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Abstract— Communication channels impose a number of ob-
stacles to feedback control, such as delay, noise, and constraints
in communication data-rate. One alternate line of recent work
considers the problem of feedback stabilization subject to a
constraint in the signal-to-noise ratio (SNR). It has been shown
for continuous-time systems that the optimal control problem
arising in achieving minimal SNR can be formulated as a
linear quadratic Gaussian (LQG) control problem with weights
chosen as in the loop transfer recovery (LTR) technique. The
present paper extends such LQG/LTR formulation to discrete-
time systems with feedback over channels with memory. By
using such formulation, we derive exact expressions for the LTI
controller and loop sensitivity functions that achieve minimal
SNR under the effect of time-delay, non minimum phase zeros
and colored additive noise. For the minimum-phase case with
white noise and no time delay, we show that the optimal
feedback loop obtained after applying LTR has a structure
equivalent to that of a communication channel with feedback
from the output to the input.

I. INTRODUCTION

The study of control problems with feedback over com-

munication channels has grown increasingly in recent years;

see for example [1] and references therein. Communication

channels impose additional limitations to feedback, such

as constraints in data-rate and bandwidth, and effects of

noise and time delays. One line of recent works introduced

a framework to study stabilisability with feedback over

channels with a signal to noise ratio (SNR) constraint [10],

[5], [12]. These papers determined the minimal SNR required

to stabilize an unstable plant over an additive white Gaussian

noise (AWGN) channel. For the case of linear time invariant

(LTI) controllers, these conditions match precisely those

derived in [13] by application of Shannon’s theorem on the

capacity of a communication channel [7, §10.3]. A distinctive

characteristic of the SNR approach is that it is a linear

formulation, suited for the analysis of robustness using well-

developed tools [16].

The presence of time delay increases the SNR required to

stabilize (using LTI control) an unstable system, as shown

in [5], [12]. These papers treated time delays in discrete-

time, wherein they appear as an increase in the relative

degree of a finite dimensional plant. Bounds for the required

SNR with time delays in continuous-time are given in [11],
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with similar conclusions, albeit with considerably greater

technical complexity due to the infinite dimensionality of

the relevant dynamic operators. In the subsequent paper [3],

the authors derive exact closed-form expressions for the SNR

required for closed-loop stability with continuous-time time-

delays. The paper [3] studies output feedback over additive

coloured Gaussian noise channels with memory, in the sense

that the channel has a transfer function used to model a

bandwidth limitation in the continuous-time case.

Different techniques are used in the papers [10], [5],

[12] depending on whether stabilization is achieved by state

feedback or by output feedback. A common framework for

both state and output feedback cases is proposed in [4],

where it is shown that both problems can be solved as a linear

quadratic Gaussian (LQG) optimization. To be specific, the

H2 optimal control problem arising in minimal SNR control

may be posed as an LQG problem with weights chosen as in

the loop transfer recovery (LTR) technique (see [9], [14], [8],

[15], [6]). Doing so not only allows a unified treatment of the

state and output feedback cases, but also suggests, as pointed

out in [4], how performance considerations may be analyzed

in addition to stabilization. Also, posing the problem as one

of LQG provides insight into the structure of the optimal

controller, a fact that we shall highlight in the present paper.

Our goal in the present paper is to reformulate the prob-

lems solved in [3] as LQG problems as motivated by the

results of [4]. The present results differ from those of [4] in

that we consider channels with memory, and treat discrete-

time systems. Focusing on discrete-time allows us to consider

the effects of delay in a simple way, as noted above, and

also (as we shall see) to pose a problem that admits exact,

as opposed to asymptotic, expressions for the controller that

optimises SNR. By using these expressions, we show that,

in the non-minimum phase case with white noise and no

delays, the optimal LTR solution can be interpreted as a

communication channel with feedback from the output to

the input. The specific structure of this feedback is that of a

linear quadratic optimal observer.

The rest of the paper is organized as follows: Section II

introduces some preliminary concepts and definitions. Sec-

tion III reviews discrete-time observers and the LQG/LTR

technique. Section IV analyzes the closed loop stabilisability

problem when an ACGN channel with memory is located

between the plant and the controller. Section V presents an

interpretation of the resulting optimal feedback loop for an

AWGN channel in terms of an equivalent optimal estimator.

Section VI gives the paper conclusions.
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II. PRELIMINARIES

We consider the discrete-time feedback system depicted

in Figure 1, where G(z) and C(z) are scalar proper transfer

functions representing the plant and controller. The feedback

loop is closed over a noisy channel with memory, character-

ized by the scalar proper transfer functions F(z) and H(z).
The noise nk is assumed white and Gaussian with variance

σ2. We assume that C(z) is such that the closed-loop system

is stable in the sense that, for any distribution of initial

conditions, the distribution of all signals in the loop will

converge exponentially rapidly to a stationary distribution.
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Fig. 1. Control system with feedback over a noisy channel with memory.

The channel input power, defined by E
{

y2
k

}
, where E

denotes expectation, is required to satisfy the constraint

Pd > E
{

y2
k
}

(1)

for some predetermined power level Pd . Under reasonable

stationarity assumptions [2, §4.4], the power in the channel

input may be computed from its spectral density as

E
{

y2
k
}

=
1

2π

∫ π

−π
Sy (ω)dω =

1

2π

∫ π

−π
|Tyn|2σ2dω,

where

Tyn(z) = − C(z)G(z)
1+C(z)G(z)F(z)

H(z),

is the transfer function that relates yk with nk. Since the

feedback system is stable, then

E
{

y2
k
}

=
∥∥Tyn

∥∥2

H2
σ2.

Thus, the power constraint (1) at the input of the channel

translates to the SNR bound on the H2 norm of Tyn

Pd

σ2
>

∥∥Tyn
∥∥2

H2
. (2)

As a consequence, the problem of stabilization subject

to the constraint (1) leads to an H2 optimization. Such

optimization can be approached as an LQG control prob-

lem with weights chosen as in the LTR technique [4]. In

the case considered here, in which the channel is located

between measurements and controller (see Figure 1), the

LTR technique consists of first designing an optimal state

estimator based on the given noise statistical properties, and

then constructing an observer-based compensator with a state

feedback law uk = Kx̂k using the state estimate x̂k. The gain

K is chosen as the linear quadratic optimal cheap control

gain. We next review optimal observers and the above LTR

technique for discrete-time systems.

III. STATE ESTIMATION AND LOOP TRANSFER

RECOVERY

There are two distinctive characteristics of the LTR tech-

nique when dealing with discrete-time systems. First, a state

observer can be implemented in a filtering form or in a pre-
dicting form. Second, the computation of the optimal cheap

control state feedback gain for LTR can be done exactly,

as opposed to asymptotically, as is the case for continuous-

time systems in general [9]. In this section we first review

these two types of discrete-time optimal observers, and then

discuss the LTR technique.

Consider the general discrete-time system

xk+1 = Axk +Buk +wk,

ym
k = Cxk + vk,

(3)

where (A,B,C) is controllable and observable, xk ∈ R
n is

the state vector, uk ∈ R is the control input and ym
k ∈ R is

the output. The process and measurement noises wk ∈ R
n

and vk ∈ R are assumed zero mean Gaussian processes with

covariance matrix

E

{[
wk
vk

][
wT

l vl
]}

=
[

W S
ST V

]
δkl , δkl =

{
1 if k = l,
0 if k �= l.

A general discrete-time observer for this system is defined

by the equation

x̂k+1|k = Ax̂k|k−1 +Buk +Kp
(
ym

k −Cx̂k|k−1

)
, (4)

where the gain Kp is chosen such that the matrix A−KpC
has stable eigenvalues.

A. Filtering Observer–Based Compensator

A filtering observer is defined by (4) with Kp = AKf , and

the state estimate given by

x̂k|k = x̂k|k−1 +Kf
(
ym

k −Cx̂k|k−1

)
. (5)

The state estimate is updated by the current measurement

ym
k . In the optimal filtering observer, the gain Kf is given by

Kf =
(
AΣCT +S

)(
CΣCT +W

)−1
, (6)

where Σ is the positive semidefinite solution to the discrete-

time Riccati equation

Σ = AΣAT − (
AΣCT +S

)(
CΣCT +W

)−1

× (
CΣAT +S

)
+V. (7)

When this observer is considered together with the linear

control law

uk = −Kx̂k|k,

the transfer function of the resulting filtering observer–based

compensator is given by

Cf (z) = zK
(
zI − (

I −KfC
)
(A−BK)

)−1 Kf . (8)
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B. Predicting Observer–Based Compensator

A predicting observer is defined by (4) with Kp = AKf ,

and the state estimate directly given by x̂k|k−1. In the optimal

predicting observer, Kf is given by (6), (7), as for the optimal

filtering observer.

When the predicting observer is combined with the linear

control law

uk = −Kx̂k|k−1, (9)

we obtain a predicting observer–based compensator with

transfer function

Cp(z) = K (zI −A+BK +KpC)−1 Kp. (10)

C. Loop Transfer Recovery

The process of recovering, in the framework of the

LQG/LTR technique we are considering, will result in the

state feedback gain K. Define the quadratic cost index to be

minimized as

J =
∞

∑
k=0

xT
k Qxk +Ru2

k , (11)

where R > 0 and Q ≥ 0. It is known that the optimal state

feedback gain is given by

K =
(
R+BT PB

)−1
BT PA, (12)

where P is the solution to the discrete-time Riccati equation

P = AT PA−AT PB
(
R+BT PB

)−1
BT PA+Q. (13)

Recovery of the observer loop design is achieved whenever

R = 0 (cheap control) and Q = CTC.

IV. OPTIMAL SNR VIA LQG/LTR

We return to the system depicted in Figure 1. We assume

the LTI filters F(z) and H(z) are both biproper and stable;

H(z) is minimum phase, but F(z) is permitted to be non-

minimum phase. We assume that the plant G(z) is unstable

and possibly non-minimum phase. The state space descrip-

tion of the augmented system including G,F,H as in Figure 1

is

xk+1 =

⎡
⎢⎢⎢⎢⎣

xG
k+1

xF
k+1

xH
k+1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ AG 0 0

BFCG AF 0

0 0 AH

⎤
⎦

︸ ︷︷ ︸
A

xk+

+

⎡
⎣BG

0

0

⎤
⎦

︸ ︷︷ ︸
B

uk +

⎡
⎣ 0

0

BH

⎤
⎦

︸ ︷︷ ︸
Bn

nk

ym
k =

[
DFCG CF CH

]︸ ︷︷ ︸
C

xk + DH︸︷︷︸
D

nk,

(14)

where G � (AG,BG,CG), F � (AF ,BF ,CF ,DF) and H �
(AH ,BH ,CH ,DH). We consider the augmented system (14)

as a specific case of the general system (3).

Consider the noise nk to be white and Gaussian and,

without loss of generality, take E
{

nknT
l

}
= δkl . In regards to

(3), we have that vk = Dnk and wk = Bnnk (the measurement

and process noises), and the covariance matrix is

E {
[

wk
vk

][
wT

l vT
l

] } =
[

BnBT
n BnDT

DBT
n DDT

]
δkl . (15)

To state our results, we now need to define terms that

appear when the plant G or the filter F contains non-

minimum phase zeros.

A. Plant Non-Minimum Phase (NMP) Zeros

From [15], in order to deal with NMP zeros of G, notice

that G can be rewritten as

G = CG (zI −AG)−1 BG = Ca(z)Cm (zI −AG)−1 BG, (16)

where Ca(z) = Ca1(z)Ca2(z) · · ·Car and

Cm = Cr
m (17)

are defined recursively by

Cai = I −
(

aiāi −1

ai +1

)(
z+1

zāi −1

)
η̄iηT

i

Ci
m = Ci−1

m −
(

aiāi −1

āi +1

)
η̄iεT

i (AG + I) , ∀i = 1, · · · ,r,
(18)

where η̄ is the complex conjugate of η , and ai are the NMP

zeros of the plant, r is the number of NMP zeros, and the

vectors εi, ηi are the solutions to

[
εT

i ηT
i
][

aiI −AG −BG
−Ci−1

m 0

]
= 0. (19)

B. Channel NMP zeros

If the filter F contains q NMP zeros, labeled as fi, ∀i =
1, · · · ,q, we can write F as

F(z) = LF F̃(z), (20)

where

LF =
q

∏
i=1

=
z− fi

1− z f̄i
(21)

is the all pass term containing all q NMP zeros. If the term

LF is now included into the plant model, as say G̃ = LF G,

then the overall problem of SNR minimization can now

be analyzed for the triplet (G̃, F̃ ,H) instead of the original

(G,F,H). Since LF is all pass it will not modify the power

constraint at the channel input and the NMP zeros can now

be dealt with as if they are plant NMP zeros.
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Fig. 2. Predicting observer.

C. Main Result

For the LTR technique considered, we obtain the optimal

filtering and predicting observers (8), (10) directly from the

definition of the augmented system (14), (15). We specify

the observer gain

Kp = AKf =

⎡
⎣KG

p
KF

p
KH

p

⎤
⎦ , (22)

with KG
p ,KF

p ,KH
p with dimensions compatible with those of

the augmented state vector in (14), and Kf given by (6), (7)

for the augmented system (14), (15).

For the computation of the optimal cheap state feedback

gain K in (12), (13), we use the cost index

J =
∞

∑
k=0

y2
k =

∞

∑
k=0

xT
k

⎡
⎣CT

G
0

0

⎤
⎦[

CG 0 0
]

xk. (23)

which corresponds to the cost index in (11). An exact (not

asymptotic) expression for the optimal cheap gain K, with

Q =

⎡
⎣CT

G
0

0

⎤
⎦[

CG 0 0
]
, (24)

and R = 0, is obtained by direct application of a result from

[15].

Lemma 1: Consider the system (14), and assume that the

relative degree of G equals l; that is, CB = CAB = · · · =
CAl−2B = 0, CAl−1B �= 0. Then, the optimal cheap state

feedback gain (12), (13), with Q given by (24) and R = 0, is

K = (CmAl−1
G BG)−1

[
CmAl

G 0 0
]
, (25)

where Cm is given by (17), (18).

Proof: See [15, Theorem 2.1].

Define the observer loop sensitivity function as

Sob(z) = (1+H (z))−1, H (z) = C (zI −A)−1 Kp, (26)

and define similarly

So(z) = (1+Lo(z))−1, Lo(z) = F(z)G(z)C(z), (27)

where C(z) is the compensator in Figure 1.

Theorem 2: Assume that H contains no NMP zeros. If

the observer design is performed using covariance matrix

defined in (15), the resulting gain Kp is defined as in (22),

and recovery is applied using
[
Cm 0 0

]
, then the optimal

output open loop function and optimal output feedback loop

sensitivity function are

Lo = [H −Ed ] [1+Ed ]
−1 , So = [1+Ed ]Sob, (28)

where

a) For the filtering observer–based compensator (8),

Ed = CF ΦF KF
p +CHΦHKH

p

+F
(

CG − 1

zl−1
CaCmAl−1

G

)
ΦGKG

p . (29)

b) For the predicting observer–based compensator (10),

Ed = CF ΦF KF
p +CHΦHKH

p

+F
(

CG − 1

zl CaCmAl
G

)
ΦGKG

p . (30)

In both cases ΦG = (zI −AG)−1
, ΦF = (zI −AF)−1

and

ΦH = (zI −AH)−1
.

Proof: See Appendix.

From [3] and Theorem 2 we can obtain an expression for

the optimal SNR required for stability.

Corollary 3: The feedback loop in Figure 1 can be stabi-

lized if and only if the SNR (2) satisfies

Pd

σ2
>

∥∥[1+Ed(z)]Sob(z)G(z)Ĉ(z)H(z)
∥∥2

H2
.

where Ĉ(z) is the optimal controller that achieves the mini-

mum SNR (either predicting or filtering).

The following example includes consideration of a plant

with repeated poles, a case hard to analyze from the algebraic

perspective presented in [3].

Example 1: Consider the following plant, filter F and

filter H:

G(z)=
z+0.1

z2 +2αz+4
, F(z)=

5

8

z−0.2

z−0.5
, H(z)=

7

9

z−0.1

z−0.3
,

with α in [−2,2]. Notice that under this definition the plant

will show a pair of complex conjugate poles with real part α
and imaginary part

√
4−α2 and whenever |α|= 2 the plant

will have repeated poles.

For this example it is assumed that the associated computa-

tional time is negligible. Therefore the filtering compensator

is the working choice in order to compute the SNR required

for stabilisability.
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In Figure 3 it can be seen how the SNR varies for different

values of α (real axis). Since the unit disk defines the

stability region for the discrete-time case, both α = −2

and α = 2 are unstable cases, but the SNR required for

stabilisability is not the same.

−2
−1

0
1

2

−2

−1

0

1

2
13.5

13.6

13.7

13.8

13.9

14

Real axisImaginary axis

P
d/σ

2  [d
B

]

Fig. 3. Signal to Noise Ratio for the case of ACGN channel, thick black
line. Unstable plant pole locations, black line, and stability region, dashed
black line.

V. INTERPRETATION OF THE OPTIMAL FEEDBACK

SYSTEM

In this section we assume that the channel is an AWGN

channel (F(z) = 1 = H(z)) and that the plant is minimum

phase with relative degree one. Notice that in this case (14)

will match (3). The resulting connection diagram for the case

of the optimal feedback loop using a filtering compensator is

shown in Figure 4. After LQG/LTR is performed, the channel

input and output satisfy

Y (z) = Sob(z)C(zI −A)−1W (z)−Tob(z)V (z) (31)

Y m(z) = Sob(z)C(zI −A)−1W (z)+Sob(z)V (z), (32)

where Tob = 1−Sob and Sob is given in (26).

On the other hand for the optimal predicting observer,

see Figure 2, we have that the innovation sequence ek =
yk + vk −Cx̂k|k−1 is given by

E(z) = Sob(z)C(zI −A)−1W (z)+Sob(z)V (z), (33)

and that the transfer function relating the estimation error

ỹk|k−1 with process noise wk and measurement noise vk is

Ỹ (z) = Sob(z)C(zI −A)−1W (z)−Tob(z)V (z). (34)

Thus, by comparing (31) with (34) and (32) with (34), we

can see that the optimal solution for the minimal SNR at the

channel input after LTR can be interpreted as a communica-

tion channel with feedback from the output to the input. The

structure of such feedback is input-output equivalent to an

optimal linear quadratic predicting observer. This effectively

has the interpretation that the AWGN channel input power

minimization performed using Theorem 2 can be seen as an

optimal estimation of the AWGN channel output.

VI. CONCLUSION AND REMARKS

In the present paper we have used LQG/LTR at the

output to solve the problem of minimum SNR required for

stabilisability of a NMP plant with time delay performed over

an ACGN NMP channel model with memory. As a result

exact closed loop sensitivity expressions for the optimal

solution are obtained for both the case of filtering observer

and predicting observer. An interpretation of the optimal

SNR stabilizing solution using filtering observer has been

given in terms of the predicting estimation of the channel

output.

The approach developed here has the potential of being

extended to multivariable systems. If the multichannel model

of choice is composed by independent ACGN channels with

memory and the power constraint is equally shared, then

the main difference will be in the dimensions of matrices

B, Bn, C and D in (14). The validity of such a choice

for the multichannel model will be the reason of further

investigation.

APPENDIX

Proof of Theorem 2, part a

Let Φ(z) = (zI − A)−1. As noted in [15], the filtering

compensator can be rewritten as

Cf = zK
(

I +
(
I +ΦKfCA

)−1 Φ(I −KfC)BK
)−1

× (
I +ΦKfCA

)−1 ΦKf .

Applying Matrix Inversion Lemma and rearranging terms we

obtain:

Cf = z
(

1+K
(
I +ΦKfCA

)−1 Φ(I −KfC)B
)−1

×K
(
I +ΦKfCA

)−1 ΦKf . (35)

Notice that since Ca is bicausal the structure of G(z) at

infinity is the same when described by (AG,BG,Cm). If

recovery is applied using
[
CG 0 0

]
instead of C this will

be equivalent to applying recovery using
[
Cm 0 0

]
instead

of C and, as a result K , accordingly with (14), is:

K =
[(

CmAl−1
G BG

)−1
CmAl

G 0 0

]
. (36)

If we define Hm =
[
Cm 0 0

]
AlΦKf = CmAl−1

G ΦGKG
p , (in

which KT
p is factorized as in (22)), it can be seen that (35)

becomes

Cf = z
(

zCmAl−1
G ΦGBG − zHm (1+H )−1 CΦB

)−1

×Hm (1+H )−1 . (37)

Again, accordingly to (14), we have CΦB = FCGΦGBG =
FCaCmΦGBG. Substitute in (37) and rearrange terms:

Cf =
(

CmAl−1
G ΦGBG

)−1

Hm×(
1+H −FCaCmΦGBG

(
CmAl−1

G ΦGBG

)−1

Hm

)−1

. (38)
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Fig. 4. Feedback system with filtering estimator.

By using the result in (38) and equating L = FGCf (the

output open loop transfer function), to (H −Ed)(1+Ed)
−1

it is possible to recognize Ed as:

Ed = H − FCaCmΦGBG

(
CmAl−1

G ΦGBG

)−1

Hm.

Replacing definitions for H and Hm, using [8, Equa-

tion (23)], and factorizing the resulting terms gives (29),

which ends the proof.

Proof of Theorem 2, part b

Let Φ(z) = (zI − A)−1. Consider the definition for the

predicting based compensator in (10) and apply matrix

inversion lemma:

Cp =
(

1+K (I +ΦKpC)−1 ΦB
)−1

×K (I +ΦKpC)−1 ΦKp. (39)

When loop transfer recovery is applied using
[
Cm 0 0

]
instead of C, the state feedback gain K will be the same as

in (36). Define in this occasion Hm =
[
Cm 0 0

]
AlΦKp =

CmAl
GΦGKG

p , (in which KT
p is factorized as in (22)). Further

manipulating (39) gives

Cp =
(

zCmAl−1
G ΦGBG −Hm (1+H )−1 FCaCmΦGBG

)−1

×Hm (1+H )−1 ,

Rearranging terms one last time gives:

Cp =
(

zCmAl−1
G ΦGBG

)−1

Hm×(
1+H −FCaCmΦGBG

(
zCmAl−1

G ΦGBG

)−1

Hm

)−1

. (40)

By using the result in (40) and equating L = FGCf (the

output open loop transfer function), to (H −Ed)(1+Ed)
−1

it is possible to recognize Ed as:

Ed = H − FCaCmΦGBG

(
zCmAl−1

G ΦGBG

)−1

Hm.

Replacing working definitions for H and Hm, using [8,

Equation (23)], and factorizing the resulting terms gives (30),

which ends the proof.
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