrm{f})$). Clearly, the paths $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ join together at some point on $C H^{\prime}$ before reaching their first inflection edge s. This completes our proof of the claim.

We conclude with the following lemma.
Lemma 5 Algorithm Pseudo-Hourglass correctly decides whether the geodesic hourglass H_{G} is open or closed, giving a visibility link when it is open or giving the penetrations and apices of H_{G} when it is closed, in $O(\log h+\log n)$ time, which is optimal.
Proof. The correctness follows from Lemmas 1-4. As for time complexity, recall from our data structure (described at the beginning of Section 3) that we can extract a portion of a shortest path (path extraction for short) via split/splice operations in logarithmic time. Step 1 performs $O(1)$ tangent computations and shortest-path queries. Step 2 performs four shortest-path queries. Step 3(a)i can be done in $O(1)$ time, and step $3(a)$ ii involves $O(1)$ point-location queries to find projection points. In Step 3 b , we perform a path extraction; in steps 3 (b)i and 3 (b)ii, we perform $O(1)$ point-location queries to project points and also binary searches for special-case checkings. We compute two shortest-path queries and extract four

Fig. 7. Steps 5(b)i-5(b)ii of Algorithm Pseudo-Hourglass and proof of Lemma 4: (a) $b \in B_{L}$ and $\left(b, a_{1}^{\prime \prime}\right) \cap\left(B_{L}-\{b\}\right)=\varnothing ;(b) b \in B_{L}$ and $\left(b, a_{1}^{\prime \prime}\right) \cap\left(B_{L}-\{b\}\right) \neq \emptyset ;(c) b \in B_{R}, w^{\prime \prime} \in B_{L}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap\left(B_{L}-\left\{w^{\prime \prime}\right\}\right)=\emptyset$; (d) $b \in B_{R}, w^{\prime \prime} \in B_{L}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap\left(B_{L}-\left\{w^{\prime \prime}\right\}\right) \neq \emptyset ;(\mathrm{e}) b \in B_{R}, w^{\prime \prime} \in B_{R}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap B_{L}=\emptyset ;$ and (f) $b \in B_{R}, w^{\prime \prime} \in B_{R}$ and $\left(w^{\prime \prime}, a_{1}^{\prime \prime}\right) \cap B_{L} \neq \emptyset$.
bounding convex chains in step 4. Step 5a invloves $O(1)$ calls to algorithm, ${ }^{5}$ and $O(1)$ tangent computations and binary searches. Step $5(\mathrm{a}) \mathrm{i}$ can be done in $O(1)$ time, and step $5(\mathrm{a}) \mathrm{ii}$ performs $O(1)$ path extractions and tangent computations. Step 5 b applies the computation of Lemma 3, which is a binary search. Steps 5 (b)i$5(\mathrm{~b}) \mathrm{ii}$ invlove $O(1)$ tangent computations (5) 5 i and 5 (b)ii) and path extractions (5(b)ii). Finally, we perform $O(1)$ shortest-path queries, tangent computations and binary searches in step 6. In summary, we perform a constant number of logarithmic-time computations, and the time complexity follows.

3.2. The Case of Mutually Visible Query Polygons

We now discuss how to compute $\pi_{G}\left(R_{1}, R_{2}\right)$ when R_{1} and R_{2} are mutually visible, i.e., when the geodesic hourglass H_{G} is open. Surprisingly, this case turns out to be nontrivial, and its solution makes use of interesting geometric properties. Note that $\pi_{G}\left(R_{1}, R_{2}\right)$ in this case may still consist of more than one link (see, e.g., Fig. 8 , where $\left.\pi_{G}\left(R_{1}, R_{2}\right)=\pi_{G}(p, q)\right)$.

Ignoring P and using any one of the methods for computing the separation of two convex polygons, ${ }^{7,11,12}$ we can find $p^{\prime} \in R_{1}$ and $q^{\prime} \in R_{2}$ with length $\left(p^{\prime}, q^{\prime}\right)=$ $\sigma\left(R_{1}, R_{2}\right)$ in $O(\log h)$ time. Now we compute $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$. If $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ has only one link, then (p^{\prime}, q^{\prime}) is not blocked by P and thus is the desired shortest path $\pi_{G}\left(R_{1}, R_{2}\right)$. Otherwise $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ must touch the boundary of P, and there are two cases: (1) $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ touches only one of the two geodesic external tangents $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$; or (2) $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ touches both $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$.
Lemma 6 Let the geodesic hourglass H_{G} be open and (p^{\prime}, q^{\prime}) with $p^{\prime} \in R_{1}$ and $q^{\prime} \in R_{2}$ be the shortest path between R_{1} and R_{2} without obstacle P. If $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ touches only one of $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$, say $\pi_{G}\left(a_{1}, a_{2}\right)$, then $\pi_{G}\left(R_{1}, R_{2}\right)$ touches $\pi_{G}\left(a_{1}, a_{2}\right)$ but does not touch $\pi_{G}\left(b_{1}, b_{2}\right)$.
Proof. We refer to Fig. 8 to visualize the proof. Let (w, z) be any segment tangent to the convex chain $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$, where $w \in R_{1}$ and $z \in R_{2}$. Without obstacles C and D, the distance between a point on the boundary of R_{1} and a point on the boundary of R_{2} is a bimodal function, i.e., it decreases and then increases, with the minimum occurring at p^{\prime} and q^{\prime}. In particular, moving w downward along the boundary of R_{1} to any point w^{\prime} and/or moving z downward along the boundary of R_{2} to any point z^{\prime} will cause $\left(w^{\prime}, z^{\prime}\right)>(w, z)$, and $\pi_{G}\left(w^{\prime}, z^{\prime}\right) \geq\left(w^{\prime}, z^{\prime}\right)$ since $\pi_{G}\left(w^{\prime}, z^{\prime}\right)$ may have to avoid obstacles. Thus if $p \in R_{1}$ and $q \in R_{2}$ satisfy $\pi_{G}(p, q)=\pi_{G}\left(R_{1}, R_{2}\right)$, then p must lie on the boundary (w, \ldots, p^{\prime}) of R_{1} counterclockwise from w to p^{\prime}, and q must lie on the clockwise boundary $\left(z, \ldots, q^{\prime}\right)$ of R_{2}. It follows that $\pi_{G}(p, q)$ touches $\pi_{G}\left(a_{1}, a_{2}\right)$ but does not touch $\pi_{G}\left(b_{1}, b_{2}\right)$.

Therefore in the above situation (see Fig. 8), if t_{1}^{\prime} and t_{2}^{\prime} are the points of obstacle C where $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ first touches C and finally leaves C, respectively, and t_{1} and t_{2} are the points of C where $\pi_{G}(p, q)$ first touches C and finally leaves C (recall that $\left.\pi_{G}(p, q)=\pi_{G}\left(R_{1}, R_{2}\right)\right)$, then t_{2} is the point where the shortest path $\pi_{G}\left(t_{1}^{\prime}, R_{2}\right)$ from t_{1}^{\prime} to R_{2} finally leaves C, and similarly for t_{1}. We say that $t_{2} \in C$ and $q \in R_{2}$ realize $\pi_{G}\left(t_{1}^{\prime}, R_{2}\right)$, and similarly for the other side. It is clear that $\pi_{G}\left(R_{1}, R_{2}\right)$ consists of (p, t_{1}), $\pi_{G}\left(t_{1}, t_{2}\right)$ (which is a portion of $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$), and $\left(t_{2}, q\right)$. So we only need to

Fig. 8. Lemma 6
independently compute $t_{2} \in C$ and $q \in R_{2}$ that realize $\pi_{G}\left(t_{1}^{\prime}, R_{2}\right)$, and by a similar algorithm to compute t_{1} and p that realize $\pi_{G}\left(t_{2}^{\prime}, R_{1}\right)$.

Before describing how to compute t_{2} and q (and similarly for t_{1} and p), we first argue that the other case where $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ touches both $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$ can be handled in the same way.
Lemma 7 Let the geodesic hourglass H_{G} be open and (p^{\prime}, q^{\prime}) with $p^{\prime} \in R_{1}$ and $q^{\prime} \in R_{2}$ be the shortest path between R_{1} and R_{2} without obstacle P. If $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ touches both $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$, say first $\pi_{G}\left(a_{1}, a_{2}\right)$ (entering at point t_{1} and leaving at point t_{3}) and then $\pi_{G}\left(b_{1}, b_{2}\right)$ (entering at t_{4} and leaving at t_{2}), then $\pi_{G}\left(R_{1}, R_{2}\right)=\pi_{G}\left(R_{1}, t_{3}\right) \cup\left(t_{3}, t_{4}\right) \cup \pi_{G}\left(t_{4}, R_{2}\right)$. (See Fig. 9.)
Proof. We refer to Fig. 9. We extend $\left(t_{3}, t_{4}\right)$ on both directions to intersect R_{1} and R_{2} at w and z, respectively. Notice that (w, z) is an internal common tangent of two convex chains $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$. Again, without obstacles the distance between a point on R_{1} and a point on R_{2} is a bimodal function. In particular, moving z upward along the boundary of R_{2} to any point z^{\prime} and/or moving w downward along the boundary of R_{1} to any point w^{\prime} will make $\left(w^{\prime}, z^{\prime}\right)>$ (w, z). Observe that $\pi_{G}\left(w^{\prime}, z^{\prime}\right) \geq\left(w^{\prime}, z^{\prime}\right)$ since it may have to avoid the obstacles. Therefore the desired points $p \in R_{1}$ and $q \in R_{2}$ with $\pi_{G}(p, q)=\pi_{G}\left(R_{1}, R_{2}\right)$ must lie on the clockwise boundary $\left(p^{\prime}, \ldots, w\right)$ of R_{1} and on the clockwise boundary $\left(q^{\prime}, \ldots, z\right)$ of R_{2}, respectively. It follows that $\pi_{G}(p, q)$ must be first tangent to $\pi_{G}\left(a_{1}, a_{2}\right)$ at some point, coincide with $\pi_{G}\left(a_{1}, a_{2}\right)$ from there to t_{3}, follow (t_{3}, t_{4}) to enter $\pi_{G}\left(b_{1}, b_{2}\right)$, join $\pi_{G}\left(b_{1}, b_{2}\right)$ from t_{4} to some tangent point, which together with q are the two endpoints of the last link. Therefore $\pi_{G}\left(R_{1}, R_{2}\right)=\pi_{G}\left(R_{1}, t_{3}\right) \cup\left(t_{3}, t_{4}\right) \cup$ $\pi_{G}\left(t_{4}, R_{2}\right)$.

It is clear that for the above situation, what we need to do is to independently compute the two points that realize $\pi_{G}\left(R_{1}, t_{3}\right)$ and two points that realize $\pi_{G}\left(t_{4}, R_{2}\right)$.

We now discuss how to compute two points $t_{2} \in C$ and $q \in R_{2}$ that realize

Fig. 9. Lemma 7
$\pi_{G}\left(t_{1}^{\prime}, R_{2}\right)$ in the situation of Fig. 8 ; the other case (Fig. 9) can be handled analogously. Note that we only need to consider the two convex chains $\pi_{G}\left(u, t_{2}^{\prime}\right)$ (denoted by C_{1}) and the clockwise boundary $\left(v, \ldots, q^{\prime}\right)$ of R_{2} (denoted by C_{2}), where (u, v) is the external common tangent between the convex hull of C and R_{2} with $u \in C$ and $v \in R_{2}$. Our algorithm is based on the following useful properties.
Lemma 8 Let $v_{1}, v_{2}, \ldots, v_{k}$ be a sequence of points on C_{2} in clockwise order, and e_{i}^{\prime} and $e_{i}^{\prime \prime}$ be the two segments of C_{2} incident on v_{i} with e_{i}^{\prime} following $e_{i}^{\prime \prime}$ in clockwise order (e_{i}^{\prime} and $e_{i}^{\prime \prime}$ are on the same straight line if v_{i} is not a vertex). From each v_{i} draw a line l_{i} tangent to C_{1}. Let θ_{i} be the angle formed by l_{i} and e_{i}^{\prime} and measured from l_{i} clockwise to e_{i}^{\prime}, and ϕ_{i} be the angle formed by $\epsilon_{i}^{\prime \prime}$ and l_{i} and measured from $e_{i}^{\prime \prime}$ clockwise to l_{i} (see Fig. 10). Then $\theta_{1}<\theta_{2}<\ldots<\theta_{k}$ and $\phi_{1}>\phi_{2}>\ldots>\phi_{k}$. Also, if $\theta_{i} \geq \frac{\pi}{2}$ then $\phi_{i+1}<\frac{\pi}{2}$, and similarly if $\phi_{i+1} \geq \frac{\pi}{2}$ then $\theta_{i}<\frac{\pi}{2}$.
Proof. We extend tangent l_{i+1} to intersect l_{i} at some point r, and also extend ϵ_{i}^{\prime} on both directions so that θ_{i+1}^{\prime} and ϕ_{i}^{\prime} are both exterior angles of $\triangle r v_{i} v_{i+1}$ (see Fig. 10). It follows that $\theta_{i+1} \geq \theta_{i+1}^{\prime}>\theta_{i}$ (the equality holds if v_{i+1} is not a vertex), and $\phi_{i} \geq \phi_{i}^{\prime}>\phi_{i+1}$ (the equality holds if v_{i} is not a vertex). For the last statement, consider $\triangle r v_{i} v_{i+1}$. It is clear that at most one of θ_{i} and ϕ_{i+1} can be larger than or equal to $\frac{\pi}{2}$.
Lemma 9 Let $v_{1}, v_{2}, \ldots, v_{k}$ and each θ_{i} and ϕ_{i} be as defined in Lemma 8. If $\phi_{i} \geq \frac{\pi}{2}$, then $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)<\pi_{G}\left(v_{i-1}, t_{1}^{\prime}\right)$. Similarly, if $\theta_{i} \geq \frac{\pi}{2}$, then $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)<\pi_{G}\left(v_{i+1}, t_{1}^{\prime}\right)$.
Proof. We refer to Fig. 11 to visualize the proof. Let the tangent points on C_{1} of l_{i} and of l_{i-1} be u_{j} and u_{m}, respectively, where u_{1}, u_{2}, \ldots are the vertices of C_{1} in counterclockwise order. We extend each of $\left(u_{s}, u_{s+1}\right)$ to the right to intersect C_{2} at some point $u_{s}^{\prime}, s=m, m+1, \ldots, j-1$. In $\triangle v_{i} u_{j} u_{j-1}^{\prime},\left(u_{j}, u_{j-1}^{\prime}\right)>\left(u_{j}, v_{i}\right)$ since $\phi_{i} \geq \frac{\pi}{2}$ is the biggest angle. Adding $\left(u_{j}, u_{j-1}\right)$ to both sides of the inequality, we have $\pi_{G}\left(v_{i}, u_{j-1}\right)=\left(v_{i}, u_{j}\right)+\left(u_{j}, u_{j-1}\right)<\left(u_{j-1}^{\prime}, u_{j}\right)+\left(u_{j}, u_{j-1}\right)=\left(u_{j-1}^{\prime}, u_{j-1}\right)$, thus $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)=\pi_{G}\left(v_{i}, u_{j-1}\right)+\pi_{G}\left(u_{j-1}, t_{1}^{\prime}\right)<\left(u_{j-1}^{\prime}, u_{j-1}\right)+\pi_{G}\left(u_{j-1}, t_{1}^{\prime}\right)=\pi_{G}\left(u_{j-1}^{\prime}, t_{1}^{\prime}\right)$, i.e., $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)<\pi_{G}\left(u_{j-1}^{\prime}, t_{1}^{\prime}\right)$. Now, $\phi_{i}^{\prime}=\angle u_{j-2}^{\prime} u_{j-1}^{\prime} u_{j}$ is an exterior angle of

Fig. 10. Lemma 8
$\triangle u_{j-1}^{\prime} v_{i} u_{j}$, so $\phi_{i}^{\prime}>\phi_{i} \geq \frac{\pi}{2}$. By the previous argument, $\pi_{G}\left(u_{j-1}^{\prime}, t_{1}^{\prime}\right)<\pi_{G}\left(u_{j-2}^{\prime}, t_{1}^{\prime}\right)$. Applying this process repeatedly, we have $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)<\pi_{G}\left(u_{j-1}^{\prime}, t_{1}^{\prime}\right)<\pi_{G}\left(u_{j-2}^{\prime}, t_{1}^{\prime}\right)<$ $\ldots<\pi_{G}\left(v_{i-1}, t_{1}^{\prime}\right)$. The other statement can be proved in the same way.

Fig. 11. Lemma 9
Notice that for each $v_{i} \in C_{2}, \theta_{i}+\phi_{i} \geq \frac{\pi}{2}$ since C_{2} is a convex chain (the equality holds when v_{i} is not a vertex), thus either $\phi_{i} \geq \frac{\pi}{2}$ and $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)<\pi_{G}\left(v_{i-1}, t_{1}^{\prime}\right)<$ $\pi_{G}\left(v_{i-2}, t_{1}^{\prime}\right)<\ldots$, or $\theta_{i} \geq \frac{\pi}{2}$ and $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)<\pi_{G}\left(v_{i+1}, t_{1}^{\prime}\right)<\pi_{G}\left(v_{i+2}, t_{1}^{\prime}\right)<\ldots$, by Lemmas 8 and 9 . If both $\phi_{i} \geq \frac{\pi}{2}$ and $\theta_{i} \geq \frac{\pi}{2}$, then $v_{i}=q$, i.e., $\pi_{G}\left(v_{i}, t_{1}^{\prime}\right)=$ $\pi_{G}\left(C_{2}, t_{1}^{\prime}\right)$. We summarize this result in the following lemma.
Lemma 10 Let w be a point on C_{2}. Moving w along C_{2}, the length of $\pi_{G}\left(w, t_{1}^{\prime}\right)$ is a bimodal function, i.e., it decreases and then increases. In particular, the minimum value occurs at $w=v_{i}$ with $\phi_{i} \geq \frac{\pi}{2}$ and $\theta_{i} \geq \frac{\pi}{2}$. If this v_{i} is not a vertex, then $\phi_{i}=\theta_{i}=\frac{\pi}{2}$, namely, the line issuing from v_{i} and tangent to C_{1} is perpendicular to
the edge of C_{2} containing v_{i}.
Up to now we can compute $t_{2} \in C_{1}$ and $q \in C_{2}$ that realize $\pi_{G}\left(t_{1}^{\prime}, C_{2}\right)$ by a binary search on the vertices of C_{2}, where at each step we compute a tangent of C_{1} from the current vertex of C_{2}, check for angles θ and ϕ and then reduce the search space. Finally, we also have to take care of the case where q is not a vertex. Since tangent computation takes logarithmic time, this method has time complexity $O(\log h \log n)$. To speed up the algorithm, we appeal to the properties from C_{1}.
Lemma 11 Let $u_{1}=u, u_{2}, \ldots, u_{k}=t_{2}^{\prime}$ be the vertices of C_{1} in counterclockwise order. The extension of each edge $\left(u_{i-1}, u_{i}\right)$ intersects C_{2} at some point $v_{i}, i=$ $2, \ldots k$. Let v_{i}^{\prime} and $v_{i}^{\prime \prime}$ be the two vertices of C_{2} adjacent to v_{i}, with v_{i}^{\prime} following $v_{i}^{\prime \prime}$ in clockwise order. Let $\theta_{i}=\angle u_{i} v_{i} v_{i}^{\prime}$ and $\phi_{i}=\angle u_{i} v_{i} v_{i}^{\prime \prime}$ (see Fig. 12). Then $\theta_{2}<\theta_{3}<\ldots<\theta_{k}$, and $\phi_{2}>\phi_{3}>\ldots>\phi_{k}$.
Proof. Since $\left(q^{\prime}, t_{2}^{\prime}\right)$ is a tangent to C_{1} (recall this from Fig. 8), its slope is larger than the slope of $\left(u_{k-1}, t_{2}^{\prime}\right)$, which shows that the extension of $\left(u_{k-1}, t_{2}^{\prime}\right)$ is below q^{\prime} and thus intersects C_{2}. Similar argument applies to the extension of (u_{1}, u_{2}), so all such extensions intersect C_{2}. We now prove that $\theta_{i}<\theta_{i+1}$; the proof of $\phi_{i}>\phi_{i+1}$ is similar. Let w_{1}, \ldots, w_{l} be the vertices of C_{2} between v_{i} and v_{i+1} in clockwise order. Draw a segment to connect u_{i} with each of w_{1}, \ldots, w_{l} and define $\theta_{i}^{\prime}=\angle u_{i} w_{i} w_{i+1}$ $\left(\theta_{l}^{\prime}=\angle u_{i} w_{l} v_{i+1}\right)$. Then $\theta_{i}<\theta_{1}^{\prime}<\ldots<\theta_{l}^{\prime}<\theta_{i+1}$ by the argument that an exterior angle of a triangle is larger than each of the two far interior angles.

Fig. 12. Lemma 11
Lemma 12 Let $t_{2} \in C_{1}$ and $q \in C_{2}$ realize $\pi_{G}\left(t_{1}^{\prime}, C_{2}\right)$, where t_{2} is some vertex u_{j}. Let each θ_{i} be defined as in Lemma 11. Then $\theta_{j}<\frac{\pi}{2}$ and $\theta_{j+1}>\frac{\pi}{2}$.
Proof. We refer to Fig. 13. Let v^{\prime} and $v^{\prime \prime}$ be the two vertices of C_{2} adjacent to point q, with v^{\prime} following $v^{\prime \prime}$ in clockwise order. There are two cases. If q is not a vertex, then by Lemma 10, $\left(u_{j}, q\right)$ is perpendicular to $\left(v^{\prime}, v^{\prime \prime}\right)$ (see Fig. 13(a)). We extend $\left(v^{\prime}, v^{\prime \prime}\right)$ to intersect rays $\left(u_{j-1}, u_{j}\right)$ and $\left(u_{j}, u_{j+1}\right)$ respectively at $r^{\prime \prime}$ and r^{\prime}, and
make angles $\theta^{\prime \prime}$ and θ^{\prime} as shown. We see that $\theta^{\prime}>\angle u_{j} q r^{\prime}=\frac{\pi}{2}$ since it is an exterior angle of $\triangle u_{j} q r^{\prime}$, and $\theta_{j+1} \geq \theta^{\prime}$ (the equality holds when ray (u_{j}, u_{j+1}) intersects $\operatorname{edge}\left(v^{\prime}, v^{\prime \prime}\right)$), so $\theta_{j+1}>\frac{\pi}{2}$. Similarly $\theta^{\prime \prime}<\frac{\pi}{2}\left(\right.$ since in $\left.\triangle u_{j} q r^{\prime \prime}, \angle u_{j} q r^{\prime \prime}=\frac{\pi}{2}\right)$ and $\theta_{j} \leq \theta^{\prime \prime}$ (again, the equality holds when ray $\left(u_{j-1}, u_{j}\right)$ intersects $\left(v^{\prime}, v^{\prime \prime}\right)$), so $\theta_{j}<\frac{\pi}{2}$. In the other case where q is a vertex, by Lemma $10 \angle u_{j} q v^{\prime}, \angle u_{j} q v^{\prime \prime} \geq \frac{\pi}{2}$ (see Fig. 13(b)). Again we extend (q, v^{\prime}) to intersect ray $\left(u_{j}, u_{j+1}\right)$ and make angle θ^{\prime}, and extend ($q, v^{\prime \prime}$) to intersect ray $\left(u_{j-1}, u_{j}\right)$ and make angle $\theta^{\prime \prime}$ as shown. By the same argument, we have that $\theta_{j+1} \geq \theta^{\prime}>\angle u_{j} q v^{\prime} \geq \frac{\pi}{2}$ and $\theta_{j} \leq \theta^{\prime \prime}<\frac{\pi}{2}$.

Fig. 13. Lemma 12
Now we are ready to state the algorithm for computing $t_{2} \in C_{1}$ and $q \in C_{2}$ that realize $\pi_{G}\left(t_{1}^{\prime}, C_{2}\right)$. This is actually a double-binary search.

Algorithm Double-Search

1. If either $\left|C_{1}\right|=1$ or $\left|C_{2}\right| \leq 2$ then go to step 3 .
2. Else, pick the median vertices v and w of current C_{1} and C_{2}. Let v^{\prime} be the vertex of C_{1} that precedes v in counterclockwise order, and w^{\prime} be the vertex of C_{2} that follows w in clockwise order. Intersect the ray $r=\left(v^{\prime}, v\right)$ with the line extension l^{\prime} of edge (w, w^{\prime}). Let θ be the angle made by r and l^{\prime} by measuring clockwise from r to l^{\prime}. The actions (and the verification) depend on the following cases (see Fig. 14):
(a) The intersection is below (w, w^{\prime}) and $\theta \geq \frac{\pi}{2}$ (Fig. 14(a)): prune the wiggly portion (not including w).
Verification: Draw a line l from w parallel to $\left(v^{\prime}, v\right)$. Since l is above $\left(v^{\prime}, v\right)$, the tangent t from w to C_{1} must make an angle $\theta^{\prime}>\theta \geq \frac{\pi}{2}$. Thus the tangent of C_{1} from any point in the wiggly portion will make an angle even bigger, so this portion can be pruned away by Lemma 10.
(b) The intersection is below (w, w^{\prime}) and $\theta<\frac{\pi}{2}$ (Fig. 14(b)): prune the wiggly portion (including v^{\prime}).
Verification: The real intersection between ray $\left(v^{\prime}, v\right)$ and C_{2} makes an angle $\theta^{\prime}<\theta<\frac{\pi}{2}$. By Lemmas 11 and 12, any edge in the wiggly portion will make an angle even smaller and thus this portion can be pruned away.
(c) The intersection is above $\left(w, w^{\prime}\right)$ and $\theta \geq \frac{\pi}{2}$ (Fig. 14(c)): prune the wiggly portion (including v). This is symmetric to case (b).
(d) The intersection is above $\left(w, w^{\prime}\right)$ and $\theta<\frac{\pi}{2}$ (Fig. 14(d)): prune the wiggly portion. This is symmetric to case (a). Note that w itself is not a candidate for q but w is not pruned away here, since q may still lie on (w, w^{\prime}) and thus w must be kept to retain (w, w^{\prime}).
(e) The intersection is on (w, w^{\prime}) and $\theta \geq \frac{\pi}{2}$ (Fig. 14(e)): prune the two wiggly portions (including v but not w^{\prime} so that (w, w^{\prime}) is kept). This is a situation combining cases (a) and (c).
(f) The intersection is on (w, w^{\prime}) and $\theta<\frac{\pi}{2}$ (Fig. 14(f)): prune the two wiggly portions (including v^{\prime} but not w so that (w, w^{\prime}) is kept). Again this is a situation combining cases (b) and (d).

After pruning the appropriate portions, go to step 1.
3. Now $\left|C_{1}\right|=1$ or $\left|C_{2}\right| \leq 2$, a situation where the double-binary search in step 2 cannot proceed (either $\left|C_{1}\right|=1$ and $\left|C_{2}\right| \neq$ constant or $\left|C_{2}\right|=1$ and $\left|C_{1}\right| \neq$ constant) or may not make any progress (case (d) with $\left|C_{2}\right|=2$ and $\left|C_{1}\right| \neq$ constant $)$. The operations depend on the following cases:
(a) $\left|C_{2}\right|=1$. The only vertex of C_{2} is q. Compute the tangent from q to C_{1} and take t_{2} as the tangent point. Report q and t_{2}, and stop.
(b) $\left|C_{2}\right|=2$. Let $C_{2}=\left\{w_{1}, w_{2}\right\}$ such that walking from w_{1} to w_{2} the interior of R_{2} is to the right of $\left(w_{1}, w_{2}\right)$. From w_{1} and w_{2} compute tangents $\left(w_{1}, v_{1}\right)$ and $\left(w_{2}, v_{2}\right)$ of C_{1}, where $v_{1}, v_{2} \in C_{1}$. Let $\theta_{1}=\angle v_{1} w_{1} w_{2}$ and $\phi_{2}=L v_{2} w_{2} w_{1}$. There are three subcases.
i. $\theta_{1} \geq \frac{\pi}{2}$. By Lemma $10, q=w_{1}$ (and $t_{2}=v_{1}$). Report q and t_{2}, and stop. Note that $\phi_{2}<\frac{\pi}{2}$ by Lemma 8 .
ii. $\phi_{2} \geq \frac{\pi}{2}$. Report $q=w_{2}, t_{2}=v_{2}$, and stop. This is symmetric to case i.
iii. $\theta_{1}<\frac{\pi}{2}$ and $\phi_{2}<\frac{\pi}{2}$ (and $q \neq w_{1}, w_{2}$). By Lemma $10,\left(t_{2}, q\right)$ is perpendicular to $\left(w_{1}, w_{2}\right)$ and is tangent to C_{1}. Perform a binary search on subchain $\left(v_{1}, \ldots, v_{2}\right)$ of C_{1} to find such vertex t_{2} : At each iteration with current vertex v, compute its projection point v^{\prime} on $\left(w_{1}, w_{2}\right)$, check whether vertex v on C_{1} is concave, reflex or supporting with respect to $\left(v, v^{\prime}\right)$ and branch appropriately. When v is supporting, report $t_{2}=v, q=v^{\prime}$ and stop.
(c) $\left|C_{1}\right|=1$. The only vertex of C_{1} is t_{2}. Now perform a binary search on C_{2}. Let w_{1}, \ldots, w_{k} be the vertices of C_{2} in clockwise order. At each step with current vertex w_{i}, let $\theta_{i}=\angle t_{2} w_{i} w_{i+1}$ and $\phi_{i}=\angle t_{2} w_{i} w_{i-1}$. Recall that $\theta_{1}<\theta_{2}<\ldots<\theta_{k}$ by Lemma 8 , and if $\theta_{i} \geq \frac{\pi}{2}$ and $\phi_{i} \geq \frac{\pi}{2}$ then $w_{i}=q$ by Lemma 10. The binary search proceeds to find the smallest index i such that $\theta_{i} \geq \frac{\pi}{2}$. If also $\phi_{i} \geq \frac{\pi}{2}$, then $q=w_{i}$; report q and t_{2}, and stop. Else, both ϕ_{i} and θ_{i-1} are less than $\frac{\pi}{2}$, and thus t_{2} has a projection q on $\left(w_{i}, w_{i-1}\right)$. Report t_{2} and q, and stop.

Fig. 14. The cases (a)-(f) in step 2 of Algorithm Double-Search.
Note that the loop formed by steps 1 and 2 eventually makes either $\left|C_{1}\right|=1$ or $\left|C_{2}\right| \leq 2$, and thus we finally exit the loop and go to step 3 . Indeed, when C_{1} is reduced (cases (b), (c), (e) and (f) of step 2), either v or v^{\prime} is also pruned away, so that C_{1} with $\left|C_{1}\right|=2$ is further reduced to $\left|C_{1}\right|=1$; when only C_{2} is reduced
(cases (a) and (d) of step 2), one of the two portions preceding and following w is pruned away, so that C_{2} with $\left|C_{2}\right|=3$ is further reduced to $\left|C_{2}\right|=2$.
Lemma 13 The time complexity of Algorithm Double-Search is $O(\log h+\log n)$.
Proof. In each case of step 2, we always discard half of C_{1} and/or half of C_{2}, so the loop formed by steps 1 and 2 takes $O(\log h+\log n)$ time. Step 3 also takes \log arithmic time, since either $\left|C_{1}\right|$ or $\left|C_{2}\right|$ is a constant and a constant number of simple binary searches are performed on the other chain.

We now give an algorithm for computing the shortest path $\pi_{G}\left(R_{1}, R_{2}\right)$ between R_{1} and R_{2} when they are mutually visible.

Algorithm Visible-Path

1. Ignore P and compute the separation $\sigma\left(R_{1}, R_{2}\right)$ of R_{1} and R_{2} by any one of the methods, ${ }^{7,11,12}$ which gives two points $p^{\prime} \in R_{1}$ and $q^{\prime} \in R_{2}$ such that $\operatorname{length}\left(p^{\prime}, q^{\prime}\right)=\sigma\left(R_{1}, R_{2}\right)$.
2. Compute $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$. If $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ has only one link, then $\left(p^{\prime}, q^{\prime}\right)$ is not blocked by P; report $\pi_{G}\left(R_{1}, R_{2}\right)=\left(p^{\prime}, q^{\prime}\right)$ and stop.
3. Otherwise, $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ must touch the boundary of P. Let $\left(p^{\prime}, t_{1}^{\prime}\right)$ and $\left(t_{2}^{\prime}, q^{\prime}\right)$ be the first and last links of $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$. Discriminate the two cases below:
(a) There is no inflection edge in $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$: this is the case of Lemma 6 (Fig. 8). Let $C=\pi_{G}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$. Find the external common tangent (u, v) between C and R_{2}, where $u \in C$ and $v \in R_{2}$; let C_{1} be $\pi_{G}\left(u, t_{2}^{\prime}\right)$ and C_{2} be the clockwise boundary $\left(v, \ldots, q^{\prime}\right)$ of R_{2}. Compute $t_{2} \in C$ and $q \in R_{2}$ that realize $\pi_{G}\left(t_{1}^{\prime}, R_{2}\right)$ by performing Algorithm Double-Search on C_{1} and C_{2}, and similarly compute $t_{1} \in C$ and $p \in R_{1}$ that realize $\pi_{G}\left(t_{2}^{\prime}, R_{1}\right)$. Report $\pi_{G}\left(R_{1}, R_{2}\right)=\left(p, t_{1}\right) \cup \pi_{G}\left(t_{1}, t_{2}\right) \cup\left(t_{2}, q\right)$ and stop.
(b) There is an inflection edge $\left(t_{3}, t_{4}\right)$ in $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$: this is the case of Lemma 7 (Fig. 9). Use Algorithm Double-Search to compute two pairs of points that respectively realize $\pi_{G}\left(R_{1}, t_{3}\right)$ and $\pi_{G}\left(t_{4}, R_{2}\right)$. Report $\pi_{G}\left(R_{1}, R_{2}\right)=$ $\pi_{G}\left(R_{1}, t_{3}\right) \cup\left(t_{3}, t_{4}\right) \cup \pi_{G}\left(t_{4}, R_{2}\right)$ and stop.

Lemma 14 The time complexity of Algorithm Visible-Path is $O(\log h+\log n)$ (plus $O(k)$ if the k links are reported).
Proof. The separation computation in step 1 can be done in logarithmic time. Other computations involve a shortest-path query (step 2), two tangent computations and two calls of Algorithm Double-Search (step 3(a) or 3(b)), each taking logarithmic time.

3.3. The Overall Algorithm

The overall algorithm for computing the shortest path $\pi_{G}\left(R_{1}, R_{2}\right)$ between R_{1} and R_{2} is as follows.

Algorithm Shortest-Path

1. Perform Algorithm Pseudo-Hourglass to decide whether the geodesic hourglass H_{G} is open or closed (with apices p_{1} (closer to R_{1}) and $p_{2}\left(\right.$ closer to $\left.R_{2}\right)$).
2. If H_{G} is open, then apply Algorithm Visible-Path to report $\pi_{G}\left(R_{1}, R_{2}\right)$ and stop.
3. Otherwise (H_{G} is closed), apply Algorithm Visible-Path to find shortest paths $\pi_{G}\left(R_{1}, p_{1}\right)$ and $\pi_{G}\left(p_{2}, R_{2}\right)$ by treating p_{1} and p_{2} as "convex polygons" consisting of only one vertex. Compute shortest path $\pi_{G}\left(p_{1}, p_{2}\right)$, report $\pi_{G}\left(R_{1}, R_{2}\right)=$ $\pi_{G}\left(R_{1}, p_{1}\right) \cup \pi_{G}\left(p_{1}, p_{2}\right) \cup \pi_{G}\left(p_{2}, R_{2}\right)$ and stop.

Lemma 15 Algorithm Shortest-Path has time complexity $O(\log h+\log n)$ (plus $O(k)$ if the k links of the path are reported), which is optimal.
Theorem 1 Let P be a simple polygon with n vertices. There exists an optimal data structure that supports shortest-path queries between two convex polygons with a total of h vertices inside P in time $O(\log h+\log n)$ (plus $O(k)$ if the k links of the path are reported), using $O(n)$ space and preprocessing time; all bounds are worst-case.

Remark. Although the case of mutually visible R_{1} and R_{2} is nontrivial, our algorithms (Double-Search and Visible-Path) turn out to involve only simple computations, by applying useful geometric properties. The other key technique, Algorithm Pseudo-Hourglass, to decide whether H_{G} between R_{1} and R_{2} is open (and compute a visibility link) or closed (and compute apices and penetrations), however, is more involved. We pose as an open problem whether there exist simpler techniques to perform the same operations in the same (optimal) time bound. Also, whether we can directly compute H_{G} in optimal time is an open problem, and may be of independent interest.

4. Dynamic Shortest Path Queries

In this section, we consider the shortest-path problem in a connected planar subdivision \mathcal{S} in a dynamic environment. The query operation is to compute the shortest path $\pi_{G}\left(R_{1}, R_{2}\right)$, where the two query convex polygons R_{1} and R_{2} are given in the same region P of \mathcal{S}. In addition, we support edge/vertex insertions and deletions on \mathcal{S} in our data structure. Specifically, we define the following update operations on \mathcal{S} :

InsertEdge $\left(e, v, w, P ; P_{1}, P_{2}\right)$: Insert edge $e=(v, w)$ into region P such that P is partitioned into two regions P_{1} and P_{2}.

Remove Edge $\left(e, v, w, P_{1}, P_{2} ; P\right)$: Remove edge $e=(v, w)$ and merge the regions P_{1} and P_{2} formerly on the two sides of e into a new region P.

InsertVertex $\left(v, e ; e_{1}, e_{2}\right)$: Split the edge $e=(u, w)$ into two edges $e_{1}=(u, v)$ and $e_{2}=(v, w)$ by inserting vertex v along e.

Remove Vertex $\left(v, e_{1}, e_{2} ; e\right)$: Let v be a vertex with degree two such that its incident edges $e_{1}=(u, v)$ and $e_{2}=(v, w)$ are on the same straight line. Remove v and merge e_{1} and e_{2} into a single edge $e=(u, w)$.

Attach Vertex $(v, e ; w)$: Insert edge $e=(v, w)$ and degree-one vertex w inside some region P, where v is a vertex of P.

Detach Vertex $(v, e):$ Remove a degree-one vertex v and edge e incident on v.
The above repertory of operations is complete for connected subdivisions. That is, any connected subdivision \mathcal{S} can be constructed "from scratch" using only the above operations.

We make use of the dynamic data structure of Goodrich and Tamassia. ${ }^{15}$ Their technique supports two-point shortest-path queries and ray-shooting queries, which consist of finding the first edge or vertex of \mathcal{S} hit by a query ray. Their data structure is based on geodesic triangulation of each region of \mathcal{S}. Given three vertices u, v, and w of a region P (a simple polygon), which occur in that order, the geodesic triangle they determine is the union of the shortest paths $\pi_{G}(u, v)$, $\pi_{G}(v, w)$ and $\pi_{G}(w, u)$. A geodesic triangulation of P is a decomposition of P 's interior into geodesic triangles whose boundaries do not cross. The technique ${ }^{15}$ dynamically maintains such triangulations by viewing their dual trees as balanced trees. Also, rotations in these trees can be implemented via a simple "diagonal swapping" operation performed on the corresponding geodesic triangles, and edge insertion and deletion can be implemented on these trees using operations akin to the standard split and splice operations. Moreover, ray shooting queries are performed by first locating the ray's endpoint and then walking along the ray from geodesic triangle to geodesic triangle until hitting the boundary of some region of \mathcal{S}. The two-point shortest path is obtained by locating the two points and then walking from geodesic triangle to geodesic triangle either following a boundary or taking a shortcut through a common tangent. ${ }^{15}$

Let n be the current number of vertices in \mathcal{S}. Using the data structure of Ref. (15), we can perform each of the above update operations as well as rayshooting and two-point shortest-path queries in $O\left(\log ^{2} n\right)$ time, using $O(n)$ space, where in $O\left(\log ^{2} n\right)$ time we get an implicit representation (a balanced binary tree) and the length of the queried shortest path, and using additional $O(k)$ time to retrieve the k links we get the actual path. ${ }^{15}$ Again we enhance this data structure so that associated with the implicit representation of a shortest path π_{G}, there are two balanced binary trees respectively maintaining the inflection edges and the cusps on π_{G} in their path order. Moreover, we can extract a portion of π_{G} via split/splice operations in logarithmic time. Using this data structure to support two-point shortest-path queries as needed by Algorithm Shortest-Path, we get a dynamic technique for shortest-path queries between two convex polygons in \mathcal{S}.
Theorem 2 Let \mathcal{S} be a connected planar subdivision whose current number of vertices is n. Shortest-path queries between two convex polygons with a total of h vertices that lie in the same region of \mathcal{S} can be performed in time $O\left(\log h+\log ^{2} n\right)$ (plus $O(k)$ to report the k links of the path), using a fully dynamic data structure
that uses $O(n)$ space and supports updates of \mathcal{S} in $O\left(\log ^{2} n\right)$ time; all bounds are worst-case.

Remark. Our update operations are, in the usual dynamic setting, allowed only on \mathcal{S}. If R_{1} and/or R_{2} are also updated, say, by inserting an edge (u, v) between vertices u and v of R_{1} and removing the clockwise boundary of R_{1} from u to v (or by an inverse operation while preserving the convexity of R_{1}), we can, of course, first update R_{1} and/or R_{2} and then re-compute $\pi_{G}\left(R_{1}, R_{2}\right)$ by our query algorithm, in $O\left(\log h+\log ^{2} n\right)$ time. An interesting open problem is whether we can support such updates on R_{1} and R_{2} while maintaining $\pi_{G}\left(R_{1}, R_{2}\right)$ in time $O(\operatorname{polylog}(h))$.

5. Static Minimum-Link Path Queries

Given two convex polygons R_{1} and R_{2} with a total of h vertices inside an n vertex simple polygon P, we want to compute their minimum-link path $\pi_{L}\left(R_{1}, R_{2}\right)$. The data structure given by Arkin, Mitchell and Suri ${ }^{2}$ supports minimum-link-path queries between two points and between two segments inside P in optimal $O(\log n)$ time, and between two convex polygons R_{1} and R_{2} in time $O(\log h \log n)$ (plus $O(k)$ if the k links are reported), using $O\left(n^{3}\right)$ space and preprocessing time. We show in this section how to improve the two-polygon queries to optimal $O(\log h+\log n)$ time, using the same data structure.

Let H_{G} be the geodesic hourglass of R_{1} and R_{2}, with geodesic tangent points $a_{1}, b_{1} \in R_{1}$ and $a_{2}, b_{2} \in R_{2}$. As shown in Ref. (2), a minimum-link path between the two segments $s_{1}=\left(a_{1}, b_{1}\right)$ and $s_{2}=\left(a_{2}, b_{2}\right)$ gives a desired minimum-link path between R_{1} and R_{2}, i.e., $\pi_{L}\left(s_{1}, s_{2}\right)=\pi_{L}\left(R_{1}, R_{2}\right)$. Note that $H\left(s_{1}, s_{2}\right)=H_{G}$. Recall from Section 3.1 that when H_{G} is open (R_{1} and R_{2} are mutually visible) Algorithm Pseudo-Hourglass returns a visibility link l, which can serve as the desired link-one path $l=\pi_{L}\left(R_{1}, R_{2}\right)$. So we look at the case where H_{G} is closed. As we shall see in Lemma 20 (Section 6), if hourglass $H\left(s_{1}, s_{2}\right)$ is closed with penetrations ρ_{1} (closer to $\left.s_{1}\right)$ and $\rho_{2}\left(\right.$ closer to $\left.s_{2}\right)$, then there exists a minimum-link path $\pi_{L}\left(s_{1}, s_{2}\right)$ that uses ρ_{1} and ρ_{2} as the first and last links. This means that $\pi_{L}(p, q)=\pi_{L}\left(s_{1}, s_{2}\right)=$ $\pi_{L}\left(R_{1}, R_{2}\right)$, where points p and q are obtained by extending ρ_{1} and ρ_{2} to intersect R_{1} and R_{2}, respectively. Therefore the two-polygon queries can be reduced to the two-point queries. We summarize this result in the following lemma.
Lemma 16 Let the geodesic hourglass H_{G} be closed with penetrations ρ_{1} (closer to R_{1}) and ρ_{2} (closer to R_{2}), and the line extensions of ρ_{1} and ρ_{2} intersect R_{1} and R_{2} at points p and q, respectively. Then $\pi_{L}(p, q)$ is a minimum-link path $\pi_{L}\left(R_{1}, R_{2}\right)$ between R_{1} and R_{2}.

We now give the algorithm for computing a minimum-link path $\pi_{L}\left(R_{1}, R_{2}\right)$ between R_{1} and R_{2}.

Algorithm Min-Link-Path

1. Perform Algorithm Pseudo-Hourglass to decide whether the geodesic hourglass H_{G} is open (with a visibility link l) or closed (with penetrations ρ_{1} (closer to R_{1}) and $\rho_{2}\left(\right.$ closer to $\left.R_{2}\right)$).
2. If H_{G} is open, then report $\pi_{L}\left(R_{1}, R_{2}\right)=l, d_{L}\left(R_{1}, R_{2}\right)=1$ and stop.
3. Otherwise (H_{G} is closed), extend ρ_{1} and ρ_{2} to intersect R_{1} and R_{2} respectively at p and q via binary searches on R_{1} and R_{2}. Compute $\pi_{L}(p, q)$ (and thus also $\left.d_{L}(p, q)\right)$ by the algorithm of Ref. (2). Report $\pi_{L}\left(R_{1}, R_{2}\right)=\pi_{L}(p, q)$, $d_{L}\left(R_{1}, R_{2}\right)=d_{L}(p, q)$ and stop.

Lemma 17 The time complexity of Algorithm Min-Link-Path is $O(\log h+\log n)$ (plus $O(k)$ if the k links are reported), which is optimal.
Theorem 3 Let P be a simple polygon with n vertices. There exists a data structure that supports minimum-link-path queries between two convex polygons with a total of h vertices inside P in optimal time $O(\log h+\log n)($ plus $O(k)$ if the k links of the path are reported), using $O\left(n^{3}\right)$ space and preprocessing time; all bounds are worst-case.

6. Dynamic Minimum-Link Path Queries

In this section we show that the dynamic data structure given in Section 4 can also support minimum-link-path queries between two convex polygons in the same region of a connected planar subdivision \mathcal{S}. As we have already seen from the last section, we only need to support two-point queries and justify the correctness of Lemma 16, which in turn establishes the correctness of Algorithm Min-Link-Path.

6.1. Basic Properties

Let p and q be two points that lie in the same region P of \mathcal{S}, and $\left(p, p^{\prime}\right)$ and $\left(q^{\prime}, q\right)$ be the first and last links of the shortest path $\pi_{G}(p, q)$, respectively (see Fig. 15). If $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$ is not a monotone chain, there are some cusps c_{1}, \cdots, c_{i} such that $\pi_{G}\left(p^{\prime}, c_{1}\right), \pi_{G}\left(c_{1}, c_{2}\right), \cdots, \pi_{G}\left(c_{i}, q^{\prime}\right)$ are the maximal monotone subchains of $\pi_{G}\left(p^{\prime}, q^{\prime}\right)$. For c_{1}, we draw a left or right lid l such that l and $\pi_{G}\left(p^{\prime}, c_{1}\right)$ lie on opposite (left and right) sides of c_{1}. Let $w_{1}=(p, u)$ be the extension of (p, p^{\prime}), where u is obtained by ray shooting (see Fig. 15). We consider the subregion P^{\prime} of P delimited by w_{1} and l. For each cusp v of P^{\prime}, we draw both lids of v if they do not intersect with $\pi_{G}\left(p^{\prime}, c_{1}\right)$, otherwise we draw left or right lid of v that does not intersect with $\pi_{G}\left(p^{\prime}, c_{1}\right)$. Then P^{\prime} is partitioned into a collection of monotone polygons, among which we denote by sleeve $\left(w_{1}\right)$ the monotone sleeve that uses w_{1} as its boundary and contains $\pi_{G}\left(p^{\prime}, c_{1}\right)$ (see Fig. 15). Excluding segment w_{1}, the boundary of sleeve $\left(w_{1}\right)$ consists of left and right monotone chains C_{1} and C_{2}. We say that a line t is an internal common tangent of sleeve $\left(w_{1}\right)$ if t is locally tangent to two vertices a and b respectively on C_{1} and C_{2} (if t goes through u, then u is also considered as a tangent point, and similarly for p^{\prime}). If t intersects with w_{1} and a is closer to w_{1} than b, we call t a left tangent of sleeve $\left(w_{1}\right)$; a right tangent is defined similarly.

Suppose that t^{\prime} and $t^{\prime \prime}$ are two left (or right) tangents of sleeve (w_{1}). Let $\pi_{G}^{\prime}(p, q)$ be the set of points on $\pi_{G}(p, q)$ each of which is visible from some point of t^{\prime}, and v^{\prime} be the point of $\pi_{G}^{\prime}(p, q)$ that is closest to $q ; v^{\prime \prime}$ is defined similarly with respect
to $t^{\prime \prime}$. We say that t^{\prime} extends farther than $t^{\prime \prime}$ if v^{\prime} is closer to q than $v^{\prime \prime}$ on $\pi_{G}(p, q)$. Among the left tangents of sleeve $\left(w_{1}\right)$, the one that extends the farthest is called the maximal left tangent of sleeve $\left(w_{1}\right)$; similarly for the definition of maximal right tangent. By the definitions of $\pi_{L}(p, q)$ and of window partition, we have the following preliminary algorithm for computing $\pi_{L}(p, q)$, when the shortest path $\pi_{G}(p, q)$ is given (see Fig. 15).

Fig. 15. Computing $\pi_{L}(p, q)$ by Algorithm Prelim: the window w_{2} following w_{1} is chosen to be t_{2} since it extends farther than t_{1}, and so on.

Algorithm Prelim

1. If $\pi_{G}(p, q)$ has only one link then report $\pi_{L}(p, q)=(p, q)$ and stop; else if the extensions of the first and last links of $\pi_{G}(p, q)$ meet at some point v, then report $\pi_{L}(p, q)=(p, v, q)$ and stop.
2. Otherwise, perform the following steps.
(a) Perform ray shooting to extend the first link of $\pi_{G}(p, q)$; this gives the first window w_{1}.
(b) From w_{1}, compute the monotone sleeve sleeve $\left(w_{1}\right)$ as described above, and compute the maximal left tangent t_{1} of sleeve $\left(w_{1}\right)$ and the maximal right tangent t_{2}. Choose t from t_{1} and t_{2} as the one that extends farther. The second window w_{2} is $\left(p_{1}, v_{2}\right)$, where $p_{1}=w_{1} \cap t$, and v_{2} is obtained by performing ray shooting from p_{1} along t toward q.
(c) Repeat step 2b to compute subsequent windows, until the current window intersects with the extension of the last link of $\pi_{G}(p, q)$, which is the last window w_{k}.
(d) Let $p_{i}=w_{i} \cap w_{i+1}$. Report $\pi_{L}(p, q)=\left(p, p_{1}, \cdots, p_{k-1}, q\right)$ and stop.

Let e_{1}, \cdots, e_{j} be the inflection edges of $\pi_{G}(p, q)$. Then e_{1}, \cdots, e_{j} partition $\pi_{G}(p, q)$ into subchains that are always left-turning or always right-turning, namely, into inward convex subchains (see Fig. 16). It is shown that every inflection edge $e \in \pi_{G}(p, q)$ must be contained in $\pi_{L}(p, q) .^{2,3,13}$ Hence, extending each inflection edge of $\pi_{G}(p, q)$ by ray shooting on both sides, together with the extensions of the first and last links of $\pi_{G}(p, q)$ (where the first link extends towards q and the last toward p), we have fixed windows W_{1}, \cdots, W_{j+2} (see Fig. 16). Now the task is how to connect consecutive fixed windows. In particular, each W_{i} has a portion $(u, v) \in \pi_{G}(p, q)$, with u closer to p than v in $\pi_{G}(p, q)$. Let the endpoints of W_{i} be u^{\prime} and v^{\prime} such that $W_{i}=\left(u^{\prime}, u, v, v^{\prime}\right)$ (note that $u^{\prime}=u=p$ if $i=1$ and $v^{\prime}=v=q$ if $i=j+2)$. We call $\left(u^{\prime}, u\right)$ the front of W_{i} and $\left(v, v^{\prime}\right)$ the rear of W_{i}. We want to connect the rear of W_{i} with the front of W_{i+1} for each $i=1, \cdots, j+1$.

Fig. 16. The shortest path $\pi_{G}(p, q)$ is partitioned by inflection edges e_{1}, e_{2} and e_{3}. The fixed windows W_{1}, \cdots, W_{5} are obtained by extending the inflection edges as well as the first and last links of $\pi_{G}(p, q)$.

Lemma 18 Let W_{i} and W_{i+1} be consecutive fixed windows, W the front of W_{i+1}, and w the rear of W_{i} or a window between the rear of W_{i} and the front of W_{i+1} as computed by Algorithm Prelim. If the hourglass $H(w, W)$ is closed, then the window w^{\prime} following w is the penetration of funnel $F(w)$.
Proof. For any local portion of P, the boundary of P consists of two bounding chains C_{1} and C_{2}. Let $w=\left(a_{1}, b_{1}\right)$ and $W=\left(a_{2}, b_{2}\right)$, where a_{1} and a_{2} are on $\pi_{G}(p, q)$ (see Fig. 17). Then $\pi_{G}\left(a_{1}, a_{2}\right)$ is a convex hull inside P of a bounding chain, say C_{1}, of P. By Algorithm Prelim, there are two possible candidates for window w^{\prime} : the penetration of $F(w)$ and some internal common tangent t intersecting with w. Let p_{1} be the apex of funnel $F(w)$. Note that $p_{1} \in C_{1}$ and thus the other tangent point of the penetration lies on C_{2}. Then t must be tangent to two vertices v_{1} and v_{2} with $v_{1} \in \pi_{G}\left(a_{1}, p_{1}\right)$ and $v_{2} \in C_{2}$, where v_{1} is closer to w than v_{2} when walking along t. While extending towards q, the penetration has a slope closer to $\pi_{G}\left(a_{1}, a_{2}\right)$ than t, i.e., anything blocking the penetration certainly blocks t (see Fig. 17). Thus the penetration extends farther than towards q and is chosen as the next window w^{\prime}.

Fig. 17. Proof of Lemma 18.

6.2. Two Point Queries

The algorithm for computing $\pi_{L}(p, q)$ between two query points p and q is as follows.

Algorithm Point-Query

1. Compute the shortest path $\pi_{G}(p, q)$. If $\pi_{G}(p, q)$ has only one link, then report $\pi_{L}(p, q)=(p, q), d_{L}(p, q)=1$ and stop.
2. Else, perform ray-shooting queries to extend the first link of $\pi_{G}(p, q)$ in the direction toward q, and the last link of $\pi_{G}(p, q)$ in the direction toward p. If
they intersect with each other at some point v, then report $\pi_{L}(p, q)=(p, v, q)$, $d_{L}(p, q)=2$ (if p, v and q are collinear then $d_{L}(p, q)=1$) and stop. Otherwise, also extend each inflection edge of $\pi_{G}(p, q)$ in both directions; together with the extensions of the first and last links of $\pi_{G}(p, q)$, this gives the fixed windows W_{1}, \cdots, W_{j}.
3. For each pair of consecutive fixed windows W_{i} and W_{i+1} that do not intersect with each other, repeat step 4 to compute the intermediate windows connecting the rear of W_{i} and the front of W_{i+1}.
4. Initially, let w be the rear of W_{i}. Let $W=\left(a_{2}, b_{2}\right)$ be the front of W_{i+1} with $a_{2} \in \pi_{G}(p, q)$.
(a) Assume that $w=\left(a_{1}, b_{1}\right)$ with a_{1} on $\pi_{G}(p, q)$. Compute the shortest path $\pi_{G}\left(b_{1}, b_{2}\right)$.
(b) If there is no inflection edge in $\pi_{G}\left(b_{1}, b_{2}\right)$, then $H(w, W)$ is an open hourglass. Compute an internal common tangent t of the two inward convex chains $\pi_{G}\left(a_{1}, a_{2}\right)$ and $\pi_{G}\left(b_{1}, b_{2}\right)$. Note that t connects w and W. Set t to be the window following w and exit step 4.
(c) Else (there are inflection edges in $\left.\pi_{G}\left(b_{1}, b_{2}\right)\right)$ let ρ be the first inflection edge of $\pi_{G}\left(b_{1}, b_{2}\right)$, then $H(w, W)$ is a closed hourglass: one endpoint p_{1} of ρ is an apex and ρ is the penetration of funnel $F(w)$. Extend ρ in the direction toward b_{2} by ray shooting, which hits the boundary of P at some point u; also intersect line ρ with w at some point v. Set (v, u) to be the window following w. Note that p_{1} is in (v, u) and is a vertex of P on $\pi_{G}(p, q)$. Set $w:=\left(p_{1}, u\right)$ and go to step 4(a).
5. Now there are windows w_{1}, \cdots, w_{k} connecting p and q. Let $v_{i}=w_{i} \cap w_{i+1}$, $i=1, \cdots, k-1$. Report $\pi_{L}(p, q)=\left(p, v_{1}, \cdots, v_{k-1}, q\right), d_{L}(p, q)=k$ and stop.

It is easily seen that we perform $O(1)$ ray-shooting and shortest-path queries to compute each link of $\pi_{L}(p, q)$. Therefore, we have:
Lemma 19 The time complexity of Algorithm Point-Query is $O\left(k \log ^{2} n\right)$, where k is the number of links in the reported path.

Now we are ready to give the following lemma, which justifies the correctness of Lemma 16 and thus also Algorithm Min-Link-Path given in Section 5.
Lemma 20 Suppose that two segments s_{1} and s_{2} inside a polygonal region P are not mutually visible, i.e., the hourglass $H\left(s_{1}, s_{2}\right)$ (containing funnels $F\left(s_{1}\right)$ and $F\left(s_{2}\right)$) is closed. Let ρ_{1} be the penetration of $F\left(s_{1}\right)$ and ρ_{2} the penetration of $F\left(s_{2}\right)$. Then there exists a minimum-link path $\pi_{L}\left(s_{1}, s_{2}\right)$ between s_{1} and s_{2} that uses ρ_{1} and ρ_{2} as the first and last links.
Proof. To compute $\pi_{L}\left(s_{1}, s_{2}\right)$, we can view s_{1} and s_{2} as "fictitious windows" and apply the method for two-point queries. Let p_{1} and p_{2} be the apices of $F\left(s_{1}\right)$ and $F\left(s_{2}\right)$, respectively. If $p_{1}=p_{2}$ then the lemma holds trivially. Otherwise, let t be the first internal common tangent in $\pi_{G}\left(p_{1}, p_{2}\right)$, and W be the extension of t. If there is no such t, then let $W=s_{2}$. Since the shortest path from any point of
s_{1} to any point of s_{2} must go through p_{1} and p_{2}, s_{1} and W serve as consecutive fixed windows in $\pi_{L}\left(s_{1}, s_{2}\right)$. If $H\left(s_{1}, W\right)$ is an open hourglass, then the penetration ρ_{1} is an internal common tangent connecting fixed windows s_{1} and W, and thus is chosen as the window following s_{1}. If $H\left(s_{1}, W\right)$ is closed, then as computed by Lemma 18, ρ_{1} is the window following s_{1}. In either case, ρ_{1} is chosen as the first link of $\pi_{L}\left(s_{1}, s_{2}\right)$. Similarly ρ_{2} "extends the farthest" from s_{2} towards s_{1}. Suppose that $\pi_{L}\left(s_{1}, s_{2}\right)$ so computed does not use ρ_{2} as the last link, and w and w^{\prime} are the last two windows of $\pi_{L}\left(s_{1}, s_{2}\right)$. Since ρ_{2} extends no worse than the last link w^{\prime}, ρ_{2} can also catch w, i.e., replacing w^{\prime} with ρ_{2} still gives a minimum-link path between s_{1} and s_{2}.

Using Algorithm Point-Query to support two-point queries as needed by Algorithm Min-Link-Path, we are now able to perform two-polygon queries.
Theorem 4 Let \mathcal{S} be a connected planar subdivision whose current number of vertices is n. Minimum-link-path queries between two convex polygons with a total of h vertices that lie in the same region of \mathcal{S} can be performed in time $O\left(\log h+k \log ^{2} n\right)$ (where k is the number of links in the reported path), using a fully dynamic data structure that uses $O(n)$ space and supports updates of \mathcal{S} in $O\left(\log ^{2} n\right)$ time; all bounds are worst-case.

References

1. Nancy M. Amato. An optimal algorithm for finding the separation of simple polygons. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in Computer Science, pages 48-59. Springer-Verlag, 1993.
2. E. M. Arkin, J. S. B. Mitchell, and S. Suri. Optimal link path queries in a simple polygon. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 269-279, 1992.
3. V. Chandru, S. K. Ghosh, A. Maheshwari, V. T. Rajan, and S. Saluja. NCalgorithms for minimum link path and related problems. Technical Report CS-90/3, TATA inst., Bombay, India, 1990.
4. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6:485-524, 1991.
5. B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. $A C M, 34: 1-27,1987$.
6. Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A unified approach to dynamic point location, ray shooting, and shortest paths in planar maps. In Proc. 4 th $A C M$ SIAM Sympos. Discrete Algorithms, pages 44-53, 1993.
7. F. Chin and C. A. Wang. Optimal algorithms for the intersection and the minimum distance problems between planar polygons. IEEE Trans. Comput., C-32(12):12031207, 1983.
8. M. de Berg. On rectilinear link distance. Comput. Geom. Theory Appl., 1(1):13-34, July 1991.
9. M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Finding shortest paths in the presence of orthogonal obstacles using a combined L_{1} and link metric. In Proc. 2nd Scand. Workshop Algorithm Theory, volume 447 of Lecture Notes in Computer Science, pages 213-224. Springer-Verlag, 1990.
10. H. N. Djidjev, A. Lingas, and J.-R. Sack. An $O(n \log n)$ algorithm for computing
the link center of a simple polygon. Discrete Comput. Geom., 8:131-152, 1992.
11. D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra - a unified approach. In Proc. 17th Internat. Colloq. Automata Lang. Program., volume 443 of Lecture Notes in Computer Science, pages 400-413. Springer-Verlag, 1990.
12. H. Edelsbrunner. Computing the extreme distances between two convex polygons. J. Algorithms, 6:213-224, 1985.
13. S. K. Ghosh. Computing visibility polygon from a convex set and related problems. J. Algorithms, 12:75-95, 1991.
14. S. K. Ghosh and A. Maheshwari. Parallel algorithms for all minimum link paths and link center problems. In Proc. 3rd Scand. Workshop Algorithm Theory, volume 621 of Lecture Notes in Computer Science, pages 106-117. Springer-Verlag, 1992.
15. M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths via balanced geodesic triangulations. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 318-327, 1993.
16. L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci., 39:126-152, 1989.
17. Y. Ke. An efficient algorithm for link-distance problems. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 69-78, 1989.
18. D. G. Kirkpatrick. Efficient computation of continuous skeletons. In Proc. 20th Annu. IEEE Sympos. Found. Comput. Sci., pages 18-27, 1979.
19. W. Lenhart, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G. T. Toussaint, S. Whitesides, and C. K. Yap. Computing the link center of a simple polygon. Discrete Comput. Geom., 3:281-293, 1988.
20. A. Lingas, A. Maheshwari, and J.-R. Sack. Parallel algorithms for rectilinear link distance problems. In Proc. 7th IEEE Internat. Parallel Process. Sympos. IEEE Computer Society, 1993.
21. J. S. B. Mitchell, C. Piatko, and E. M. Arkin. Computing a shortest k-link path in a polygon. In Proc. 33rd Annu. IEEE Sympos. Found. Comput. Sci., pages 573-582, 1992.
22. J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles in the plane. Algorithmica, 8:431-459, 1992.
23. B. J. Nilsson and S. Schuierer. An optimal algorithm for the rectilinear link center of a rectilinear polygon. In Proc. 2nd Workshop Algorithms Data Struct, volume 519 of Lecture Notes in Computer Science, pages 249-260. Springer-Verlag, 1991.
24. Bengt J. Nilsson and Sven Schuierer. Computing the rectilinear link diameter of a polygon. In Computational Geometry - Methods, Algorithms and Applications: Proc. Internat. Workshop Comput. Geom. CG'91, volume 553 of Lecture Notes in Computer Science, pages 203-215. Springer-Verlag, 1991.
25. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci, 23:166-204, 1981.
26. F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, New York, NY, 1985.
27. J. H. Reif and J. A. Storer. Minimizing turns for discrete movement in the interior of a polygon. IEEE J. Robot. Autom., pages 182-193, 1987.
28. J. A. Storer. On minimal node-cost planar embeddings. Networks, 14:181-212, 1984.
29. S. Suri. A linear time algorithm for minimum link paths inside a simple polygon. Comput. Vision Graph. Image Process., 35:99-110, 1986.
30. S. Suri. Minimum link paths in polygons and related problems. Ph.D. thesis, Dept. Comput. Sci., Johns Hopkins Univ., Baltimore, MD, 1987.
31. S. Suri. On some link distance problems in a simple polygon. IEEE Trans. Robot. Autom., 6:108-113, 1990.
32. R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987.

[^0]: *An extended abstract of this paper has been presented at the Army Research Office and MSI Stony Brook Workshop on Computational Geometry, Raleigh, North Carolina, October, 1993 and the 2nd European Symposium on Algorithms, Utrecht, The Netherlands, September, 1994. Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army Research Office under grants DAAL03-91-G-0035 and DAAH04-93-0134, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA order 8225.

