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Abstract— Random access protocols, such as Aloha, are
commonly modeled in wireless ad-hoc networks by using the
protocol model. However, it is well-known that the protocol
model is not accurate and particularly it cannot account for
aggregate interference from multiple interference sources. In
this paper, we use the more accurate physical model, which
is based on the signal-to-interference-plus-noise-ratio (SINR),
to study optimization-based design in wireless random access
systems, where the optimization variables are the transmission
probabilities of the users. We focus on throughput maximization,
fair resource allocation, and network utility maximization, and
show that they entail non-convex optimization problems if the
physical model is adopted. We propose two schemes to solve these
problems. The first design is centralized and leads to the global
optimal solution using a sum-of-squares technique. However, due
to its complexity, this approach is only applicable to small-scale
networks. The second design is distributed and leads to a close-
to-optimal solution using the coordinate ascent method. This
approach is applicable to medium-size and large-scale networks.
Based on various simulations, we show that it is highly preferable
to use the physical model for optimization-based random access
design. In this regard, even a sub-optimal design based on the
physical model can achieve a significantly better performance
than an optimal design based on the inaccurate protocol model.

I. INTRODUCTION

In random access protocols, such as Aloha, each transmitter
node randomly attempts to access a shared wireless channel
with a certain transmission probability. Random access proto-
cols are scalable and inherently flexible. They are widely used
in practice in wireless local area and ad-hoc networking.

The wireless interference in random access systems is com-
monly modeled using the protocol model [1]. In the protocol
model, the interference is pair-wise. That is, the model deter-
mines whether a pair of simultaneous transmissions from two
transmitter nodes can be received successfully by the respec-
tive receivers, assuming that no other nodes are also trans-
mitting. As a result, the protocol model cannot incorporate
the impact of aggregate interference from multiple interfering
sources. Examples where the protocol model is used for
random access design include [2]–[9]. In [2], an optimization
problem is formulated to select transmission probabilities in
order to achieve proportional fairness among the nodes in
terms of accessing the shared channel. The framework in
[2] is extended in [3]–[5] to incorporate various other opti-
mization objectives such as network throughput maximization,
harmonic-mean fairness, and max-min fairness. Joint optimal
random access and congestion control design is studied in [6],
[7]. Most optimization problems in [2]–[7] are either convex
or can be transformed into convex problems. Another thread

of research focuses on using the protocol model to study non-
cooperative random access using game theory [8], [9].

As an alternative, random access systems can also be mod-
eled using the physical model [1]. In the physical model, the
impact of the wireless interference is evaluated based on the
signal-to-interference-plus-noise-ratio (SINR) at each receiver
node. In this regard, a transmission is deemed successful if and
only if the SINR at the receiver node is above a certain thresh-
old, which depends on the modulation and coding schemes
being used. Similarly, a collision occurs if the SINR drops
below the threshold. The latter case can be caused by either a
single interferer or multiple interferers. Therefore, the physical
model incorporates the effect of aggregate interference. This
can improve the accuracy of the model and better predict how
random access protocols (e.g., the IEEE 802.11 distributed
coordination function [10]) perform in practice (cf. [11], [12]).

In this paper, we formulate various optimization-based
random access design problems using the physical model.
Unlike the case when the protocol model is used to formulate
the same problems, the optimization problems here are non-
convex and cannot be transformed into convex problems. The
main contributions of this paper are summarized as follows.

• We adopt the physical model to formulate throughput
maximization, fair resource allocation, and network util-
ity maximization problems in random access systems in
order to find the optimal transmission probabilities.

• We show that the performance loss caused by the inac-
curacy of the protocol model in solving these problems
can be arbitrarily large in certain scenarios.

• We propose two design schemes to solve the formulated
optimization problems. The first design is centralized. It
uses the sum-of-squares technique to find the exact global
optimal solution. Due to its complexity, this scheme is
only applicable to small networks. It serves as a bench-
mark to assess the performance of our second design.

• Our second design is distributed. It uses the coordinate
ascent method to find a close-to-optimal solution. It is
applicable to medium-size and large-scale networks.

• We compare the network performance achievable with the
physical and protocol models via extensive simulations.

This paper differs from the existing related work in the
literature in several aspects. Unlike the studies in [11], [12],
which focus on using the physical model to analyze the
performance of existing random access protocols, here we
adopt the physical model for developing new designs with
optimal performance. The optimization problems that we
consider in this paper have also been addressed in [2]–[5].



However, here we use the physical model, while the previous
work in [2]–[5] has used the protocol model. It is also worth
mentioning that the SINR is already widely considered for
analyzing and designing random access systems with multiple
packet reception, based on an information-theoretic approach,
e.g., in [13], [14]. However, our work here addresses the
more practical single packet reception setting by using an
optimization-based approach to find the optimal transmission
probabilities. Last but not least, some of the optimization
techniques that we use in this paper, such as the sum-of-
squares method, have also been used to tackle non-convexity
in other communications and networking problems, e.g., for
congestion control in [15], [16].

The rest of this paper is organized as follows. The system
model is introduced in Section II. Our first design and the
proof for its optimality are presented in Section III. Our sec-
ond design is discussed in Section IV. Simulation results are
provided in Section V. The paper is concluded in Section VI.

II. RANDOM ACCESS: PHYSICAL VS. PROTOCOL MODEL

Consider a wireless ad-hoc network with the set of one-hop
transmitter/receiver pairs denoted by N , with size N = |N |.
We refer to each transmitter/receiver pair as a user. For any
user n ∈ N , the transmitter node is denoted by tn and the
receiver node is denoted by dn. Let qn denote the transmission
power of node tn. Throughout this paper, we assume that
transmission powers are fixed for all users. Let Gnm denote the
channel gain from the transmitter node of user m (i.e., node
tm) to the receiver node of user n (i.e., node dn). We notice
that Gnn denotes the channel gain from node tn to node dn.
We also notice that qnGnn denotes the received signal power
at receiver node dn. Furthermore, if node tn transmits a packet
to node dn and at the same time, node tm transmits a packet
to node dm (with m �= n), then the interference power caused
by user m to user n is given by qmGnm.

We assume that time is divided into equal-length time slots.
As an example, the length of a time slot can be equal to the
time it takes to transmit one packet. Let pn ∈ [0, 1] denote the
transmission probability of user n ∈ N . That is, in each time
slot, node tn transmits a packet to node dn with probability
pn. A user n ∈ N is called active in a time slot, if transmitter
node tn transmits a packet to receiver node dn in that particular
time slot. In each time slot, if user n is active, then we denote
γn as its SINR. For each user n ∈ N , we have

γn =
qnGnn

in + σ2
n

, (1)

where in denotes the interference power in the time slot of
interest, and σ2

n denotes the noise power. Clearly, the value of
in (and consequently the value of γn) depends on how many
other users m ∈ N\{n} are active in the same time slot. For
a transmission from node tn to be successful, the SINR γn

should be greater than or equal to a threshold value, denoted
by γth

n . Therefore, in any time slot, receiver node dn, n ∈ N ,
successfully receives a packet from node tn with probability

pn Prob
{
γn ≥ γth

n

}
= pn Prob

{
in ≤ qnGnn

γth
n

− σ2
n

}
. (2)

We notice that since the transmission power, channel gain, and
noise power are fixed, the term (qnGnn)/γth

n −σ2
n has a fixed

value. Therefore, Prob
{
in ≤ (qnGnn)/γth

n − σ2
n

}
represents

the probability that the aggregate interference power at re-
ceiver node dn, caused by all active interfering transmissions
in the neighborhood, does not exceed a fixed threshold.

A. Physical Model

Given the modulation and coding scheme and the targeted
SINR, let μn denote the peak data rate for user n ∈ N . As in
[2]–[7], we assume that the users always have data to transmit.
In that case, the average data rate for user n is given by

rn(p) = μn pn Prob

{
in ≤ qnGnn

γth
n

− σ2
n

}
, (3)

where p = (pm, ∀m∈N ) denotes the vector of transmission
probabilities of all users. Recall that the term in in (3) is due
to the interference powers caused by the transmissions of the
active users in set N\{n} when user n is also active. Let
Pn denote the power set of set N\{n}, i.e., the set of all
its subsets. For example, if N = {n,m, a}, then Pn = {{},
{m}, {a}, {m,a}}. Assuming that a subset M ∈ Pn of other
users in the network is active at the same time that user n is
active, the transmission of user n is successful if and only if∑

m∈M
qmGnm ≤ qnGnn

γth
n

− σ2
n. (4)

On the other hand, the probability of having subset M ⊆ Pn

of other users active at a time slot is given by( ∏
m∈M

pm

)⎛⎝ ∏
k∈N\M,k �=n

(1 − pk)

⎞
⎠ . (5)

The term
∏

m∈M pm is the probability that all users in set M
are active. The term

∏
k∈N\M,k �=n(1− pk) is the probability

that all users, other than user n and those users in set M, are
not active. Next, we define set Mn for each user n ∈ N as

Mn =

{
M ∈ Pn :

∑
m∈M

qmGnm ≤ qnGnn

γth
n

− σ2
n

}
. (6)

That is, set Mn includes all subsets M ∈ Pn of other users
for which the inequality in (4) holds. Therefore, we have

Prob

{
in ≤ qnGnn

γth
n

− σ2
n

}

=
∑

M∈Mn

( ∏
m∈M

pm

)⎛⎝ ∏
k∈N\M,k �=n

(1 − pk)

⎞
⎠ ,

(7)

Replacing (7) in (3), for each user n ∈ N , we have

rn(p) = μn pn

×

⎡
⎣ ∑
M∈Mn

( ∏
m∈M

pm

)⎛⎝ ∏
k∈N\M,k �=n

(1 − pk)

⎞
⎠
⎤
⎦ .

(8)

We will further explain the SINR-based data rate model in (8)
in an example in Section II-C. In Sections III and IV, we will
use (8) for the proposed optimization-based designs.



B. Protocol Model

The physical model is usually not used in random access
design. Instead, the protocol model is used [2]–[7]. The prot-
ocol model takes into account only pair-wise interference. For
each user n ∈ N , let In denote the set of interfering users:

In =
{

m ∈ N\{n} : qmGnm >
qnGnn

γth
n

− σ2
n

}
. (9)

From (9), if any user m ∈ In is active while user n is active,
then the transmission of user n will not be successful. This
is because the individual interference power from user m is
already high enough to bring the SINR at the receiver node of
user n below threshold γth

n . According to the protocol model,
the approximate average data rate for user n is obtained as

r̃n(p) = μn pn

( ∏
m∈In

(1 − pm)

)
. (10)

Comparing the approximate data rate in (10) with the accurate
data rate in (8), we can show the following.

Theorem 1: We always have

r̃n(p) ≥ rn(p), ∀n ∈ N . (11)

That is, the protocol model always leads to an over-estimation
of the average data rates in wireless random access systems.

The proof of Theorem 1 is given in Appendix A.

C. Example

In this section, we present an example to compare the
physical model and the protocol model in random access
systems. Consider a network with N = 4 users. We have

q=

⎡
⎢⎢⎣

5
4
4
3

⎤
⎥⎥⎦, σ2 =

⎡
⎢⎢⎣

0.5
0.3
0.6
0.3

⎤
⎥⎥⎦, G=

⎡
⎢⎢⎣

1 0.8 0.4 0.5
0.8 1 0.5 0.3
0.4 0.5 1 0.2
0.5 0.3 0.7 1

⎤
⎥⎥⎦,

where q = (qn, ∀ n ∈ N ) denotes the transmission power
vector, G = (Gnm, ∀ n,m ∈ N ) denotes the channel gain
matrix, and σ2 = (σ2

n, ∀ n ∈ N ) denotes the noise power
vector. We assume that γth

1 = . . . = γth
4 = 1. Considering

user n = 1, set N\{1} = {2, 3, 4} and the power set
P1 = {{}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}. We
can verify that M1 = {{}, {2}, {3}, {4}, {3, 4}}. Thus,

Prob

{
i1 ≤ q1G11

γth
1

− σ2
1

}
= (1 − p2)(1 − p3)(1 − p4)

+ p2(1 − p3)(1 − p4) + p3(1 − p2)(1 − p4)
+ p4(1 − p2)(1 − p3) + p3p4(1 − p2)

= 1 − p2(p3 + p4 − p3p4),

(12)

and we have

r1(p) = μ1p1 − μ1p1p2(p3 + p4 − p3p4). (13)

Similarly, and after reordering the terms, we can show that

r2(p) = μ2p2(1 − p1), (14)

r3(p) = μ3p3(1 − p1p2), (15)

r4(p) = μ4p4(1 − p3)(1 − p1p2). (16)

On the other hand, if we use the protocol model, we have

r̃1(p) = μ1p1, (17)

r̃2(p) = μ2p2(1 − p1), (18)

r̃3(p) = μ3p3, (19)

r̃4(p) = μ4p4(1 − p3). (20)

A comparison of (13)-(16) with (17)-(20), confirms Theorem
1. We notice that, except for the second user, estimations of
data rates for all other users are inaccurate. Next, we address
optimization-based random access using the physical model.

III. DESIGN I: CENTRALIZED AND OPTIMAL

It is usually desired to select the transmission probabilities p
such that a certain objective is achieved across the network. In
this section, we formulate two optimization problems, namely
network throughput maximization and fair resource allocation,
in random access systems when the data rates are modeled
using the physical model as in Section II-A. We then propose
a centralized scheme to find the exact global optimal solution
of each optimization problem accordingly. The optimal design
scheme in this section can be used as a benchmark to assess
the optimality of various other design schemes including the
close-to-optimal design presented in Section IV.

A. Network Throughput Maximization

Consider the following optimization problem

max
p

∑
n∈N

rn(p)

s.t. Pmin
n ≤ pn ≤ Pmax

n , ∀n ∈ N ,

(21)

where for each user n ∈ N , the average data rate rn(p) is as
in (8) and Pmin

n and Pmax
n are constant parameters such that

0 ≤ Pmin
n ≤ Pmax

n ≤ 1. Clearly, the objective function in (21)
is the network aggregate throughput. Such an objective func-
tion is a polynomial function in transmission probabilities p:

∑
n∈N

μn pn

⎡
⎣ ∑
M∈Mn

( ∏
m∈M

pm

)⎛⎝ ∏
k∈N\M,k �=n

(1 − pk)

⎞
⎠
⎤
⎦ .

Thus, problem (21) is non-convex. In fact, problem (21) is a
polynomial programming problem which is usually difficult
to solve. It is worth mentioning that a special class of poly-
nomial programming problems, called geometric programs,
are tractable [17]. A geometric program involves minimizing
a posynomial, i.e., a polynomial which has only positive
coefficients. However, problem (21) is usually not a geometric
program. For example, the sum r1(p)+r2(p)+r3(p)+r4(p)
of (13)-(16) has both positive and negative coefficients. Next,
we explain how we can solve problem (21) in a centralized
fashion using the sum-of-squares technique [16], [18]–[21].

We start by writing the dual problem corresponding to the
primal problem in (21) as

min
λ,δ

max
p

∑
n∈N

rn(p) +
∑
n∈N

λn(pn − Pmin
n )

+
∑
n∈N

δn(Pmax
n − pn)

s.t. λn ≥ 0, δn ≥ 0, ∀n ∈ N ,

(22)



where for each n ∈ N , λn denotes the Lagrange multiplier
corresponding to constraint pn ≥ Pmin

n and δn denotes the
Lagrange multiplier corresponding to constraint pn ≤ Pmax

n .
From weak duality [22], the optimum of dual problem (22)
provides an upper bound for the optimum of primal problem
(21). However, this upper bound may not be tight as problem
(21) is not convex. In fact, this bound can be quite loose.

Next, we replace scalar λn with polynomial λn(p) and
scalar δn with polynomial δn(p) for each n ∈ N . In other
words, we replace linear Lagrange multipliers in dual problem
(22) with nonlinear Lagrange multipliers. Furthermore, for
each n∈N , we replace constraint λn ≥ 0 with

λn(p) ≥ 0, ∀p. (23)

The above inequality indicates that for any choice of vector
p, the polynomial λn(p) is non-negative for any n ∈ N .
Similarly, we replace constraint δn ≥ 0 with

δn(p) ≥ 0, ∀p. (24)

In that regard, a generalized dual problem for primal problem
(21) is obtained as

min
λ(p),δ(p)

max
p

∑
n∈N

rn(p) +
∑
n∈N

λn(p)(pn − Pmin
n )

+
∑
n∈N

δn(p)(Pmax
n − pn)

s.t. λn(p) ≥ 0, δn(p) ≥ 0, ∀n ∈ N , ∀p.

(25)

The optimization variables in (25) are the coefficients of poly-
nomials λ(p) = (λn(p), ∀n ∈ N ) and δ(p) = (δn(p), ∀n∈
N ). If the degrees of polynomials λ(p) and δ(p) are zero, then
problem (25) reduces to the original dual problem in (22).

Theorem 2: The generalized dual problem (25) provides an
upper bound for the primal problem (21), which is no worse
than the upper bound obtained from the dual problem (22).

The proof of Theorem 2 is given in Appendix B. Next, we
will show that by replacing the scalar Lagrange multipliers
λ1, . . . , λN and δ1, . . . , δN with the polynomial Lagrange
multipliers λ1(p), . . . , λN (p) and δ1(p), . . . , δN (p), we can
actually improve the upper bound eventually obtained by the
dual problem and obtain the exact maximum. But first, let us
introduce an auxiliary scalar variable t and rewrite problem
(25) in the following equivalent form:

min
λ(p), δ(p), t

t

s.t. t ≥
∑
n∈N

rn(p) +
∑
n∈N

λn(p)(pn − Pmin
n )

+
∑
n∈N

δn(p)(Pmax
n − pn), ∀p,

λn(p) ≥ 0, δn(p) ≥ 0, ∀n ∈ N , ∀p.
(26)

In problem (26), the variables are scalar t and the coefficients
of the polynomials λ(p) and δ(p). Notice that the vector
of transmission probabilities p is not a variable here as the
constraints in (26) should hold for any choice of p.

A polynomial a(p) is a sum-of-squares (SOS) if there exist

polynomials a1(p), . . . , aη(p), for some η ≥ 1, such that

a(p) =
η∑

j=1

a2
j (p). (27)

It is clear that a(p) being an SOS naturally implies a(p) ≥ 0
for any real-valued p. That is,

a(p) is SOS ⇒ a(p) ≥ 0, ∀p. (28)

Furthermore, we notice that there exist efficient algorithms
that can check if a polynomial is SOS, by using semi-definite
relaxation techniques (cf. [19]). From this, together with the
relation in (28), we replace all the inequality constraints in (26)
with corresponding SOS-form constraints and rewrite problem
(26) as the following sum-of-squares programming problem

min
λ(p), t,

δ(p)

t

s.t.

(
t −

∑
n∈N

rn(p) −
∑
n∈N

λn(p)(pn − Pmin
n )

−
∑
n∈N

δn(p)(Pmax
n − pn)

)
is SOS,

λn(p) is SOS, ∀n ∈ N ,

δn(p) is SOS, ∀n ∈ N .
(29)

We are now ready to state the following key results.

Theorem 3: For any choice of system parameters, we have
(a) Problem (29) is equivalent to problem (26).
(b) Problem (29) is a tractable optimization problem. That

is, it can be solved in polynomial time.
(c) There exists an even and finite degree d ≥ 2 for polyno-

mials λ(p) and δ(p) such that the minimum objective value of
the SOS programming problem (29), denoted by t�, becomes
equal to the maximum objective value of problem (21).

The proof of Theorem 3 is given in Appendix C. Theorem
3 summarizes some of the key results on optimization over
compact semi-algebraic sets (cf. [16], [18]–[21]). From Theo-
rem 3, when the physical model is used, the optimal network
throughput can be obtained by solving the SOS programming
problem (29), e.g., by for a large enough and even degree d for
polynomials λ(p) and δ(p). Problem (29) can be solved using
efficient techniques such as the interior-point method [22].
In particular, problem (29) can be solved by the automated
software SOSTOOLS [23]. SOSTOOLS uses a sufficiency test
(cf. [24]) for the right selection of degree d which guarantees
finding the optimal solution of the SOS program (29).

B. Max-Min Fair Resource Allocation

In this section, we consider the following max-min fair
resource allocation problem in a random access system:

max
p

min
n∈N

rn(p)

s.t Pmin
n ≤ pn ≤ Pmax

n , ∀n ∈ N .
(30)

Notice that in problem (30), our goal is to balance the
performance among all users by maximizing the minimum



average data rate a user may achieve. This is a common design
objective in random access literature (e.g., see [5]). Next, we
explain how we can find the exact global optimal solution of
problem (30) using similar techniques as in Section III-A.

By introducing a new auxiliary variable β, we can rewrite
problem (30) as the following equivalent problem:

max
p

β

s.t β ≤ rn(p), ∀n ∈ N ,

Pmin
n ≤ pn ≤ Pmax

n , ∀n ∈ N ,

(31)

Problem (31) is a polynomial programming problem. Thus,
following similar steps as in Section III-A, we can formulate
the generalized dual problem for primal problem (31) as the
following sum-of-squares programming problem:

min
ζ(p), λ(p),
δ(p), t, β

t

s.t.

(
t−
∑
n∈N

ζn(p)(rn(p)−β)−
∑
n∈N

λn(p)(pn−Pmin
n )

−
∑
n∈N

δn(p)(Pmax
n − pn)

)
is SOS,

ζn(p) is SOS, ∀n ∈ N ,

λn(p) is SOS, ∀n ∈ N ,

δn(p) is SOS, ∀n ∈ N .
(32)

Here, λ(p) and δ(p) are as in Section III-A. Furthermore, we
have ζ(p) = (ζn(p), ∀ n ∈N ), where ζn(p) is a nonlinear
Lagrange multiplier corresponding to constraint β ≤ rn(p) for
each n ∈ N . In problem (32), the variables are scalars t and
β and the coefficients of polynomials ζ(p), λ(p), and δ(p).

Similar to Theorem 2, we can show that there exists an even
and finite degree d ≥ 2 for the choice of polynomials ζ(p),
λ(p), and δ(p) such that the minimum objective value of
the SOS programming problem (32), denoted by t�, becomes
exactly equal to the maximum objective value of problem
(30), i.e., the maximized minimum average data rate among
all users. Thus, the max-min fair resource allocation problem
in (30) can be solved easily by using SOSTOOLS [23].

C. Example

Consider the example in Section II-C. Assume that the peak
data rates are μ1 = μ2 = μ3 = μ4 = 1. Solving problem (32)
with SOSTOOLS with degree d = 6, the optimal transmission
probabilities are obtained as p�

1 = 0.4474, p�
2 = 0.4800, p�

3 =
0.3378, and p�

4 = 0.7704, and the corresponding data rates are

r1(p�) = r2(p�) = r3(p�) = r4(p�) = 0.2652. (33)

In this case, the minimum data rate among users, i.e., the max-
min fairness objective function becomes

min
n∈N

rn(p�) = 0.2652. (34)

On the other hand, if the protocol model is used, i.e., the data
rates are assumed to be as in (17)-(20), then the optimal trans-

mission probabilities become p̃�
1 = 1

2 , p̃�
2 = 1, p̃�

3 = 1
2 , and

p̃�
4 = 1. If we apply these probabilities to (17)-(20), we obtain

r̃1(p̃�) = r̃2(p̃�) = r̃3(p̃�) = r̃4(p̃�) = 0.5. (35)

The results in (35) misleadingly indicate that all users achieve
a data rate of 0.5. However, to find the actual data rates of
the users in this case, we need to apply the above probability
values to (13)-(16). In that case, we have

r1(p̃�) = 0, r2(p̃�) = 0.5, r3(p̃�) = 0.25, r4(p̃�) = 0.25.
(36)

Thus, the minimum data rate among the users at p̃� becomes

min
n∈N

rn(p̃�) = min {0, 0.5, 0.25, 0.25} = 0. (37)

By comparing (34) and (37), we conclude that the performance
loss due to the inaccuracy of the protocol model is unbounded:
0.2652−0

0 . This underlines the importance of using the physical
model in an optimization-based random access design.

IV. DESIGN II: DISTRIBUTED AND NEAR-OPTIMAL

Both the throughput maximization and the max-min fair
resource allocation problems in Section III are polynomial
programming programs. However, this property may not hold
for many other optimization problems in random access sys-
tems, making the sum-of-squares technique an inappropriate
tool for solving them. Furthermore, we are usually interested
in selecting transmission probabilities in a distributed fashion
rather than a centralized fashion. Finally, the complexity of
the sum-of-squares programming makes our design in Section
III most appropriate for small-scale networks.

We will address all the above performance bottlenecks in
this section. In particular, we consider a more general network
utility maximization problem in the following form:

max
p

∑
n∈N

Un (rn(p))

s.t Pmin
n ≤ pn ≤ Pmax

n , ∀n ∈ N ,

(38)

where for each user n ∈ N , the average data rate rn(p) is
as in (3) and the utility function Un(rn(p)) is an increasing,
concave, and differentiable function in rn(p). In general, the
utility function for each user indicates the user’s level of
satisfaction upon its achieved average data rate.

An important class of utility functions is α-fair utilities [25],
which are formulated with parameter α ≥ 0 as

Un (rn(p)) =
{

(1 − α)−1 rn(p)1−α, if α �= 1,
log rn(p), if α = 1.

(39)

Using (39), a wide range of efficient and fair resource allo-
cations can be modeled. In particular, problem (38) reduces
to throughput maximization with α = 0, to proportional fair
allocation with α = 1, to harmonic-mean fair allocation with
α = 2, and to max-min fairness with α → ∞ [3], [25]. In fact,
the two optimization problems studied in Sections III-A and
III-B are special cases1 of the network utility maximization
problem in (38) with α-fair utility functions as in (39).

1The optimal solution of problem (38), when α → ∞, is also an optimal
solution for problem (30) [25, Lemma 3]. However, the converse is not true.



A. Algorithm

For each n ∈ N , let p−n = (p1, . . . , pn−1, pn+1, . . . pN )
denote the (N −1)-dimensional vector of transmission proba-
bilities of all users other than user n. Consider the following
local and myopic optimization problem for user n ∈ N :

max
pn

Un

(
pn on(p−n)

)
+
∑
m �=n

Um

(
pn vnm(p−n)+(1−pn) wnm(p−n)

)
s.t Pmin

n ≤ pn ≤ Pmax
n .

(40)

where

on(p−n)=μn

⎡
⎣ ∑
M∈Mn

( ∏
m∈M

pm

)⎛⎝ ∏
k∈N\M,k �=n

(1 − pk)

⎞
⎠
⎤
⎦ ,

and for each user m ∈ N\{n}, we have

vnm(p−n) = μm pm

×

⎡
⎣ ∑
M∈Mm, n∈M

⎛
⎝ ∏

k∈M\{n}
pk

⎞
⎠
⎛
⎝ ∏

l∈N\M,l �=m

(1 − pl)

⎞
⎠
⎤
⎦ ,

and

wnm(p−n) = μm pm

×

⎡
⎣ ∑
M∈Mm, n/∈M

( ∏
k∈M

pk

)⎛⎝ ∏
l∈N\M,l �=m,n

(1 − pl)

⎞
⎠
⎤
⎦ .

The objective functions in problems (38) and (40) are the
same. Thus, by solving problem (40), user n can select its own
transmission probability pn to maximize the objective value in
network utility maximization problem (38), assuming that p−n

is fixed, i.e., no other user changes its transmission probability.

Theorem 4: For each user n ∈ N , the local optimization
problem (40) is a convex optimization problem in pn.

The proof of Theorem 4 is evident and is omitted for brev-
ity. From Theorem 4, each user n ∈ N can easily solve
problem (40) by using the interior-point method [22] via
local iterations. This motivates us to introduce the proposed
distributed algorithm, Algorithm 1, for solving problem (38).
Algorithm 1 works based on the coordinate ascent method [26,
p. 207], where we fix all of the components of vector p, except
for the nth component, and maximize the network aggregate
utility only with respect to pn as in (40). This procedure is
repeated, leading to an iterative algorithm. Let Tn denote the
set of time slots at which user n ∈ N solves problem (40)
using the interior-point method. We assume that: (a) For any
users n �= m, we have Tn∩Tm = {}. That is, the iterative local
maximizations are carried out successively as in the Gauss-
Seidel mapping [26, p. 21]. (b) There is a constant Tmax

such that for each user n ∈ N , there exist t1, t2 ∈ Tn such
that |t1 − t2| ≤ Tmax. In other words, all users update their
transmission probabilities at least once every Tmax time slots.

In Algorithm 1, lines 6 to 14 are executed repeatedly until
user n stops operation, switches off, or leaves the network. In
line 6, user n may attempt transmitting a packet according to
its transmission probability pn. In lines 8 to 10, user n updates
pn and then broadcasts a control message including the new

Algorithm 1 : Executed by each user n ∈ N .
1: Allocate memory for pn and p−n.
2: Randomly initialize pn ∈ [Pmin

n , Pmax
n ].

3: Randomly initialize p−n such that pm∈ [Pmin
m , Pmax

m ] for m �=n.
4: Set clock timer t.
5: repeat
6: Transmit with probability pn.
7: if t ∈ Tn then
8: Solve problem (40) using the interior-point method [22].
9: Update pn according to the solution.

10: Broadcast a control message to announce pn to other users.
11: end if
12: if a control message is received then
13: Update p−n accordingly.
14: end if
15: until user n stops operation or leaves the network.

value of pn, whenever the current time slot is in set Tn. Upon
reception of a control message from another user m �= n, user
n updates its local memory p−n accordingly in line 13.

It is worth mentioning that if we use the protocol model
(instead of the physical model) to formulate problem (38),
then Algorithm 1 reduces to [4, Algorithm 2].

B. Convergence and Optimality

In this section, we investigate the convergence and opti-
mality of Algorithm 1. Let Θ(t) denote the current network
aggregate utility, i.e., the objective value of problem (38), at
time slot t ≥ 0. We can show the following.

Theorem 5: For any choice of system parameters and start-
ing from any initial point, there exists some Θ∗ such that

Θ∗ = lim
t→∞Θ(t). (41)

That is, Algorithm 1 converges.

Theorem 5 directly results from [26, Proposition 2.5, p.
208] on convergence analysis of the coordinate ascent method
with Gauss-Seidel updates. It is shown in [27] that the rate of
convergence for the coordinate ascent method in Gauss-Seidel
mappings is at least linear. We can further show that:

Theorem 6: Any fixed point of Algorithm 1 is a stationary
point of problem (38). That is, it is at least a local optimal
solution for the non-convex optimization problem (38).

The proof of Theorem 6 is given in Appendix D. From
Theorems 5 and 6, convergence and local optimality of Al-
gorithm 1 are guaranteed. Clearly, the obtained transmission
probabilities may not be globally optimal. However, simulation
results in Section V show that Algorithm 1 usually results in
close-to-optimal performance, making it a practical algorithm
for large networks when using SOSTOOLS is not feasible.

V. SIMULATION RESULTS

In this section, we assess the performance of the proposed
design schemes via simulations. Our main focus is on investi-
gating how the physical model can improve the performance
of optimization-based random access compared to the protocol
model. In this regard, we also study the impact of various
system parameters, such as the SINR threshold, the number
of users in the network, and the choice of utility functions.



Unless we state otherwise, the common simulation setting in
all experiments is as follows. The peak data rates μ1, . . . , μN

are selected randomly between 1 to 11 Mbps as in the IEEE
802.11b standard [10]. For any pair of users n,m ∈ N , the
channel gain Gnm is calculated as the inverse of the square of
the distance between nodes tm and dn according to the Friis
free space model [28]. For each user n ∈ N , the transmission
power qn and the noise power σ2

n are selected randomly to
achieve a signal-to-noise-ratio which is 0 to 3 dB higher than
the threshold γth

n = 1 in the absence of any interference. We
also set the bound parameters Pmin

n = 0.01 and Pmax
n = 0.99

for each user n ∈ N . Finally, all the results for the protocol
model are obtained by using [4, Algorithm 2].

A. Optimality

Recall that Design I in Section III leads to the global optimal
solutions of the throughput maximization and max-min fair
resource allocation problems, while Design II in Section
IV only guarantees finding a local optimal solution. In this
section, we use Design I as a benchmark to evaluate the per-
formance of Design II, and also compare the network perfor-
mance achievable with the physical model and the protocol
model, respectively. Here, we limit our attention to only small
networks such that Design I is applicable. Larger network
topologies will be studied in Sections V-B, V-C, and V-D.

Simulation results for 20 random scenarios are shown in
Fig. 1. In each scenario, the network topology includes N = 4
users which are randomly located in a 50 m × 50 m field. For
each user n ∈ N , the distance between node tn and node dn

is selected randomly between 5 to 25 m. For the results in Fig.
1, the network is designed to solve the max-min fair resource
allocation problem in (30). We can see that both Design I and
Design II significantly outperform the case when the protocol
model is used. The average performance gain2 across all 20
scenarios is 4.22 for Design I and 4.17 for Design II. In fact,
as we discussed in Section III-C, it is important for the max-
min fair resource allocation to be based on the physical model.
Another key observation in Fig. 1 is that Design II achieves
close-to-optimal performance for all considered scenarios. On
average, Design II achieves 98.8% optimality, compared to
Design II. Similar results can be obtained for the network
throughput maximization problem (21).

For the rest of the simulations, we focus only on Design
II which is applicable to large-scale networks and leads to a
close-to-optimal performance.

B. Impact of the SINR Threshold

Next, we investigate the impact of changing the SINR
threshold γth

1 , . . . , γth
N on the performance gain of using the

physical model versus the protocol model. We consider 100
scenarios, where in each scenario, N = 10 users are randomly
located in a 100 m × 100 m square field. The simulation
results when the SINR threshold varies from 0 to 5 are shown
in Fig. 2. For the results in this figure, the network is designed

2Here, the performance gain is defined as the ratio of the minimum data
rate achieved among the users when Design I (or Design II) is used to the
minimum data rate among the users when the protocol model is used.
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Fig. 1. Comparison of the achievable network performance with the physical
and protocol models for 20 random scenarios. The performance is measured
in terms of solving the max-min fair resource allocation problem (30). By
using the physical model, we can significantly improve the performance in
all scenarios. Furthermore, Design II leads to a close-to-optimal performance
compared to the optimal performance achieved by Design I.
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Fig. 2. The impact of changing the SINR thresholds on the performance
gain achieved due to using the physical model. Here, the design objective is
to solve the network utility maximization problem (38) for logarithmic utility
functions in order to achieve proportional fairness among users. Each point
in this figure indicates the average results for 100 simulated scenarios.

to solve the network utility maximization problem (38) when
the utility functions are logarithmic in order to achieve pro-
portional fairness among the users. Each point represents the
average results across all 100 simulated scenarios. We can see
that if the SINR threshold becomes too small (i.e., approaches
zero) or too large, the performance gain tends to 1. The first
case corresponds to a scenario where all users can be active at
the same time. The second case implies a scenario where only
one user can be active at a time. In either case, the data rates
obtained from the physical model and the protocol model will
be almost the same. For other cases, the difference between
the physical model and the protocol model (and consequently
the performance gain achievable with the physical model) is
significant. In particular, when γth

1 = . . . = γth
N = 1, the

average performance gain is as high as 1.72.
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Fig. 3. The impact of changing the number of users in the network on the
performance gain achievable by adopting the physical model. Each point in
this figure indicates the average results for 100 simulated scenarios.

C. Impact of the Number of Users

Next, we change the number of users N from 3 to 15 and
set γth

n =1 for all n ∈ N . The rest of the parameters are as in
Section V-B. The results are shown in Fig. 3. As N increases,
the network becomes more dense and the aggregate interfer-
ence from multiple interfering sources can be a major cause for
packet loss, making the protocol model very inaccurate. The
performance improvement due to using the physical model
when the number of users is N = 15 is as high as 4.82.

D. Impact of the Utility Parameter α

It is known that if the utility functions are selected to be α-
fair as in (39), then parameter α can act as a knob to control the
tradeoff between network efficiency and fairness in network
utility maximization problem (38) [3], [4], [7]. In this section,
we investigate the impact of parameter α on the network
performance achievable with the physical and protocol models.

The simulation results when the utility parameter α varies
from 0.5 to 5 are shown in Fig. 4. Each point represents
the average results for 100 random scenarios where the sim-
ulation setting is as in Section V-B. We measure the net-
work efficiency in terms of the achieved network throughput.
We also use Jain’s fairness index [29] to measure fairness:
(
∑

n∈N rn(p))2/(N
∑

n∈N rn(p)2). We can see that if the
physical model is used, then we can make the system fairer
but less efficient (and vice versa) by changing parameter α.
However, this trend is not seen when the protocol model is
used. In fact, in this case, the performance is more or less
independent of the choice of α, particularly when it comes to
the achievable throughput. Furthermore, we can see that the
performance gain due to using the physical model is significant
for both throughput and fairness index.

VI. CONCLUSION

In this paper, we studied optimization-based design in
wireless random access systems. Unlike most of the previous
work along this line that has used the protocol model, here
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Fig. 4. The impact of changing the utility parameter α on network efficiency
and fairness. Each point indicates the average results for 100 simulated
scenarios with N = 10 users. (a) Aggregate network throughput, (b) Jain’s
fairness index. We can see that for Design II, parameter α acts as a knob to
control the tradeoff between efficiency and fairness.

we adopted the physical model which is based on the signal-
to-interference-plus-noise-ratio (SINR), in order to formulate
three problems: throughput maximization, max-min fair re-
source allocation, and network utility maximization. The new
formulations entail difficult non-convex optimization prob-
lems. We proposed two schemes to solve these problems. The
first design is centralized and leads to the optimal solutions.
However, due to its complexity, it is only applicable to small
networks. The second design is distributed, leads to a close-
to-optimal performance, and is applicable to large networks.
We performed various simulations to compare the network
performance achievable with the physical and protocol models.
We showed that it is highly preferable to use the physical
model for optimization-based random access design, particu-
larly when the network is dense. In this regard, even a sub-
optimal design based on the (accurate) physical model can
achieve a significant performance gain compared to an optimal
design based on the (inaccurate) protocol model.

APPENDIX

A. Proof of Theorem 1

From (6) and (9), for each user n ∈ N , we have

In ⊆ N\M, ∀M ∈ Mn. (42)

Thus, (
∏

m∈In
(1 − pm)) is a common factor in all terms in

the summation in (7) and we further have

Prob

{
in ≤ qnGnn

γth
n

− σ2
n

}
=

( ∏
m∈In

(1 − pm)

)

×

⎡
⎣ ∑
M∈Mn

( ∏
m∈M

pm

)⎛⎝ ∏
k∈N\(M∪In), k �=n

(1 − pk)

⎞
⎠
⎤
⎦

≤
( ∏

m∈In

(1 − pm)

)
.

(43)

From (43), (3), and (10), the inequality in (11) results. �



B. Proof of Theorem 2

(a) Suppose p̃ is a feasible point for the primal problem in
(21); i.e., 0 ≤ p̃n ≤ 1 for all n ∈ N . Then, for any choice of
polynomials λ(p) and δ(p) which satisfy (23) and (24),∑

n∈N
λn(p̃)(p̃n − Pmin

n ) +
∑
n∈N

δn(p̃)(Pmax
n − p̃n) ≥ 0. (44)

For notational simplicity, we define f(p) =
∑

n∈N rn(p). By
adding f(p̃) to both sides of (44), we have

max
p

f(p) +
∑
n∈N

λn(p)(pn−Pmin
n ) +

∑
n∈N

δn(p)(Pmax
n −pn)

≥ f(p̃) +
∑
n∈N

λn(p̃)(p̃n−Pmin
n ) +

∑
n∈N

δn(p̃)(Pmax
n − p̃n)

≥ f(p̃). (45)

Since (45) holds for any feasible p̃, the minimization in (25)
forms an upper bound for the primal problem in (21).

(b) This part results from the fact that the dual problem (22)
is a special case of the generalized dual problem (25) when
the polynomials λ(p) and δ(p) have degree zero. �

C. Proof of Theorem 3

(a) This part directly results from the Positivstellensatz
theorem in [21], which was based on the earlier results in
[20]. A short proof is provided in [18, Proof of Theorem 3].

(b) This part is based on the results in [19, Section 3].
(c) This part is based on the results in [18, Theorem 12 and

Corollary 13]. Sufficient upper bounds on the choice of degree
d are also available in [30] for a few special cases. �

D. Proof of Theorem 6

Let p∗ denote any fixed point of Algorithm 1. That is, for
any n ∈ N , given p−n = p∗

−n, pn = p∗n is optimal for (40).
Since (40) is convex, the fixed point p∗ satisfies the necessary
and sufficient Karush-Kuhn-Tucker (KKT) optimality condi-
tions [22] corresponding to (40) for all n∈N . By definition,
each stationary point [31] of non-convex problem (38) also
satisfies the KKT conditions for (38). Since the objectives in
(38) and (40) are the same and the set of constraints in (38) is
the union of those in (40) for all n ∈ N , the KKT conditions
for (38) are equal to the union of those for (40) for all n ∈ N .
Thus, since p∗ satisfies the KKT conditions of (40) for all
users, it also satisfies the KKT conditions for (38), i.e., each
fixed point p∗ is a local optimal solution for problem (38). �
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