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We show that in a common high-dimensional covariance model, the
choice of loss function has a profound effect on optimal estimation.

In an asymptotic framework based on the spiked covariance model and
use of orthogonally invariant estimators, we show that optimal estimation of
the population covariance matrix boils down to design of an optimal shrinker
η that acts elementwise on the sample eigenvalues. Indeed, to each loss func-
tion there corresponds a unique admissible eigenvalue shrinker η∗ dominat-
ing all other shrinkers. The shape of the optimal shrinker is determined by
the choice of loss function and, crucially, by inconsistency of both eigenval-
ues and eigenvectors of the sample covariance matrix.

Details of these phenomena and closed form formulas for the optimal
eigenvalue shrinkers are worked out for a menagerie of 26 loss functions for
covariance estimation found in the literature, including the Stein, Entropy, Di-
vergence, Fréchet, Bhattacharya/Matusita, Frobenius Norm, Operator Norm,
Nuclear Norm and Condition Number losses.

1. Introduction. Suppose we observe p-dimensional Gaussian vectors

Xi
i.i.d.∼ N (0,�p), i = 1, . . . , n, with � = �p the underlying p-by-p population

covariance matrix. To estimate �, we form the empirical (sample) covariance ma-
trix S = Sn,p = n−1∑n

i=1 XiX
′
i ; this is the maximum likelihood estimator. Stein

[64, 65] observed that the maximum likelihood estimator S ought to be improvable
by eigenvalue shrinkage.

Write S = V �V ′ for the eigendecomposition of S, where V is orthogonal
and the diagonal matrix � = diag(λ1, . . . , λp) contains the empirical eigenvalues.
Stein [65] proposed to shrink the eigenvalues by applying a specific nonlinear map-
ping ϕ producing the estimate �̂ϕ = V ϕ(�)V ′, where ϕ maps the space of positive
diagonal matrices onto itself. In the ensuing half century, research on eigenvalue
shrinkers has flourished, producing an extensive literature. We can point here only
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to a fraction, with pointers organized into early decades [7, 20, 29–31, 34], the
middle decades [13, 28, 39, 40, 42, 49, 50, 57, 62, 63, 70] and the last decade [11,
12, 22, 23, 32, 44–46, 66, 69]. Such papers typically choose some loss function
Lp : S+

p × S+
p → [0,∞), where S+

p is the space of positive semidefinite p-by-p

matrices, and develop a shrinker ϕ with “favorable” risk ELp(�, �̂ϕ(S)).
In high-dimensional problems, p and n are often of comparable magnitude.

There, the maximum likelihood estimator is no longer a reasonable choice for
covariance estimation and the need to shrink becomes acute.

In this paper, we consider a popular large n, large p setting with p comparable to
n, and a set of assumptions about � known as the Spiked Covariance Model [35].
We study a variety of loss functions derived from or inspired by the literature, and
scalar nonlinearities which act separably on the individual empirical eigenvalues.
We show that to each “reasonable” nonlinearity η there corresponds a well-defined
asymptotic loss.

In the sibling problem of matrix denoising under a similar setting, it has been
shown that there exists a unique asymptotically admissible shrinker [25, 61]. The
same phenomenon is shown to exist here: for many different loss functions, we
show that there exists a unique optimal nonlinearity η∗, which we explicitly pro-
vide. Perhaps surprisingly, η∗ is the only asymptotically admissible nonlinearity,
namely, it offers equal or better asymptotic loss than that of any other choice of η,
across all possible spiked covariance models.

1.1. Estimation in the spiked covariance model. Consider a sequence of co-
variance estimation problems, satisfying two basic assumptions.

[ASY(γ )] The number of observations n and the number of variables pn in the
nth problem follows the proportional-growth limit pn/n → γ , as n → ∞, for a
certain 0 < γ ≤ 1.

Denote the population and sample covariances in the nth problem by � = �pn and
S = Sn,pn and assume that the eigenvalues ℓi of �pn satisfy:

[SPIKE(ℓ1, . . . , ℓr )] The r “spikes” ℓ1 > · · · > ℓr ≥ 1 are fixed independently of
n and pn, and ℓr+1 = · · · = ℓpn = 1.

The spiked model exhibits three important phenomena, not seen in classical
fixed-p asymptotics, that play an essential role in the construction of optimal esti-
mators. Drawing on results from [2–4, 6, 51, 59], we highlight:

(a) Eigenvalue spreading. Consider model [ASY(γ )] in the null case ℓ1 =
· · · = ℓr = 1. The empirical distribution of the sample eigenvalues λ1n, . . . , λpn

converges as n → ∞ to a nondegenerate absolutely continuous distribution, the
Marchenko–Pastur or “quarter-circle” law [51]. The distribution, or “bulk”, is sup-
ported on a single interval, whose limiting “bulk edges” are given by

(1.1) λ±(γ ) = (1 ± √
γ )2.
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(b) Top eigenvalue bias. Consider models [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr )].
For i = 1, . . . , r , the leading sample eigenvalues satisfy

(1.2) λin
a.s.−→ λ(ℓi),

where the “biasing” function

(1.3) λ(ℓ) = ℓ + γ ℓ/(ℓ − 1), ℓ ≥ ℓ+(γ ),

and λ(ℓ) ≡ (1 + √
γ )2 = λ+(γ ) for ℓ ≤ ℓ+(γ ), the Baik–Ben Arous–Péché tran-

sition point

(1.4) ℓ+(γ ) = 1 + √
γ .

Thus the empirical eigenvalues λi are shifted upwards from their theoretical coun-
terparts ℓi by an asymptotically predictable amount, of a size that exceeds γ even
for very large signal strengths ℓi .

(c) Top eigenvector inconsistency. Again consider models [ASY(γ )] and
[SPIKE(ℓ1, . . . , ℓr )], noting that ℓ1 > · · · > ℓr are distinct. The angles between
the sample eigenvectors v1n, . . . , vpn, and the corresponding “true” population
eigenvectors u1n, . . . , upn have nonzero limits:

(1.5)
∣

∣〈uin, vjn〉
∣

∣

a.s.−→ δi,j · c(ℓi), 1 ≤ i, j ≤ r,

where the cosine function is given by

(1.6) c(ℓ) =
√

1 − γ /(ℓ − 1)2

1 + γ /(ℓ − 1)
, ℓ ≥ ℓ+(γ ),

and c(ℓ) = 0 for ℓ ≤ ℓ+(γ ).

Loss functions and optimal estimation. Now consider a class of estimators for
the population covariance �, based on individual shrinkage of the sample eigen-
values. Specifically,

(1.7) �̂ = �̂η = η(λ1)v1v
′
1 + · · · + η(λp)vpv′

p,

where vi is the sample eigenvector with sample eigenvalue λi and η(λ) is a scalar

nonlinearity, η : R+ → [1,∞), so that the same function acts on each sample
eigenvalue. While this at first seems to be a significant limitation compared to
Stein’s apparently more general use of matricial functions ϕ [65], the discussion
in Section 8 shows that nothing is lost in our setting by the restriction to scalar
shrinkers.

Consider a family of loss functions L = {Lp}∞p=1 and a fixed nonlinearity η :
[0,∞) → R. Define the asymptotic loss relative to L of the shrinkage estimator
�̂η in model [SPIKE(ℓ1, . . . , ℓr )] by

(1.8) L∞(ℓ1, . . . , ℓr |η) = lim
n→∞Lpn

(

�pn, �̂η(Sn,pn)
)

,



OPTIMAL SHRINKAGE OF EIGENVALUES IN THE SPIKED MODEL 1745

assuming such limit exists. If a nonlinearity η∗ satisfies

(1.9) L∞
(

ℓ1, . . . , ℓr |η∗)≤ L∞(ℓ1, . . . , ℓr |η)

for any other nonlinearity η, any r and any spikes ℓ1, . . . , ℓr , and if for any η

the inequality is strict at some choice of ℓ1, . . . , ℓr , then we say that η∗ is the
unique asymptotically admissible nonlinearity (nicknamed “optimal”) for the loss
sequence L.

In constructing estimators, it is natural to expect that the effect of the biasing
function λ(ℓ) in (1.3) might be undone simply by applying its inverse function
ℓ(λ), given by

(1.10) ℓ(λ) =
(λ + 1 − γ ) +

√

(λ + 1 − γ )2 − 4λ

2
, λ > λ+(γ ).

However, eigenvector inconsistency makes the situation more complicated (and
interesting), as we illustrate using Figure 1. Focus on the plane spanned by u1,
the top population eigenvector, and by v1, its sample counterpart. We represent
ℓ1u1u

′
1, the top rank one component of �, by the vector ℓ1u1. The correspond-

ing top rank one component of S is λ1v1v
′
1, represented by λ1v1. If we apply the

inverse function (1.10) to λ1, we obtain ℓ(λ1)v1v
′
1. Since v1 is not collinear with

u1, there is a nonvanishing error ℓ(λ1)v1v
′
1 − ℓ1u1u

′
1 that remains, even though

ℓ(λ1) − ℓ1 = Op(n−1/2). As the picture suggests, it is quite possible that a differ-
ent amount of shrinkage, η(λ1)v1v

′
1 will lead to smaller error. However, we will

see that the optimal choice of η depends greatly on the particular error measure

Lp(�, �̂) that is chosen.
To give the flavor of results to be developed systematically later, we now look at

four error measures in common use. The first three, based on the operator, Frobe-

FIG. 1. Shrinking empirical eigenvalue λ1 to a value η(λ1) that is smaller than the inverse function

ℓ(λ1) may reduce the error of estimation.



1746 D. DONOHO, M. GAVISH AND I. JOHNSTONE

nius and nuclear norms, use the singular values σj of �̂ − �:

LO(�, �̂) = ‖�̂ − �‖∞ = max
i

σi,

LF (�, �̂) = ‖�̂ − �‖2 =
(

∑

i

σ 2
i

)1/2
,

LN (�, �̂) = ‖�̂ − �‖1 =
∑

i

σi,

Lst(�, �̂) = tr
(

�−1�̂ − I
)

− log det
(

�−1�̂
)

.

(1.11)

The fourth is Stein’s loss, widely studied in covariance estimation [13, 38, 64].
For convenience, we begin with the single spike model SPIKE(ℓ), so that

� = �ℓ = I + (ℓ − 1)u1u
′
1. When η is continuous, the losses have a determin-

istic asymptotic limit L∞(ℓ|η) defined in (1.8).
For many losses, including (1.11), this deterministic limiting loss has a sim-

ple form, and we can evaluate, often analytically, the optimal shrinkage func-
tion, namely the shrinkage function satisfying (1.9). For example, writing η∗(λ) =
η∗(ℓ(λ)), for the four popular loss functions (1.11) we find that on ℓ > 1 +√

γ the
corresponding four optimal shrinkers are

ηO
∗ (ℓ) = ℓ, ηF

∗ (ℓ) = ℓc2 + s2,
(1.12)

ηN
∗ (ℓ) = max

(

1 + (ℓ − 1)
(

1 − 2s2),1
)

, ηSt
∗ (ℓ) = ℓ/

(

c2 + ℓs2),

where s2 = 1 − c2. Figure 2 shows these four optimal shrinkers as a function of
the sample eigenvalue λ. These are just four examples; The full list of optimal
shrinkers we discover in this paper appears in Table 2. In all cases, η∗(ℓ) ≡ 1 for
ℓ ≤ 1+√

γ . Figure 3 in Section 6 below shows all the full list of optimal shrinkers
when γ = 1.

The main conclusion is that the optimal shrinkage function depends strongly

on the loss function chosen. The operator norm shrinker ηO
∗ simply inverts the

biasing function λ(ℓ), while the other functions shrink by much larger, and very
different, amounts, with ηSt

∗ typically shrinking most. There are also important
qualitative differences in the optimal shrinkers: ηO

∗ is discontinuous at the bulk
edge λ = λ+(γ ). The others are continuous, but ηN

∗ has the additional feature that
it shrinks a neighborhood of the bulk to 1.

REMARK. The optimal shrinker also depends on γ , so we might write
η∗(λ, γ ). In model [ASY(γ )], one can use the same γ for each problem size n.
Alternatively, in the nth problem, one might use γn = pn/n. The former choice
is simpler, as η∗ can be regarded as a univariate function of λ, and so we make
it in Sections 1–6. The latter choice is preferable technically, and perhaps also in
practice, when one has p and n, but not γ . It does, however, require us to treat
η(λ, c) as a bivariate function; see Section 7.
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FIG. 2. Vertical axis: optimal shrinkers η∗ from (1.12), shown as functions η∗(ℓ(λ)) of the empiri-

cal eigenvalue λ, horizontal axis. Here, γ = limpn/n = 1, so λ+(γ ) = 4. (Color online.) The +1 in

the legend F + 1 etc. refers to a naming convention, Table 1.

1.2. Some key observations. The sections to follow construct a framework for
evaluating and optimizing the asymptotic loss (1.8). We highlight here some ob-
servations that will play an important role. Beforehand, let us introduce a useful
modification of (1.7) to a rank-aware shrinkage rule:

(1.13) �̂η,r =
r
∑

i=1

η(λi)viv
′
i +

p
∑

i=r+1

viv
′
i,

where the dimension r of the spiked model is taken as known. While our main re-
sults concern estimators �̂η that naturally do not require r to be known in advance,
it will be easier conceptually and technically to analyze rank-aware shrinkage rules
as a preliminary step.

[OBS. 1] Simultaneous block diagonalization. (Lemmas 1 and 5). There exists
a (random) basis W such that

W ′�W =
(

⊕

i

Ai

)

⊕ Ip−2r ,

W ′�̂η,rW =
(

⊕

i

Bi

)

⊕ Ip−2r ,
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where Ai and Bi are square blocks of equal size di , and
∑

di = 2r . (Here, and
below, A ⊕ B denotes a block-diagonal matrix with blocks A and B).

[OBS. 2] Decomposable loss functions. The loss functions (1.11) and many
others studied below satisfy either

Lp(�, �̂η,r) =
∑

i

Ldi
(Ai,Bi)

or the corresponding equality with sum replaced by max.
[OBS. 3] Asymptotic deterministic loss. (Lemmas 3 and 7). For rank-aware es-

timators, when η and L are suitably continuous, almost surely

L∞(ℓ1, . . . , ℓr |η) = lim
p→∞Lp(�, �̂η,r).

[OBS. 4] Asymptotic equivalence of losses. (Proposition 2). Conclusions de-
rived for rank-aware estimators (1.13) carry over to the original estimators (1.7)
because, under suitable conditions

Lp(�, �̂η) − Lp(�, �̂η,r)
P→ 0.

This relies on the fact that in the [SPIKE(ℓ1, . . . , ℓr )] model, the sample noise
eigenvalues λin, i ≥ r + 1 “stick to the bulk” in an appropriate sense.

1.3. Organization of the paper. For simplicity of exposition, we assume a sin-
gle spike, r = 1, in the first half of the paper. [OBS. 1], [OBS. 2] and [OBS. 3]
are developed respectively in Sections 2, 3 and 4, arriving at an explicit formula
for the asymptotic loss of a shrinker. Section 5 illustrates the assumptions with our
list of 26 decomposable matrix loss functions. In Section 6, we use the formula to
characterize the asymptotically unique admissible nonlinearity for any decompos-
able loss, provide an algorithm for computing the optimal nonlinearity and provide
analytical formulas for many of the 26 losses. Section 7 extends the results to the
general case where r > 1 spikes are present. We develop [OBS. 4], remove the
rank-aware assumption and explore some new phenomena that arise in cases where
the optimal shrinker turns out to be discontinuous. In Section 8, we show, at least
for Frobenius and Stein losses, that our optimal univariate shrinkage estimator,
which applies the same scalar function to each sample eigenvalue, in fact asymp-
totically matches the performance of the best orthogonally-equivariant covariance
estimator under assumption [SPIKE(ℓ1, . . . , ℓr )]. Section 9 extends to the more
general spiked model with �p = diag(ℓ1, . . . , ℓr , σ

2, . . . , σ 2) for σ > 0 known or
unknown. Section 10 discusses our results in light of the high-dimensional covari-
ance estimation work of El Karoui [22] and Ledoit and Wolf [46]. Some proofs and
calculations are deferred to the supplementary article [15], where we also evaluate
and document the strong signal (large-ℓ) asymptotics of the optimal shrinkage es-
timators, and the asymptotic percent improvement over naive hard thresholding of
the sample covariance eigenvalues. Additional technical details and software are
provided in the Code Supplement available online as a permanent URL from the
Stanford Digital Repository [16].
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2. Simultaneous block-diagonalization. We first develop [OBS. 1] in the
simplest case, r = 1, assumping a rank-aware shrinker. In general, the estimator
�̂η and estimand � are not simultaneously diagonalizable. However, in the par-
ticular case that both are rank-one perturbations of the identity, we will see that
simultaneous block diagonalization is possible.

Some notation is needed. We denote the eigenvalues and eigenvectors of the
spectral decompostion Sn,pn = V �V ′ by

spec(Sn,pn) =
[

(λ1n, . . . , λpn), (v1n, . . . , vpn)
]

.

Whenever possible, we suppress the index n and write, for example, S, λi and vi

instead. Similarly, we often write �p or even � for �pn .

LEMMA 1. Let � and �̂ be (fixed, nonrandom) p-by-p symmetric positive

definite matrices with

spec(�) =
[

(ℓ,1, . . . ,1), (u1, . . . , up)
]

,(2.1)

spec(�̂) =
[

(η,1, . . . ,1), (v1, . . . , vp)
]

.(2.2)

Let c = 〈u1, v1〉 and s =
√

1 − c2. Then there exists an orthogonal matrix W ,
which depends on � and �̂, such that

W ′�W = A(ℓ) ⊕ Ip−2,(2.3)

W ′�̂W = B(η, c) ⊕ Ip−2,(2.4)

where the fundamental 2 × 2 matrices A and B are given by

A(ℓ) =
[

ℓ 0
0 1

]

, B(η, c) = I2 + (η − 1)

[

c

s

]
[

c s
]

.(2.5)

PROOF. Let � = diag(η,1, . . . ,1) = I + (η − 1)e1e
′
1, where e1 denotes the

unit vector in the first co-ordinate direction. It is evident that

(2.6) � = I + (ℓ − 1)u1u
′
1, �̂ = I + (η − 1)v1v

′
1.

It is natural then to work in the “common” basis of u1 and v1. We apply one step
of Gram–Schmidt if we can, setting

z =
{

(v1 − cu1)/s if s �= 0,

up if s = 0.

In the second exceptional case, v1 = ±u1, so we pick a convenient vector orthogo-
nal to u1. In either case, the columns of the p ×2 matrix W2 = [u1 z] are orthonor-
mal and their span contains both u1 and v1. Now fill out W2 to an orthogonal



1750 D. DONOHO, M. GAVISH AND I. JOHNSTONE

matrix W = [W2 W⊥
2 ]. Observe now that if y lies in the column span of W2 and α

is a scalar, then necessarily

W ′(Ip + αyy′)W = (I2 + αy̌y̌) ⊕ Ip−2, y̌ = W ′
2y.

The expressions (2.3)–(2.5) now follow from the rank one perturbation forms (2.6)
along with

W ′
2u1 =

[

u′
1u1

z′u1

]

=
[

1
0

]

, and W ′
2v1 =

[

u′
1v1

z′v1

]

=
[

c

s

]

.
�

3. Decomposable loss functions. Here and below, by loss function Lp we
mean a function of two p-by-p positive semidefinite matrix arguments obeying
Lp ≥ 0, with Lp(A,B) = 0 if and only if A = B . A loss family is a sequence
L = {Lp}∞p=1, one for each matrix size p. We often write loss function and refer to
the entire family. [OBS. 2] calls out a large class of loss functions which naturally
exploit the simultaneously block-diagonalizability property of Lemma 1; we now
develop this observation.

DEFINITION 1 (Orthogonal invariance). We say the loss function Lp(A,B) is
orthogonally invariant if for each orthogonal p-by-p matrix O ,

Lp(A,B) = Lp

(

OAO ′,OBO ′).

For given p and a given sequence of block sizes {di} such that
∑

i di = p,
consider block-diagonal matrix decompositions of p by p matrices A and B into
blocks Ai and B i of size di :

(3.1) A =
⊕

i

Ai, B =
⊕

i

B i .

DEFINITION 2 (Sum-decomposability and max-decomposability). We say the
loss function Lp(A,B) is sum-decomposable if for all decompositions (3.1),

Lp(A,B) =
∑

i

Ldi

(

Ai,B i).

We say that it is max-decomposable if if for all decompositions (3.1),

Lp(A,B) = max
i

Ldi

(

Ai,B i).

Clearly, such loss functions can exploit the simultaneous block diagonalization
of Lemma 1. Indeed, we have the following.

LEMMA 2 (Reduction to two-dimensional problem). Consider an orthogo-

nally invariant loss function, Lp , which is sum- or max-decomposable. Suppose

that � and �̂ satisfy (2.1) and (2.2), respectively. Then

Lp(�, �̂) = L2
(

A(ℓ),B(η, c)
)

.
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PROOF. Lemma 1 provides a change of basis W yielding decompositions (2.3)
and (2.4). From the invariance and decomposability hypotheses,

Lp(�, �̂) = Lp

(

W ′�W,W ′�̂W
)

= Lp

(

A(ℓ) ⊕ Ip−2,B(η, c) ⊕ Ip−2
)

= L2
(

A(ℓ),B(η, c)
)

. �

4. Asymptotic loss in the spiked covariance model. Consider the spiked
model with a single spike, r = 1, namely, make assumptions [ASY(γ )] and
[SPIKE(ℓ)]. The principal 2 × 2 block estimator occurring in Lemmas 1 and 2
is B(η(λ1n), c1n) where λ1n is the largest eigenvalue of Sn and c1n = 〈u1n, v1n〉.

If η is continuous, then the convergence results (1.2) and (1.5) imply that the
principal block converges as n → ∞. Specifically,

(4.1) B
(

η(λ1n), c1n

) a.s.−→ B
(

η
(

λ(ℓ)
)

, c(ℓ)
)

=: B(ℓ, η),

say, with the convergence occurring in all norms on 2 × 2 matrices.
In accord with [OBS. 3], we now show that the asymptotic loss (1.8) is a de-

terministic, explicit function of the population spike ℓ. For now, we will continue
to assume that the shrinker η is rank-aware. Alternatively, we can make a different
simplifying assumption on η, which will be useful in what follows.

DEFINITION 3. We say that a scalar function η : [0,∞) → [1,∞) is a bulk

shrinker if η(λ) = 1 when λ ≤ λ+(γ ), and a neighborhood bulk shrinker if for
some ε > 0, η(λ) = 1 whenever λ ≤ λ+(γ ) + ε.

The neighborhood bulk shrinker condition on η is rather strong, but does hold
for ηN

∗ in (1.12), for example. [Note that our definitions ignore the lower bulk edge
λ−(γ ), which is of less interest in the spiked model.]

LEMMA 3 (A formula for the asymptotic loss). Adopt models [ASY(γ )] and

[SPIKE(ℓ)] with ℓ > ℓ+(γ ). Suppose (a) that the family L = {Lp} of loss functions

is orthogonally invariant and sum- or max-decomposable, and that B �→ L2(A,B)

is continuous. Let �̂η = �̂η(Sn,pn) be given by (1.7), and let �̂η,1 be the corre-

sponding rank-aware shrinkage rule (1.13) for r = 1. Suppose the scalar nonlin-

earity η is continuous on (λ+(γ ),∞). Then

(4.2) Lpn(�pn, �̂η,1)
a.s.−→ L2

(

A(ℓ),B(ℓ, η)
)

.

Furthermore, if (b) η is a neighborhood bulk shrinker, then Lpn(�pn, �̂η) also has

this limit a.s.
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Each of the 26 losses considered in this paper satisfies conditions (a).

PROOF. In the rank-aware case, �̂η = �̂η,1 satisfies

spec(�̂η) =
[(

η(λ1n),1, . . . ,1
)

, (v1n, . . . , vpn)
]

,

Lemma 2 implies that

Lp(�, �̂η) = L2
(

A(ℓ),B
(

η(λ1n), c1n

)) a.s.−→ L2
(

A(ℓ),B(ℓ, η)
)

,

where the limit on the right-hand side follows from convergence (4.1) and the
assumed continuity of L2.

Now assume that η is a neighborhood bulk shrinker. From (1.2), we know that
λ1n

a.s.−→ λ(ℓ) From eigenvalue interlacing [see (7.11) below], we have λ2n ≤ μ1n,
where μ1n is the largest eigenvalue of a white Wishart matrix Wpn−1(n, I ), and

satisfies μ1n
a.s.−→ λ+, from [27]. Let ε > 0 be small enough that λ+ + ε < λ(ℓ)

and also lies in the neighborhood shrunk to 1 by η. Hence, there exists a random
variable n̂ such that almost surely, λ2n < λ+ + ε < λ1n for all n > n̂. For such n,
the first display above of this proof applies and we then obtain the second display
as before. �

5. Examples of decomposable loss functions. Many of the loss functions
that appear in the literature are Pivot-Losses. They can be obtained via the follow-
ing common recipe.

DEFINITION 4 (Pivots). A matrix pivot is a matrix-valued function �(A,B)

of two real positive definite matrices A,B such that: (i) �(A,B) = 0 if and only
if A = B , (ii) � is orthogonally equivariant and (iii) � respects block structure in
the sense that

�
(

OAO ′,OBO ′)= O�(A,B)O ′,(5.1)

�
(

⊕

Ai,
⊕

B i
)

=
⊕

�
(

Ai,B i)(5.2)

for any orthogonal matrix O of the appropriate dimension.

Matrix pivots can be symmetric-matrix valued, for example, �(A,B) = A−B ,
but need not be, for example, �(A,B) = A−1B − I .

DEFINITION 5 (Pivot-losses). Let g be a nonnegative function of a symmetric
matrix variable that is definite: g(A) = 0 if and only if A = 0, and orthogonally
invariant: g(O�O ′) = g(�) for any orthogonal matrix O . A symmetric-matrix
valued pivot � induces an orthgonally-invariant pivot loss

(5.3) L(A,B) = g
(

�(A,B)
)

.

More generally, for any matrix pivot �, set |�| = (�′�)1/2 and define

(5.4) L(A,B) = g
(

|�|(A,B)
)

.
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An orthogonally invariant function g depends on its matrix argument � or |�|
only through its eigenvalues or singular values δ1, . . . , δp . We abuse notation to
write g(�) = g(δ1, . . . , δp). Observe that if g has either of the forms

g(δ1, . . . , δp) =
∑

j

g1(δj ) or g(δ1, . . . , δp) = max
j

g1(δj ),

for some univariate g1, then the pivot loss L(A,B) = g(�(A,B)) (symmetric
pivot) or L(A,B) = g(|�|(A,B)) (general pivot) is respectively sum- or max-
decomposable. In case � is symmetric, the two definitions agree so long as g1 is
an even function of δ.

5.1. Examples of sum-decomposable losses. There are different strategies to
derive sum-decomposable pivot-losses. First, we can use statistical discrepancies
between the Normal distributions N (0,A) and N (0,B):

1. Stein loss [13, 38, 64]: Stein’s loss is defined as

Lst(A,B) = tr
(

A−1B − I
)

− log
(

det(B)/det(A)
)

.

This is just twice the Kullback distance DKL(N (0,B)||N (0,A)). Stein’s loss is
a pivot-loss with respect to �(A,B) = A−1/2BA−1/2 and g(�) = tr(� − I ) −
log det(�) =∑

i g1(δi), where g1(δ) = δ − 1 − log δ.
2. Entropy/divergence losses: Because the Kullback discrepancy is not sym-

metric in its arguments, we may consider two other losses: reversing the arguments
we get Entropy loss Lent(A,B) = Lst(B,A) [40, 63] and summing the Stein and
Entropy losses gives divergence loss:

Ldiv(A,B) = Lst(A,B) + Lst(B,A) = tr
(

A−1B − I
)

+ tr
(

B−1A − I
)

;
see [28, 43]. Each can be shown to be sum-decomposable, following the same
argument as above.

3. Bhattarcharya/Matusita affinity [37, 52]: Let

Laff(A,B) = 1

2
log

|A + B|/2

|A|1/2|B|1/2 .

This measures the statistical distinguishability of N (0,A) and N (0,B) based on
independent observations, since Laff = 1

2 log(
∫ √

φA

√
φB) with φA and φB the

densities of N (0,A) and N (0,B). Hence convergence of affinity loss to zero is
equivalent to convergence of the underlying densities in Hellinger or Variation
distance. This is a pivot-loss w.r.t. �(A,B) = A−1/2BA−1/2 and

g(�) = 1

4
log
(

det
(

2I + � + �−1)/4
)

=
∑

i

g1(δi),

as is seen by setting C = A−1/2(A + B)B−1/2 and noting that C′C = (2I + � +
�−1). Here, g1(δ) = 1

4 log(2 + δ + δ−1)/4.



1754 D. DONOHO, M. GAVISH AND I. JOHNSTONE

4. Fréchet discrepancy [18, 55]: Let Lfre(A,B) = tr(A+B −2A1/2B1/2). This
measures the minimum possible mean-squared difference between zero-mean ran-
dom vectors with covariances A and B , respectively. This is a pivot-loss w.r.t.
�(A,B) = A1/2 − B1/2, and g(�) = tr(�2) =∑

i g1(δi) with g1(δ) = δ2.

Second, we may obtain sum-decomposable pivot-losses L(A,B) = g(�(A,B))

by simply taking g to be one of the standard matrix norms:

1. Squared error loss [11, 34, 44, 46]: Let LF,1(A,B) = ‖A − B‖2
F . This is a

pivot-loss w.r.t. �(A,B) = A − B and g(�) = tr�′� =∑

i g1(δi) with g1(δ) =
δ2.

2. Squared error loss on precision [29]: Let LF,2(A,B) = ‖A−1 − B−1‖2
F .

This is a pivot-loss w.r.t. �(A,B) = A−1 − B−1 and g(�) = tr�′�.
3. Nuclear norm loss. Let LN,1(A,B) = ‖A − B‖∗ where ‖�‖∗ denotes the

nuclear norm of the matrix �, that is, the sum of its singular values. This is a
pivot-loss w.r.t. �(A,B) = A − B and g(�) =∑

i |δi |.
4. Let LF,3(A,B) = ‖A−1B − I‖2

F . This is a pivot-loss w.r.t. �(A,B) =
A−1B − I . It was studied in [31, 60, 62] and later work.

5. Let LF,7(A,B) = ‖ log(A−1/2BA−1/2)‖2
F , where log(·) denotes the matrix

logarithm3
 [24, 48]. This is a pivot-loss w.r.t.

�(A,B) = log
(

A−1/2BA−1/2).

5.2. Examples of max-decomposable losses. Max-decomposable losses arise
by applying the operator norm (the maximal singular value or eigenvalue of a
matrix) to a suitable pivot. Here are a few examples:

1. Operator norm loss [21]: Let LO,1(A,B) = ‖A − B‖op. This is a pivot-loss
w.r.t. �(A,B) = A − B and g(�) = ‖�‖op = maxi δi .

2. Operator norm loss on precision: Let LO,2(A,B) = ‖A−1 − B−1‖op. This
is a pivot-loss w.r.t. �(A,B) = A−1 − B−1.

3. Condition number loss: Let LO,7(A,B) = ‖ log(A−1/2BA−1/2)‖op. This is
a pivot-loss w.r.t. �(A,B) = log(A−1/2BA−1/2), related to [69]. In the spiked
model discussed below, LO,7 effectively measures the condition number of
A−1/2BA−1/2.

We adopt the systematic naming scheme Lnorm,pivot where norm ∈ {F,O,N},
and pivot ∈ {1, . . . ,7}. This set of 21 combinations covers the previous matrix
norm examples and adds some more. Together with Stein’s loss and the others
based on statistical discrepancy mentioned above, we arrive at a set of 26 loss
functions, Table 1, to be studied in this paper.

3The matrix logarithm transfers the matrices from the Riemannian manifold of symmetric positive

semidefinite matrices to its tangent space at A. It can be shown that LF,7 is the squared geodesic
distance in this manifold. This metric between covariances has attracted attention, for example, in
diffusion tensor MRI [19, 48].
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TABLE 1
Systematic notation for the 26 loss functions considered in this paper

MatrixNorm

Pivot Frobenius Operator Nuclear

A − B LF,1 LO,1 LN,1

A−1 − B−1 LF,2 LO,2 LN,2

A−1B − I LF,3 LO,3 LN,3

B−1A − I LF,4 LO,4 LN,4

A−1B + B−1A − 2I LF,5 LO,5 LN,5

A−1/2BA−1/2 − I LF,6 LO,6 LN,6

log(A−1/2BA−1/2) LF,7 LO,7 LN,7

Statistical measures

St Ent Div

Stein Lst Lent Ldiv

Affinity Laff

Fréchet Lfre

6. Optimal shrinkage for decomposable losses.

6.1. Formally optimal shrinker. Formula (4.2) for the asymptotic loss has only
been shown to hold in the single spike model and only for a certain class of non-
linearities η. In fact, the same is true in the r-spike model and for a much broader
class of nonlinearities η. To preserve the narrative flow of the paper, we defer the
proof, which is more technical, to Section 7. Instead, we proceed under the single
spike model, and simply assume that L∞(ℓ|η) from (4.2) is the correct limiting
loss, and draw conclusions on the optimal shape of the shrinker η.

DEFINITION 6 (Optimal shrinker). Let L = {Lp}∞p=1 be a given loss family
and let L∞(ℓ|η) be the asymptotic loss corresponding to a nonlinearity η, as de-
fined in (4.2), under assumption [ASY(γ )]. If η∗ satisfies

(6.1) L∞
(

ℓ|η∗)= min
η

L∞(ℓ|η), ∀ℓ ≥ 1,

and for any η �= η∗ there exists ℓ ≥ 1 with L∞(ℓ, η∗) < L∞(ℓ, η), then we say that
η∗ is the formally optimal shrinker for the loss family L and shape factor γ , and
denote the corresponding shrinkage rule by λ �→ η∗(λ;γ,L).

Below, we call formally optimal shrinkers simply “optimal”. By definition, the
optimal shrinkage rule η∗(λ;γ,L) is the unique admissible rule, in the asymptotic
sense, among rules of the form �̂η(Sn,p) = V η(�)V ′ in the single-spike model.
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In the single spiked model (and as we show later, generally in the spiked model),
one never regrets using the optimal shrinker over any other (reasonably regular)
univariate shrinker. In light of our results so far, an obvious characterization of an
optimal shrinker is as follows.

THEOREM 1 (Characterization of optimal shrinker). Let L = {Lp}∞p=1 be a

loss family. Define

F(ℓ, η) = L2

(

[

ℓ 0
0 1

]

,

[

1 + (η − 1)c2 (η − 1)cs

(η − 1)cs 1 + (η − 1)s2

])

.(6.2)

Here, c = c(ℓ) and s = s(ℓ) satisfy c2(ℓ) = 1−γ /(ℓ−1)2

1+γ /(ℓ−1)
and s2(ℓ) = 1 − c2(ℓ).

Suppose that for any ℓ > ℓ+(γ ), there exists a unique minimizer:

(6.3) η∗(ℓ) := arg min
η≥1

F(ℓ, η).

Further suppose that for every 1 ≤ ℓ ≤ ℓ+(γ ) we have arg minη≥1 G(η) = 1, where

G(ℓ,η) = L2

([

ℓ 0
0 1

]

,

[

1 0
0 η

])

.(6.4)

Then the shrinker

η∗(λ) =
{

η∗(ℓ(λ)
)

, ℓ > λ+(γ ),

1, 1 ≤ ℓ ≤ λ+(γ ),

where ℓ(λ) is given by (1.10), is the optimal shrinker of the loss family L.

Many of the 26 loss families discussed in Section 3 admit a closed form expres-
sion for the optimal shrinker; see Table 2. For others, we computed the optimal
shrinker numerically, by implementing in software a solver for the simple scalar
optimization problem (6.3). Figure 3 portrays the optimal shrinkers for our 26 loss
functions. We refer readers interested in computing specific individual shrinkers
to our reproducibility advisory at the bottom of this paper, and invite the reader
to explore the code supplement [16], consisting of online resources and code we
offer.

6.2. Optimal shrinkers collapse the bulk. We first observe that, for any of the
26 losses considered, the optimal shrinker collapses the bulk to 1. The following
lemma is proved in the supplemental article [15]:

LEMMA 4. Let L be any of the 26 losses mentioned in Table 1. Then the rule

η∗∗(ℓ) = 1 is unique asymptotically admissible on [1, ℓ+(γ )], namely, for every

ℓ ∈ [1, ℓ+(γ )] we have EL(ℓ,η) ≥ L(ℓ,η∗∗), with strict inequality for at least one

point in [1, ℓ+(γ )].
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TABLE 2
Optimal shrinkers η∗(λ) for 18 of the loss families L discussed. Values shown are shrinkers for

λ > λ+(γ ). All shrinkers obey η∗(λ) = 1 for λ ≤ λ+(γ ). Here, ℓ, c and s depend on λ (and

implicitly on γ ) according to (1.10), (1.6) and s =
√

1 − c2. In cases marked “N/A”, the optimal

shrinker does not seem to admit a simple closed form, but can be easily calculated numerically

Matrix Norm

Pivot Frobenius Operator Nuclear

A − B ℓc2 + s2 ℓ max(1 + (ℓ − 1)(1 − 2s2),1)

A−1 − B−1 ℓ
c2+ℓs2 ℓ max( ℓ

c2+(2ℓ−1)s2 ,1)

A−1B − I ℓc2+ℓ2s2

c2+ℓ2s2 N/A max( ℓ
c2+ℓ2s2 ,1)

B−1A − I ℓ2c2+s2

ℓc2+s2 N/A max( ℓ2c2+s2

ℓ
,1)

A−1/2BA−1/2 − I 1 + (ℓ−1)c2

(c2+ℓs2)2 1 + ℓ−1
c2+ℓs2 max(

ℓ−(ℓ−1)2c2s2

(c2+ℓs2)2 ,1)

Statistical measures

St Ent Div

Stein ℓ
c2+ℓs2 ℓc2 + s2

√

ℓ2c2+ℓs2

c2+ℓs2

Fréchet (
√

ℓc2 + s2)2

Affine (1+c2)ℓ+s2

1+c2+ℓs2

As part of the proof of Lemma 4, in Table 6 in the supplemental article [15], we
explicitly calculate the fundamental loss function G(ℓ,η) of (6.4) for many of the
loss families discussed in this paper.

To determine the optimal shrinker η∗(λ;γ,L) for each of our loss functions L,
it therefore remains to determine the map λ �→ η∗(λ) or equivalently ℓ �→ η∗(λ(ℓ))

only for ℓ > ℓ+(γ ). This is our next task.

6.3. Optimal shrinkers by computer. The scalar optimization problem (6.3) is
easy to solve numerically, so that one can always compute the optimal shrinker
at any desired value λ. In the code supplement [16], we provide the Matlab code
to compute the optimal nonlinearity for each of the 26 loss families discussed. In
the sibling problem of singular value shrinkage for matrix denoising, [26] demon-
strates numerical evaluation of optimal shrinkers for the Schatten-p norm, where
analytical derivation of optimal shrinkers appears to be impossible.

6.4. Optimal shrinkers in closed form. We were able to obtain simple analytic
formulas for the optimal shrinker η∗ in each of 18 loss families from Section 3.
While the optimal shrinkers are of course functions of the empirical eigenvalue λ,
in the interest of space, we state the lemmas and provide the formulas in terms of
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FIG. 3. Optimal Shrinkers for 26 Component Loss Functions for γ = 1 and 4 ≤ λ ≤ 10. Upper

Left: Frobenius-norm-based losses; Lower Left: Nuclear-Norm based losses; Upper Right: Opera-

tor-norm-based losses; Lower Right: Statistical Discrepancies. (Color online; curves jittered in ver-

tical axis to avoid overlap.) The supplemental article [15] contains a larger version of these plots.
Reproducibility advisory: The code supplement [16] includes a script that reproduces any one of

these individual curves.

the quantities ℓ, c and s. To calculate any of the nonlinearities below for a specific
empirical eigenvalue λ, use the following procedure:

1. If λ ≤ λ+(γ ) set η∗(λ) = 1. Otherwise:
2. Calculate ℓ(λ) using (1.10).
3. Calculate c(λ) = c(ℓ(λ)) using (1.6) and (1.10).
4. Calculate s(λ) = s(ℓ(λ)) using s(ℓ) =

√

1 − c2(ℓ).
5. Substitute ℓ(λ), c(λ) and s(λ) into the formula provided to get η∗(λ).

The closed forms we provide are summarized in Table 2. Note that ℓ, c and
s refer to the functions ℓ(λ), c(ℓ(λ)) and s(ℓ(λ)). These formulae are formally
derived in a sequence of lemmas that are stated and proved in the supplemental
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article [15]. The proofs also show that these optimal shrinkers are unique, as in
each case the optimal shrinker is shown to be the unique minimizer, as in (6.3),
of (6.2). We make some remarks on these optimal shrinkers by focusing first on
operator norm loss for covariance and precision matrices:

(6.5) η∗(λ;γ,LO,1)= η∗(λ;γ,LO,2)=
{

ℓ, ℓ > ℓ+(γ ),

1, ℓ ≤ ℓ+(γ ).

This asymptotic relationship reflects the classical fact that in finite samples, the
top empirical eigenvalue is always biased upwards of the underlying population
eigenvalue [10, 68]. Formally defining the (asymptotic) bias as

bias(η, ℓ) = η
(

λ(ℓ)
)

− ℓ,

we have bias(λ(ℓ), ℓ) > 0. The formula η∗(λ) = ℓ shows that the optimal nonlin-
earity for operator norm loss is what we might simply call a debiasing transforma-
tion, mapping each empirical eigenvalue back to the value of its “original” popu-
lation eigenvalue, and the corresponding shrinkage estimator �̂η uses each sample

eigenvectors with its corresponding population eigenvalue. In words, within the
top branch of (6.5), the effect of operator-norm optimal shrinkage is to debias the

top eigenvalue:

bias
(

η∗(·;γ,LO,1), ℓ
)

= bias
(

η∗(·;γ,LO,2), ℓ
)

= 0, ∀ℓ > ℓ+(γ ).

On the other hand, within the bottom branch, the effect is to shrink the bulk to 1.
In terms of Definition 3, we see that η∗ is a bulk shrinker, but not a neighborhood
bulk shrinker.

One might expect asymptotic debiasing from every loss function, but, perhaps
surprisingly, precise asymptotic debiasing is exceptional. In fact, none of the other
optimal nonlinearities in Table 2 is precisely debiasing.

In the supplemental article [15], we also provide a detailed investigation of the
large-λ asymptotics of the optimal shrinkers, including their asymptotic slopes,
asymptotic shifts and asymptotic percent improvement.

7. Beyond formal optimality. The shrinkers we have derived and analyzed
above are formally optimal, as in Definition 6, in the sense that they minimize
the formal expression L∞(ℓ|η). So far we have only shown that formally opti-
mal shrinkers actually minimize the asymptotic loss (namely, are asymptotically
unique admissible) in the single-spike case, under assumptions [ASY(γ )] and
[SPIKE(ℓ)], and only over neighborhood bulk shrinkers.

In this section, we show that formally optimal shrinkers in fact minimize the
asymptotic loss in the general Spiked Covariance Model, namely under assump-
tions [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr )], and over a large class of bulk shrinkers,
which are possibly not neighborhood bulk shrinkers.

We start by establishing the rank r analog of Lemma 1. For a vector ℓ ∈ R
r , let

�r(ℓ) = diag(ℓ1, . . . , ℓr).
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LEMMA 5. Assume that � and �̂ are fixed matrices with

spec(�) =
[

(ℓ1, . . . , ℓr ,1, . . . ,1), (u1, . . . , up)
]

,

spec(�̂) =
[

(η1, . . . , ηr ,1, . . . ,1), (v1, . . . , vp)
]

.

Let Ur and Vr denote the p-by-r matrices consisting of the top r eigenvectors of �

and �̂, respectively. Suppose that [Ur Vr ] has full rank 2r , and consider the QR

decomposition

[

Ur Vr

]

= QR,

where Q has 2r orthonormal columns and the 2r × 2r matrix R is upper triangu-

lar. Let R2 denote the 2r × r submatrix formed by the last r columns of R. Fill out

Q to an orthogonal matrix W = [Q Q⊥]. Then in the transformed basis we have

the simultaneous block decompositions:

W ′�W = �◦
2r ⊕ Ip−2r , �◦

2r = �r(ℓ) ⊕ Ir ,(7.1)

W ′�̂W = �̂◦
2r ⊕ Ip−2r , �̂◦

2r = I2r + R2�r(η − 1)R′
2.(7.2)

PROOF. We start with observations about the structure of Q and R. Since the
first r columns of Q are identically those of Ur , we let Zr be the n-by-r matrix
such that Q = [Ur Zr ]. For the same reason, R has the block structure

R =
[

Ir×r R12
0r×r R22

]

,

where the matrices R12 and R22 satisfy Vr = UrR12 + ZrR22, so that

(7.3) R12 = U ′
rVr , R22 = Z′

rVr .

Since Vr has orthogonal columns, we have

Ir = V ′
rVr = R′

12R12 + R′
22R22,

(7.4)
R′

22R22 = I − R′
12R12.

Let H be a p × r matrix whose columns lie in the column span of Q and let �

be an r × r diagonal matrix. Observe that

W ′(I + H�H ′)W = I + W ′H�H ′W

=
(

I2r + Q′H�H ′Q
)

⊕ Ip−2r = C2r ⊕ Ip−2r ,

say, since the columns of Q⊥ are orthogonal to those of H .
By analogy to (2.6), we may write

(7.5) � = I + Ur

(

�r(ℓ) − Ir

)

U ′
r , �̂ = I + Vr

(

�r(η) − Ir

)

V ′
r
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and so both of the form I + H�H ′, with H = Ur and Vr , respectively. We find
that

Q′Ur =
[

Ir

0

]

, Q′Vr =
[

R12
R22

]

= R2.

We can then compute the value of C2r in the two cases to be given by �◦
2r and �̂◦

2r

respectively, which establishes (7.1) and (7.2), and hence the lemma. �

We intend to apply Lemma 5 to � and �̂ = �̂η,r , the “rank-aware” modification
(1.13) of the estimator �̂η in (1.7). Assume now that �̂ and the p × r matrix Vr,n

formed by the top eigenvectors of V are random.

LEMMA 6. The rank of [Ur Vr,n] equals 2r almost surely.

PROOF. Let �r(V ) be the projection that picks out the first r columns of an
orthogonal matrix V . For a fixed r-frame Ur , we consider the event

A =
{

V ∈ Op : rank
([

Ur �r(V )
])

< 2r
}

,

where Op is the group of orthogonal p-by-p matrices. Let P�(d�,dV ) denote the
joint distribution of eigenvalues � = diag(λ1, . . . , λp) and eigenvectors V when
S ∼ Wp(n,�). As shown by [33], P� is absolutely continuous with respect to
νp × μp , the product of Lebesgue measure on R

p and Haar measure on O(p).
Since μp(A) = 0, it follows that P�(A) = 0. �

LEMMA 7. Adopt models [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr )] with ℓ1, . . . ,

ℓr > ℓ+(γ ). Suppose the scalar nonlinearity η is continuous on (λ+(γ ),∞). For

each p, there exists w.p. 1 an orthogonal change of basis W such that

(7.6) W ′�W = �2r ⊕ Ip−2r , W ′�̂η,rW = �̂2r ⊕ Ip−2r ,

where the 2r × 2r matrices �2r , �̂2r satisfy

(7.7) �2r =
r
⊕

i=1

A(ℓi), �̂2r
a.s.→

p
⊕

i=1

B(ℓi, η),

and the 2 × 2 matrices A(ℓ),B(ℓ, η) are defined at (2.5).
Suppose also that the family L = {Lp} of loss functions is orthogonally invari-

ant and sum- or max-decomposable, and that B → L2r(A,B) is continuous. Then

(7.8) Lp(�, �̂η,r)
a.s.→
(

∑

/max
)

i=1,...,r
L2
(

A(ℓi),B(ℓi, η)
)

.

If η is a neighborhood bulk shrinker, then Lp(�, �̂η) also has this limit a.s.



1762 D. DONOHO, M. GAVISH AND I. JOHNSTONE

This is the rank r analog of Lemma 3. The optimal nonlinearity η∗ is continuous
on [0,∞) for all losses except the operator norm ones, for which η∗ is continuous
except at λ = λ+(γ ). Our result (7.7) requires only continuity on (λ+(γ ),∞) and
so is valid for all 26 loss functions, as is the deterministic limit (7.8) for the rank-
aware �̂η,r . However, as we saw earlier, only the nuclear norm based loss functions
yield optimal functions that are neighborhood bulk shrinkers. To show that (7.8)
holds for Lp(�, �̂η) for most other important shrinkage functions, some further
work is needed; see Section 7.1 below.

PROOF. We apply Lemma 5 to � and �̂η,r on the set of probability 1 provided
by Lemma 6. First, we rewrite (7.2) to show the subblocks of R:

�̂◦
2r = I2r +

[

R12
R22

]

�r

(

η(n) − 1
) [

R′
12 R′

22
]

,

where we write η(n) = (η(λ1,n), . . . , η(λr,n)) to show explicitly the dependence
on n. The limiting behavior of R may be derived from (7.3) and (7.4) along with
spiked model properties (1.2) and (1.5), so we have,4 as n → ∞,

R12 = U ′
rVr,n

a.s.→ �r(c),

R22R
′
22 = I − R12R

′
12

a.s.→ �r

(

s2),(7.9)

R22
a.s.→ �r(s).

Here, c = (c(ℓ1), . . . , c(ℓr)) and s = (s(ℓ1), . . . , s(ℓr)).
Again by (1.2) λi,n

a.s.→ λ(ℓi) > λ+(γ ) and so continuity of η above λ+(γ ) as-
sures that �r(η

(n) − 1) → �r(η − 1), where η = (ηi) and ηi = η(λ(ℓi)). Together
with (1.5), we obtain simplified structure in the limit,

(7.10) �̂◦
2r

a.s.→ I2r +
[

�r

(

(η − 1)c2) �r

(

(η − 1)cs
)

�r

(

(η − 1)cs
)

�r

(

(η − 1)s2)

]

.

To rewrite the limit in block diagonal form, let �2r be the permutation matrix
corresponding to the permutation defined by

(1, . . . ,2r) �→ (1, r + 1,2, r + 2,3, . . . ,2r).

Permuting rows and columns in (7.1) and (7.10) using �2r to obtain

�2r := �′
2r�

◦
2r�2r =

r
⊕

i=1

A(ℓi),

�̂2r := �′
2r�̂

◦
2r�2r

a.s.→
p
⊕

i=1

B(ℓi, η),

4For simplicity, we chose the QR decomposition to make the sign of s(ℓi) positive.
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we obtain (7.7). Using (7.6), the orthogonal invariance and sum/max decompos-
ability, along with the continuity of L2r(A, ·), we have

Lp(�p, �̂η,r) = Lp(�2r ⊕ Ip−2r , �̂2r ⊕ Ip−2r)

= L2r(�2r , �̂2r)

= L2r

(

�′
2r�2r�2r ,�

′
2r�̂2r�2r

)

a.s.→ L2r

(

r
⊕

i=1

A(ℓi),

p
⊕

i=1

B(ℓi, η)

)

=
(

∑

/max
)

i=1,...r
L2
(

A(ℓi),B(ℓi, η)
)

,

which completes the proof of Lemma 7. �

7.1. Removing the rank-aware condition. In this section, we prove Proposi-
tion 2 below, whereby the asymptotic losses coincide for a given estimator se-
quence �̂η and the rank-aware versions �̂η,r . This result is plausible because of
two observations:

1. Null eigenvalues stick to the bulk, that is, for i ≥ r + 1, most eigenvalues
λin ≤ λ+(γ ) and the few exceptions are not much larger. Hence, if η is a continu-
ous bulk shrinker, we expect �̂η to be close to �̂η,r ,

2. under a suitable continuity assumption on the loss functions Lp , L(�, �̂η)

should then be close to L(�, �̂η,r).

Observation 1 is fleshed out in two steps. The first step is eigenvalue comparison:
The sample eigenvalue λin arise as eigenvalues of XX′/n when X is a pn-by-n
matrix whose rows are i.i.d. draws from N (0,�pn). Let � : Rpn →R

pn−r denote
the projection on the last pn − r coordinates in R

pn and let μ1n ≥ · · · ≥ μpn−r,n

denote the eigenvalues of �X(�X)′/n. By the Cauchy interlacing theorem (e.g.,
[8], page 59), we have

(7.11) λin ≤ μi−r,n for r + 1 ≤ i ≤ pn,

where the (μin) are the eigenvalues of a white Wishart matrix Wpn−r(n, I ).
The second step is a bound on eigenvalues of a white Wishart that exit the

bulk. Before stating it, we return to an important detail introduced in the Remark
concluding Section 1.1.

Definition 3 of a bulk shrinker depends on the parameter γ = limp/n through
λ+(γ ). Making that dependence explicit, we obtain a bivariate function η(λ, c).
In model [ASY(γ )] and in the nth problem, we might use η(λ, cn) either with
cn = γ or cn = p/n. For Proposition 1 below, it will be more natural to use the
latter choice. We also modify Definition 3 as follows.
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DEFINITION 7. We call η : [0,∞)× (0,1] → [1,∞) a jointly continuous bulk

shrinker if η(λ, c) is jointly continuous in λ and c, satisfies η(λ, c) = 1 for λ ≤
λ+(c) and is dominated: η(λ, c) ≤ Mλ for some M and all λ.

The following result is proved in [36], Theorem 2(a).

PROPOSITION 1. Let (μin)
N
i=1 denote the sample eigenvalues of a matrix dis-

tributed as WN (n, I ), with N/n → γ > 0. Suppose that η(λ, c) is a jointly contin-

uous bulk shrinker and that cn − N/n = O(n−2/3). Then for q > 0,

(7.12)
∥

∥η(μin, cn) − 1
∥

∥

ℓq (RN )

P→ 0.

The continuity assumption on the loss functions may be formulated as fol-
lows. Suppose that A,B1,B2 are p-by-p positive definite matrices, with A sat-
isfying assumption [SPIKE(ℓ1, . . . , ℓr )] and spec(Bk) = [(ηki), (vi)], thus B1 and
B2 have the same eigenvectors. Set η1 = max{η11, η21}. We assume that for some
q ∈ [1,∞] and some continuous function C(ℓ1, η1) not depending on p, we have

(7.13)
∣

∣Lp(A,B1) − Lp(A,B2)
∣

∣≤ C(ℓ1, η1)‖η1 − η2‖ℓq (Rp)

whenever ‖η1 − η2‖ℓq (Rp) ≤ 1. Condition (7.13) is satisfied for all 26 of the loss
functions of Section 3, as is verified in Proposition 1 in SI.

In the next proposition, we adopt the convention that estimators �̂η of (1.7) and
�̂η,r of (1.13) are constructed with a jointly continuous bulk shrinker, which we
denote η(λ, cn).

PROPOSITION 2. Adopt models [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr )]. Suppose

also that the family L = {Lp} of loss functions is orthogonally invariant and sum-

or max-decomposable, and satisfies continuity condition (7.13). If η(λ, cn) is a

jointly continuous bulk shrinker with cn = pn/n, then

Lp(�, �̂η) − Lp(�, �̂η,r)
P→ 0,

and so Lp(�, �̂η) converges in probability to the deterministic asymptotic loss

(7.8).

PROOF. In the left-hand side of (7.13), substitute A = �,B1 = �̂η and B2 =
�̂η,r . By definition, �̂η and �̂η,r share the same eigenvectors. The components of
η1 − η2 then satisfy

η1i − η2i =
{

η(λin, cn) − 1, i ≥ r + 1,

0, 1 ≤ i ≤ r.

We now use (7.11) to compare the eigenvalues λin of the spiked model to those
of a suitable white Wishart matrix to which Proposition 1 applies. The function
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η↑(μ, c) = max{η(λ, c),1 ≤ λ ≤ μ} and is nondecreasing and jointly continuous.
Hence η(λin, cn) ≤ η↑(λin, cn) ≤ η↑(μi−r,n, cn), and so

p
∑

i=r+1

[

η(λin, cn) − 1
]q ≤

p−r
∑

j=1

[

η↑(μjn, cn) − 1
]q

,

with a corresponding bound for q = ∞. From continuity condition (7.13),
∣

∣Lp(�, �̂η) − Lp(�, �̂η,r)
∣

∣≤ C
(

ℓ1, η(λ1n, cn)
)∥

∥η↑(μjn, cn) − 1
∥

∥

ℓq (Rp−r ).

The constant C(ℓ1, η(λ1n, cn)) remains bounded by (1.2). The ℓq norm converges
to 0 in probability, applying Proposition 1 to the eigenvalues of Wpn−r(n, I ), with
N = pn − r , noting that cn − N/n = r/n = O(n−2/3). �

7.2. Asymptotic loss for discontinuous optimal shrinkers. Formula (6.5)
showed that the optimal shrinker η∗(λ, γ ) for operator norm losses LO,1,LO,2

is discontinuous at ℓ = ℓ+(γ ) = 1 + √
γ . In this section, we show that when

η∗ is used, a deterministic asymptotic loss exists for LO,1, but not for LO,2.
The reason will be seen to lie in the behavior of the optimal component loss
F∗(ℓ) = L2[A(ℓ),B(ℓ, η∗)]. Indeed, calculation based on (6.2), (6.5) shows that
for ℓ ≥ ℓ+,

F∗(ℓ) =
[

ℓaγ (ℓ − 1)

ℓ − 1 + γ

]1/2
→ F∗(ℓ+) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√
γ , a = 1,
√

γ

1 + √
γ

, a = −1

as ℓ ↓ ℓ+, where indices a = 1 and −1 correspond to FO,1
∗ and FO,2

∗ respectively.
Importantly, FO,1

∗ is strictly increasing on [ℓ+,∞) while FO,2
∗ is strictly decreas-

ing there.

PROPOSITION 3. Adopt models [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr )] with ℓr >

ℓ+(γ ). Consider the optimal shrinker η∗(λ, γn) with γn = pn/n given by (6.5) for

both LO,1 and LO,2. For LO,1, the asymptotic loss is well-defined:

(7.14) ‖�̂η − �‖∞ − ‖�̂η,r − �‖∞
P→ 0.

However, for LO,2,

(7.15)
∥

∥�̂−1
η − �−1∥

∥

∞ −
∥

∥�̂−1
η,r − �−1∥

∥

∞
D→ W,

where W has a two point distribution in which

W =
{

FO,2
∗ (ℓ+) − FO,2

∗ (ℓr) with prob 1 − F1(0),

0 otherwise,

and F1(0) = P{TW1 ≤ 0} for a real Tracy–Widom variate TW1 [67].
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Roughly speaking, there is positive limiting probability that the largest noise
eigenvalue will exit the bulk distribution, and in such cases the corresponding com-
ponent loss F∗(ℓ+)—which is due to noise alone—exceeds the largest component
loss due to any of the r spikes, namely F∗(ℓr). Essentially, this occurs because
precision losses L{O,F,N},2(a�,a�̂) decrease as signal strength a increases. The
effect is not seen for L{F,N},2 because the optimal shrinkers in those cases are
continuous at ℓ+.

PROOF. For the proof, write ‖ · ‖ for ‖ · ‖∞. Let W = [W1 W2] be the orthog-
onal change of basis matrix constructed in Lemma 7, with W1 containing the first
2r columns. We treat the two losses LO,1 and LO,2 at once using an exponent
a = ±1, and write ηa(λ) for ηa(λ, γn). Thus, let

� = �n = �̂a
η − �̂a

η,r =
p
∑

i=r+1

[

ηa(λi) − 1
]

viv
′
i,

and observe that the loss of the rank-aware estimator

� = �n = �̂a
η,r − �̂a =

r
∑

i=1

[

ηa(λi) − 1
]

viv
′
i −

r
∑

i=1

(

ℓa
i − 1

)

uiu
′
i

lies in the column span of W1. We have �̂a
η − �a = �n + �n, and the main task

will be to show that for a = ±1,

(7.16) ‖�n + �n‖ = max
(

‖�n‖,‖�n‖
)

+ oP (1).

Assuming the truth of this for now, let us derive the proposition. The quantities
of interest in (7.14), (7.15) become

∥

∥�̂a
η − �̂a

∥

∥−
∥

∥�̂a
η,r − �̂a

∥

∥= ‖�n + �n‖ − ‖�n‖

= max
(

‖�n‖ − ‖�n‖,0
)

+ oP (1).

First, note from Lemma 7 that

(7.17) ‖�n‖
a.s.→ max

1≤i≤r
F∗(ℓi).

Observe that for both a = 1 and −1,

‖�n‖ = max
i≥r+1

∣

∣η∗a(λin) − 1
∣

∣=
∣

∣ηa(λr+1,n) − 1
∣

∣.

The rescaled noise eigenvalue p2/3(λr+1,n − λ+(γn))
D→ σ(γ )W has a limiting

real Tracy–Widom distribution with scale factor σ(γ ) > 0 [5], Proposition 5.8.
Hence, using the discontinuity of the optimal shrinker η∗, and the square root
singularity from above

η∗(λr+1,n, γn) =
{

ℓ+(γn) + OP

(

p−1/3), λr+1,n > λ+(γn),

1, λr+1,n ≤ λ+(γn).
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Consequently, recalling that F∗(ℓ+) = |(1 + √
γ )a − 1|, we have

(7.18) ‖�n‖ →P F∗(ℓ+)I (TW > 0).

For LO,1, with a = 1, F∗(ℓ) is strictly increasing and so from (7.17) and (7.18),
we obtain ‖�n‖ ≥ ‖�n‖+oP (1), and hence (7.14). For LO,2, with a = −1, F∗(ℓ)
is strictly decreasing and so on the event TW > 0,

‖�n‖ − ‖�n‖
D→ F∗(ℓ+) − F∗(ℓr) > 0,

which leads to (7.15), and hence the main result.
It remains to prove (7.16). For a symmetric block matrix,

(7.19) max
(

‖A‖,‖C‖
)

≤
∥

∥

∥

∥

(

A B

B ′ C

)
∥

∥

∥

∥

≤ max
(

‖A‖,‖C‖
)

+ ‖B‖.

Apply this to W ′(� + �)W with

An = W ′
1(� + �)W1,

Bn = W ′
1(� + �)W2 = W ′

1�W2,

Cn = W ′
2(� + �)W2 = W ′

2�W2,

since �W2 = 0. Hence

(7.20) ‖�n + �n‖ = max
(

‖An‖,‖Cn‖
)

+ OP

(

‖Bn‖
)

.

We now show that ‖�W1‖
P→ 0. Using notation from Lemma 5,

W1 =
[

Ur Vr

]

R−1 =
[

Ur (Vr − UrR12)R
−1
22

]

.

Since �vk = 0 for k = 1, . . . , r ,

‖�W1‖ ≤ ‖�Ur‖
(

1 +
∥

∥R12R
−1
22

∥

∥

)

.

From (7.9), we have ‖R12R
−1
22 ‖ → ‖�r(c/s)‖ = c(ℓ1)/s(ℓ1), and hence is

bounded. Observe that �uk = ∑p
i=r+1 δa

in(v
′
iuk)vi , where we have set δin =

η(λi, γn) − 1. Note from (6.5) that δin = 0 unless λi > λ+(γn). With Nn = #{i ≥
r + 1 : λin > λ+(γn)}, we then have

(7.21) ‖�Ur‖ ≤
√

r max
k=1,...,r

‖�uk‖2 ≤
√

r‖�‖Nn max
k≤r;i>r

∣

∣v′
iuk

∣

∣.

From (7.18), we have ‖�n‖ = OP (1). Since each vi, i > r is uniformly dis-
tributed on Sp−1, a simple union bound based on (7.23) below yields

(7.22) max
i>r,k≤r

(

v′
iuk

)2 = OP

(

logp

p

)

.

It remains to bound Nn. From the interlacing inequality (7.11),

Nn ≤ Ñn = #
{

j ≥ 1 : μjn > λ+(γn)
}

,
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where {μjn} are the eigenvalues of a white Wishart matrix Wpn−r(n, I ). This quan-
tity is bounded in [36], Theorem 2(c), which says that Ñn = Op(1). In more detail,
we make the correspondences N ← pn − r, γN ← (pn − r)/n and cN ← pn/n so
that cN − γN = r/n = o(n−2/3) and obtain EÑn → c0

.= 0.17.
From (7.21) and the preceding two paragraphs, we conclude that ‖�Ur‖ =

OP (p−1/2√logp) and so ‖�W1‖
P→ 0.

Returning to (7.20), we deduce now that ‖Bn‖ ≤ ‖�W1‖
P→ 0. From the defini-

tion of W1, we have ‖W ′
1�W1‖ = ‖�‖, and hence the inequalities:

∣

∣‖An‖ − ‖�n‖
∣

∣≤
∥

∥W ′
1�W1

∥

∥

P→ 0.

Now observe that ‖Cn‖ ≤ ‖�n‖. Apply (7.19) to W ′�W to get

‖�n‖ ≤ ‖Cn‖ +
∥

∥W ′
1�W1

∥

∥+
∥

∥W ′
2�W1

∥

∥,

and hence that ‖Cn‖ ≥ ‖�n‖−oP (1). Thus ‖Cn‖ = ‖�n‖+oP (1). Inserting these
results into (7.20), we obtain

‖�n + �n‖ = max
(

‖An‖,‖Cn‖
)

+ oP (1) = max
(

‖�n‖,‖�n‖
)

+ oP (1),

which completes the proof of (7.16), and hence of Proposition 3. �

Finally, we record a concentration bound for the uniform distribution on
spheres. While more sophisticated results are known [47], an elementary bound
suffices for us.

LEMMA 8. If U is uniformly distributed on Sn−1 and u ∈ Sn−1 is fixed, then

for M > 0 and n ≥ 4,

(7.23) P
(
∣

∣〈U,u〉
∣

∣≥ 2
√

Mn−1 logn
)

<
√

π/2 · n1/2−M .

PROOF. Since U2
1 := 〈U,u〉2 has the Beta(1

2 , n−1
2 ) distribution,

P
(

U2
1 ≥ a

)

≤ B

(

1

2
,
n − 1

2

)−1 ∫ 1

a
t−

1
2 (1 − t)

n−3
2 dt ≤ γn(1 − a)

n
2 −1,

where by Gautschi’s inequality [54, 56], (5.6.4),

γn = B

(

1

2
,

1

2

)

/

B

(

1

2
,
n − 1

2

)

=
√

πŴ

(

n

2

)

/

Ŵ

(

n − 1

2

)

<
√

πn/2.

Since (1 − x/m)m < e−x for x,m > 0, and 4/n ≥ 2/(n − 2) for n ≥ 4,

P
(

U2
1 ≥ 4Mn−1 logn

)

<
√

πn/2
(

1 − M logn

n/2 − 1

)n/2−1
<
√

π/2 · n1/2−M .
�



OPTIMAL SHRINKAGE OF EIGENVALUES IN THE SPIKED MODEL 1769

8. Optimality among equivariant procedures. The notion of optimality in
asymptotic loss, with which we have been concerned so far, is relatively weak.
Also, the class of covariance estimators we have considered, namely procedures
that apply the same univariate shrinker to all empirical eigenvalues, is fairly re-
stricted.

Consider the much broader class of orthogonally-equivariant procedures for co-
variance estimation [49, 53, 65], in which estimates take the form �̂ = V �V ′.
Here, � = �(�) is any diagonal matrix that depends on the empirical eigenvalues
� in possibly a more complex way than the simple scalar element-wise shrink-
age η(�) we have considered so far. One might imagine that the extra freedom
available with more general shrinkage rules would lead to improvements in loss,
relative to our optimal scalar nonlinearity; certainly the proposals of [46, 49, 65]
are of this more general type.

The smallest achievable loss by any orthogonally equivariant procedure is ob-
tained with the “oracle” procedure �̂oracle = V �oracleV ′, where

(8.1) �oracle = arg min
�

L
(

�,V �V ′),

the minimum being taken over diagonal matrices with diagonal entries ≥1. Clearly,
this optimal performance is not attainable, since the minimization problem explic-
itly demands perfect knowledge of �, precisely the object that we aim to recover.
This knowledge is never available to us in practice, hence the label oracle.5 Nev-
ertheless, this optimal performance is a legitimate benchmark.

Interestingly, at least for the popular Frobenius and Stein losses, our optimal
nonlinearities η∗ deliver oracle-level performance—asymptotically. To state the
result, recall expression (6.2) for these losses: F(ℓ,�) = L2(A(ℓ),B(ℓ,�)).

THEOREM 2 (Asymptotic optimality among all equivariant procedures). Let

L denote either the direct Frobenius loss LF,1 or the Stein loss Lst. Consider a

problem sequence satisfying assumptions [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr )]. We

have

lim
n→∞Lpn

(

�, �̂oracle)=P L∞
(

ℓ1 . . . , ℓr |η∗)=
r
∑

i=1

F
(

ℓi, η
∗),

where η∗ is the optimal shrinker for the losses LF,1 or Lst in Table 2.

In short, the shrinker η∗(·), which has been designed to minimize the limiting

loss, asymptotically delivers the same performance as the oracle procedure, which

5The oracle procedure does not attain zero loss since it is “doomed” to use the eigenbasis of
the empirical covariance, which is a random basis corrupted by noise, to estimate the population
covariance.
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has the lowest possible loss, in finite-n, over the entire class of covariance esti-
mators by arbitrary high-dimensional shrinkage rules. On the other hand, by defi-
nition, the oracle procedure outperforms every orthogonally-equivariant statistical
estimator. We conclude that η∗—as one such orthogonally-invariant estimator—is
indeed optimal (in the sense of having the lowest limiting loss) among all orthog-
onally invariant procedures. While we only discuss the cases LF,1 and Lst, we
suspect that this theorem holds true for many of the 26 loss functions considered.

PROOF. We first outline the approach. We can write � and �−1 in the form
I + F , and �̂� = I + �̃ with

F =
r
∑

k=1

βkuku
′
k, �̃ =

p
∑

i=1

�̃iviv
′
i,

where βk = ℓk − 1 for LF,1 and ℓ−1
k − 1 for Lst and �̃i = �i − 1. Write

(8.2) trF�̃ =
p
∑

i=1

�̃ibi, bi :=
r
∑

k=1

βk

(

u′
kvi

)2
.

For both L = LF,1 and Lst, we establish a decomposition

(8.3) Lp(�, �̂�) =
r
∑

i=1

F(ℓi,�i) + a(�i − 1)εi +
p
∑

i=r+1

H(bi,�i).

Here, a is a constant depending only on the loss function,

(8.4) εi = bi − βic(ℓi)
2,

and

(8.5) H(b,�) =
{

(� − 1)2 − 2(� − 1)b for LF,1,

(� − 1)(1 + b) − log� for Lst.

Decomposition (8.3) shows that the oracle estimator (8.1) may be found term
by term, using just univariate minimization over each �i . Consider the first sum in
(8.3), and let F̃ (ℓi,�i) denote the summand. We will show that

(8.6) min
�i

F̃ (ℓi,�i)
P→ min

�i

F(ℓi,�i),

and that

(8.7)
p
∑

i=r+1

min
�i

H(bi,�i) = OP

(

log2 p

p

)

.

Together (8.6) and (8.7) establish the theorem.
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Turning to the details, we begin by showing (8.3). For Frobenius loss, we have
from our definitions and (8.2) that

‖�̂� − �‖2
F = tr(�̃ − F)(�̃ − F)′ =

p
∑

i=1

(�i − 1)2 − 2(�i − 1)bi +
r
∑

i=1

(ℓi − 1)2.

For i ≥ r + 1, each summand in the first sum equals H(bi,�i) and for i ≤ r , we
use the decomposition bi = (ℓi − 1)c(ℓi)

2 + εi . We obtain decomposition (8.3)
with a = −2 and

F(ℓ,�) = (ℓ − 1)2 − 2(ℓ − 1)(� − 1)c2 + (� − 1)2.

For Stein’s loss, our definitions yield

Lst(�, �̂�) = tr �̃ + trF + trF�̃ − log
(

|�̂�|/|�|
)

=
p
∑

i=1

�̃i(1 + bi) − log�i +
r
∑

k=1

βk + logℓk.

Again, for each i ≥ r + 1, each summand in the first sum equals H(bi,�i) and
with bi = (ℓi − 1)c(ℓi)

2 + εi we obtain (8.3) with a = 1 and

F(ℓ,�) =
(

ℓ−1 − 1
)

+ (� − 1)
(

c2/ℓ + s2)− log(�/ℓ).

It remains to verify (8.6) and (8.7). Theorem 1 says that for 1 ≤ i ≤ r ,

εi =
r
∑

k=1

βk

[(

u′
kvi

)2 − δk,ic(ℓi)
2] P→ 0,

which yields (8.6). From (8.5), we observe that in our two cases

(8.8) h(b) := min
�

H(b,�) =
{

−b2

−b + log(1 + b)
= O

(

b2).

Now, using (8.2) and (7.22), we get

max
r+1≤i≤p

|bi | ≤ r max
1≤k≤r

|βk| · max
i>r,k≤r

(

u′
kvi

)2 = OP

(

logp

p

)

.

From the previous two displays, we conclude

p
∑

i=r+1

min
�i

H(bi,�i) =
p
∑

i=r+1

h(bi) = OP

(

log2 p

p

)

,

which is (8.7), and so completes the full proof. �
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9. Optimal shrinkage with common variance σ
2 �= 1. Simply put, the

spiked covariance model is a proportional growth independent-variable Gaussian
model, where all variables, except the first r , have common variance σ . Literature
on the spiked model often simplifies the situation by assuming σ 2 = 1, as we have
done in our assumption [SPIKE(ℓ1, . . . , ℓr )] above. To consider optimal shrinkage
in the case of general common variance σ 2 > 0, assumption [SPIKE(ℓ1, . . . , ℓr )]
has to be replaced by

[SPIKE(ℓ1, . . . , ℓr |σ 2)] The population eigenvalues in the nth problem, namely
the eigenvalues of �pn , are given by (ℓ1, . . . , ℓr , σ

2, . . . , σ 2), where the number
of “spikes” r and their amplitudes ℓ1 > · · · > ℓr ≥ 1 are fixed independently of
n and pn.

In this section, we show how to use an optimal shrinker, designed for the spiked
model with common variance σ 2 = 1, in order to construct an optimal shrinker
for a general common variance σ 2, namely, under assumptions [ASY(γ )] and
[SPIKE(ℓ1, . . . , ℓr |σ 2)].

9.1. σ 2 known. Let �p and Sn,p be population and sample covariance ma-
trices, respectively, under assumption [SPIKE(ℓ1, . . . , ℓr |σ 2)]. When the value
of σ is known, the matrices �̃p = �p/σ 2 and the sample covariance matrix
S̃n,p = Sn,p/σ 2 constitute population and sample covariance matrices, respec-
tively, under assumption [SPIKE(ℓ1, . . . , ℓr )]. Let L be any of the loss families
considered above and let η be a shrinker. Define the shrinker η̃ corresponding to η

by

(9.1) η̃ : λ �→ σ 2 · η
(

λ/σ 2).

Observe that for each of the loss families we consider, Lp(σ 2A,σ 2B) =
σ 2κLp(A,B), where κ ∈ {−2,−1,0,1,2} depends on the family {Lp} alone.
Hence

Lp

(

�p, �̂η̃(Sn,p)
)

= σ 2κLp

(

�̃p, �̂η(S̃n,p)
)

.

It follows that if η∗ is the optimal shrinker for the loss family L, in the sense
of Definition 6, under Assumption [SPIKE(ℓ1, . . . , ℓr )], then η̃∗ is the optimal
shrinker for L under Assumption [SPIKE(ℓ1, . . . , ℓr |σ 2)]. Formula (9.1) therefore
allows us to translate each of the optimal shrinkers given above to a corresponding
optimal shrinker in the case of a general common variance σ 2 > 0.

9.2. σ 2 unknown. In practice, even if one is willing to assume a common vari-
ance σ 2 and subscribe to the spiked model, the value of σ 2 is usually unknown. As-
sume however that we have a sequence of estimators {σ̂n}n=1,2,..., where for each
n, σ̂n is a real function of a pn-by-pn positive definite symmetric matrix argument.
Assume further that under the spiked model with general common variance σ 2,
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namely under assumptions [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr |σ 2)], the sequence
of estimators is consistent in the sense that σ̂n(Sn,pn) → σ , almost surely. For a
continuous shrinker η, define a sequence of shrinkers {η̃n}n=1,2,... by

(9.2) η̃n : λ �→ σ̂ 2
n · η

(

λ/σ̂ 2
n

)

.

Again for each of the loss families we consider, almost surely,

lim
n→∞Lpn

(

�pn, �̂η̃n
(Sn,pn)

)

= σ 2κ lim
n→∞Lpn

(

�̃pn, �̂η(S̃n,pn)
)

.

We conclude that, using (9.2), any consistent sequence of estimators σ̂n yields a
sequence of shrinkers with the same asymptotic loss as the optimal shrinker for
known σ 2. In other words, at least inasmuch as the asymptotic loss is concerned,
under the spiked model, there is no penalty for not knowing σ 2.

Estimation of σ 2 under Assumption [SPIKE(ℓ1, . . . , ℓr |σ 2)] has been consid-
ered in [41, 58, 61] where several approaches have been proposed. As an simple
example of a consistent sequence of estimators σ̂n, we consider the following sim-
ple and robust approach based on matching of medians [25]. The underlying idea
is that for a given value of n the sample eignevalues λr+1, . . . , λpn form an ap-
proximate Marčenko–Paster bulk inflated by σ 2, and that a median sample eigen-
value is well suited to detect this inflation as it is unaffected by the sample spikes
λ1, . . . , λr .

Define, for a symmetric p-by-p positive definite matrix S with eigenvalues
λ1, . . . , λp the quantity

(9.3) μ(S) = λmed

μγ

,

where λmed is a median of λ1, . . . , λp and μγ is the median of the Marčenko–
Pastur distribution, namely, the unique solution in λ−(γ ) ≤ x ≤ λ+(γ ) to the equa-
tion

(9.4)
∫ x

λ−(γ )

√
(λ+(γ ) − t)(t − λ−(γ ))

2πγ t
dt = 1

2
,

where as before λ±(γ ) = (1 ± √
γ )2. Note that the median μγ is not available

analytically but can easily be obtained numerically, for example, using remarks on
the Marčenko–Pastur cumulative distribution function included in SI. Now for a
sequence {Sn,pn} of sample covariance matrices, define the sequence of estimators:

(9.5) σ̂n : Sn,pn �→
√

μ(Sn,pn).

LEMMA 9. Let σ 2 > 0, and assume [ASY(γ )] and [SPIKE(ℓ1, . . . , ℓr |σ 2)].
Then almost surely

lim
n→∞ σ̂n(Sn,pn) = σ.
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In summary, using (9.1) (for σ 2 known) or (9.2) with (9.5) (for σ 2 unknown)
one can use the optimal shrinkers for each of the loss families discussed above,
designed for the case σ = 1, to construct a shrinker that is optimal, for the same
loss family, under the spiked model with common variance σ 2 �= 1.

10. Discussion. In this paper, we considered covariance estimation in high di-
mensions, where the dimension p is comparable to the number of observations n.
We chose a fixed-rank principal subspace, and let the dimension of the problem
grow large. A different asymptotic framework for covariance estimation would
choose a principal subspace whose rank is a fixed fraction of the problem dimen-
sion; that is, the rank of the principal subspace is growing rather than fixed. (In the
sibling problem of matrix denoising, compare the “spiked” setup [25, 26, 61] with
the “fixed fraction” setup of [14].)

In the fixed fraction framework, some of underlying phenomena remain qual-
itatively similar to those governing the spiked model, while new effects appear.
Importantly, the relationships used in this paper, predicting the location of the top
empirical eigenvalues, as well as the displacement of empirical eigenvectors, in
terms of the top theoretical eigenvalues, no longer hold. Instead, a complex non-
linear relation exists between the limiting distribution of the empirical eigenvalues
and the limiting distribution of the theoretical eigenvalues, as expressed by the
Marčenko–Pastur (MP) relation between their Stieltjes transforms [1, 51].

Covariance shrinkage in the proportional rank model should then, naturally,
make use of the so-called MP Equation. Noureddine El Karoui [22] proposed a
method for debiasing the empirical eigenvalues, namely, for estimating (in a cer-
tain specific sense) their corresponding population eigenvalues; Olivier Ledoit and
Sandrine Peché [44] developed analytic tools to also account for the inaccuracy of
empirical eigenvectors, and Ledoit and Michael Wolf [46] have implemented such
tools and applied them in this setting.

The proportional rank case is indeed subtle and beautiful. Yet, the fixed-rank
case deserves to be worked out carefully. In particular, the shrinkers we have ob-
tained here in the fixed-rank case are extremely simple to implement, requiring just
a few code lines in any scientific computing language. In comparison, the covari-
ance estimation ideas of [22, 46], based on powerful and deep insights from MP
theory, require a delicate, nontrivial effort to implement in software, and call for
expertise in numerical analysis and optimization. As a result, the simple shrinkage
rules we propose here may be more likely to be applied correctly in practice, and
to work as expected, even in relatively small sample sizes.

An analogy can be made to shrinkage in the normal means problem, for exam-
ple [17]. In that problem, often a full Bayesian model applies, and in principle a
Bayesian shrinkage would provide an optimal result [9]. Yet, in applications one
often wants a simple method which is easy to implement correctly, and which is
able to deliver much of the benefit of the full Bayesian approach. In literally thou-
sands of cases, simple methods of shrinkage—such as thresholding—have been
chosen over the full Bayesian method for precisely that reason.
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Reproducible research. In the code supplement [16], we offer a Matlab soft-
ware library that includes:

1. A function to compute the value of each of the 26 optimal shrinkers discussed
to high precision.

2. A function to test the correctness of each of the 18 analytic shrinker formulas
provided.

3. Scripts that generate each of the figures in this paper, or subsets of them for
specified loss functions.

Acknowledgments. We thank Amit Singer, Andrea Montanari, Sourav Chat-
terjee and Boaz Nadler for helpful discussions. We also thank the anonymous ref-
erees for significantly improving the manuscript through their helpful comments.

SUPPLEMENTARY MATERIAL

Proofs and additional results (DOI: 10.1214/17-AOS1601SUPP; .pdf). In the
supplementary material, we provide proofs omitted from the main text for space
considerations and auxiliary lemmas used in various proofs. Notably, we prove
Lemma 4, and provide detailed derivations of the 17 explicit formulas for optimal
shrinkers, as summarized in Table 2. In addition, in the supplementary material we
offer a detailed study of the large-λ asymptotics (asymptotic slope and asymptotic
shift) of the optimal shrinkers discovered in this paper, and tabulate the asymptotic
behavior of each optimal shrinker. We also study the asymptotic percent improve-
ment of the optimal shrinkers over naive hard thresholding of the sample covari-
ance eigenvalues.
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