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Abstract

Consider testing the null hypothesis that a single structural equation has specified
coefficients. The alternative hypothesis is that the relevant part of the reduced form
matrix has proper rank, that is, that the equation is identified. The usual linear model
with normal disturbances is invariant with respect to linear transformations of the
endogenous and of the exogenous variables. When the disturbance covariance matrix
is known, it can be set to the identity, and the invariance of the endogenous variables
is with respect to orthogonal transformations. The likelihood ratio test is invariant
with respect to these transformations and is the best invariant test. Furthermore it
is admissible in the class of all tests. Any other test has lower power and/or higher
significance level.

Keywords: Admissible invariant tests, likelihood ratio tests, Bayes tests

∗The author thanks Naoto Kunitomo Graduate School of Economics, University of Tokyo) for his generous

assistance. An early version of this paper was presented to the James Durbin Seminar October 29, 2009,

sponsored by the London School of Economics and University College, London.
†Department of Statistics and Economics, Stanford University, Stanford, CA 94305-4065, USA;

twa@stanford.edu

1



1 Introduction

There is a considerable literature on statistical inference concerning a single structural
equation in a simultaneous equation model. A predominance of the literature concerns
estimation of the coefficients of the single equation. Anderson and Rubin (1949) developed
the Limited Information Maximum Likelihood (LIML) estimator on the basis of normality
of the disturbances. When the disturbance covariance matrix was known, the corresponding
estimator was known as LIMLK. They also suggested a test of the null hypothesis, say, H0,
the vector of coefficients of the endogenous variables, say, β, is a specified vector, say, β0;
the alternative hypothesis, say H2, β was unrestricted. When the single equation was over-
identified (a term defined later), the test was inefficient in the sense that the power against
the alternative was not optimum. Moreira (2003) derived an alternative test which he called
the conditional likelihood ratio test. Anderson and Kunitomo (2007) derived an equivalent
test by testing H0 against H1 : the equation is identified. This likelihood ratio criterion
is the ratio of the likelihood ratio criterion for testing H0 vs H2 to the likelihood ratio
criterion for testing H1 vs H2. (These two likelihood ratio criteria were given in Anderson
and Rubin, 1949.)

The current paper treats the testing problem when the disturbances matrix is known
and is assumed to be proportional to I. Further, the number of endogenous variables in the
single equation is restricted to two. In this case it is convenient to use polar coordinates for
the vector β.

The likelihood ratio criterion for testing H0 against H1 is developed in polar coordinates.
The criterion has an intuitively appealing interpretation and some invariance properties;
that is, the criterion is invariant to rotations of the coordinate system.

We show that the likelihood ratio test is the best invariant test by showing that it is a
Bayes solution. It follows that it is admissible among the class of all tests. This means that
there is no test with better significance level and better power. (The precise definition of
admissibility will be given later.) The result is one of few properties of tests in the field that
is not approximate or asymptotic. Chamberlain (2007) has also considered these problems
in polar coordinates.

Anderson (1976) pointed out that a structural equation in a simultaneous equation
model is the same as a linear functional relationship in the statistical literature. Creasy
(1956) derived the likelihood ratio test of the slope parameter in this model.

Anderson, Stein and Zaman (1985) showed that the LIMLK estimator is admissible for a
loss function to be defined later. They first showed that the LIMLK estimator was the best
invariant estimator and then deduced that it was admissible in the class of all estimators.

Inference for the LIML estimator and the likelihood ratio test when the disturbance
covariance matrix is estimated will be treated in a subsequent paper.

2 A simultaneous equation model

The observed data consists of a T ×G matrix of endogenous or dependent variables Y and
a T × K matrix of exogenous or independent variables Z (G < K). A linear model (the
reduced form) is

(2.1) Y = ZΠ + V ,

where Π is a K × G matrix of parameters and V is a T × G matrix of unobservable
disturbances. The rows of V are assumed independent; each row has a normal distribution
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N(0,Ω).
The coefficient matrix Π can be estimated by the sample regression

(2.2) P = (Z ′Z)−1Z ′Y .

The covariance matrix Ω can be estimated by (1/T )H, where

(2.3) H = (Y −ZP )′(Y −ZP ) = Y ′Y − P ′AP

and A = Z ′Z. The matrices P and H consititute sufficient statistics for the model.
A structural or behavioral equation may involve a T × G1 subset of the endogenous

variables Y1, a T × K1 subset of the exogenous variables Z1, and a T × G1 subset of
disturbances V1. The structural equation of interest is

(2.4) Y1β1 = Z1γ1 + u,

where u = V1β1 and V = (V1,V2). A component of u has the normal distribution N(0, σ2),
where σ2 = β′1Ω11β1 and Ω11 is the G1 ×G1 upper-left submatrix of

(2.5) Ω =

[
Ω11 Ω12

Ω21 Ω22

]
When Y , Z, V , and Π are partitioned similarly, the reduced form (2.1) can be written

(2.6) (Y1,Y2) = (Z1,Z2)

[
Π11 Π12

Π21 Π22

]
+ (V1,V2) ,

where (Y1,Y2) is a T × (G1 +G2) matrix. The relation between the reduced form and the
structural equation is

(2.7)

[
γ1
0

]
=

[
Π11 Π12

Π21 Π22

] [
β1

0

]
=

[
Π11β1

Π21β1

]
.

The second submatrix of (2.7),

(2.8) Π21β1 = 0,

defines β1 except for a multiplicative constant if and only if the rank of Π21 is G1 − 1
(G1 < K1). In that case the structural equation is said to be identified.

In this paper we derive the likelihood ratio test of the null hypothesis

H0 : β1 = β0

against the alternative
H1 : β1 is identified.

The goal of this paper is to show that this test is admissible. Roughly speaking, it means
that there is no other test that can have better power everywhere. In developing this thesis
it will be convenient to carry out the detail when γ1 is vacuous, that is K1 = 0. Furthermore,
we set G2 = 0 so that G = G1. Then the structural equation is

(2.9) Y β = (ZΠ + V )β = u.
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3 Invariance and normalization

The model (2.1), Ω, (2.9), and H0 : β = β0 is invariant with respect to linear transforma-
tions of the exogenous variables

(3.1) Z+ = ZC, Π+ = C−1Π

for C being nonsingular. Then

(3.2) Z+Π+ = ZΠ, A+ = C ′AC, P+ = C−1P ,

and

(3.3)
G+ = P+′A+P+ = P ′AP = G,

H+ = Y ′Y − P+′A+P+ = H.

If the rank of Π is G − 1 (≤ K), the equation Πβ = 0 determines β except for a
multiplicative constant. The “natural normalization” is

(3.4) β′Ωβ = 1,

which determines the constant except for sign. The model (2.1), (2.9), and (3.4) is invariant
with respect to transformations

(3.5) Y ∗ = Y Φ, Π∗ = ΠΦ, β∗ = Φ−1β, V ∗ = V Φ,

and

(3.6) Ω∗ = Φ′ΩΦ, β∗0 = Φ−1β0,

where Φ is nonsingular. Then

(3.7) P ∗ = PΦ, G∗ = P ∗′AP ∗ = Φ′P ′APΦ = Φ′GΦ,

and

(3.8) H∗ = Φ′HΦ, Π∗β∗ = Πβ = 0, β∗′Ω∗β∗ = 1.

We consider the model (2.1) and (2.9) when Ω (the covariance matrix of a row of V ) is
known. In this case we can make a transformation (3.5) and (3.6) so Ω = I. Then the first
equation in (3.6) is

(3.9) I = O′O,

that is, the invariance with respect to transformations is with respect to orthogonal trans-
formations. We shall use O to indicate an orthogonal matrix. We can write (3.5) and (3.6)
as

(3.10)
Y ∗ = Y O, Π∗ = ΠO, β∗ = O′β,

β∗0 = O′β0, β∗′β∗ = β′β = 1.

The null hypothesis is β = β0.
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4 A canonical form for G = 2 and polar coordinates

The main part of this paper concerns the model for Ω = I2 and

(4.1) G1 = G = 2, G2 = 0, K1 = 0, K2 = K ≥ 2.

Then the vector β with natural parameterization satisfies

(4.2) Πβ = 0, β′β = 1.

We can parameterize β as

(4.3) β =

[
cos θ
sin θ

]
= βθ,−π ≤ θ ≤ π.

This is the polar or angular representation of the coefficient vector.
When the K × 2 matrix Π has rank 1, it can be parameterized as

(4.4) Π = γα′θ,

where γ is a K × 1 vector and

(4.5) αθ =

[
− sin θ
cos θ

]
.

Note that

(4.6) (βθ,αθ) =

[
cos θ − sin θ
sin θ cos θ

]
= Oθ

is an orthogonal matrix. The model is identified.
Since Ω is known, the sufficient statistic in the model is P .
Now make a transformation (3.1) so A+ = C ′AC = IK ; define Q = P+ = C−1P and

W = A−1Z ′V ,

(4.7) Π+ = να′θ, P ′AP = Q′Q, ν = C−1γ.

The model is

(4.8) Q = να′θ +W .

Here W = (w1,w2), E(W ) = 0,

(4.9) E(w1w
′
1) = E(w2w

′
2) = IK , E(w1w

′
2) = 0.

The hypothesis β = β0 is equivalent to the hypothesis θ = θ0 when β = (cos θ, sin θ)′

and is equivalent to the hypothesis α = α0 when α′ = (− sin θ, cos θ) and θ = θ0.
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5 The density of Q

The density of Q is

1

(2π)K
e−

1
2
trW ′W =

1

(2π)K
e−

1
2
tr(Q′Q+νν′−2αθν

′Q)(5.1)

=
1

(2π)K
e−

1
2
tr(Q′Q)− 1

2
ν′ν+ν′Qαθ .

Let

(5.2) ν ′ν = λ2, ν = λη,

where η′η = 1. Then the density of Q is

(5.3)
1

(2π)K
e−

1
2
tr(Q′Q)− 1

2
λ2+λη′Qαθ .

We shall find the best test of θ = θ0 that is invariant with respect to the group of transfor-
mations

(5.4) αθ → Oaαθ, αθ0 → Oaαθ0 , η → Obη.

An explicit expression for the polar coordinates in K dimensions is given in Problem 7.1 of
Anderson (2003).

6 Reduction to G

First we show that a function of Q that is invariant with respect to transformations (5.4)
is a function of Q′Q = G.

Lemma 6.1. A function of Q that is invariant with respect to

(6.1) Q→ OaQ, Q→ QOb,

is a function of G = Q′Q.

Proof. (i) G is a function of Q that is invariant. (ii) If there are Q1 and Q2 such that

(6.2) Q′1Q1 = Q′2Q2,

then there exists an orthogonal matrix Oc such that Q1 = QcQ2.

Invariant tests of H0 : θ = θ0 can be based on G = Q′Q.

7 Density of G

The matrix G = Q′Q has the noncentral Wishart distribution with K degrees of freedom,
covariance I2, and noncentrality matrix

(7.1) (ληα′θ)
′(ληα′θ) = λ2αθα

′
θ.
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See Anderson and Girshick (1944): “Some extensions of the Wishart distribution,” Annals
of Mathematical Statistics. (Corrections, 1964). The density or likelihood of G is

(7.2)
e−

1
2
λ2− 1

2
trG|G|

1
2
(K−3)

2
1
2
K+1π

1
2 Γ
[
1
2(K − 1)

](λ2α′θGαθ)−(K−2)/4I 1
2
(K−2)

(
λ
√
α′θGαθ

)
,

where

(7.3) I 1
2
(K−2)(z) =

(
1

2
z

) 1
2
(K−2) ∞∑

j=0

(
z2

4

)j
1

j!Γ(12K + j)

is the modified Bessel function of order (K−2)/2. (Abramowitz and Stegun, 1972, (9.6.10)
on p. 375); see also Appendix B.

Let G = OtRO
′
t, where

R =

[
r1 0
0 r2

]
,(7.4)

Ot =

[
cos t − sin t
sin t cos t

]
= (βt,αt) .(7.5)

The diagonal elements of R are the eigenvalues of G (0 ≤ r1 ≤ r2 <∞), and βt and αt are
the corresponding eigenvectors; that is,

(7.6) G(βt, αt) = (βt, αt)R.

TransformG (2×2) to (r1, r2, t), The Jacobian of the transformation is r2−r1; see Appendix
A.

The density of r1, r2 and t (−π ≤ t ≤ π) is

(7.7)
(r2 − r1)e−

1
2
λ2− 1

2
(r1+r2)(r1r2)

1
2
(K−3)

2
1
2
K+1π

1
2 Γ
[
1
2(K − 1)

] I∗1
2
(K−2)(λ

2c2),

where

c2 = α′θOtRO
′
tαθ(7.8)

= α′θ−tRαθ−t

= r1 sin2(t− θ) + r2 cos2(t− θ)
= r2 − (r2 − r1) sin2(t− θ),

I∗1
2
(K−2)(λ

2c2) =

(
λc

2

)− 1
2
(K−2)

I 1
2
(K−2)(λc)(7.9)

=
∞∑
j=0

(
λ2c2

4

)j
1

j!Γ(12K + j)
.

Let

(7.10) n(r1, r2) =
(r2 − r1)(r1r2)

1
2
(K−3)e−(r1+r2)/2

2
1
2
K+1π

1
2 Γ
[
1
2(K − 1)

] .

Then the density of r1, r2, and t is

(7.11) h(r1, r2, t|θ, λ) = n(r1, r2)e
− 1

2
λ2I∗1

2
(K−2)(λ

2c2).
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8 Likelihood ratio criterion

The density (i.e., likelihood) of r1, r2, and t given λ and

(8.1) H0 : θ = θ0

is

(8.2) max
H0

Lhd = n(r1, r2)e
−λ2/2I∗1

2
(K−2)(λ

2c20),

where

(8.3) c20 = r1 sin2(t− θ0) + r2 cos2(t− θ0) = r2 − (r2 − r1) sin2(t− θ0).

The likelihood is maximized with respect to θ (given λ) for

(8.4) H1 : −π ≤ θ ≤ π

at θ̂ = t. Then

(8.5) max
H1

Lhd = n(r1, r2)e
−λ2/2I∗1

2
(K−2)(λ

2r2).

The likelihood ratio criterion for testing H0 : θ = θ0 against the alternative H1 : −π ≤ θ ≤ π
given λ is

LRC =
maxH0 Lhd

maxH1 Lhd
=

I∗1
2
(K−2)(λ

2c20)

I∗1
2
(K−2)(λ

2r2)
(8.6)

=
I∗1
2
(K−2)

{
λ2
[
r2 − (r2 − r1) sin2(t− θ0)

]}
I∗1
2
(K−2)(λ

2r2)

=
I∗1
2
(K−2)

[
s2 − (s2 − s1) sin2(t− θ0)

]
I∗1
2
(K−2)[s2]

,

where s1 = λ2r1 and s2 = λ2r2.
The function I∗1

2
(K−2)(λ

2c0) is an increasing function of λ2c0, and c20 is an increasing

function of (r2 − r1) sin2(t − θ0), hence I∗1
2
(K−2)(λ

2c0) is a decreasing function of (r2 −
r1) sin2(t − θ0). The acceptance region of the likelihood ratio test of H0 : θ = θ0 given λ
can be written

(8.7) (r2 − r1) sin2(t− θ0) ≤ function of r1, r2 and λ.

Note that the likelihood ratio criterion does not depend on the parameter λ. However,
the probability of acceptance does depend on λ. When the null hypothesis is true, the
distribution of the LRC does not depend on θ0; that is, the distribution is invariant with
respect to transformation (3.10). The maximum likelihood estimator of θ is θ̂ = t; the
maximum likelihood estimator of β is β̂ = βθ̂.

The likelihood ratio criterion when λ is considered as a parameter could be derived
from the model (5.1); that is equivalent to the hypothesis β = βθ0 , when β′β = 1. The
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likelihood of (5.1) is maximized with respect to ν for fixed θ at ν̂ = Qαθ yielding a
maximized likelihood of

1

(2π)K
e−

1
2
trQ′Q+ 1

2
α′θQ

′Qαθ =
1

(2π)K
e−

1
2
(trG−α′θGαθ)(8.8)

=
1

(2π)K
e−

1
2
trR+ 1

2
c2 .

Under the null hypothesis c2 is

(8.9) c20 = r2 − (r2 − r1) sin2(t− θ0).

Under the alternative H1, the maximum of the likelihood (8.8) occurs at θ = 0 and c2 = r2.
Then the likelihood ratio criterion for testing H0 vs. H1 is

(8.10) e−
1
2
(r2−r1) sin2(t−θ0).

However, to carry out the admissibility argument requires explicit treatment for each value
of λ.

9 Bayes test

We now formulate the testing problem as a 2-decision problem : θ = θ0 vs θ 6= θ0 with the
loss function L(θ, a), where the action a is Accept H0 or Reject H0.

L(θ, a) Action

Accept H0 Reject H0

Parameter θ = θ0 0 1
θ 6= θ0 1 0

A test (or decision rule) is a function d(r1, r2, t) taking values a = accept H0 and
a = reject H0. The risk of a test is the expected loss

(9.1) R(θ, λ, d) =

∫ ∞
0

∫ r2

0

∫ π

−π
L[θ, d(r1, r2, t)]h(r1, r2, t|θ, λ) dt dr1 dr2

as a function of θ and λ. The average risk of a procedure with prior distribution P (θ) is

(9.2) R∗[P (·), λ, d] =

∫ π

−π
R(θ, λ, d) dP (θ).

We suppose the distribution P (θ) has a jump of Pr{θ = θ0} at θ0 and a density [1−Pr{θ =
θ0}]p(θ) for θ 6= θ0. Then

R∗[P (·), λ, d] = Pr{θ = θ0}Pr{reject H0|θ0, λ}(9.3)

+ [1− Pr{θ = θ0}]
∫ π

−π
Pr{accept H0|θ, λ}p(θ) dθ

= Pr{θ = θ0}
∫
R
h(r1, r2, t|θ0, λ) dr1 dr2 dt

+ [1− Pr{θ = θ0}]
∫
A
h̄(r1, r2, t|λ) dr1 dr2 dt,

9



where R is the rejection set of r1, r2, t and A is the acceptance set, and

(9.4) h̄(r1, r2, t|λ) =

∫ π

−π
h(r1, r2, t|θ, λ)p(θ) dθ

is a density. The average risk can be written as

R∗[P (·), λ, d] = Pr{θ = θ0}+

∫
A
{[1− Pr{θ = θ0}]h̄(r1, r2, t|λ)(9.5)

− Pr{θ = θ0}h(r1, r2, t|θ0, λ)} dr1 dr2 dt.

The average risk R∗[P ( · ), λ, d] is minimized by the set A for which

(9.6) [1− Pr{θ = θ0}]h̄(r1, r2, t|λ)− Pr{θ = θ0}h(r1, r2, t|θ0, λ) ≤ 0,

that is

(9.7) A :
h(r1, r2, t|θ0, λ)

h̄(r1, r2, t|λ)
≥ 1− Pr{θ = θ0}

Pr{θ = θ0}
.

Theorem 9.1. For each λ the Bayes test of H0 : θ = θ0 vs H1 : θ 6= θ0 when H0 has the
prior probability [1− Pr{θ = θ0}] and H1 has the prior probability Pr{θ = θ0} with density
p(θ) (θ 6= θ0), has the acceptance set (9.7).

The Bayes test is essentially obtained by applying the Neyman–Pearson Fundamental
Lemma to h(r1, r2, t|θ0, λ) and h̄(r1, r2, t|λ).

When

(9.8) p(θ) =
1

2π
, −π ≤ θ ≤ π,

the denominator of the left-hand side of (9.7) is

h̄(r1, r2, λ)(9.9)

= n(r1, r2)e
− 1

2
λ2 1

2π

∫ π

−π

∞∑
j=0

(
λ2

4

)j
1

j!Γ[12K + j]

[
r2 − (r2 − r1) sin2(t− θ)

]j
dθ

= n(r1, r2)e
− 1

2
λ2
∞∑
j=0

(
λ2

4

)j
1

j!Γ[12K + j]

1

2π

∫ t+π

t−π

[
r2 − (r2 − r1) sin2 x

]j
dx

= n(r1, r2)e
− 1

2
λ2
∞∑
j=0

(
λ2

4

)j
1

j!Γ[12K + j]

1

2π

∫ π

−π

[
r2 − (r2 − r1) sin2 x

]j
dx

= n(r1, r2)e
− 1

2
λ2fK(r1, r2, λ),

say. The integrand in the fourth line of (9.9) is nonnegative and less than rj2; hence, the
sum converges and fK(r1, r2, λ) is well-defined. Then the left-hand side of (9.7) is

(9.10)
h(r1, r2, t|θ0, λ)

h̄(r1, r2, t|λ)
=

I∗1
2
(K−2)(λ

2c2)

fK(r1, r2, λ)
.

Let λ2r1 = s1 and λ2r2 = s2. Then the LRC can be written as

(9.11) LRC =
I∗1
2
(K−2){s2 − (s2 − s1) sin2(t− θ0)}

I∗1
2
(K−2){s2}

10



and the left-hand side of (9.7) is

(9.12)
I∗1
2
(K−2){s2 − (s2 − s1) sin2(t− θ0)}∫ π
−π I∗1

2
(K−2){s2 − (s2 − s1)x}dx

.

The numerator of the LRC and the left-hand side of (9.7) are the same; the denominator of
the LRC and the left-hand side of (9.7) defining the Bayes test are functions of s1 and s2.

The conclusion is that a LR test can be expressed as a Bayes test for a prior of the
uniform distribution for the parameter θ.

Theorem 9.2. The likelihood ratio test for H0 : θ = θ0 vs H1 : θ 6= θ0 is a Bayes test for
a prior density 1/(2π).

10 Admissibility of invariant tests

Consider a family of densities f(y|ω) defined over a sample space Y and a parameter space
Ω. The parameter space is partitioned into disjoint sets Ω0 representing the null hypothesis
and Ω1 representing the alternative. A set A or B in the sample space represents the
acceptance of the null hypothesis.

Definition 10.1. A test A is as good as a test B if

Pr(A|ω) ≥ Pr(B|ω), ω ∈ Ω0,(10.1)

Pr(A|ω) ≤ Pr(B|ω), ω ∈ Ω1.(10.2)

Definition 10.2. A test A is better than B if (10.1) and (10.2) hold with strict inequality
for at least one ω.

Definition 10.3. A test A is admissible if there is no test B that is better than A.

See Section 5.6.2 of Anderson (2003), for example. If the sets A and B are invariant
with respect to a group of transformations, the test with acceptance set A is known as an
admissible invariant test.

Theorem 10.1. The Bayes test with acceptance region (9.7) is an admissible invariant test
of H0 vs. H1.

Proof. Let the Bayes test for Pr{θ = θ0} and the density p(·) be given by (9.7), resulting
in the average risk R∗[p(·), λ, dB]. If this test is not admissible, then there is a test d∗ that
is better than dB, that is,

(10.3) R∗[p(·), λ, d∗] ≤ R∗[p(·), λ, dB]

for all θ and λ with strict inequality for some θ and λ. However, this assertion contradicts
the construction of the Bayes test dB.

The conclusion is that the LR test is an admissible invariant test.
The invariance involved here is with respect to certain linear transformations. This

consideration is a generalization of the notion that the questions at issue do not depend on
the unit of measurement; for example, inches vs. feet vs. meters or pounds vs. kilograms
or radians vs. degrees. The linear transformations do not affect the inference problems for
which the model is used.
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11 Admissibility over all tests

11.1 General theorem

Now we consider admissibility with respect to all tests. We want to show that the best
invariant test of θ = θ0 is admissible within the class of all tests; in particular, a LR test
is admissible within the class of all tests. The idea is that a family of tests -invariant or
not- can be transformed to a family of randomized invariant tests; if the original family of
(randomized) invariant tests is admissible within the class of all tests.

We apply the so-called Hunt–Stein theorem to the effect that the best invariant test is
admissible in the class of all tests if the group transformations defining invariance is finite
or compact. See Zaman (1996), Section 7.9, or Lehmann (1986), Theorem 7 of Chapter
3. The proofs of such theorems are based on the argument that the randomization of the
noninvariant tests yields an invariant test that is as good as the noninvariant test.

In the model

(11.1) Q = ληα′ +W

for fixed λ, each parameter vector η and α take values in closed sets η′η = 1 and α′α =
1,which are therefore compact and satisfy the Hunt–Stein conditions.

Theorem 11.1. The LR test of θ = θ0 is admissible in the set of all tests.

11.2 An example

Cosider the model in which θ can take on a finite number of values.
The possible parameter values are

(11.2) θ = 0,
1

N
2π,

2

N
2π, . . . ,

N − 1

N
2π.

Consider the group of transformations

(11.3) θ −→ θ +
j

N
2π, t −→ t+

j

N
2π, j = 0, 1, . . . , N − 1.

Let these values of θ be labelled as θ∗0, θ
∗
1, . . . , θ

∗
N−1. Each of them corresponds to a null

hpothesis. Define a test of the hypothesis θ = θ∗k by the acceptance region A∗k = A∗k(t, r1, r2)
in the space of t, r1, r2. The set of tests is an invariant set if

(11.4) A∗k(t− θ∗k, r1, r2) = A∗j (t− θ∗k, r1, r2)

for k, j = 0, 1, · · · , N − 1.
The LR test of the hypothesis θ = θ∗i against the alternative θ = θ∗j for some j =

0, 1, . . . , N − 1 is the Bayes solution for the hypothesis θ = θ∗i for prior probabilities

(11.5) Pr{θ = θ∗j} =
1

N
, j = 0, 1, . . . , N − 1.

Non-invariant tests. Suppose the set of tests are not necessarily invariant; that is,
(11.3) does not necessarily hold. We can randomize these N tests by defining an invariant
randomized test.
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The acceptance region A∗k(t, r1, r2) can be adapted to test θ = θ∗i by subtracting θ∗k from
A∗k(t, r1, r2) and adding θ∗i , which is the region A∗k(t − θ∗k + θ∗i , r1, r2). A randomized test
for the null hypothesis θ = θ∗i has acceptance region

(11.6)
1

N

N−1∑
k=0

A∗k(t− θ∗k + θ∗i , r1, r2).

The set of such tests for θ∗i , i = 0, 1, . . . , N − 1 is an invariant set.

Lemma 11.1. If a test with an invariant family of acceptance regions A0, A1, . . . , AN−1 is
admissible in the set of invariant tests, it is admissible in the set of all tests.

Proof by contradiction. Suppose Ā0, . . . , ĀN−1 is a family of better tests (not necessarily
invariant). Then the invariant randomized tests based on Ā0, . . . , ĀN−1 is better than
the family of A0, . . . , AN−1. But this contradicts the assumption that A0, . . . , AN−1 is
admissible in the set of invariant tests.

12 Comments

12.1 Invariance with respect to linear transformations of exogenous vari-
ables

In the model (2.1) Y = ZΠ + V a linear transformation of Z and Π (Z+ = ZC and
Π+ = C−1Π) leaves ZΠ invariannt and hence does not affect the model.

Similarly, the transformation does not affect the equation Πβ = 0, in particular the
null hypothesis Πβ0 = 0. This property is a generalization of the idea that the model and
the problem do not depend on the units of measurement. This property implies that a test
can be based on G = P ′AP .

12.2 Invariance with respect to orthogonal transformations of endoge-
nous variables

When Ω = I is assumed, an orthogonal transformation of the disturbance V → V O and a
corresponding transformation of β, β → O′β and of the null hypothesis β0 → O′β0 do not
affect the equations, β = β0 and β′β = 1. In the G−space this transformation is a rotation
of coordinates.

12.3 Conventional normalization

The conventional normalization of β which satisfies Πβ = 0 is to set one coefficient of β,
say the first component equal to 1; that is

(12.1) β =

[
1
−β2

]
.

When EY = ZΠ is replaced by EQ = ληα′ and G = 2, the condition Πβ = 0 is replaced
by

(12.2) 0 = α′β = α1 − α2β2.

13



The null hypothesis H0 : β = β0 is H0 : β2 = β02 , that is,

(12.3) H0 : 0 = α1 − α2β
0
2 = − sin θ0 − β02 cos θ0,

which is H0 : tan θ0 = −β02 . Thus the admissibility of the LR test given λ shows that the
LR test dominates a test based on the Two-Stage Least Squares estimator.

13 Conclusions

13.1 Estimation

Anderson, Stein, and Zaman (1985) considered the estimation of η and α when the loss of
estimation of α by α̂ was defined as

(13.1) L(α, α̂) = 1− (α′α̂)2 = sin2(θ̂ − θ).

The loss function is invariant with respect to transformations (3.1) and (3.10). When G = 2,
this is the model treated here. The estimator t of θ is the LIMLK estimator. Corollary 1 of
Anderson, Stein, and Zaman (1985) states that the LIMLK estimator is admissible for the
loss function (13.1) and every fixed λ and hence for all λ.

The risk of an estimator is E sin2(θ̂−θ) which is a function of λ,η, and α. Admissibility
of the LIMLK estimator means that there is no estimator for which E sin2(θ̂− θ) is as small
or smaller than for LIMLK for all λ,η, and α.

With the normalization α′α = 1 = β′β an estimator of α or β implies an estimator of
θ. Since sinx = x− x3/3! + · · · , for small θ̂− θ the loss function is approximately (θ̂− θ)2.
It is periodic with a period of 2π, which is appropriate for an undirected line.

13.2 Testing

The acceptance set (in terms of r1, r2, t) of the LR test can be written

(13.2) A : sin2(t− θ0) ≤ a(r1, r2, λ).

Let the acceptance set of a competing invariant test be

(13.3) B : t− θ0 ∈ b(r1, r2, λ).

Theorem 10.1 states that

Pr{A|θ0, λ} ≥ Pr{B|θ0, λ},(13.4)

Pr{B|θ, λ} ≤ Pr{B|θ, λ}, θ 6= θ0,(13.5)

with a strict inequality for some θ and λ.

13.3 A more general model

Instead of (2.9) consider (2.4) with the hypothesis H0 : β1 = β0, where β1 satisfies (2.8).
Let

(13.6) Z2.1 = Z2 −Z1A
−1
11 A12,
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where A has been partitioned into K1 and K2 rows and columns. Then the relevant part
of the reduced form (2.6) can be written

(13.7) Y1 = Z1

(
Π11 +A−111 A12Π21

)
+Z2.1Π21 + V1.

The sufficient statistics are A−111 Z
′
1Y1 and P2 = A−122.1Z

′
2.1Y1, where

(13.8) A22.1 = Z ′2.1Z2.1 = A22 −A21A
−1
11 A12,

and they are independent. The developments above proceed with Z replaced by Z2.1, Y
by Y1, etc.
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A Jacobian

The representation of G = OtRO
′
t in components is

(A.1)

[
g11 g12
g21 g22

]
=

[
r1 cos2 t+ r2 sin2 t (r1 − r2) cos t sin t

(r1 − r2) cos t sin t r1 sin2 t+ r2 cos2 t

]
.

The matrix of partial derivatives of g11, g22, g12 with respect to r1, r2 and t is

(A.2)

 cos2 t sin2 t −2(r1 − r2) cos t sin t

sin2 t cos2 t 2(r1 − r2) cos t sin t

cos t sin t − cos t sin t (r1 − r2)(cos2 t− sin2 t)

 .
The Jacobian of the transformation is the absolute value of the determinant of (A.2) which
is r2 − r1.

B The noncentral Wishart distribution

Let Q = ληα′ +W , and

(B.1) Q =

[
q′1
Q2

]
, η =

[
1
0

]
, α =

[
1
0

]
, W =

[
w′1
W2

]
,

where Q2 and W2 are (K − 1) × G, q1 and w1 are G × 1, η is K × 1 and α is G × 1.
Note that η′η = 1 = α′α. The rows of W are independently normally distributed with
means 0 and covariance matrix IG. Then Q′2Q2 = G2 has a (central) Wishart distribution
W (IG,K − 1) with density

(B.2)
|G2|

1
2
(K−G−2)e−

1
2
trG2

2
1
2
(K−1)GπG(G−1)/4∏G

i=1 Γ[12(K − i)]

(Anderson, 2003, Th. 7.2.2). The vector q′1 = (q11, q
′
12) has the density

(B.3)
1

(2π)
1
2
G
e−

1
2
(q11−λ)2− 1

2
q′12q12 .
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The joint density of the matrix G2 and the vector q′1 is the product of (B.2) and (B.3). The
joint density of G = q1q

′
1 +G2 and q1 is

|G− q1q′1|
1
2
(K−G−2)e−

1
2
trG+λq11−λ2/2

2
1
2
KGπG(G+1)/4

∏G
i=1 Γ[12(K − i)]

(B.4)

=
|G|

1
2
(K−G−2)(1− q′1G−1q1)

1
2
(K−G−2)e−

1
2
trG+λq11−λ2/2

2
1
2
KGπG(G+1)/4

∏G
i=1 Γ[12(K − i)]

.

See Corollary A.3.1 of Anderson (2003), for example.
The noncentral Wishart density of G is the integral of (B.4) with respect to the vector

q′1 = (q11, q
′
12) over the range for which 1 − q′1G−1q1 is positive. Anderson and Girshick

(1944) carried out the algebraic details of this integration.

Theorem B.1. The density of G = Q′Q, where Q = ληα′+W , η = (1,0)′ and α = (1,0)′,
is

(B.5)
e−(1/2)λ

2−(1/2)trG

2(1/2)KG−(1/2)(K−2)πG(G−1)/4∏G−1
i=1 Γ[(1/2)(K − i)]

|G|
1
2
(K−G−1)I∗1

2
(K−2)(λ

2g11)

where

(B.6) I∗1
2
(K−2)(z

2) =

∞∑
j=0

(
z2

4

)j
1

j!Γ(K2 + j)
.
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