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Abstract. Quantum detectors provide information about the microscopic
properties of quantum systems by establishing correlations between those
properties and a set of macroscopically distinct events that we observe. The
question of how much information a quantum detector can extract from a system
is therefore of fundamental significance. In this paper, we address this question
within a precise framework: given a measurement apparatus implementing a
specific POVM measurement, what is the optimal performance achievable with
it for a specific information readout task and what is the optimal way to encode
information in the quantum system in order to achieve this performance? We
consider some of the most common information transmission tasks—the Bayes
cost problem, unambiguous message discrimination and the maximal mutual
information. We provide general solutions to the Bayesian and unambiguous
discrimination problems. We also show that the maximal mutual information
is equal to the classical capacity of the quantum-to-classical channel describing
the measurement, and study its properties in certain special cases. For a group
covariant measurement, we show that the problem is equivalent to the problem
of accessible information of a group covariant ensemble of states. We give
analytical proofs of optimality in some relevant cases. The framework presented
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here provides a natural way to characterize generalized quantum measurements
in terms of their information readout capabilities.
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1. Introduction

Quantum detectors provide the interface between the microscopic world of quantum phenomena
and the world of macroscopically distinct events that we observe. A quantum detector is a device
that interacts with the system under observation in a way that establishes correlations between
certain properties of the system and a set of macroscopically distinct (orthogonal) states of the
device. A general quantum detector can be described by a positive operator-valued measure
(POVM), i.e. a set of positive operators {Ei}, Ei > 0, i = 1, . . . ,M , summing up to the identity,∑

i Ei = I . For an input state ρ, the probability that the measurement yields outcome j is given
by the Born rule, p j(ρ)= Tr{ρE j}.

A natural question is: To what extent is a given quantum detector able to provide
information about the system it is used to observe? This question can be conveniently formulated
in the context of a quantum communication scenario, where a sender (Alice) tries to send
messages to a receiver (Bob) who is constrained to read those messages using the quantum
detector in question. Concretely, let the source of classical information that Alice wants
to communicate to Bob be characterized by a probability distribution πi > 0, i = 1, . . . , N ,∑

i πi = 1, which specifies the probability of each classical message i . Alice encodes the
different messages into quantum states via an encoding map i → ρi , and Bob reads the
information by carrying out the POVM measurement. If there are no constraints on the way
Alice can prepare the signal states and these states can reach Bob undisturbed (i.e. Alice and
Bob are connected through a noiseless channel), then the optimal performance they can achieve
for a given task can be regarded as quantifying the readout capabilities of the measurement
with respect to that task. In this respect, a problem of primary importance is to find the optimal
encoding (or signal states ρi ) for which the detector achieves its optimal performance.

The problem just outlined bears strong similarities to the problem of quantum state
discrimination [1–8], where the encoding of Alice is fixed and Bob’s task is to decide which
message he has received by optimizing his measurement. In fact, we will see below that the two
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problems can be regarded as dual to each other due to the symmetry that exists between the
input ensembles and the POVM measurements. This allows one to adopt results from quantum
state discrimination to the problem at hand. However, since in quantum state discrimination the
space over which we optimize is more constrained due to the completeness relation

∑
i Ei = I ,

it turns out that in many cases the problem of optimal signal states for quantum detectors is
easier to solve.

In addition to its application in characterizing detectors, the problem considered here is of
natural practical interest for quantum communication, since generating different signal states [9]
can be experimentally more accessible than carrying out different measurements. A quantum
detector is usually fixed, while a preparation device, although possibly also based on a fixed
(but nondestructive!) measurement, can be used together with post-selection, which provides
additional flexibility to the preparation process. Furthermore, in the case of communication
through a noiseless channel, any operation at the receiver’s side prior to the detector can be
equally done as part of the preparation strategy.

In this paper, we consider the above problem from the perspective of three different
information transmission tasks—the task of optimal Bayes cost message discrimination
(of which the well-known problem of minimum error discrimination is a special case),
unambiguous message discrimination and the maximal mutual information. Due to the
simplification mentioned above, we are able to provide solutions to the Bayesian and
unambiguous discrimination problems in the general case. For the maximal mutual information,
we show that this quantity is equal to the classical capacity of the quantum-to-classical
channel corresponding to the measurement, which we term the ‘capacity of the measurement’.
This quantity provides a general figure of merit for the information readout capabilities of a
detector. Based on its relation to the accessible information [6], we prove a result similar to
Davies’s theorem [2] (proposition 2), which shows that the optimal ensemble can be chosen
to consist of d2 pure states, where d is the dimension of the system. For a group covariant
measurement, we find that the problem is equivalent to that of accessible information of a
group covariant ensemble of states. We apply our results to the case of a noisy two-level
symmetric informationally complete measurement, for whose capacity we give analytical proofs
of optimality.

2. The Bayes cost problem

In the Bayes cost problem, one is interested in minimizing an average cost function of the form

C(P)=

∑
i j

Ci j Pi j , (1)

where Pi j = Tr(πiρi E j) are the joint probabilities for input i and measurement outcome j ,
and Ci j > 0 are the elements of the cost matrix (Ci j is the cost of choosing hypothesis j when
hypothesis i is true). In what we will refer to as the straight version of this problem, one assumes
that the encoding i → ρi is given, and the task is to find the measurement {E j} that minimizes
the quantity in equation (1) [1]. An example of a Bayes cost problem is that of minimum error
discrimination, i.e. minimizing the probability for incorrectly identifying the message. In this
case, the probability for an error is given by perr =

∑
i 6= j Pi j , i.e. the elements of the cost matrix

are Ci j = 1 − δi j .
Here, we are concerned with the opposite scenario, which we will refer to as the reverse

problem: we assume that the receiver has an apparatus that implements a particular POVM
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measurement, and we ask what is the optimal way to encode the classical messages into quantum
states so that, using only the given POVM measurement and possibly some side information
processing, the receiver will identify the message at the lowest cost6. This side information
processing involves finding the optimal way of choosing hypothesis i when the measurement
outcome k takes place and includes the possibility of following a mixed strategy, i.e. assigning
a hypothesis i randomly according to some prescribed probability distribution, which might of
course depend on the outcome k. In other words, the receiver can use the given POVM {Ek} to
obtain new POVM measurements with elements of the form

Ẽ j =

∑
k

p( j |k)Ek,
∑

j

p( j |k)= 1 for all k, (2)

where 06 p( j |k)6 1 are conditional probabilities.
Up to a renormalization of the cost matrix, we can assume that 06 Ci j 6 1. Hence, the

problem is equivalent to that of maximizing the quantity

B(P)≡ 1 − C(P)=

∑
i j

(1 − Ci j)Pi j ≡

∑
i j

Bi j Pi j , (3)

where

06 Bi j 6 1, ∀i, j. (4)

For a given POVM measurement {Ei}, consider some encoding and decoding strategies
given by the map i → ρi and the conditional probability distribution p( j |k), respectively. For
these strategies, the quantity B(P) reads

B(P)=

∑
i jk

Bi jπi p( j |k)Tr(ρi Ek). (5)

Define j∗(k) to be a value of j for which the quantity
∑

i Bi jπi Tr(ρi Ek), for a fixed k, is
maximal (if there are two or more such values, we can pick any one of them). Then,

B(P)6
∑

ik

Bi j∗(k)πi Tr(ρi Ek), (6)

which is achievable by choosing p( j |k)= δ j j∗(k).
We see that for the purpose of achieving the maximum in equation (3), the receiver does

not need a mixed strategy, i.e. the maximum can be achieved by choosing all conditional
probabilities p( j |k) to be either 0 or 1. This means that the receiver can associate more than
one measurement outcome Ek with the same hypothesis j , but it does not help to associate two
or more hypotheses with the same outcome. Note that this means, in particular, that in the case
when the number of possible messages N is greater than the number M of different outcomes
of the POVM, the best strategy is not to attempt to detect certain messages at all. In fact (see
below), even when M 6 N , it may be advantageous to group different POVM elements for the
detection of a single state.

Let K j denote the set of those indices k for which j∗(k)= j , i.e. the indices k for which
the outcomes Ek are associated with hypothesis j . Note that the sets K j are non-intersecting as

6 Obviously, in the Bayesian framework (straight or reverse problem) it makes no sense to optimize over priors
{πi } since this renders the optimization problem trivial (πi = δi j for some j). This type of figure of merit has an
explicit dependence on the source. The same holds for the unambiguous discrimination problem studied in the next
section. We consider a source-independent characterization in section 4.
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shown above and that some sets may be empty. In other words, the set of possible assignments
corresponds to that of all possible ways to distribute M elements into N groups {K α

j }
N
j=1, where

the index α labels each of the N M distributions. Then for any such choice we have

Bα(P)= max
{ρi }

∑
i

πi Tr

ρi

∑
j

Bi j Ẽα
j

 , (7)

where Ẽα
j =

∑
k∈K α

j
Ek . The maximum of this quantity is achieved when each of the signal

states ρi is chosen to be an eigenstate corresponding to the maximal eigenvalue of the operator∑
j Bi j Ẽα

j , which we will denote by λmax(
∑

j Bi j Ẽα
j ). Hence, we can write

B(P)= max
α

π · sα, (8)

where we have defined the vectors π = {π1, . . . , πN } and

sα =

λmax

∑
j

B1 j Ẽα
j

 , . . . , λmax

∑
j

BN j Ẽα
j

 .
We thus see that the problem reduces to that of finding the sets K j for which the quantity
in equation (8) is maximal. The corresponding partition specifies which outcomes k of the
POVM measurement the receiver has to associate with a given classical message j . The optimal
encoding strategy is to encode each classical message i into an eigenstate ρmax

i corresponding to
the maximal eigenvalue of

∑
j Bi j Ẽα

j (note that these states can always be chosen to be pure).
In general, the optimal grouping α∗ of POVM elements, α∗

= arg maxα π · sα, will depend
on the given priors π . The region in the corresponding simplex where one particular grouping
is optimal defines a polytope or, more precisely, a convex polytope when restricted to the
region π1 > π2 > · · ·> πN (throughout the paper this ordering of prior probabilities will be
always assumed), i.e. if π · (sα∗ − sα)> 0 and π ′

· (sα∗ − sα)> 0, then for 06 p 6 1 one has
[pπ + (1 − p)π ′] · (sα∗ − sα)> 0.

The described optimization procedure involves calculating and comparing a finite set of
quantities. In contrast, the straight version of the problem in the general case is a linear program
that requires maximization over a continuous set. Even though the task of finding the optimal
encoding for a given decoding POVM exhibits an apparent similarity with the problem of
finding the optimal POVM for a given encoding (see the symmetry of the cost function (1)
with respect to interchanging the POVM elements and the input states), an important difference
between the straight and reverse problems is that the quantities over which we maximize in the
straight version have to satisfy the constraint

∑
j E j = I , whereas in the reverse case there is no

constraint on the signal states ρi .
Observe that in the case when N < M , the above optimal strategy requires at least

one of the messages to be associated with multiple measurement outcomes. However, as
mentioned earlier, even in the case when N > M , it may be advantageous to associate more
than one outcome of the POVM with the same state. For example, in the problem of minimum
error discrimination, two POVM elements may have very similar (or even identical) maximal
eigenvalues and corresponding maximal eigenstates, but all prior probabilities of the different
input messages may differ significantly. Then it is not difficult to see (see examples in the last
section) that associating the two measurement outcomes in question with two different messages
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would be worse than associating both of them with one of the messages—the one that has a
higher prior probability.

Note that the special case of minimum error discrimination with a given POVM has been
studied in [11] as part of the problem of optimal encoding of classical information in a quantum
system for minimal error discrimination when both the encoding and the measurement can be
optimized. However, the solution provided in [11] for a fixed POVM is not truly optimal since
it assumes that different outcomes must be associated with different states.

We remark that in certain cases it may be possible to simplify the general procedure
described above. For example, in the problem of minimum error discrimination, when the prior
distribution is flat, πi = 1/N , i = 1, . . . , N and M 6 N , all we need to do is encode M of the
N different possible messages into the eigenstates corresponding to the maximal eigenvalues
of the different POVM elements. In this case, associating multiple measurement outcomes with
the same message does not help since (1/N )λmax(E j + Ek)6 (1/N )λmax(E j)+ (1/N )λmax(Ek).

For a binary source, the minimum error probability can be written in a particularly simple
form. In this case, the POVM grouping is {Ẽα, I − Ẽα

}. We start discussing the unbiased case
(i.e. π1 = π2 = 1/2) for which

pαs = max
{ρ1,ρ2}

1
2 [Tr Ẽαρ1 + Tr(I − Ẽα)ρ2] =

1
2 [1 + max{ρ1,ρ2} Tr Ẽα(ρ1 − ρ2)]. (9)

The maximum occurs when ρ1 and ρ2 are the states corresponding to the largest and
lowest eigenvalues of Ẽα, respectively. The difference between these two values is known as
the spread of a matrix, defined for a generic matrix A as Spr(A)= maxi j |λi − λ j |, where λi are
the characteristic roots of A [10]. Hence,

ps =
1
2 [1 + maxα Spr(Ẽα)]. (10)

Note the resemblance to the well-known Helstrom’s state discrimination formula [1], where the
trace distance has been replaced by the (semi-norm) spread.

From equation (8), the success probability for arbitrary priors reads

ps = max
α

{π1λ
max(Ẽα)+π2[1 − λmin(Ẽα)]}. (11)

It is clear that when one signal is given with a prior probability larger than the success
probability attained by a two-outcome POVM {E, I − E}, it pays to assign all outcomes to the
most probable signal. In other words, the measurement does not add information to our prior
knowledge and the optimal grouping results in the trivial POVM {I, 0}. The transition occurs at
π1 = ps . More explicitly, the trivial POVM is optimal if

π1 >
1 − λmin(E)

[1 − λmin(E)] + [1 − λmax(E)]
. (12)

Note that if λmax(E)= 1, it is always advantageous to carry out the measurement, irrespective
of the prior probabilities.

3. Unambiguous message discrimination

Unambiguous quantum state discrimination [3–5, 7, 8] concerns the task of identifying which
of a set of possible states one has received so as to ensure zero error whenever a conclusive
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answer is given. In general, such conclusive answers cannot always be given, and the problem
consists in maximizing the probability with which they occur.

Let {Ei} be the POVM the receiver has been provided with and let us allow, as in
the previous section, some side information processing that will result in new POVMs, Ẽ j

(see equation (2)). For the purpose of unambiguously identifying a given set of messages
i = 1, . . . , N , encoded in the quantum states ρi , i = 1, . . . , N , these POVMs must consist of
N + 1 elements: Ẽ1, . . . , Ẽ N representing the conclusive answers and an additional element Ẽ ?

representing the inconclusive one. It must hold that

Tr(Ẽ iρ j)= λ jδi j , i, j = 1, . . . , N , (13)

since errors are not allowed in conclusive answers. Any of the elements Ẽ1, . . . , Ẽ N , Ẽ ? can be
the zero operator as a special case.

One can readily see that all the conditional probabilities p( j |k) that define {Ẽ i} in terms of
the original POVM through equation (2) can be taken to be either 0 or 1, as for the Bayes cost
problem, i.e. {Ẽ i} can be taken to be sums of certain subsets of the original POVM elements.
This is so because there is no way one can unambiguously identify two or more messages
that have been associated with a given Ei if the corresponding outcome takes place. (If some
outcome i occurs with zero probability, we can add Ei to any of the elements Ẽ1, . . . , Ẽ N , Ẽ ?,
as this would not change the probabilities of the respective outcomes.) Similarly, if Ek is
randomly associated with both a given message i (i.e. 0< p(i |k)) and the inconclusive answer
(i.e. 0< p(?|k)), the probability of success would increase with the choice p(i |k)= 1.

Thus, for the unambiguous discrimination of N input states ρi , i = 1, . . . , N , each
occurring with prior probability πi , consider some grouping of the original POVM elements
into N + 1 elements, Ẽα

1 , . . . , Ẽα
N , Ẽα

? , where, as in the previous section, α labels the
various grouping possibilities. Condition (13) requires that ρi ∈ K α

i ≡ ∩
N
j 6=i ker Ẽα

j for each i .
Conversely, if each ρi is chosen to belong to this intersection (assuming that it is non-empty),
then unambiguous discrimination would be possible with probability

pαs =

N∑
i=1

πi Tr(Ẽα
i ρi). (14)

Let Pα
i denote the projector on K α

i . Note that this projector can be easily computed because
Ẽ
α

j > 0 implies that K α
i = ker(

∑N
j 6=i Ẽα

j ). Since ρi = Pα
i ρi Pα

i , equation (14) can be written as

pαs =

N∑
i=1

πi Tr[(Pα
i Ẽα

i Pα
i )ρi ], (15)

and we can maximize each of the traces by choosing ρi to be an eigenstate of Pα
i Ẽα

i Pα
i with

maximal eigenvalue. Let us denote this eigenvalue by λmax(Pα
i Ẽα

i Pα
i ). Then, we have

pαs =

N∑
i=1

πiλ
max(Pα

i Ẽα
i Pα

i )= π · s′

α, (16)

where, as before, π = {π1, π2, . . . , πN }, and s′

α = {λmax(Pα
1 Ẽα

1 Pα
1 ), . . . , λ

max(Pα
N Ẽα

N Pα
N )} in

decreasing order of value (this, actually, defines the labeling of the POVM elements Ẽα
j ). Note

that this ordering ensures maximization of the overlap π · s′

α. The probability of success of the
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optimal message discrimination protocol is

ps = max
α

pαs = max
α

π · s′

α. (17)

Here, α takes (N + 1)M/N ! different values, namely the number of different ways of distributing
M POVM elements in N + 1 sets, where the sum of the elements in each of these sets is Ẽα

1 ,
. . . , Ẽα

N , Ẽα
? , respectively (N ! takes into account the specific labeling defined above). Note that

certain sets may be empty, i.e. we allow some of the new POVM elements to be the zero operator
(the corresponding message will never be identified in these cases).

To compute ps we may consider the following procedure. Pick a grouping α and construct
each of the projectors Pα

i on the intersection K α
i for i = 1, 2, . . . , N . If some K α

i is
empty, terminate the calculation and consider a different grouping α′. If there is an empty
intersection for all α, the problem does not have a solution (other than the trivial Ẽ ? = I ),
which means that the given POVM {Ei} cannot be used to unambiguously discriminate N
messages. For each grouping such that K α

i 6= ∅, i = 1, 2, . . . , N , compute sα and pick up
the one, α∗, that maximizes (17). Optimal detection is attained with the POVM measurement
{Ẽα∗

1 , . . . , Ẽα∗

N , Ẽα∗

? } and the optimal encoding of each classical message i is provided by an
eigenstate ρi of Pα∗

i Ẽα∗

i Pα∗

i with maximal eigenvalue (note that the states ρi can always be
chosen to be pure).

The above solution to the reverse unambiguous discrimination problem works for any
POVM. In contrast, there is no known solution to the straight version of the same problem
for an arbitrary ensemble of mixed input states (see e.g. [8]). As in the case of minimum
error discrimination, there are certain similarities between the problem of finding the optimal
encoding for a given POVM and that of finding the optimal POVM for a given encoding: for
the latter, the POVM {Ẽ i} have to be chosen such that Ẽ i ∈ ∩

N
j 6=i ker ρ j , which resembles the

condition ρi ∈ ∩
N
j 6=i ker Ẽ j in the reverse problem. Furthermore, in the two problems, one has to

maximize the same quantity, equation (14), where states and POVM elements play essentially
the same role (they are interchangeable). Recall, however, that in the straight case optimization
has the additional constraint

∑N
i Ẽ i 6 I , which makes the problem more difficult.

4. Mutual information

The problems considered in the previous sections characterize the ability of a POVM
measurement to perform certain information readout tasks (e.g. minimum error discrimination
or unambiguous message discrimination) with respect to a given source of classical messages
described by the prior probabilities {πi}. These results are strongly dependent on the source. For
example, if the source consists of only a single message, each of the tasks can be accomplished
with unit probability using any measurement. Such a source, however, is trivial as it contains no
information. In this section, we consider a source-independent characterization of the ability of
a measurement to extract information which is provided by the maximum mutual information
that can be established between the sender and the receiver over all possible sources and suitable
encodings at the sender’s side for the given POVM measurement at the receiver’s side.

Consider an information source characterized by the probability distribution {πi}, i =

1, . . . , N , and an encoding i → ρi . The joint probabilities of the input messages and the
outcomes of the POVM measurement {E j}, j = 1, . . . ,M , are

Pi j = πi Tr(ρi E j). (18)
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The mutual information between the input and the output is given by

I (P)=

∑
i

η

∑
j

Pi j

+
∑

j

η

(∑
i

Pi j

)
−

∑
i j

η(Pi j), (19)

where η(x)= −x log x .
We will be interested in the maximum of I (P) over all possible source distributions {πi}

and encoding strategies i → ρi , that is, over all input ensembles {πi , ρi},

C({Ei})= max
{πi ,ρi }

I (P). (20)

Note that, according to the data processing inequality, post-processing of information at the
receiver’s side cannot increase the mutual information, so in this case it cannot help to group
POVM elements (or randomize outcomes).

As shown by the following proposition, C({Ei}) has a natural interpretation as the capacity
of the measurement {Ei} which for all practical purposes can be modeled by a quantum channel
of the form E(ρ)=

∑
j Tr(ρE j)| j〉〈 j |, where {| j〉} are orthogonal states that carry the classical

information about the outcome of the measurement.

Proposition 1. C({Ei}) is equal to the classical capacity of the channel

E(ρ)=

∑
j

Tr(ρE j)| j〉〈 j |. (21)

Proof. It is known [12, 13] that the classical capacity of a quantum channelM over independent
uses of the channel (i.e. when no entanglement between multiple inputs to the channel is
allowed) is given by the quantity

χ(M)= max
{πi ,ρi }

{
S

[∑
i

πiM(ρi)

]
−

∑
i

πi S [M(ρi)]

}
, (22)

where S(ρ)= −Tr(ρ log ρ) denotes the von Neumann entropy of the state ρ. The general
capacity of the channel, allowing possibly entangled inputs, is

C(M)= lim
n→∞

χ(M⊗n)

n
, (23)

where M⊗n denotes n uses of the channel. For entanglement-breaking channels [14], such
as the quantum-to-classical channel E(ρ) above, it has been shown that the quantity χ(E) is
additive [15–17], in particular χ(E⊗ E)= 2χ(E), which implies that

C(E)= χ(E). (24)

Furthermore, for any input ensemble {πi , ρi}, the channel E(ρ) outputs an ensemble of
commuting quantum states, {πi , E(ρi)}, and for such an ensemble it is easy to verify that the
quantity S

[∑
i πiE(ρi)

]
−
∑

i πi S[E(ρi)] is equal to the mutual information in equation (19).
The proposition then follows from definitions (20) and (22).

A comment is in order here. The classical capacity of a channel is the maximum rate
at which information can be transmitted reliably through the channel in the limit of infinitely
many uses. Since the optimal measurement for extracting information from the channel E(ρ) is
a projective measurement in the basis {| j〉}, which preceded by E(ρ) is equivalent to the POVM
measurement {E j}, the quantity C({E j}) is equal to the maximum rate at which information can
be read reliably using the POVM {E j}. ut
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Corollary 1. We have

C({Ei})= max
{πi ,ρi }

{
S

[∑
i

πiE(ρi)

]
−

∑
i

πi S[E(ρi)]

}
. (25)

Observe that we can write the joint probability (18) in the symmetric form

Pi j = Tr(ρ̆i E j), (26)

where ρ̆i ≡ πiρi are unnormalized positive operators satisfying Tr(
∑

i ρ̆i)= 1. (Hereafter we
will use the notation {πi , ρi} and {ρ̆i} interchangeably to denote an ensemble of states.) In this
notation, C({Ei})= max{ρ̆i } I (P). Note further that the mutual information I (P) is symmetric
with respect to the indices i and j . Therefore, the problem we are considering can be regarded
as dual to the one of accessible information of an ensemble of states {ρ̆i} [6], which can be
written as

A({ρ̆i})= max
{Ei }

I (P). (27)

Note, however, that the two problems are not identical as the operators {Ei} satisfy a stronger
constraint than do the operators {ρ̆i}:

∑
i Ei = I . (A strict duality transformation between signal

ensembles and POVM measurements has been established in [18, 19]. We will not be concerned
with that correspondence here.)

The above suggests that certain results in the study of the accessible information of an
ensemble of states may prove useful for the study of the capacity of a measurement. For
example, the symmetry of the problems and the difference in constraints imply

C({Ei})> A({Ĕ i}), (28)

where Ĕ i = Ei/d . Therefore, any known lower bound of A can be used to obtain a lower bound
of C . For example, the lower bound obtained in [20] yields

C({Ei})> Q

(∑
i

mi Ē i

)
−

∑
i

mi Q(Ē i), (29)

where mi = Tr(Ei)/d, Ē i = Ei/(mi d), and Q(ρ) is the subentropy of a density matrix ρ, which
in terms of the eigenvalues λk of ρ reads [20]

Q(ρ)= −

∑
k

∏
l 6=k

λk

λk − λl

 λk log λk (30)

(if two or more eigenvalues are equal, one takes the limit as they become equal).
Similarly, one may wonder if the Holevo quantity S(

∑
i mi Ē i)−

∑
i mi S(Ē i) [21], which

provides a simple upper bound to the accessible information A({Ĕ i}), could also provide a
useful bound for the capacity C({Ei}). As we will see below, however, this quantity is neither
an upper nor a lower bound to C({Ei}).

Proposition 2. The maximum in equation (20) can be achieved with an ensemble of pure
input states ρi = |ψi〉〈ψi |. Furthermore, the number N of input states can be made to satisfy
d 6 N 6 d2.
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This proposition is similar to theorem 3 in [2], where it is shown that for a given ensemble
of input states, the optimal POVM measurement can be taken to have rank-one POVM elements
whose number M satisfies d 6 M 6 d2.

Proof. As noted in [2], I (P) is a convex function over the convex set of N × M probability
matrices P with fixed row sums. By a similar argument, I (P) is a convex function over the
convex set of N × M probability matrices P with fixed column sums. This implies that if
P ′ is an (N − 1)× M probability matrix obtained from P by replacing two rows by their
row sum, then I (P ′)6 I (P), with equality when the two rows are proportional. Therefore,
for any input ensemble {πi , ρi}, where ρi =

∑
k pik|ψik〉〈ψik|, we can consider the pure-state

ensemble {πi pik, |ψik〉〈ψik|} which has mutual information with the output not less than that
of {πi , ρi}. (Note that we can assume that no two states |ψik〉〈ψik| are identical, since if they
are, we can combine them into a single state with prior probability equal to the sum of their
prior probabilities, which does not change the mutual information.) Hence, the maximum in
equation (20) is attained for an ensemble of different pure states.

Next, observe that equation (20) can be written as

C({Ei})= max
ρ

max
{πi ,ψi }ρ

I (P), (31)

where the left maximization is over all density matrices ρ, and the right maximization is
over all ensembles {πi , ψi}ρ of pure states ψi ≡ |ψi〉〈ψi |, whose averages are equal to ρ,∑

i πi |ψi〉〈ψi | = ρ. (We note that the quantity max{π i ,ψ i }ρ I (P) for a fixed ρ has been previously
considered in relation to methods for obtaining bounds on the mutual information [19].)
Following closely the proof in [2], we will show that for any ρ, max{π i ,ψ i }ρ I (P) can be
achieved by an ensemble of at most d2 states. Indeed, the latter maximization is equivalent
to a maximization over the convex set Y of probability distributions with finite support on the
set of pure states, whose average is equal to ρ. Note that the different ensembles {πi , ψi}ρ give
rise to joint probability matrices P with fixed row sums equal to Tr(ρE j), which according to
the convexity property pointed out earlier implies that I (P) is a convex function on Y . Hence,
the maximum is achieved for an extreme point of Y , which by Caratheodory’s theorem can be
shown to be a probability distribution whose support has 6 1 + dimA points, where A is the
convex set of density operators of which the pure states we are considering are extreme points.
Since dimA= d2

− 1, we obtain N 6 d2.
To show that in general d 6 N , we will use the fact that for every d, there are certain

types of POVMs for which the optimal ρ in equation (31) is full-rank (in particular, we will
show below (theorem 1) that when the POVM is covariant under the irreducible representation
of a finite group, the maximum in equation (31) is achieved for ρ = I/d). If we assume that
d > N , there must exist a vector |ψ〉, 〈ψ |ψ〉 = 1, such that 〈ψ |ψi〉 = 0, ∀i = 1, . . . , N . But
then 〈ψ |ρ|ψ〉 =

∑
i πi |〈ψ |ψi〉|

2
= 0, which is in contradiction to ρ being full-rank. ut

We next consider the case of a group covariant POVM measurement, which is dual to the
problem of accessible information for a group covariant input ensemble [2]. For this purpose,
we need to introduce some terminology. Let S denote the set of all states on a Hilbert space H of
dimension d. Following [2], we will regard a representation R of a group G as a homomorphism
from G to the affine automorphisms of S, where every such automorphism is representable in
the form α(ρ)= UρU † with U being a unitary or an antiunitary operator (we will consider the
action of R automatically extended to all operators over H by linearity). A representation of G
is irreducible if the only G-invariant point of S is I/d.
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We will say that the POVM {E j}, j = 1, . . . ,M , is G-covariant if there exists a surjection
f : G → {E j}, where we denote f (g) := Eg, such that Rg(Eh)= Egh , ∀g, h ∈ G. Note that
every element E j must be equal to Eg for at least one g ∈ G, but this correspondence may be
degenerate, i.e. a given E j may be associated with two or more elements of the group. The fact
the G is a group implies that this degeneracy must be the same for every element E j and hence
M must be a factor of |G|.

Theorem 1 (the group covariant case). If the POVM {E j} is covariant with respect to the finite
group G that has an irreducible representation R on S, then there exists a pure state |ψ〉〈ψ |,
〈ψ |ψ〉 = 1, such that the maximum in equation (20) is achieved by the covariant ensemble of
pure input states {|G|

−1, R∗

g(|ψ〉〈ψ |)}, where |G| is the number of elements of G and R∗ denotes
the representation of G dual to R. The capacity of {E j} is

C({E j})= log d + M−1d
∑

j

〈
ψ

∣∣∣∣ E j

Tr E j

∣∣∣∣ψ〉 log

〈
ψ

∣∣∣∣ E j

Tr E j

∣∣∣∣ψ〉. (32)

Proof. Let {πi , ψi} be an ensemble of pure input states that maximizes the mutual information
for the given covariant POVM measurement {E j}. Construct a new input ensemble {π̃ ig, ψ̃ ig},
where

ψ̃ ig = R∗

g(ψi) and π̃ ig = πi |G|
−1. (33)

The new probability matrix P̃ obtained using this ensemble has the form

P̃ = |G|
−1


P1

P2

...

P|G|

 , (34)

where each of the probability matrices P1, P2, . . . , P|G| is obtained from P by a permutation of
the rows and columns of P , and the column sums of P̃ are all equal to |G|

−1. A straightforward
calculation shows that the new probability matrix yields a value for the mutual information that
is no less than that obtained for P , i.e. I (P̃)> I (P):

I (P̃)≡

∑
i

η

∑
j

P̃ i j

+
∑

j

η

(∑
i

P̃ i j

)
−

∑
i j

η(P̃ i j)

= |G|

∑
i

η

∑
j

|G|
−1 Pi j

+
∑

j

η
(
|G|

−1
)
− |G|

∑
i j

η(|G|
−1 Pi j)

=

∑
i

η

∑
j

Pi j

+ log |G|
−1

+
∑

j

η
(
|G|

−1
)
−

∑
i j

η(Pi j)+ log |G|
−1


>
∑

i

η

∑
j

Pi j

+
∑

j

η

(∑
i

Pi j

)
−

∑
i j

η(Pi j)≡ I (P). (35)
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Now, consider the covariant input ensembles {|G|
−1, ψ̄ i

g}, where

ψ̄ i
g = R∗

g(ψi). (36)

Let us denote by P̄ i the probability matrices that each of these ensembles yields. Since the
ensemble {π̃ ig, ψ̃ ig} is a convex combination of the ensembles {|G|

−1, ψ̄ i
g}, and the mutual

information is a convex function of the input ensemble, we obtain

I (P)6 I (P̃)6max
i

I (P̄ i), (37)

i.e. the maximum in equation (20) is achieved for one of the covariant input ensembles
{|G|

−1, ψ̄ i
g} that has the form stated in the theorem. The value of the capacity (equation (32))

is obtained by a straightforward calculation, taking into account the possible degeneracy in the
correspondence between the group elements and the POVM elements. ut

Note that since the average of a group covariant ensemble is G-invariant, from the
irreducibility of R it follows that

∑
g |G|

−1ψ̄ i
g = I/d. This shows that indeed for every d there

are POVM measurements that require at least d optimal input states as argued in the proof of
proposition 2.

Comment. The optimal ‘seed’ |ψ〉〈ψ | may be such that the input ensemble {|G|
−1, R∗

g(|ψ〉〈ψ |)}

contains identical states, i.e. it may be that R∗

g(|ψ〉〈ψ |)= R∗

h(|ψ〉〈ψ |) for certain g 6= h. The
fact that G is a group implies that each maximal set of identical states in the ensemble must
contain the same number of elements (and hence the number N of distinct states in the ensemble
must be a factor of |G|). It is straightforward to see that the ensemble {N−1, |ψi〉〈ψi |} obtained
from {|G|

−1, R∗

g(|ψ〉〈ψ |)} by identifying the identical states and redefining their probabilities
as the sum of the original probabilities is also optimal. This is because the joint probabilities
resulting from the input ensemble {N−1, |ψi〉〈ψi |} can be transformed into those resulting from
{|G|

−1, R∗

g(|ψ〉〈ψ |)} by local postprocessing on the sender’s side, which cannot increase the
mutual information. Hence, the number of states in the optimal ensemble in general may
be smaller than |G| (just as the number of outcomes of a group covariant POVM may be
smaller than |G|). This is the case, for example, with the optimal ensemble for the two-
dimensional symmetric informationally complete (SIC)-POVM studied in section 5.3, which
has four elements, whereas the symmetry group has 12.

Corollary 2. In the group covariant case, we have

C({Ei})= A({Ĕ i}). (38)

Moreover, if the POVM measurement {F j} optimizes the mutual information for the input
ensemble {Ĕ i}, the input ensemble {F̆ j}, where F̆ j ≡ F j/d, optimizes the mutual information
for the measurement {Ei}.

Since under this symmetry the problem is equivalent to that of accessible information of a
covariant input ensemble, any known results in the latter case can be applied here (see e.g. [2]).
In particular, in section 5.3 we calculate the capacity of the two-dimensional SIC-POVM.

Another important case in which calculating the capacity of a measurement reduces to a
well-known problem is that of a POVM {Ei} with commuting elements, [E i , E j ] = 0, ∀i, j .
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In this case, we can assume that the optimal signal states ρi are diagonal in the eigenbasis of
{E j}, since for any ρ, the state ρ ′

= diag(ρnn), where ρnn are the diagonal elements of ρ in
the eigenbasis of {E j}, yields the same values for the joint probabilities Tr(ρE j). Furthermore,
as we saw in the proof of proposition 2, the optimal input ensemble can be taken to consist
of the eigenstates of all ρi , which means that the maximum in equation (20) is achieved
for an ensemble of input states which are the common eigenbasis of {Ei}. Hence, the joint
probabilities are Pi j = πiλ

i
j , where λi

j is the i th eigenvalue of E j , and the problem reduces to
finding max{π i } I (P) which is the capacity of the classical channel described by the conditional
probability matrix p( j |i)= λi

j . Note that a measurement with two outcomes necessarily has
commuting POVM elements, i.e. the capacity of a two-outcome measurement is always equal
to the capacity of a classical channel with a binary output. Thus, for example, the capacity of
a two-outcome qubit measurement that has elements E1 = diag(α, β), E2 = diag(1 −α, 1 −β)

in some basis can be obtained from the formula for the capacity of a general binary channel [31]

C(α, β)=
αH(β)−βH(α)

β −α
+ log

[
1 + exp

H(α)− H(β)

β −α

]
, (39)

where H(q)= −q log q − (1 − q) log(1 − q), q ∈ [0, 1], is the entropy of a binary source. The
optimal prior distribution in this case is {p, 1 − p}, where [31]

p =
β

β −α
−

1

(β −α)
[
1 + exp H(β)−H(α)

β−α

] . (40)

We can now see that, as mentioned earlier, the naively constructed Holevo quantity
S(
∑

i mi Ē i)−
∑

i mi S(Ē i), where mi = Tr(Ei)/d, Ē i = Ei/(mi d), in general is neither an
upper nor a lower bound to C({Ei}). Indeed, it is known that the accessible information of
an ensemble of density matrices is equal to the Holevo quantity of the ensemble if and only if
all density matrices in the ensemble commute, and the maximal value of the mutual information
is attained for a projective measurement in the common eigenbasis of the input ensemble. From
the symmetry of the problem, we see that for a POVM with commuting elements, the quantity
S(
∑

i mi Ē i)−
∑

i mi S(Ē i) is equal to the mutual information between the equiprobable input
ensemble of common eigenstates of {Ei} and the outputs of the measurement {Ei}. However,
from equation (40) it can be seen that an equiprobable prior distribution is generally suboptimal
for this case, i.e. the quantity S(

∑
i mi Ē i)−

∑
i mi S(Ē i) can be strictly smaller than C({Ei}).

On the other hand, in the group covariant case we have C({Ei})= A({Ĕ i}), where in general
A({Ĕ i}) is strictly smaller than S(

∑
i mi Ē i)−

∑
i mi S(Ē i).

We remark that the maximal possible mutual information for an input ensemble of states
on a Hilbert space of dimension d and any POVM measurement is log d . This can be easily
seen from Holevo’s upper bound on the accessible information [21]. Moreover, this quantity is
achievable only by an ensemble of pure commuting input states that sum up to the maximally
mixed state, i.e. by an equiprobable ensemble of orthogonal basis states. The unique optimal
measurement for such an ensemble is a projective measurement on the basis in question.
Reversely, any rank-one projective measurement has capacity log d which is achievable by
the equiprobable input ensemble of corresponding basis states. Hence, rank-one projective
measurements have the highest capacity.
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5. Example: the symmetric informationally complete positive operator-valued measure
on a qubit

In this section, we apply the above results to the case of an SIC-POVM on a qubit, as well as to
a noisy, or unsharp, version of this POVM. An SIC-POVM [22, 23] in dimension d consists of
a set of d2 rank-one positive operators, Ei = (1/d)|ψi〉〈ψi |, where the pure states |ψi〉 are such
that |〈ψi |ψ j〉|

2
= 1/(d + 1) for i 6= j . The measurement is called ‘complete’ in the sense that its

statistics is sufficient for the full tomography of any quantum state [24, 25]. SIC-POVMs are of
particular interest due to their various applications in quantum information, including quantum
tomography [26], quantum cryptography [27] and the foundations of quantum mechanics [28].

Up to a change of basis, the POVM elements of such a measurement for d = 2 can be
written as

Ei =
1
4(I + Eni · Eσ), i = 1, 2, 3, 4, (41)

where Eσ is the vector of Pauli matrices

σy =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (42)

and

En1 =
1

√
3

1
1
1

, En2 =
1

√
3

−1
−1
1

,
En3 =

1
√

3

−1
1

−1

, En4 =
1

√
3

 1
−1
−1

. (43)

In order to illustrate the relation between the ‘sharpness’ of a measurement and its ability to
read out information, we will consider a more general, noisy version of the above SIC-POVM,
where each outcome is mixed with some amount of white noise,

Ei(ε)= εEi + (1 − ε)
I

4
=

1

4
(I + εEni · Eσ), i = 1, 2, 3, 4, 06 ε 6 1. (44)

When ε = 1, the measurement reduces to the ideal SIC-POVM [Ei(1)≡ Ei ], whereas as ε → 0,
the measurement becomes infinitesimally weak [29], approaching a trivial measurement, each
of its outcomes occurring with probability 1/4 independently of the input state. In this sense,
ε can be regarded as parameterizing the ‘sharpness’ or ‘strength’ of the measurement [30].

5.1. Minimum error discrimination

For simplicity, let us start with the noiseless SIC-POVM (41). Given the symmetry of the
problem, it is enough to consider four groupings, α ∈ {A, B,C, D}:

A : {E1, E2, E3, E4},

B : {E1 + E2, E3, E4, 0},

C : {E1 + E2, E3 + E4, 0, 0},

D : {E1 + E2 + E3, E4, 0, 0}.

(45)
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The corresponding vector of maximum eigenvalues (in decreasing order of value) are (see
equation (8) with Bi j = δi j )

sA = {1/2, 1/2, 1/2, 1/2},

sB = {(1 + 1/
√

3)/2, 1/2, 1/2, 0, 0},

sC = {(1 + 1/
√

3)/2, (1 + 1/
√

3)/2, 0, 0},

sD = {1, 1/2, 0, 0},

(46)

where it is understood that the vectors need to be padded with extra zeros if the number of
signal states exceeds four (N > 4). For equiprobable signals, πi = 1/N , the optimal success
probability is given by ps = 1/N maxα

∑N
i=1(sα)i . In particular, ps = 1/2 + 1/(2

√
3) for N = 2,

ps = 1/2 + 1/(6
√

3) for N = 3 and ps = 2/N for N > 4, which are attained by the groupings C ,
B and A, respectively. That is, for four signals (N = 4) no grouping is necessary and the signal
states have to be chosen to point along the directions of the SIC-POVM (43). Any additional
signals (N > 4) can be assigned to arbitrary states and will never contribute to the success
probability. For N = 3 one has to group two POVM elements leading to an unsharp effective
measurement, and leave the remaining two outcomes ungrouped (i.e. sharp). In that case the
three signals lie on a plane: two signals point along, say, En1 and En2 (corresponding to the sharp
POVM elements), and the third points along −(En1 + En2). For N = 2 the optimal strategy is to
encode the signals into orthogonal states pointing along the directions resulting from pairwise
groupings, e.g. En1 + En2 and En3 + En4 = −(En1 + En2).

In figure 1 we show the optimality regions for N = 3 and different priors. Within the region
π1 > π2 > π3, delimited by a dashed outline in this figure, we observe that the set of points
where each particular grouping is dominant is a convex polytope. The corresponding maximum
success probabilities are

pB
s =

1

2
+

1

2
√

3
π1,

pC
s =

(
1

2
+

1

2
√

3

)
(π1 +π2),

pD
s = π1 + 1

2π2.

(47)

Note that regions C and D correspond to groupings where no outcome is assigned to the third
signal state.

This illustrates the fact that there are cases (regions C and D) where it pays not to assign
any measurement outcome to some of the messages (i = 3 in this example), even though the
source emits them with nonzero prior probability. In particular, if the source is strongly biased
towards one message (π1 > 1/

√
3, in this example), all but one measurement outcome will be

assigned to it (message i = 1).
In order to study the effect of noise, ε < 1 in (44), one proceeds along the same lines

as above. We first note that since the noise is isotropic, the optimal signal states, i.e. the
eigenvectors with maximum eigenvalue of the sums of POVM elements in each grouping, A–D,
are the same as those for the sharp case, thus independent of the sharpness parameter ε. Their
corresponding maximum eigenvalues in (46) now have a noisy component that scales with the
number kαi of elements in those sums. More precisely, the vectors of eigenvalues have now
components ε(sα)i + kαi(1 − ε)/4.
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B

C

D

π1

π2
(1/2, 1/2)

(1/3, 1/3)
P

D
/3

B
3)

Figure 1. The colored regions in the prior-probability simplex for N = 3 indicate
the various optimal groupings. The dashed outline delimits the region π1 > π2 >
π3. Within this region, the intersection point of A, B and C is P = {2

√
3 − 3,

9 − 5
√

3}. Auxiliary thin lines are drawn to help understand the figure.

For equiprobable signals, πi = 1/N , the optimal groupings are those that are optimal in
the sharp case. Thus, they do not depend on ε, only on the number N of input states. The
minimum errors are now: ps = 1/2 + ε/(2

√
3) for N = 2, ps = 1/3 + ε(1 + 1/

√
3)/6 for N = 3

and ps = (1 + ε)/N for N > 4.
In more generic cases, when the source emits symbols with arbitrary prior probabilities, the

regions of optimality do depend on the noise or sharpness parameter ε. For the case of ternary
sources, N = 3, it is straightforward to show that the overall structure of the optimality regions
is that in figure 1, but the point P(ε) where B, C and D intersect moves monotonically away
from P(1)= P = {2

√
3 − 3, 9 − 5

√
3} (when the POVM is sharp) to P(0)= {1/3, 1/3} (when

it is maximally unsharp).

5.2. Unambiguous discrimination

We now turn to unambiguous discrimination with the SIC-POVM on a qubit. Clearly,
the slightest amount of noise (ε < 1) will ruin any possibility of performing unambiguous
discrimination since any signal state can trigger each of the outcomes with nonzero probability.
We thus concentrate on the ideal sharp SIC-POVM. In a two-dimensional Hilbert space one can
only hope to unambiguously discriminate two states (N = 2; π1 < 1); hence, grouping A can
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be excluded as it has too many outcomes. Moreover, we need only consider groupings B and
D, since only they have at least one rank-one POVM element and have therefore a non empty
kernel (K α

j 6= ∅). If grouping B is used, two messages can be unambiguously identified by
choosing the signals in the kernels of E3 and E4, respectively, that is, ρ1 = (1 − En3 · Eσ)/2 and
ρ2 = (1 − En4 · Eσ)/2, so that outcome 4 can only be triggered by ρ1 and outcome 3 by ρ2 (i.e.
Ẽ1 = E4, Ẽ2 = E3 and Ẽ ? = E1 + E2). This leads to a probability of successful identification
given by

pB
s = π1 Tr(Ẽ1ρ1)+π2 Tr(Ẽ2ρ2)

=
1 − En4 · En3

4
=

1

3
, (48)

which is independent of the prior probabilities {π1, π2}.
Proceeding along the same lines, one finds that for grouping D one can only

unambiguously identify the state ρ1 = (1 + En4 · Eσ)/2 with Ẽ1 = E4, by excluding ρ2 = (1 −

En4 · Eσ)/2 (i.e. ρ2 ∈ ker Ẽ1), while all other outcomes of the original POVM will be necessarily
inconclusive (Ẽ ? = I − E4). Obviously, no outcome will be associated with message i = 2
(Ẽ2 = 0). The success probability is

pD
s = π1 Tr(Ẽ1ρ1)=

π1

2
, (49)

which beats that of grouping B for π1 > 2/3.

5.3. Mutual information

The SIC-POVM on a qubit, including its noisy version, is covariant under the tetrahedral group
(indeed, the tips of the Bloch vectors (43) corresponding to the POVM elements define the
vertices of a tetrahedron). Therefore, according to theorem 1 in section 4, the mutual information
for this POVM is maximized by an ensemble of pure input states possessing the same symmetry.
Its maximal value, i.e. the capacity of the measurement, is given by equation (32) for a state ψ
from the optimal ensemble (all other states in the ensemble are obtained from ψ by applying
operators of the symmetry group, i.e. ψ plays the role of a ‘seed’ for the ensemble).

Theorem 2. (Capacity of the noisy two-level SIC-POVM). For every value of ε ∈ [0, 1], the
seed ψ that maximizes expression (32) can be chosen such that its Bloch vector is anti-parallel
to the Bloch vector of any one of the four POVM elements (44), i.e. Ev = −En j . The capacity of
the (generally noisy) SIC-POVM is

Cε = 1 +
1 − ε

4
log

1 − ε

2
+ 3

1 + ε/3

4
log

1 + ε/3

2
. (50)

This result, which applies to both the straight and the reverse formulations of the problem,
is interesting in its own right. As far as we are aware, previous results (for ε = 1) relied on
numerical optimization [2]. Here we provide an analytical proof for 06 ε 6 1.

Proof. Let us define

h(t)≡ η

(
1 + t

2

)
.
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We will first show that the following inequality holds for −16 t 6 1 and 06 ε 6 1:

h(εt)> a(ε)+ b(ε)t + c(ε)t2
≡ ℘ε(t), (51)

where
a(ε)=

1
16 [h(−ε)+ 15h(ε/3)− 4εh′(ε/3)],

b(ε) =
1
8 [−3 h(−ε)+ 3h(ε/3)+ 4εh′(ε/3)],

c(ε) =
3
16 [3h(−ε)− 3h(ε/3)+ 4εh′(ε/3)],

and h′ is the derivative of h with respect to its argument.
We start by noting the following relations,

℘ε(−1)= h(−ε), ℘ε(1/3)= h(ε/3), ℘ ′

ε(1/3)= εh′(ε/3) (52)

and

γ (ε)≡ c(ε)+
ε2

4 ln 2
6 0, (53)

where the equality is attained only at ε = 0. The first three of them are immediate. The last one
is not so obvious and can be proved as follows. The function γ (ε) is concave in [0, 1] since

γ ′′(ε)= −
9

2(1 − ε)(3 + ε)2 ln 2
+

1

2 ln 2
= −

ε(3 + 5ε + ε2)

2(1 − ε)(3 + ε)2 ln 2
6 0.

Differentiating the expression of c(ε) above, we readily obtain

c′(ε)=
3

16 [−3h′(−ε)+ 3h′(ε/3)+ 4
3εh′′(ε/3)],

which vanishes at ε = 0. Thus γ ′(0)= γ ′′(0)= 0 and γ ′′(ε) < 0 if ε > 0. Then, γ (ε) must
necessarily decrease for ε > 0, which in turn implies that γ (ε) has its unique maximum at
ε = 0. Since γ (0)= 0, equation (53) holds in the whole interval [0, 1].

We can now turn to proving (51). We assume that ε > 0, since ε = 0 is a trivial case. If
f (t)= h(εt)−℘ε(t), then

f ′′(t)= −2c(ε)−
ε2

2(1 + ε t) ln 2
.

It follows from this equation that there is only one value of t for which f ′′(t) vanishes. But
using (53), we see that f ′′(t) > 0 for t > 0. Therefore, f ′′(t) can only change sign at some
t0 < 0. Hence, f (t) is convex in (t0, 1] and concave in [ − 1, t0). It can have only one minimum
in (t0, 1], and according to the third relation (52), it must be at t = 1/3. Using the second
relation (52), we see that this minimum value is 0. Thus f (t)> 0 if t ∈ [t0, 1]. Because of
the concavity of f in the other interval, we just need to check the value of f at the end point
t = −1 (by continuity we must have f (t0)> 0). The first relation (52) ensures that f (t)> 0
also in [ − 1, t0].

Now, using the inequality (51), one can show that the mutual information for the
POVM (44),

I = 1 −
1

2

4∑
j=1

η

(
〈φ|E j(ε)|ψ〉

tr E j(ε)

)
= 1 −

1

2

4∑
j=1

h
(
ε Ev · En j

)
,
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is bounded as

I 6 1 −
1

2

4∑
j=1

℘ε(Ev · En j)= 1 −
1

2

[
4a(ε)+

4

3
c(ε)

]
= 1 −

h(−ε)+ 3h(ε/3)

2
.

This bound is attained with any one of the four choices Ev = −En j . The value of the capacity (50)
is obtained by a straightforward substitution. ut

Note that in the minimum error scenario, the optimal signal ensemble is such that each
state and its corresponding POVM element have maximum overlap (i.e. they are aligned with
each other). In contrast, here we find that it pays to have a signal ensemble where each state
would be excluded by one of the POVM outcomes in the absence of noise (i.e. states and
POVM elements are anti-aligned with each other). This configuration minimizes the (average)
conditional entropy of the output (the POVM outcomes) given the input signal ensemble (recall
that the mutual information (32) can be obtained by subtracting this conditional entropy from
the entropy of the output, which is constant here).

As expected, the capacity attains its maximal value C1 = log 4/3 for ε = 1 (the ideal SIC-
POVM) and monotonically decreases towards 0 as ε approaches 0. Note that, as pointed out in
corollary 2, the capacity of such a group covariant POVM is equal to the accessible information
of an equiprobable ensemble of states proportional to the original POVM elements,

ρi =
I + εEni · Eσ

2
, i = 1, 2, 3, 4. (54)

The latter problem, in the case ε = 1, was studied in [2], where it was shown that the accessible
information of the corresponding ensemble is A = log 4/3, which is equal to C1. The capacity
of the ideal SIC-POVM has also been obtained by a different approach in [19].

6. Conclusion

In summary, we have studied the problem of optimal signal states for information readout with
a given quantum detector. We considered some of the most common information transmission
problems—the Bayes cost problem, unambiguous message discrimination and the maximal
mutual information. We provided solutions to the Bayesian and unambiguous discrimination
strategies. We also showed that the maximal mutual information is equal to the classical
capacity of the measurement and studied its properties in certain special cases. For a group
covariant measurement, we obtained that the problem is equivalent to the problem of accessible
information of a group covariant ensemble of states. As an example, we applied our results on
the different discrimination strategies to the case of a SIC-POVM on a qubit, including a noisy
version of that POVM.

An interesting question for a future investigation is whether and under what conditions the
optimal solutions provided here are unique. Another question of significant interest would be
to obtain an upper bound on the capacity of a measurement. We provided a lower bound which
is obtained from a lower bound on the accessible information, but that lower bound could also
be improved. It would also be interesting to investigate the continuity properties of the optimal
quantities considered in this paper. For example, if two measurements are close in terms of the
distance functions introduced in [32], are their capacities also close?
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Finally, we note that the capacity of a POVM provides a very natural and source-
independent means of giving a quantitative characterization of a generalized quantum
measurement. However, it cannot be used as the unique figure of merit against which
measurement devices should be benchmarked. Ultimately, the performance of a given
measurement apparatus depends strongly on the task that it is meant to accomplish. For
instance, a noisy Stern–Gerlach measurement might have a higher capacity than that of
an ideal SIC-POVM; however, it would be misleading to claim that such a Stern–Gerlach
measurement outperforms the SIC-POVM since the latter can carry out tasks (e.g. full single-
qubit tomography or unambiguous state discrimination) that are impossible to achieve with the
former.

Note added. Almost simultaneously with the posting of this paper, two concurrent works
appeared—by M Dall’Arno, G M D’Ariano and M F Sacchi (see [33]) and by A S Holevo
(see [34])—which also introduce and study the capacity of a POVM measurement.
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