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ABSTRACT Large-scale wireless sensor network (LSWSN) is composed of a huge number of sensor nodes

that are distributed in some region of interest (ROI), to sense and measure the environmental conditions like

pressure, temperature, pollution levels, humidity, wind, and so on. The objective is to collect data for real-time

monitoring so that appropriate actions can be taken promptly. One of the sensor nodes used in an LSWSN is

called the sink node, which is responsible for processing and analyzing the collected information. It works as

a station between the network sensor nodes and the administrator. Also, it is responsible for controlling the

whole network. Determining the sink node location in an LSWSN is a challenging task, as it is crucial to the

network lifetime, for keeping the network activity to the most possible extent. In this paper, the Harris’ hawks

optimization (HHO) algorithm is employed to solve this problem and subsequently the Prim’s shortest path

algorithm is used to reconstruct the network by making minimum transmission paths from the sink node to

the rest of the sensor nodes. The performance of HHO is compared with other well-known algorithms such

as particle swarm optimization (PSO), flower pollination algorithm (FPA), grey wolf optimizer (GWO),

sine cosine algorithm (SCA), multi-verse optimizer (MVO), and whale optimization algorithm (WOA). The

simulation results of different network sizes, with single and multiple sink nodes, show the superiority of

the employed approach in terms of energy consumption and localization error, and ultimately prolonging the

lifetime of the network in an efficacious way.

INDEX TERMS Large-scale wireless sensor network, Harris’ hawks optimization, topology control, sink

node placement.

I. INTRODUCTION

Along with the remarkable developments in wireless sen-

sor networks (WSNs), large-scale wireless sensor networks

(LSWSNs) have appeared, which are used in our daily lives

for monitoring, tracking, sensing, measuring, and collecting

real-time data in various settings [1], [2], such as smart build-

ings, health care monitoring, industrial monitoring, and other

surveillance systems. The data collected by the sensor nodes

in an LSWSN is relayed to a sink node for transferring to

The associate editor coordinating the review of this manuscript and

approving it for publication was Abbas Jamalipour .

head nodes or end users. As shown in Fig. 1, a sink node is a

temporary place where data is processed or redirected to the

end users for different uses. Similar to other hard optimization

problems posed by LSWSNs deployment, locating the sink

node in LSWSNs is also a challenging task, as determining

the best location of the sink node means reducing the number

ofmessage hops from a sensor node to its sink [3]. This subse-

quently lowers sensors’ energy consumption ratios, because

the process of sending and receiving data from a sensor

to another consumes energy. Therefore, choosing the best

location for the sink node will save the energy consumption

in the whole network, which ultimately extends the network

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 19381

https://orcid.org/0000-0002-8127-7233
https://orcid.org/0000-0003-1492-0417
https://orcid.org/0000-0003-0011-2726
https://orcid.org/0000-0001-8898-9244
https://orcid.org/0000-0003-1692-5860
https://orcid.org/0000-0001-5655-8511
https://orcid.org/0000-0002-1807-7220


E. H. Houssein et al.: Optimal Sink Node Placement in LSWSNs

FIGURE 1. A wireless sensor network.

life. Hence, it can be inferred that the energy of LSWSNs is

affected by nodes distribution and the sink node location [4].

Since wireless sensors are constrained with limited energy

resources – because of being irreplaceable battery powered

devices, it significantly affects the lifetime ofWSNswhen the

sink node requires surrounding nodes to send the collected

data, resulting in fast energy exhaustion by the nodes. This

demands efficient workload distribution among the sensors

for the enhanced network lifetime [5]. Generally, topology

control is a technique, widely used in distributed computing,

for making some changes in the underlying network that can

be modeled as a graph to lower the distributed algorithms

cost than the new resulting graphs. It is mainly used for

establishing wireless ad-hoc and sensor networks. Recently,

several opinions have been presented to divide the topology

control algorithms into two sub-techniques. First, topology

construction algorithms that are responsible for the initial

reduction of the network, such as A3 [6], EECDS [7], and

CDS- Rule K [8]. Second, topology maintenance algorithms

that are responsible for making some changes to the first

reduced topology, if it cannot perform its role completely and

maintains the reduced topology in terms of connectivity and

coverage like dynamic global topology recreation and static

global topology rotation. The main purposes of the topology

control are extending the network lifetime as a result of saving

energy, reducing interference between the sensor nodes, and

providing a connected topology [9].

There are many different ways to perform topology con-

struction, such as changing the transmission range of the

sensor nodes, turning off nodes from the network, creating a

communication backbone, clustering, and adding new nodes

to the network to preserve connectivity. Fig. 2 illustrates

a topology with reduced active nodes in a fully connected

network. Despite several approaches exist, the major problem

with the topology construction algorithms remains that there

is no generally an agreedmechanism for choosing the optimal

location of the sink node [10]. Consequently, these algorithms

locate the sink node in the center of the deployment area

in all conditions. In fact, the central position in the ROI

made by most of the topology construction algorithms is not

effective position to receive the detected meaningful events

from the sensor nodes and relieve pressure on the sensor

nodes around it. This central position of the sink node is

FIGURE 2. Reduced active nodes in a fully connected network. (a) A fully
connected network, (b) Topology with reduced active nodes.

determinedwith the help of P-Median Problem (PMP)model,

which has been proved to present the distinctive property of

non-deterministic polynomial-time hard [11], [12]. Usually,

the center of an LSWSN’s coverage area is considered as

the optimal position; be it geometric region where the sensor

nodes are uniformly deployed, or rectangular or circular area.

However, it is discovered that the proposition discussed

earlier is made without taking into consideration the hot spot

problem and the regional barrier. These days, there are many

types of LSWSNs deployed in different application fields

but the most common one is called flat networks. So, if the

sink node is placed in the optimal position, not on center of

the deployment area, the lifetime of the whole network may

be extended without increasing other costs [4]. Because the

distance between the terminal sensor nodes and the sink node

is one of the most important factors affecting energy con-

sumption. For instance, if the distance between the terminal

sensor nodes and the sink node is large, this will consume

more energy in delivering the collected data to the sink node,

consequently the energy consumption rates will surge and the

network life will shorten. Choosing the optimal position of a

sink node in LSWSNs is based on a set of criteria: (a) The

number of neighbors around the sink node, (b) The residual

energy of the sink node’s neighbors, (c) The residual energy

of the sink node itself, and lastly, (d) The distance between

the sink node and center of the deployment area [13].

Nevertheless, the administrator of a network has no control

over the position of the sink node, as changing its posi-

tion to alleviate the energy consumption rates is a cumber-

some exercise [9]. To address the problem of positioning

the sink node, researchers have formulated this problem as

a matter of optimization to be solved by metaheuristic algo-

rithms [14]. Because, these algorithms have shown enormous

success in solving hard optimization problems in various

domains [15], [16]. Different popular algorithms like particle

swarm optimization (PSO) [17] and ant colony optimization

(ACO) [18] have been utilized in this area of research. How-

ever, there is still noticed an enormous gapwhere the potential

of the latest and efficient metaheuristic algorithms on the

LSWSNs is yet to be explored. Therefore, in this paper,
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a recent addition to metaheuristic algorithms Harris’ hawks

optimization (HHO) algorithm [19] is employed to achieve

an optimal position of the sink node in LSWSNs considering

both the single and multiple sink nodes placement scenar-

ios. The Prim’s greedy algorithm [20] is applied to find the

minimum spanning tree (MST) [21] by creating the shortest

transmission paths from the sensor nodes to the sink node.

Ultimately, the performance of HHO is compared with sev-

eral well-known metaheuristic algorithms of the literature,

such as PSO [22], flower pollination algorithm (FPA) [23],

grey wolf optimizer (GWO) [24], sine cosine algorithm

(SCA) [25], multi-verse optimizer (MVO) [26] algorithm,

and whale optimization algorithm (WOA) [27], in terms of

energy consumption, localization error, and statistical evalua-

tion criteria. In summary, the main contributions of this paper

are as follows:

• Introducing an approach for determining the opti-

mal sink node position and increasing the lifetime of

LSWSN;

• Applying recent meta-heuristic algorithm called Harris’

hawk optimization (HHO) algorithm to find the opti-

mal placement of the single and multiple sink nodes in

LSWSNs;

• Using a combination of different large-scale network

sizes of up to 5000 sensor nodes;

• Comparing the employed algorithm with different meta-

heuristic algorithms based on the convergence curves

and statistical measures (e.g., mean, best, worst, and

standard deviation);

• Proposing a new fitness function for determining the

optimal position of the sink node in LSWSNs.

The remainder of this paper is organized as follows: in

Section II, a review of previous studies related to optimiza-

tion algorithms employed on WSNs is presented. Section III

describes the mathematical model and the pseudo code of

the employed HHO algorithm. The experimental results of

HHO on LSWSNs with different network sizes are reported

and analyzed in Section IV. Finally, the study is duly con-

cluded in Section VI where potential future research is also

highlighted.

II. LITERATURE REVIEW

Node placement in WSNs presents hard optimization prob-

lem, which is further complicated with the demand for energy

minimization and the network lifetime maximization [3].

To address this, significant research has been performed on

the sensor node localization in the existing literature. Here,

some of the important previous studies, related to determining

the optimal location of the sink node and maximizing WSNs

lifetime using various optimization algorithms, are discussed.

Sensor localization is considered as NP hard optimiza-

tion problem, therefore several metaheuristic techniques have

been employed on solving this problem [28]. From recent

studies, it can be suggested that population-basedmetaheuris-

tic algorithms have shown tremendous success in this domain.

These algorithms, as opposed to deterministic optimization

methods, perform collective intelligence to generate an opti-

mal solution with limited time and computational cost. In [4],

the problem of determining the sink node placement is solved

by proposing a method based on the cat swarm optimization

(CSO) algorithm [29]. Compared with PSO, authors contend

that the proposed approach proved the efficacy by extend-

ing the network lifetime. Efficient construction of minimum

transmission paths from the sink node to the rest of the

sensor nodes using the greedy algorithm made a significant

contribution to saving the energy consumption of the pro-

cess of sending and receiving the collected data. Another

implementation of PSO in this domain can be found in [13].

The researchers proposed an energy-aware topology control

protocol by a mechanism to choose the best position of the

sink node in the whole network to prolong its life. To validate

the ability of the proposed solution in reducing the energy

consumption of the sensor nodes, it was compared with

other topology construction protocols. The simulation results

reveal the superiority of this method in topology construction

and maintenance phases of the topology control protocols in

terms of the operational network’s lifetime, the number of

topology reconstructions, and the number of active nodes.

Banka and Jana in [17] have also employed PSO to best

place sink node in WSNs, and the results indicate the superi-

ority of their approach compared to the exhaustive grid search

algorithm. In [30], a multi-objective PSO is used to solve

different optimization problems related to WSNs and their

general application in various fields to find the best position

in WSNs with fixed nodes. The authors have focused on

finding the optimal sink node position with respect to relay

nodes in order to prolong the network lifetime. An adaptive

PSO (APSO) is proposed in [31] for optimum placement of

sink node inWSNs. According to the findings, APSO outper-

formed PSO in achieving a prolonged network lifetime for a

substantial operation time. The genetic algorithm (GA) [32]

as classic metaheuristic algorithm has been implemented

in [33] for optimal sink node placement. With different muta-

tion and crossover settings, the research contends to achieve

optimum sink location in short generations.

Another state-of-the-art metaheuristic technique, called ant

colony optimization (ACO) [34], has been proposed for the

sink node placement in [18]. In this research, the authors

have employed ACO on finding the optimum transmission

path with a strategy to enhance the single-sinkWSN lifetime.

Compared to the energy-oriented approach, this study con-

tends to have achieved better results. Another application of

ACO for maximizing the lifetime of heterogeneous WSNs

is found in [35]. The authors have proposed an approach

based on finding the maximum sensor network coverage

by establishing an optimal path on the construction graph.

Similarly, research in [36] also proposes an ACO-based tech-

nique for developing an energy-efficient solution for WSNs

lifetime maximization and packet loss minimization. In [37],

the authors have incorporated fuzzy logic in ACO-based

approach for developing a rule-base for route classification
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for the enhanced energy efficiency of the network. Likewise,

the findings of [38] also support the efficacy of ACO in solv-

ing the optimization problems in WSNs. Apart from ACO,

a different well established method, cuckoo search (CS) [39],

has been employed in [40] for sensor node localization in

WSNs. In this study, CS algorithm is modified by a mutation

strategy for the enhanced global search ability. The method,

based on extensive experimental analysis, proves that it can

effectively increase the coverage of the sensor nodes, along

with the reduced localization error.

A recent swarm intelligence-basedmetaheuristic algorithm

is implemented in [9] considering the optimal sink node

position localization problem in LSWSNs. The authors have

used a multi-objective WOA for solving the problem of

choosing the lowest number of sink nodes that can feed

the whole network in LSWSNs, for reduced energy con-

sumption and extended network life. The algorithm, based

on a certain number of experiments, shows higher perfor-

mance in achieving the aforementioned aims than other

well-known algorithms, such as multi-objective grasshop-

per optimization algorithm (GOA) [41], multi-objective salp

swarm algorithm (SSA) [42], multi-objective GWO, and

multi-objective PSO over different network sizes. A binary

version of WOA has been proposed in [10] for dealing with

discrete data in WSNs to determine active nodes and inac-

tive node represented as 1 and 0, accordingly. The method

ensures that each active node has coverage for rest of the

nodes, using breadth-first search to overcome coverage prob-

lem of network. Another efficient swarm-based metaheuristic

algorithms, namely brainstorm optimization (BSO) algo-

rithm [43], has been employed in [3] for optimal deployment

of the sink nodes in WSNs. The results, when compared

with PSO and grid search-based approaches, suggest that

BSO achieved energy efficient sink node placement with a

prolonged network lifetime.

In [44], the authors have used GWO for treating the prob-

lem of central sink node position of the topology construction

algorithms. In addition, the established approach is compared

with the topology control protocols to evaluate its perfor-

mance qualitatively and quantitatively. Based on a number of

experiments for different network sizes, in many deployment

scenarios, efficiency of the proposed approach is appeared to

be efficient solution in terms of the energy cost and the num-

ber of active nodes, along with the time required to construct

a reduced topology. Contrary to the earlier research, the study

performed in [45] finds GWO generating inferior solution as

compared to chicken swarm optimization (CSO) [46], when

establishing the lowest active nodes for the WSN operation.

The empirical results proved that CSO outperforms GWO

with respect to showing the ability to achieve reduced set of

active nodes with high residual energies.

Several other techniques have also been reported in the

related literature. In [47], the authors have constructed

optimal clustering architecture and designed energy-aware

cluster-head rotation, as well as, a routing protocol to max-

imize the network lifetime. Similarly, an efficient approach

TABLE 1. Metaheuristic methods used in literature for optimum sink
placement problem.

to allocating M sink nodes in a 2D dimensional space is

proposed in [48], whereby the recruiting of PSO has devel-

oped a deactivation scheme by storing copies of the location

vectors from particles with better valuation results for con-

trolling the extravagant conversion of a particle. On the other

hand, works in [11] and [12] have proposed the P-Median

Problem (PMP) model to determine the sink node placement.

Also, in [12], the authors have proved that the center of the

circle is the optimal position for a base station in WSNs, but

the conclusion is only suitable for the uniform deployment

of nodes. The sink node position is chosen to maximize the

weight of data flows to reduce the energy consumption is

introduced in [49].

The research reviewed in the existing literature suggests

that the sink node placement problem has been solved with

small to medium-sized networks in small to medium ROI.

Table 1 reveals that this problem has been solved in WSNs

with maximum of 900 nodes, except for the study in [9],

which extends network size up to 10000 nodes. Moreover,

there is a significant gap in this area of research where the

latest and more efficient optimization techniques are yet to

be explored, with extensive comparative analysis. Motivated

by the potential of the metaheuristic techniques for solv-

ing a variety of WSNs problems, this study employs the

most recent optimization technique, Harris’ hawk optimiza-

tion [19] on LSWSNs. In previous researches pertaining to

different areas, this method has already generated promis-

ing results while solving optimization problems of different

levels of difficulties. Following gives a brief introduction of

the method, while for more details, the original work can be

referred.

III. HARRIS HAWKS OPTIMIZATION (HHO)

Harris hawks optimization (HHO) [19] is a new nature-

inspired algorithm. The basic inspiration lies with HHO is

the hunting behavior of Harris’ hawks, also known as dusky

hawks. These birds perch in air, distantly locate the prey,

and then pounce on it in a collaborative effort. The perching

behavior of the hawks is modeled as an exploration phase,

whereas their pouncing style is simulated as exploitation

phase in HHO. The mathematical model of the HHO algo-

rithm is explained in this section. Note that a candidate solu-

tion inHHO is termed as a hawk (x), whereas the best solution

as a prey (xprey).
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FIGURE 3. Exploration-exploitation phases of HHO depending on prey
escaping energy (E).

A. EXPLORATION IN HHO

In optimization methods, in order to find the best from

largely available solutions, a rigorous search of the problem

landscape is performed. To discover optimal location amid

hills and valleys in a search space, a metaheuristic starts

the search with an exploration phase. During this phase,

a thorough search is performed in the far reached loca-

tions. Here, in population-basedmetaheuristic algorithms like

HHO, search agents spread widely in search space. The HHO

algorithm performs this phase following the perching behav-

ior of hawks, which first explore the area from high altitude,

to locate a potential prey that can be either a rabbit, small

mammal, or a big insect. Keeping in view the mentioned

scenario, HHO starts by initializing N search agents (hawks)

at random locations x0i , i = {1, 2, . . . ,N } across search space

using:

x0i = lbi + r1 × (ubi − lbi), r1 = rand(), (1)

where lb and ub are the problem bounds, and rand() is a ran-

dom number generator, which generates a different random

value between [0,1] every time used. After the initialization

of the population, the exploration phase continues until the

escaping energy of prey |E| ≥ 1, the value of E is calcu-

lated as:

E = 2E0(1 −
t

T
), t = {1, 2, . . . ,T }, (2)

where E0 and T are the initial energy of the prey and a maxi-

mum number of iterations, respectively. As depicted in Fig. 3,

HHO performs exploration during initial iterations when

|E| ≥ 1. During this phase, a search agent performs search

randomly around different other search agents or around

potential optimal search regions identified as xprey. This phe-

nomenon is controlled by a random variable q using:

xnew =

{

xrand − r2 |xrand − 2r2xi| , q ≥ 0.5

(xprey − xm) − r3[lbi + r4(ubi − lbi)], q < 0.5,

r2 = rand(), r3 = rand(), r4 = rand(), r5 = rand(),

xm =
1

N

N
∑

i=1

xi, (3)

where xnew, xm, and xrand are new position, dimension-wise

average of the population, and a randomly selection position,

respectively.

B. EXPLOITATION IN HHO

Exploitation is when the population of candidate solutions

converges towards the already identified promising location

in search space. This phase activates after several iterations

performed for exploration of the problem landscape. Once,

determined a potential neighborhood by the collective expe-

rience of search agents, an exploitation strategy gradually

makes the candidate solutions adopt information from a sin-

gle global best solution found so far. Using this information,

the solution improvement is performed. Though, it is impor-

tant to mention that the early approach to the local region

may cause premature convergence, which will result in a

suboptimal solution. To address this, HHO adopts multiple

exploitation strategies using different hunting situations for a

hawk. For example, when approaching a prey, the hawk may

either make a sudden dive for an immediate attack, or it may

decide to wait for a surprise pounce as the prey is trying to

escape.

The exploitation strategies implemented by HHO are:

hard besiege, hard besiege with progressive rapid dives, soft

besiege, and soft besiege with progressive rapid dives. Hard

besiege implies that the prey is exhausted or very well posi-

tioned for a hawk to perform a successful catch. But, when

the hawk perceives the situation not suitable enough for

attempting the catch, it tries to get closer to the prey as soon

as possible; hence performing hard besiege with progressive

rapid dives. On the other hand, when a hawk has located a

prey but from distance, and the prey has the energy to escape

the hunt, the hawk tries to encircle it to make it exhausted.

This situation is termed as soft besiege in HHO. The soft

besiege with progressive rapid dives implies a situation when

the hawk is trying to catch a prey bymaking progressive dives

but the prey is energetically making random zigzag moves to

avoid the catch.

To implement progressive movement towards the already

identified promising local region, HHO uses Lévy flight

LF(D) function. The LF(D) is used in both the soft and hard

besieges with progressive rapid dives. In soft besiege, HHO

uses jump strength J , which represents escaping effort by

the prey, in order to inject some randomization for improved

search results in the local region. Table 2, along with relevant

mathematical expressions, lists the conditions for performing

the four exploitation steps.

• Hard besiege:

xnew = xprey − E |1xi| ,where 1xi = xprey − xi (4)

• Hard besiege with progressive rapid dives:

xnew =

{

Y , if F(Y ) < F(xi)

Z , if F(Z ) < F(xi),
where

F(xi) = Fitness value of xi,
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TABLE 2. HHO exploitation strategies.

Y = xprey − E
∣

∣Jxprey − xm
∣

∣ ,

J = 2(1 − r6), r6 = rand(),

Z = Y + S × LF(D), where

S =Random vector of size1×D,D=Dimensions

LF(D) = 0.01 ×
u× σ

|v|
1
β

,

σ =





Ŵ(1 + β) × sin(
πβ
2
)

Ŵ(
1+β
2

) × β × 2(
β−1
2 ))





1
β

,

β = 1.5, u = rand(), v = rand(). (5)

• Soft besiege:

xnew = 1xi − E
∣

∣JXprey − xi
∣

∣ ,where

1xi = xprey − xi, J = 2(1 − r7), r7 = rand() (6)

• Soft besiege with progressive rapid dives:

xnew =

{

Y , ifF(Y ) < F(xi)

Z , ifF(Z ) < F(xi),
where

Y = xprey − E
∣

∣Jxprey − xi
∣

∣

Z = Y + S × LF(D),

S = Random vector1 × D,D = Dimensions (7)

A step by step procedure for HHO is outlined in Algorithm 1.

IV. SYSTEMS MODEL

This section discusses the implementation of HHO and other

metaheuristic algorithms on the sink node placement prob-

lem in LSWSNs. For evaluating the performance of HHO,

it is compared with other well-known algorithms. We imple-

mented these algorithms in MATLAB. Additionally, we used

the Atarraya simulator [51] for generating the network graphs

(datasets) for different network sizes, including sensor coor-

dinates and the residual energies inside each sensor node in

the deployment area. For validation of the technique, we com-

pare HHO with six well-known algorithms, namely, PSO,

FPA, GWO, SCA, MVO, and WOA.

A. NETWORK MODEL

In this work, a network is considered with a huge collection

of sensing nodes having the same sensing and communica-

tion range. Two different scenarios are considered for sink

placement, single sink node and multiple sink nodes. These

Algorithm 1 Steps of HHO Algorithm

Input: A graph represents the sensor nodes and their

neighbors with energies

Output: The final network with the optimal location of the

sink node(s)

Initialize the random population x0i (i = 1, 2, . . . ,N )

Initialize start of iteration t = 1 and T = maximum

iterations

while t <= T do

Calculate the fitness values of hawks (Sensor nodes)

Set xprey as the location of prey (best location)

for (each hawk (xi)) do

Update the initial energy E0 and jump strength J

Update the E using Eq. (2)

if (|E| ≥ 1) then ⊲ Exploration

Update solution using Eq. (2)

end if

if (|E| < 1) then ⊲ Exploitation

if (r ≥0.5 and |E| ≥ 0.5 ) then ⊲ Soft besiege

Update solution using Eq. (6)

else if (r ≥0.5 and |E| < 0.5 ) then ⊲ Hard

besiege

Update solution using Eq. (4)

else if (r <0.5 and |E| ≥ 0.5 ) then ⊲ Soft

besiege with progressive rapid dives

Update solution using Eq. (7)

else if (r <0.5 and |E| < 0.5 ) then ⊲ Hard

besiege with progressive rapid dives

Update solution using Eq. (5)

end if

end if

end for

t = t + 1

end while

Return Xprey (Optimal position of the sink node)

nodes are distributed randomly in a convex region of interest

ROI = W×H , whereW is the width of the region andH is its

height. These nodes have limited facilities of wireless sensors

such as limited memory, bandwidth, and uniform energy. The

sink node has bandwidth and memory. The sensing nodes in

the network have the ability to sense and distribute physical

and environmental conditions between each other for sending

to the sink node. This paper considers the network N =

{n1, . . . , nk} where n is the sensing node and k is the number

of nodes. These nodes are distributed randomly in ROI and

there is no node, which has any global information. The time

when the first node fails or loses its energy in the network is

called the network lifetime.

B. PARAMETERS SETTING

Table 3 and Table 4 list the initial parameters for the

experimental scenarios that were adjusted in LSWSNs and

optimization algorithms. Crossbows Mica Mote sensors are
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TABLE 3. Parameters setting for LSWSNs experiments.

TABLE 4. Parameter settings of HHO and the competitor algorithms.

utilized to assume the nodes within simulation with the

energy model defined in [6]. Note that for all experiments,

we have utilized 100 to 5000 search agents and a maximum

of 1000 iterations, and ran algorithms for 30 times to obtain

mean, standard deviation (Std.), best, and worst results.

C. FITNESS FUNCTION

To evaluate the performance of the algorithms and choose the

best one, the energy consumption rates, the optimal sink node

position, and the localization errors are considered. A new

fitness function is proposed to determine the optimal place-

ment of the sink node in LSWSNs, and it is utilized by these

algorithms. Eq. (8) defines the proposed fitness function.

min f (x) =
1

α1

∑Nnbr
i=1 Enbr (i) + Ex + α2Nnbr + α3dx

, (8)

where Nnbr denotes the number of sensor neighbor served by

the sink node, Enbr energy for each sensor node for sinks,

Ex residual energy inside the sensor node x, dx the distance

TABLE 5. Comparison of energy consumption between the competitive
algorithms.

between the sensor node x and center of the deployment

area, and the parameters α1, α2, and α3 are random numbers

in range of [0, 1]. This fitness function is dependent of the

position vector x of all sensor nodes.

D. STATISTICAL EVALUATION CRITERIA

The following standard metrics are used to measure the per-

formance and validate the algorithms based on the fitness

function defined in Eq. (8):

1) Mean is the average of fitness values, which the algo-

rithm produced after M runs, and it is given by:

Mean =

∑M
i=1 (fi)

M
(9)

2) Standard deviation (Std.), which performs the differ-

ence of the objective function values obtained from

executing the algorithm for M times. Small values of

standard derivation are an indicator of the ability of the

algorithm to converge to the same value most of the

times, which shows its robustness and stability. Large

values are an indicator that the algorithm produces

wandering results. The standard deviation is given by:

Std =

√

1

M − 1
6M
i=1 (fi −Mean)2 (10)

3) Best is the minimum fitness value obtained in M runs.

The best fitness value is calculated using:

Best = min
1≤i≤M

fi (11)

4) Worst is themaximumfitness value obtained inM runs.

The worst fitness value is calculated as:

Worst = max
1≤i≤M

fi, (12)

where fi is the best fitness value obtained at ith run.

V. RESULTS AND DISCUSSION

In this section, the results of the single sink node placement

including energy consumption, localization errors, conver-

gence curves, statistical results, running time, and their dis-

cussions are introduced. Also, the results of multiple sink

node placements are introduced sequentially.
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FIGURE 4. Applying the Prim’s algorithm after choosing the optimal position of the sink node in 200 and 400 network
size for all algorithms.

A. SINGLE SINK NODE PLACEMENT

1) ENERGY CONSUMPTION

After choosing the optimal location of the sink node, which

will extend the network lifetime based on Eq. 8, the Prim’s

minimum spanning tree (MST) algorithm is applied to

reconstruct the network and establish minimum transmission

paths from the chosen sink node to the rest of the sensor

nodes. Fig. 4 and Fig. 5 demonstrate the location of the

sink node for 200, 400, 1000, and 2000 nodes in a net-

work. After determining the position of the sink node in
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FIGURE 5. Applying the Prim’s MST algorithm after choosing the optimal position of the sink node in 1000 and
2000 network size for all algorithms.

a network using HHO with the proposed fitness function,

the greedy algorithm with minimum spanning tree is applied

to create the data transmission paths. The sink node local-

ization problem is also solved by PSO, FPA, GWO, SCA,

MVO, and WOA approaches with the transmission paths

built by the greedy algorithm for the comparison purpose.

Since the location of the sink node is individually decided

by PSO, FPA, GWO, SCA, MVO, WOA, and HHO before

applying the greedy algorithm to construct the transmission

paths, the whole LSWSNs network with the deployed sink
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FIGURE 6. Energy consumption by the competitive algorithms for LSWSNs.

node and the transmitting paths with 200 and 400 nodes, for

example, are revealed in Fig. 4 for comparison. Also, Fig. 5

reveals 1000 and 2000 nodes in LSWSNs with the sink node

deployment strategy by all the aforementioned approaches.

This may be explained by the proposed fitness function of

the employed algorithm that enforces to place the sink node

within the region that contains the highest number of the

sensor nodes.

Themain idea of such saving energy for a network, through

choosing the nearest best location of the sink node, and

reducing transmission path from the sink node to all the

sensor nodes in the whole network, a large number of the

sensor nodes around the sink node are to be marked as

children to that node. Therefore, when the network size is

increased, the employed HHO algorithm, in terms of energy

consumption, has achieved better results as compared to other

algorithms.

Subsequently, the energy consumption test must be applied

to the network. The employed algorithm is tested with 10 dif-

ferent numbers of sensor node environments. The results

are compared to the power consumption of the sink node

allocated by the counterpart algorithms. The experimental

results proved that the employed HHO algorithm achieved

better efficiency in reducing the total power consumption

in the whole LSWSNs. In this sub-experiment, the search

agents in algorithms simulate the network sensor nodes’ life

in consuming the residual energy under a certain number of

iterations based on the fitness function. And then, the total

energy consumption for each network size is reported. Table 5

shows the total energy consumption for the seven algorithms

with respect to each network scenario. The employed HHO

algorithm is compared with other well-known algorithms

in the area of energy consumption rates. As it is obvi-

ous from Table 5 that HHO consumes the lowest energy

amount over all the different network sizes from 100 through

5000, among other algorithms used in this sub-experiment.

According to Table 5, which reports total power consump-

tion of the LSWSNs with selected algorithms, the total

power consumption in the 1000 nodes environment with

PSO, FPA, GWO, SCA, MVO, WOA, and HHO approaches

FIGURE 7. Localization error by the algorithms on LSWSNs.

are 131419, 165651, 133185, 209715, 468689, 488989 and

107456, respectively.

Obviously, the power consumption achieved by the HHO

algorithm is less than the ones produced by rest of the algo-

rithms in all the test conditions. The HHO algorithm aims

to produce a network with minimal energy consumption to

prolong the lifetime of LSWSNs. The experimental result is

optimal for deploying the sink node in the LSWSNs in case

of HHO. Fig. 6 represents the graphical results of energy

consumption rates obtained from the employed HHO algo-

rithm and other algorithms PSO, FPA, GWO, SCA, MVO

and WOA in all LSWSNs size. Also, Fig. 6 characterizes the

energy consumption achieved by the employed algorithm has

been decreased compared to other algorithms.

To enhance the network lifetime, the aim of HHO is to

reduce the energy consumption through deploying the sink
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TABLE 6. Localization errors for the considered network sizes.

TABLE 7. Statistical results of the competitive algorithms on fitness function for network size 100 through 5000 nodes.

node on the best location. From the empirical results, it can

be suggested that HHO can still provide the network lifetime

that is slightly higher than PSO, FPA, GWO, SCA, MVO,

and WOA algorithms. Based on results of the sink node

location and energy consumption for the network, it can be

stated that when the number of nodes is increased, HHOfinds

more optimal sink node location than the counterparts. This

result may be attributed to the process of HHO algorithm of

determining the moving directions and distances of the nodes

by building the transmission path from the sink node to other

nodes in the network, using transmission path construction by

greedy algorithms such as MST.

2) LOCALIZATION ERRORS

The localization error (LocErr) is generally related to the

node communication radius Rc. The LocErr is usually used

to evaluate the localization performance of the employed

algorithm and it can be obtained from Eq. (13). It is used
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FIGURE 8. Convergence of the competitive algorithms over 100-5000 network sizes.
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TABLE 8. Average evaluation criteria for the competitive algorithms.

TABLE 9. Running time of the algorithms in seconds.

TABLE 10. Number of sink nodes obtained by HHO and the other
algorithms.

in this study to evaluate the performance of each node being

estimated, which is further applied to evaluate performance

of all nodes being estimated.

LocErr =

√

(x ′ − x)2 + (y′ − y)2

Rc
× 100%, (13)

where (x ′, y′) are the sink node estimated coordinates, (x, y)

are the sink node real coordinates, and Rc refers to the node

communication range. One of the most important goals of the

employed algorithms is to reduce the localization error of the

estimated sink node coordinates. Table 6 depicts the localiza-

tion error for the proposed HHO algorithm according to the

effect of changing the number of network sizes. Also, Fig. 7

depicts the graphical analysis according to the localization

error values obtained by each algorithmwith respect to all the

considered network sizes. As it can be observed from Table 6

and Fig. 7 that the employed algorithm has in general small

localization errors with respect to the network sizes.

3) CONVERGENCE

Convergence curve is one of the most important graphical

analysis with respect to generating an optimal solution via

optimization algorithms. To evaluate performance of the con-

sidered algorithms in applying and minimizing the fitness

function for achieving the lowest energy consumption rates,

the convergence curve is extracted from each of the employed

algorithm after 1000 iterations, to clearly notice and analyze

the convergence ability of all the algorithms. Line graphs of

the convergence curves for all the considered network size,

FIGURE 9. Best and mean fitness values achieved by the competitive
algorithms.

FIGURE 10. Run time for topology construction by the competitive
algorithms.

using HHO algorithm and the comparative algorithms, are

shown in Fig. 8. It is easily understandable from Fig. 8 that

the HHO algorithm is the fastest one of all in the context of

convergence towards the optima. But, the ten curves in Fig. 8

are not the same, for example, Fig. 8c and Fig. 8e differ from

Fig. 8a, Fig. 8g, and Fig. 8i. This is because of the different
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FIGURE 11. Number of sink nodes for compared algorithms.

network sizes in each curve. When the network size differs,

the parameters in the fitness function such as the number of

sensor neighbors served by sink node, residual energy inside

the sensor nodes, and the distance between the sensor nodes

will differ and consequently, the value of the fitness function

(best score obtained so far) will differ according to each

algorithm.

4) RESULTS DISCUSSION
The LSWSNs datasets that consist of network sizes (N ) from

100 through 5000 nodes are utilized. The algorithms are run

repeatedly forM times, for determining the statistical signifi-

cance of the results. The aim of this experiment is to evaluate

performance of the employed HHO algorithm using fitness

function mentioned earlier. For results verification, six of the

most well-known algorithms, such as PSO, FPA, GWO, SCA,

MVO, and WOA, are used and employed for comparison

purposes. The statistical results are collected and presented

qualitatively and quantitatively in this section. Note that we

have utilized 1000 iterations, 30 runs, and from 100 through

5000 search agents according to different network sizes in

the experiments. For the quantitative results, it should be

noted that we have employed a wide range of performance

metrics to quantify performance of the employed algorithms.

The performance measures in terms of mean, best, worst,

and standard deviation for all the competitive algorithms are

summarized in Table 7, which proves that that the proposed

HHO algorithm obtained better results than the competitive

algorithms for all network sizes. Also, these empirical results

confirm the ability of HHO to choose the nearest best position

of sink node with low energy consumption.

To sum up the obtained statistical results, Table 8 presents

the average evaluation criteria in terms of mean, best, and

worst obtained over a certain number of generations and

according to all the considered network sizes for competi-

tive algorithms via the fitness function mentioned. The best

performance is achieved by the employed HHO algorithm,

proving its ability to minimize the fitness function and locat-

ing the sink node in the optimal position effectively. Also,

the graphical representation is illustrated in Fig. 9. As it is

clear in Table 8 and Fig. 9, the HHO algorithm is the best one

in achieving the fitness function.

To analyze time complexity of the seven algorithms after

1000 iterations, Table 9 and Fig. 10 demonstrate the running

time in seconds. It is obvious that the running time of HHO

is better than the other algorithms, which take long time to

find the nearest best position of the sink node in the whole

network with low energy consumption.

B. MULTIPLE SINK NODE PLACEMENT

Another important issue in LSWSNs is how to determine

the minimum number of multiple sink nodes and check-

ing the best cardinality of the sink nodes that each algo-

rithm can obtain. To obtain the minimum number of the

sink nodes generated by each algorithm, Eq. 14 is used as

a fitness function by each algorithm to produce the mini-

mum number of the sink nodes that can serve the whole

network.

f (x) =
ACN

NUMnbr
, (14)

where ACN denotes the number of sensor neighbor served

by the sink node, NUMnbr represents the number of active

nodes. This function is dependent on the position vector x of

all nodes. The localization optimization can be formulated as:

min f (x).

All obtained results are summarized in Table 10 and illus-

trated in Fig. 11, which depicts the cardinality results of

the sink nodes curve from HHO compared with other algo-

rithms for LSWSNs. As shown in Fig. 11, the number of

the sink nodes obtained from the employed algorithm has

been balanced between network size and the number of the

sink nodes through all network sizes, compared with other

algorithms. Fig. 12a-g demonstrates the best cardinality of the

sink nodes has been obtained from PSO, FPA, GWO, SCA,

MVO, WOA, and HHO respectively. Because of limited

space, only the network size with 3000 nodes is illustrated,

where red points show the location of the sink nodes in the

network. As observed in Table 10, Fig. 11 and Fig. 12 that the

HHO algorithm achieves the best results compared to other

algorithms. The HHO algorithm located minimum sink nodes

in all different network sizes compared to the competitive

algorithms, which reflects that it achieved best prolonged

lifetime of the networks.
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FIGURE 12. Multiple sink node positions for network size of 3000 nodes.

VI. CONCLUSION

The sink node placement in large-scale wireless sensor

networks (LSWSNs) plays a crucial role in extending its

lifetime, as the sensors deployed in the field are often energy-

constrained. Formulating this issue as an optimization prob-

lem resulted in proposing several metaheuristic algorithms

that have achieved remarkable results on small to medium-

sized networks. To address this issue on the large scale

networks, the current work employed a new efficient opti-

mization algorithm called Harris’ hawk optimization (HHO)

on the sink node placement with network size ranging from

100 to 5000 nodes. The major objective was to maximize the

network lifetime by choosing the optimal position for the sink

node in the whole network. To this end, we utilized the

greedy algorithm with minimum spanning tree to create the

minimum data transmission paths, for constructing the net-

work according to the new sink node location. Considering

both the single sink node and multiple sink nodes placement

problems, we compared HHO results with seven other well-

known metaheuristic algorithms. Based on several evaluation

metrics, the HHO algorithm achieved the best solutions with

the lowest energy consumption and localization error by

using the proposed fitness function. Additionally, the experi-

mental results of ten different network sizes indicated that the
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HHO algorithm showed significant improvement in topology

construction time compared to the counterparts.
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