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Abstract—A technique to create High Dynamic Range (HDR)
video frames is to capture Low Dynamic Range (LDR) images
at varying shutter speeds. They are then merged into a single
image covering the entire brightness range of the scene. While
shutter speeds are often chosen to vary by a constant factor, we
propose an adaptive approach. The scene’s histogram together
with functions judging the contribution of an LDR exposure
to the HDR result are used to compute a sequence of shutter
speeds. This sequence allows for the estimation of the scene’s
radiance map with a high degree of accuracy. We show that, in
comparison to the traditional approach, our algorithm achieves
a higher quality of the HDR image for the same number of
captured LDR exposures. Our algorithm is suited for creating
HDR videos of scenes with varying brightness conditions in real-
time, which applications like video surveillance benefit from.

Index Terms—HDR Video, Shutter Speed, Real-Time

I. INTRODUCTION

A recurring problem in video surveillance is the monitored

scene having a range of brightness values that exceeds the

capabilities of the capturing device. An example would be

a video camera mounted in a bright outside area, directed

at the entrance of a building. Because of the potentially big

brightness difference, it may not be possible to capture details

of the inside of the building and the outside simultaneously

using just one shutter speed setting. This results in under-

and overexposed pixels in the video footage, impeding the

use of algorithms for face recognition and human tracking.

See Figure 1 for an example. A low-cost solution to this

problem is temporal exposure bracketing, i.e., using a set of

LDR images captured in quick sequence at different shutter

settings [1]. Each LDR image then captures one facet of the

scene’s brightness range. When fused together, an HDR video

frame is created that reveals details in dark and bright regions

simultaneously.

In a video surveillance scenario, capturing and fusion must

be performed in real-time. One way to speed up this process

is to only capture as few LDR images as necessary, that is,

to optimally choose shutter speeds at which to capture. In the

surveillance example above, it may be a sensible choice to only

use the two exposures shown in Figure 1. Such a choice can

only be made if the scene’s brightness histogram is considered.

Barakat et al. [2] focus entirely on minimizing the number

of exposures while covering the entire dynamic range of

the scene. Minimum and maximum of the scene’s irradiance

range are taken into account, and the least possible overlap of

Fig. 1. The inside of the building is much darker than the outside. There
is no shutter speed setting that exposes both correctly at the same time. A
solution to this problem is using a sequence of shutter speeds and merging
the images together.

exposures is always chosen. The algorithm is a fast heuristic

suitable for real-time use.

A very recent method to determine noise-optimal exposure

settings uses varying gain levels [3]. For a given sum of

exposure times, increasing gain also increases the SNR. The

authors define SNR as a function over log radiance values.

The extrema of the scene’s brightness are considered.

The authors of [4] developed a theoretical model for photons

arriving at a pixel by estimating the parameters of a Gamma

distribution. From the model, exposure values are chosen that

maximize a criterion for recoverability of the radiance map.
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The focus lies on the impact of saturated pixels on the HDR

result.

In [5], an algorithm for estimating optimal exposure pa-

rameters from a single image is presented. The brightness of

saturated pixels is estimated from the unsaturated surrounding.

Using this estimation, the expected quality of the rendered

HDR image for a given exposure time is calculated. The

exposures leading to the lowest rendering error are chosen.

In an HDR video, the histogram of scene brightness values

is often a by-product of tone mapping the previous frames [6].

The novel approach we present in this paper thus uses the

entire histogram to calculate a shutter speed sequence in real-

time. The shutter speeds are chosen in a way, such that fre-

quently occurring brightness values are well-exposed in at least

one of the captured LDR images. This increases the average

SNR for a given number of exposures or minimizes the number

of exposures required to achieve a desired SNR. We also give

our definition of contribution functions to specify precisely

what we mean by “well-exposed”. In order to be applicable

to video, we consider bootstrapping and convergence to a

stable shutter sequence. Additionally, we introduce a stability

criterion for the shutter speeds to prevent flicker in the video.

Due to space limitations of this paper, we have left out some

of the details. A more extensive description of our work can

be found in our technical report [7].

In the following section, we introduce weighting func-

tions for LDR pixels and give our definition of contribution
functions. Section III then defines log radiance histograms

and demonstrates a useful relationship between them and

contribution functions which is exploited by our algorithm.

The algorithm for finding optimal shutter speed sequences

itself is described in Section IV. The quality of the HDR

images produced by our optimal shutter sequences and the

computational cost are analyzed in Section V of this paper.

Section VI concludes the paper.

II. WEIGHTING FUNCTIONS

An HDR image is a map of radiances contained in a scene.

In order to reconstruct this radiance map from the pixel values

of the captured LDR images, the camera’s response function f
must be known. For the duration Δt that the camera’s shutter is

open, a pixel on the CCD sensor integrates the scene radiance

E, resulting in a total exposure of EΔt. The camera’s response

function then maps the exposure to a pixel value I = f(EΔt),
usually in the range of [0, 255]. When the shutter speeds Δti
used to capture the LDR images are known, the inverse of the

response function can be used to make an estimate Ẽi of the

original radiance from pixel value Ii in LDR image i:

Ẽi =
f−1(Ii)

Δti
. (1)

A good approximation of the radiance value at a pixel in the

HDR image is then obtained by computing a weighted average

over all estimates Ẽi:

E =
∑

i w(Ii)Ẽi∑
i w(Ii)

. (2)

Fig. 2. The weighting function we use in our experiments. The weight of
a pixel is its value multiplied by a hat function normalized to a maximum
weight of 1.

The weighting function w determines how much the radiance

estimate Ẽi from a pixel Ii contributes to the corresponding

HDR pixel E. In other words, it judges a pixel’s usefulness for

recovering a radiance value based on its brightness value. Note

that without prior calibration, radiance values E computed like

this only represent physical quantities up to an unknown scale

factor. This is sufficient for our purpose. We thus use the terms

radiance and scaled radiance interchangeably to denote the

pixel values of an HDR frame.

Weighting functions are usually chosen to reflect noise

characteristics of a camera, the derivative of its response

function (i.e., the camera’s sensitivity), and saturation effects.

They are often found in the literature as parts of HDR creation

techniques. Even though various weighting functions exist,

they often share a few common properties. Most notably, the

extremes of the pixel range are always assigned zero weight.

This means that pixels with these values contain no useful

information about the real radiance. Another common attribute

of weighting functions is that pixels with a medium to high

value are considered to be more faithful than dark pixels. This

is due to the fact that a large portion of the image noise (e.g.,

quantization noise, fixed pattern noise) is independent of the

amount of light falling onto the pixel. A bright pixel thus has a

better signal-to-noise ratio than a dark one. Figure 2 shows an

exemplary weighting function. In our experiments, we found

that the function shown in the plot gives the best results, but

our approach also works for any other choice.

For a given shutter speed Δt, we can calculate how well a

radiance value E can be estimated from an image captured at

Δt by combining the response and the weighting function. A

radiance value E is mapped to a pixel value using the camera’s

response function f . The weighting function w then assigns a

weighting to the pixel value. We define

cΔt(E) = w(f(EΔt)) (3)

as the contribution of an image captured at Δt to the esti-

mation of a radiance value E. In the special case of a linear

response function, cΔt looks like a shifted and scaled version

of w. An example for a contribution function in the log domain

is shown in Figure 3.



Fig. 3. Example of a log radiance histogram. The dashed line is the
contribution function in the log domain of the first shutter speed chosen by our
algorithm. The exposure was chosen such that it captures the most frequently
occurring radiance values best.

III. LOG RADIANCE HISTOGRAMS

When creating HDR videos in real-time, the scene’s bright-

ness distribution is known from the previous frames. Addition-

ally, some tone mapping operators create histograms of scene

radiance values as a by-product or can be modified to create

them with little extra effort. In this section, we describe how a

log radiance histogram can be used to calculate a sequence of

shutter speeds Δti which allows the most accurate estimation

of the scene’s radiance. We do this by choosing the Δti such

that the peaks of the contribution functions cΔti(E) of the

LDR images coincide with the peaks in the histogram. That

is, radiance values that occur frequently in the scene lead to

LDR images to be captured which measure these radiance

values accurately. This is illustrated in Figure 3.

The histogram over the logarithm of scene radiance has M
bins. Each bin with index j = 1, ...,M corresponds to the

logarithm of a discrete radiance value: bj = log(Ej). Bin j
counts the number H(j) of pixels in the HDR image having

a log radiance of bj . The bins have even spacing in the log

domain, meaning that for any j, the log radiance values bj and

bj+1 of two neighboring bins differ by a constant Δb = bj+1−
bj . The non-logarithmic radiance values corresponding to two

neighboring bins thus differ by a constant factor exp(Δb) =
exp(bj+1)/exp(bj) = Ej+1/Ej .

Equation 3 states that, for a given shutter speed Δt and

an LDR image captured using Δt, the value of cΔt(exp(bj))
indicates how accurately log radiance bj is represented in

the LDR image. When considering log radiance histograms,

the continuous contribution function is reduced to a discrete

vector of contribution values. It has one contribution value for

each radiance interval of the histogram. We can now exploit

a useful relationship between the log radiance histogram and

our contribution vector: Shifting the contribution vector by a

number of s bins leads to

cΔt(exp(bj + sΔb))
= w(f(exp(bj)exp(Δb)sΔt))
= w(f(exp(bj)Δt′))
= cΔt′(exp(bj)),

where

Δt′ = exp(Δb)sΔt. (4)

This means that the contribution vector corresponding to

shutter speed Δt′ is identical to a shifted version of the original

vector. We thus easily obtain an entire series of contribution

vectors for shutter speeds that differ by a factor of exp(Δb)s.

In other words, only the shift, but not the shape of the

contribution function depends on the shutter speed in the log

domain. This allows us to move the contribution function over

a peak in the histogram and then derive the corresponding

shutter speed using the above formula.

IV. OPTIMAL SHUTTER SEQUENCE

In order to compute an optimal shutter speed sequence, we

first calculate an initial contribution vector from the known

camera response and a chosen weighting function. Camera

response functions can be estimated as described for example

in [8], [9]. The initial shutter speed Δt to compute cΔt

can be chosen arbitrarily. For ease of implementation, we

choose Δt such that the first histogram bin is mapped to

a pixel value of 1, that is f(exp(b1)Δt) = 1. Note that

f−1(0) is not uniquely defined in general. The size of the

contribution vector depends on the dynamic range of the

camera, reflected in its response function. Reaching a certain

scene radiance EN+1 = exp(bN+1), the camera’s pixels will

saturate, resulting in f(exp(bj)Δt) = 255 for j ≥ N + 1 in

case of an 8 bit sensor. It is safe to assume that any reasonable

weighting function assigns zero weight to this pixel value.

Hence, the contribution vector cΔt(Ej) = w(f(exp(bj)Δt))
consists of N nonzero values. It can be shifted to M +N − 1
possible positions in the log radiance histogram. Each shift

position s corresponds to a shutter speed Δti, which can

be calculated using Equation 4: Δti = exp(Δb)sΔt. This

equivalence between shutter and shift is utilized later.

Here, we explain how a new shutter speed is added to an

existing shutter sequence. The first shutter can be determined

analogously. So we assume that the sequence already consists

of a number of shutter speeds Δti. To each Δti belongs

a contribution vector cΔti(Ej), with Ej = exp(bj) being

the radiance values represented by the histogram bins. See

Figure 3 for an example. We now need to decide whether

to add another shutter to the sequence or not, and find out

which new shutter brings the biggest gain in image quality.

For this purpose, we define a combined contribution vector
C(Ej) that expresses how well the radiances Ej are captured

in the determined exposures. We make the assumption, that

the quality of the measurement of a radiance value only

depends on the highest contribution value any of the exposures



achieves for it. The combined contribution is thus defined as

the maximum contribution for each histogram bin

C(Ej) = max
i

(cΔti
(Ej)) . (5)

This definition can now be used to calculate a single coverage
value C to estimate how well-exposed the pixels in the

scene are in the exposures. C is obtained by multiplying the

frequency of occurrence of a radiance value H(j) by the

combined contribution C(Ej) and summing up the products:

C =
M∑

j=1

C(Ej)H(j). (6)

This is essentially the same as the cross correlation between

the two. The algorithm tries out all possible shifts between a

new contribution vector and the log histogram. The shutter

speed corresponding to the shift that leads to the biggest

increase of C is added to the sequence. If the histogram is

normalized such that its bins sum up to 1 and the weighting

function has a peak value of 1, then C is in the range of [0..1]
and can be expressed as a percentage. C = 1 then means that

for each radiance value in the scene, there exists an exposure

which captures it perfectly.

However, perfect coverage is not achievable in a realistic

scenario. It is more practical to stop adding shutters to the

sequence once a softer stop criterion is met. We came up with

three different stop criteria: the total number of exposures,

a threshold for C and a maximum sum of shutter speeds.

The criterion that limits the total number of exposures is

always active. It guarantees that the algorithm terminates after

calculating a finite number of shutter speeds. We also use this

criterion to manually choose the number of exposures for our

evaluation for better comparability.

The threshold for the coverage value C is a quality criterion.

A threshold closer to 1 allows for a better estimation of scene

radiance, but requires to capture more exposures. We chose

C ≥ 0.9 for our running system.

For the type of camera we employ, the capture time of a

frame is roughly proportional to the exposure time. And since

we are interested in capturing real-time video at 25 frames

per second, the sum of all shutter speeds must not exceed

40 milliseconds. Note that the camera exposes new frames

in parallel to the processing of the previous ones. So we have

indeed nearly the full HDR frame time available for capturing.

Our third stop criterion is an adjustable threshold for the sum
of shutter speeds. However, it should be made clear that the

algorithm has little control over meeting this requirement. In

the example shots we took, only two exceeded the threshold.

But they in turn overshot it by a large factor. We argue that it

is the camera operator’s responsibility to adjust aperture and

gain or to use a different lens to cope with particularly dark

scenes.

The algorithm described here is greedy in that it does

not reconsider the shutter speeds it already chose. We added

a second iteration over the shutter sequence to allow for

Fig. 4. Some areas of the scene are overexposed even in the darkest exposure.
It shows up as a peak at the highest radiance value in the histogram. In the
next frame, the algorithm chooses a shutter speed that covers the peak. By
doing so, areas with a higher radiance than the previous maximum can still
be captured faithfully.

some hindsight refinement. Details on the refinement and its

evaluation can be found in the technical report [7].

So far, we described the algorithm to determine a sequence

of shutter speeds for a single HDR frame based on a perfect

histogram of the scene. However, there are two major problems

that arise when applying this algorithm to HDR video directly:

imperfect histograms and flicker.

Perfect histograms are not available in a real video. The

available histograms are created from the previous frame

which generally differs from the current one. Furthermore, the

dynamic range covered by the histogram is only as high as the

range covered by the previous exposure set. For example if

the camera pans towards a window looking outside, the bright

outdoor scene may be saturated even in the darkest exposure.

This shows up as a thin peak at the end of the histogram of

the previous frame (see Figure 4). How bright are these pixels

really? To find out, the algorithm needs to produce a shutter

sequence that covers a larger dynamic range than the histogram

of the previous frame indicates. This allows the sequence to

adapt to changes in the scene.

We accomplish this by treating the first shutter in the

sequence differently. The special treatment is based on the

observation that underexposed images contain more accurate

information than overexposed ones. The dark pixels in an

underexposed image are a noisy estimate of the radiance in the

scene. However, this noise is unbiased. Saturated pixels on the

other hand always have the maximum pixel value, no matter

how bright the scene actually is. As a consequence of this

observation, the first shutter is chosen such that its contribution

peak covers the highest radiance bin of the histogram. The

peak of a weighting function is usually not located at the

highest possible pixel value. This means that radiances beyond

the peak – if existing in the next frame – are still represented

by a non-saturated pixel. See Figure 4 for an example. This

allows to faithfully record radiance values that are a certain

percentage higher than the previous frame’s maximum, and

the sequence can adapt to brighter scenes. Change towards



a darker scene is less critical, because underexposed pixels

still contain enough information about the real radiance to

calculate a new longer shutter time. With adaptation enabled,

bootstrapping becomes straightforward. We can start with any

set of shutter speeds and arrive at the correct values after

a few frames. The speed of adaptation is evaluated in the

experimental results section of this paper.

The second problem to deal with when applying our algo-

rithm to HDR video is flicker. It is a side effect of changing the

shutter sequence over time. Consider the following scenario:

A bright saturated area like a white wall leads to a peak at

the highest histogram bin. This gives rise to a darker exposure

taken in the next frame as shown in Figure 4. The darker

exposure causes the histogram peak to spread out over several

bins. It may now cause too little extra coverage to justify

the darkest exposure. In this situation, the algorithm oscillates

between including the lowest shutter speed and omitting it. In

the resulting video, the white wall would alternate between

having texture and being completely saturated. Stable shutter

sequences are also desirable for a better use of camera buffers.

We thus impose a stability criterion upon the shutter sequence.

It is based on the definition of whether two given shutter speed

sequences are similar. This similarity is defined in terms of

a threshold over the averaged percentual difference between

the shutters of the two sequences. The same shutter sequence

is used for capturing images until a sufficiently high number

of consecutive non-similar sequences have been calculated.

Only then the new capture parameters are transmitted to the

camera. For details on the stability criterion and an analysis

of its behavior in a real-time HDR video system see [7].

V. EXPERIMENTAL RESULTS

This section presents the evaluation of our algorithm for

optimal shutter speed sequences. Section V-A describes a

subjective user study we conducted to assess the HDR image

quality our approach achieves compared to the traditional way

of choosing evenly spread shutters. Section V-B contains an

analysis of the algorithm’s adaptation to changing brightness

conditions and of its processing time.

A. Subjective User Study

A detailed description of the setup of our subjective user

study is contained in our technical report. In this paper, we

focus on presenting the results. 27 participants took part in

the study. It was conducted over a website that allows to

rate the quality of HDR images.1 The subjects were shown

twelve datasets of various HDR scenes. See Figures 5 and 6

for an example. Each dataset consisted of three HDR images:

a reference image, an image created using shutter speeds from

our approach and one where evenly spaced shutters were used.

The two survey images were shown in random order to avoid

subjective bias. Each of the two images had to be rated using

the five scores (numerical value in parentheses): Very Good

(5), Good (4), Average (3), Poor (2), Very Poor (1).

1http://pi4.informatik.uni-mannheim.de/∼bguthier/survey/

Fig. 5. Reference image of an exemplary scene used in our subjective
evaluation.

Fig. 6. Normalized log radiance histogram of Figure 5. The dashed lines show
the two combined contribution functions. It can be seen, that the equidistant
shutters disregard the histogram and an exposure is captured that adds little
to the coverage value.

We used an AVT Pike F-032C FireWire camera capable of

capturing 208 VGA frames per second with an aperture of

f/2.8. Each scene was captured as a set of 79 LDR exposures

covering the entire range of our camera’s shutter settings.

All 79 exposures were used to generate the reference image

and the log radiance histogram of each scene. Only those

exposures best matching the shutter speeds determined by

the two algorithms were merged to create the survey images.

The number of shutter speeds used was the same for both.

It was manually chosen to be low enough for a discernible

degradation of image quality to facilitate the rating process.

The main reason to use HDR still images instead of video

for subjective quality assessment is the availability of a perfect

reference image and with it the reproducibility of the results.

Capturing 79 LDR exposures at varying shutter speeds allows

to reconstruct the real scene radiance accurately. The shutter

values are sufficiently close together to simulate arbitrary

shutter sequences. Capturing the same amount of exposures



for an HDR reference video is not feasible. Another reason is

the difficulty to capture the optimal and the equidistant shutter

video both at once. And lastly, HDR video may introduce

various new artifacts like misalignment of the exposures or

temporally inconsistent tone mapping. These additional arti-

facts may mask the difference between the two shutter speed

choices.
The 27 participants rating 12 datasets resulted in a total

of 317 valid pairs of scores – one for optimal and one for

equidistant shutters. Averaging them yields a score of 3.73

for the optimal shutter algorithm and 2.83 for the equidistant

approach. Note that the absolute value of the score is mean-

ingless as the survey images were intended to be flawed. Our

approach achieved a better score in 70%, the same in 16%

and a worse score in 14% of the ratings.

B. Objective Measurements
In the experiment described in the following, we investi-

gated the time it takes for our algorithm to adapt to changes

in the scene. We did this by keeping the scene and the

camera static, choosing extreme shutter speed sequences and

measuring the number of frames it takes to stabilize. The

scene and aperture of the camera were chosen such that

the optimal shutter sequence consisted of four shutter values

around the center of the camera’s shutter range. By center,

we mean the middle value in the log domain with the same

factor to the lowest as to the highest shutter. For our camera,

the shutter value of 1.74 ms is a factor of 47 higher than

the minimum and lower than the maximum shutter. Three

different starting sequences were set: the sequence consisting

of only the shortest possible shutter, the longest shutter and

a sequence covering the full shutter range with one stop

between the shutters. We then measured the number of frames

the algorithm took until the shutter sequence did not change

anymore. The values are averaged over 375 runs for each of

the three starting sequences.
As expected, the full coverage sequence adjusted the fastest.

It took 2.07 frames to stabilize. This means that the stable

sequence could be directly calculated from the first HDR frame

in almost all of the iterations. From only the shortest shutter

value, it took exactly 3 frames to stabilize. The algorithm

already calculated three shutters in the second frame and

reached the final sequence in the third. The worst adaptation

speed was achieved when starting from only the longest shutter

value, that is, from the brightest image. The lowest shutter

in the sequence was approximately halved in every frame.

In the average, the sequence was changing for 8.20 frames.

This confirms our previous statement that convergence towards

darker scenes (i.e., higher shutter values) is easier. It also

justifies the special treatment of the first shutter in the sequence

as described earlier.
Since it is our goal to perform shutter sequence compu-

tations in real-time to create HDR videos, we measured the

processing time taken by our algorithm in a real-time HDR

video system with an AMD Athlon II X2 250 dual-core CPU.

The measurement was taken over a period of 15 seconds
(≈ 375 HDR frames). The monitored scene contained moving

objects and many camera pans between dark indoor and very

bright outdoor areas. As mentioned earlier, we assume that the

histogram of the previous HDR frame was computed during

tone mapping. Histogram creation is thus not included in

these measurements. The experiment showed that 96.5% of

our algorithm’s processing time is spent for trying out all

possible shifts between contribution vector and histogram to

find the next shutter speed with the best coverage value. As

a consequence, the processing time is roughly proportional to

the number of shutters in the sequence. We measured 0.30 ms

per shutter value including refinement. For comparison, the

entire process of creating a displayable HDR frame from 2

to 8 base exposures takes 6 to 15 ms on a GPU. In a 25 fps

real-time HDR video system, there are 40 ms available for

processing each frame. Our algorithm is thus fast enough to

be used in this application.

VI. CONCLUSIONS

We presented an approach to computing shutter speed

sequences for temporally bracketed HDR videos. Our goal

is to maximize the achieved HDR image quality for a given

number of LDR exposures. This is done by consecutively

adding shutters to the sequence that contribute to the image

quality the most. It allows to save capturing and processing

time over the traditional approach by being able to reduce the

number of LDR exposures without impairing quality. Analysis

of the algorithm’s behavior in a real-time HDR video system

showed that it is suitable for such a scenario and can be

employed in video surveillance.
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