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ABSTRACT
We study the problem of optimally controlling the use of
sleep states in an energy-aware M/G/1 queue. In our model,
we consider a family of policies where the server upon be-
coming idle can wait for a random period before entering,
potentially randomly, any of a finite number of possible sleep
states to save energy. The server becomes busy again after
a possibly random number of jobs have arrived. However,
jobs are served only after a random setup time. This kind of
an energy-aware queuing system has been analyzed in recent
papers under specific assumptions regarding the cost met-
rics and the distributions of the random variables. In this
paper, we consider an essentially more general model. No-
tably we show that the optimal control of the idle time and
sleep states is deterministic and does not benefit from ran-
domization: either the system only uses the idle state and
no sleep states, or the idle state is not used at all and the
server immediately goes to some fixed sleep state and waits
until a fixed number of jobs have arrived before starting the
setup. We prove this result for two popular cost metrics,
namely weighted sum of energy and response time (ERWS)
and their product ERP.

Categories and Subject Descriptors
D.2.8 [Metrics]: Performance; D.4.8 [Performance]: Queue-
ing theory; B.1.2 [Control Structure Performance Anal-
ysis and Design Aids]:

General Terms
Performance, Theory

Keywords
Performance-energy trade-off, M/G/1, Setup delay

1. INTRODUCTION
An increasing demand for green ICT has inspired the queue-
ing community to consider energy-aware queueing systems.
In many cases, it is no longer enough to optimize just the

performance costs but one should also take into account the
energy costs. An idle server (waiting for an arriving job to
be processed) in the server farm of a typical data center may
consume as much as 60% of the peak power. From the en-
ergy point of view, such an idle server should be switched
off until a new job arrives. However, from the performance
point of view, this is suboptimal since it typically takes a
rather long time to wake the server up. Thus, there is a
clear trade-off between the performance and energy aspects.
The performance aspects of similar vacation models have
been analyzed in, e.g., [18, 5, 15].

The two main metrics used in the literature to analyze the
performance-energy trade-off in energy-aware queueing sys-
tems are ERWS [1, 4, 3, 19, 2, 16, 9] and ERP [8, 17, 12,
11, 13, 6]. Both of them are based on the expected re-
sponse time, E[T ], and the expected power consumption per
time unit, E[P ]. The former one, ERWS, is defined as their
weighted sum,

w1E[T ] + w2E[P ], w1, w2 ≥ 0, (1)

and the latter one, ERP, as their product,

E[T ]E[P ]. (2)

In this paper, we focus on the optimal control of a single
energy-aware server. We assume that jobs arrive according
to a Poisson process and service times are IID with a general
distribution. In addition to the off state, we assume that the
server has multiple intermediate sleep states, for which the
deeper the sleep state, the smaller the power consumption
but also the longer the setup delay. The possible control
actions are as follows:

(i) When the server becomes idle, it will start a timer de-
noted by I, which is an IID random variable with a
general distribution (including even the deterministic
special cases I = 0 and I = ∞), and wait until ei-
ther a new job arrives or the timer expires. If there is
an arrival before the timer expiration, the server will
immediately start a new busy period and no further
control actions are possible until the server next be-
comes idle again.1

(ii) However, if the timer expires before a new arrival, the
server will independently and randomly choose one of

1Note that if I = ∞, then the system is an ordinary M/G/1
queue.



the possible sleeping states, say i, and a switch-on
threshold, say k, from a given distribution p = (pik).
The server will stay in the chosen sleep state i until the
queue length reaches the chosen threshold k. At that
time, the server is switched on so that after a setup
delay denoted by Di, which is an independent random
variable with a general distribution depending on i,
the system will start a new busy period and no fur-
ther control actions are possible until the server next
becomes idle again.

A control policy in this system is defined by giving the dis-
tribution of the idling time I and the sleep-state/threshold
distribution p. The target is to find the optimal distribu-
tions that minimize the chosen cost metric.

Our purpose is to unify and generalize some results pre-
sented in two recent papers, [6] and [14]. Gandhi et al. [6]
considered this model, however, without an idling option (so
that only I = 0 and I = ∞ are possible alternatives) and
assuming exponential service times and deterministic setup
delays. They showed that the optimal policy for the ERP
metric is deterministic with threshold k∗ = 1 (i.e., there is
i∗ such that pi∗,1 = 1). In this paper, we prove that the op-
timal policy still remains deterministic even under the idling
option and for any distributions for service times and setup
delays. We also show that the optimal threshold may not
necessarily be k = 1 for the ERP metric when general service
and setup times are considered. In addition, we prove that
the optimal policy is deterministic also for the ERWS metric
with the optimal threshold being not necessarily k = 1.

Maccio and Down [14] also considered this model but they
restricted themselves to a single sleep state and deterministic
rules to choose the corresponding threshold k. They showed,
however, explicitly only for the ERWS metric and assuming
exponential service times and setup delays, that the optimal
idling time is either I = 0 or I = ∞. In addition, they gave
a heuristic argument for the claim that the result would be
valid for a more general cost metric, namely

M∑
j=1

wjE[T ]
ajE[P ]bj , wj , aj , bj ≥ 0 ∀j, (3)

which covers both common metrics, ERWS and ERP. In
this paper, we prove that the optimal idling time is, indeed,
either I = 0 or I = ∞ for the ERWS and ERP cost metrics
even if we allow general distributions for service times and
setup delays, multiple sleep states, and randomized rules to
choose the sleep state i and the corresponding threshold k.
In addition, we prove that the result is valid for the general
cost metric (3) if there is only a single term in the sum, i.e.,
for the cost metric

wE[T ]aE[P ]b, w, a, b ≥ 0, (4)

which is a slightly generalized version of the ERP metric.
However, if there are multiple terms in (3), we demonstrate,
by constructing a counter-example, that the optimal idling
time may be different from I = 0 and I = ∞.

The rest of the paper is organized as follows. In Section 2,
we introduce the system model and its analysis is in Section
3. Cost metric optimization is carried out in Section 4, and

an extension of idling time considerations is given in Section
5. We give numerical examples in Section 6 and conclude
the paper in Section 7.

2. MODEL
We consider an energy-aware M/G/1-FIFO queue, where
service requests (also referred to as jobs) arrive according
to a Poisson process with rate λ and service times S may
have any distribution with mean E[S]. Let ρ = λE[S] denote
the system load. In addition to the ordinary busy and idle
states, the server has an off state and n−1 different interme-
diate sleep states (sleep1, . . . , sleepn−1). For the sake of no-
tational convenience, the states off and idle are also referred
to as sleep0 and sleepn, respectively. With this notation, let
Pi [Pbusy] denote the (deterministic) power consumption of
the server when in state sleepi [busy ]. We assume that

0 = Poff = P0 < P1 < . . . < Pn = Pidle < Pbusy.

While transition from state idle to busy is immediate, that
from any sleep state induces a random setup delay. Let
Di denote the setup delay from state sleepi to busy. Setup
delays Di may have any distribution but we make a natural
assumption that the mean values satisfy

E[Doff ] = E[D0] > E[D1] > . . . > E[Dn] = E[Didle] = 0.

All setup delays are assumed to be independent of each
other. The (deterministic) power consumption during any
setup delay is denoted by Psetup.

As already described in Section 1, the power consumption
is controlled by a policy, which is defined by specifying the
following two distributions: (i) the distribution for the idling
time I (with the special cases I = 0 and I = ∞ included)
and (ii) the distribution p = (pik; i ∈ {0, . . . , n − 1}, k ∈
{1, 2, . . .}). Let Πmixed denote the family of all such policies.2

In the sequel, we will also use the following short-hand no-
tations:

pi =

∞∑
k=1

pik, qk =

n−1∑
i=0

pik.

Recall that when the idling time timer expires in state idle,
the following sleep state will be i and the corresponding
switch-on threshold k with probability pik. Initially we as-
sume, as in [14], that the idling time timer is reset (to 0) only
when it expires. Thus, if the server is idle and a new job
arrives before the timer expires, the server moves from state
idle to busy and the idling time timer is not reset but the
accumulated idling time is remembered for the next time the
server becomes idle again. In Section 5, we argue that the
optimality results remain the same even if the idling time
timer is reset after any idle period.

3. ANALYSIS
In this section, we derive the mean response time E[T ] and
the mean power consumption E[P ] for the policies belonging
to Πmixed. The results are given below in Theorems 1 and

2This is an extension of the family Πmixed defined in [6]
allowing the idling option before the transit to some sleep
state.



2, which generalize the corresponding earlier results given in
[6] and [14].

The special case I = ∞ corresponds to an ordinary M/G/1
queue for which

E[TM/G/1] = E[S] +
λE[S2]

2(1− ρ)
,

E[PM/G/1] = ρPbusy + (1− ρ)Pidle.

Consider now any policy for which E[I] < ∞. In this case
the idling time timer expires sooner or later, and every time
it expires, the system regenerates itself.

Let C denote a regeneration cycle between two consecutive
timer expirations. Let Tbusy, Tidle, Tsleepi

, and Tsetupi
denote

the aggregate time during one cycle that the system is in the
busy state, in the idle state, in sleepi state (i ∈ {0, . . . , n−
1}), and in setupi state (i ∈ {0, . . . , n − 1}), respectively.
Thus,

C = Tbusy + Tidle +

n−1∑
i=0

(Tsleepi
+ Tsetupi

).

Since FIFO is a work-conserving service discipline, we know
that

E[Tbusy] = ρE[C]. (5)

In addition, since the idling time timer is reset only in the
beginning of a new cycle, we have Tidle = I, and conse-
quently

E[Tidle] = E[I]. (6)

It is also easy to see that

E[Tsleepi
] =

∞∑
k=1

pik
k

λ
, (7)

E[Tsetupi
] =

∞∑
k=1

pikE[Di]. (8)

Combining these together, we get

E[C] =
1

1− ρ

(
E[I] +

∞∑
k=1

qk
k

λ
+

n−1∑
i=0

piE[Di]

)
, (9)

where, as mentioned earlier,

pi =
∞∑

k=1

pik, qk =

n−1∑
i=0

pik.

Note that the mean cycle length E[C] is insensitive to the
shape of the idling time distribution depending just on its
mean value E[I]. In addition, for the special case where
pik = 1 for some i and k, we clearly have

E[C] =
1

1− ρ

(
E[I] +

k

λ
+ E[Di]

)
. (10)

Theorem 1. For any policy belonging to Πmixed, the mean

power consumption is given by

E[P ] = E[PM/G/1] +

1

E[C]

(
n−1∑
i=0

∞∑
k=1

pik
k

λ
(Pi − Pidle) +

n−1∑
i=0

piE[Di](Psetup − Pidle)

)
, (11)

where E[C] is given in (9).

Proof: By utilizing the theory of regenerative processes, we
know that

E[P ] =
E[Tbusy]

E[C]
Pbusy +

E[Tidle]

E[C]
Pidle +

n−1∑
i=0

(
E[Tsleepi

]

E[C]
Pi +

E[Tsetupi
]

E[C]
Psetup

)
,

from which (11) easily follows by (5)–(8). �

Remark: Equation (11) applied to the case where I = 0 and
setup delays Di are deterministic gives the same result as
given in [6, Equation (3)]. In addition, for the special case
where pik = 1 for some i and k, we clearly have, by (11),

E[P ] = E[PM/G/1] +

(1− ρ)
k
λ
(Pi − Pidle) + E[Di](Psetup − Pidle)

E[I] + k
λ
+ E[Di]

,(12)

which corresponds to the equation of the mean energy con-
sumption given in [14, Theorem 2].

Theorem 2. For any policy belonging to Πmixed, the mean
response time is given by

E[T ] = E[TM/G/1] +

1

(1− ρ)E[C]

( ∞∑
k=1

qk
k(k − 1)

2λ2
+

n−1∑
i=0

∞∑
k=1

pik
k

λ
E[Di] +

n−1∑
i=0

pi
1

2
E[D2

i ]

)
. (13)

Proof: To determine the mean response time, we continue
to utilize the regenerative cycle analysis introduced above.
More precisely said, we derive the mean response time E[T ]
using a similar approach as Medhi for M/G/1-FIFO vacation
models in [15].

Let us start with the mean waiting time E[W ]. We will
derive it in three parts:

E[W ] = E[W1] + E[W2] + E[W3].

1◦ First, due to the FIFO service discipline, the arriving job
has to wait until the end of the current service, if the system
is busy upon the arrival, and until the end of the service of
all the jobs already waiting upon the arrival. Thus,

E[W1] = πbusyE[S
R] + E[

NW∑
j=1

Sj ],



where πbusy denotes the probability that the system is busy
upon the arrival, SR is the remaining service time of the
job in service, NW is the number of waiting jobs upon the
arrival, and the Sj refer to their service times. The stan-
dard M/G/1 analysis (applying PASTA and Little’s result
E[NW ] = λE[W ]) gives immediately

E[W1] = ρ
E[S2]

2E[S]
+ λE[W ]E[S] =

λ

2
E[S2] + ρE[W ].

2◦ In addition, a job that arrives when the server is in one of
the states sleepi (i = 0, . . . , n− 1) has to wait until the end
of the current sleep state, which is controlled by parameter
k, as well as the following setup delay. Thus,

E[W2] =

n−1∑
i=0

∞∑
k=1

πik

(
k − 1

2λ
+ E[Di]

)
,

where πik denotes the probability that the current cycle is
related to state sleepi and switch-on threshold k and that
the arriving job is one of these k jobs. Clearly, we have

πik = pik
k

λE[C]
,

implying that

E[W2] =
1

E[C]

( ∞∑
k=1

qk
k(k − 1)

2λ2
+

n−1∑
i=0

∞∑
k=1

pik
k

λ
E[Di]

)
,

3◦ Finally, a job that arrives during one of the setup delays
Di (i = 0, . . . , n−1) has to wait until the end of the current
setup delay. Thus,

E[W3] =

n−1∑
i=0

∞∑
k=1

πiE[D
R
i ],

where πi denotes the probability that the current cycle is
related to state sleepi and that the arriving job is one of the
jobs arriving during the corresponding setup delay Di, and
DR

i refers to the remaining part of the setup delay upon the
arrival. Clearly, we have

πi =

∞∑
k=1

pik
λE[Di]

λE[C]
= pi

E[Di]

E[C]
.

In addition, the standard renewal theory says that

E[DR
i ] =

E[D2
i ]

2E[Di]
.

Thus,

E[W3] =
1

E[C]

(
n−1∑
i=0

pi
1

2
E[D2

i ]

)
.

Formula (13) follows now straightforwardly from 1◦–3◦, since
E[T ] = E[S] + E[W ]. �

Remark: Equation (13) applied to the case where I = 0 and
setup delays Di are deterministic gives the same result as
given in [6, Equation (1)]. In addition, for the special case
where pik = 1 for some i and k, we clearly have, by (13),

E[T ] = E[TM/G/1] +
k(k−1)

2λ2 + k
λ
E[Di] +

1
2
E[D2

i ]

E[I] + k
λ
+ E[Di]

, (14)

which corresponds to the equation of the mean response time
given in [14, Theorem 3].3

4. OPTIMIZATION
In this section, we prove that, for the cost metrics ERWS (1)
and generalized ERP (4), the optimal policy is determinis-
tic (choosing exactly one of states sleepi and thresholds k)
and the optimal idling time is either I = 0 and I = ∞,
which generalizes the earlier results given in [6] and [14] as
discussed in Section 1. The result is first split in parts and
proved in Propositions 1–4, and finally summarized in The-
orem 3.

4.1 Optimal idling time distribution
Let us first consider the optimization of the idling time dis-
tribution. It follows from (9), (11), and (13) that both the
mean response time E[T ] and the mean power consumption
E[P ] are, in fact, insensitive to the shape of the idling time
distribution depending just on its mean value E[I] as follows:

E[T ] = A1 +
B1

C+E[I]
, E[P ] = A2 +

B2
C+E[I]

, (15)

where constants A1, A2, B1, C > 0 but B2 may be negative.

Proposition 1. For the ERWS cost metric (1), the op-
timal policy in Πmixed has either I = 0 or I = ∞.

Proof: By (15), the objective function (1) can be written in
the following form:

w1E[T ] + w2E[P ] = w1A1 + w2A2 +
w1B1+w2B2

C+E[I]
,

which is clearly a monotonic function of E[I] in the whole
interval [0,∞). �

Proposition 2. For the generalized ERP cost metric (4),
the optimal policy in Πmixed has either I = 0 or I = ∞.

Proof: By (15), the objective function (4) can be written in
the following form:

wE[T ]aE[P ]b = w
(
A1 +

B1
C+E[I]

)a (
A2 +

B2
C+E[I]

)b

.

If B2 ≥ 0, then the objective function is clearly strictly
decreasing so that the optimal idling time is I = ∞. Thus,
from this on, we assume that B2 < 0. Let us now consider
the function f(x) defined for all real values of x as follows:

f(x) =
(
A1 +

B1
C+x

)a (
A2 +

B2
C+x

)b

.

1◦ First we show that the first derivative f ′(x) has at most
one root. By taking the first derivative of f(x) and rear-
ranging the terms, we have

f ′(x) =
(
A1 +

B1
C+x

)a−1 (
A2 +

B2
C+x

)b−1
1

(C+x)3
×

(−aB1(A2(C + x) +B2)− bB2(A1(C + x) +B1)) .
3The formula for the mean response time given in [14, The-
orem 3] is more complicated but gives (14) after some ma-
nipulations when interpreting the symbol σ2

setup in [14] as

the second moment E[D2
i ] (instead of the variance V[Di]) of

the setup delay.



Clearly, the only possible root comes from the last part of
this equation, which is a linear function of x. If such a root
x0 exists, it satisfies

x0 = − B1B2(a+b)
aA2B1+bA1B2

− C.

2◦ Now we show that any root of f ′(x) is a local maximum
point. Let us assume that such a root, x0, exists. The second
derivative test can be applied to prove this claim since f(x)
is twice differentiable at x0. By taking the second derivative
of f(x) and applying it at x0, we get

f ′′(x0) =
(
A1 +

B1
C+x0

)a−1 (
A2 +

B2
C+x0

)b−1
(a+b)B1B2

(C+x0)4
.

Since B2 < 0, we have f ′′(x0) < 0, which justifies the claim.

From 1◦ and 2◦, we deduce that f(x), when restricted to the
interval x ∈ [0,∞), has its minimum value at x = 0 or when
x → ∞, which completes the proof. �

4.2 Optimal choice of sleep state and switch-
on threshold

Now we consider, for the same cost metrics as above, opti-
mization of the distribution p = (pik; i ∈ {0, . . . , n− 1}, k ∈
{1, 2, . . .}), which is used to select the sleep state i and the
switch-on threshold k every time when the idling time timer
expires. From Propositions 1 and 2, we know that I = 0
or I = ∞ for the optimal policy. On the other hand, if the
optimal idling time is I = ∞, the distribution p does not
have any role. Thus, we may assume below that I = 0.

Consider first any distribution p = (pik; i ∈ {0, . . . , n −
1}, k ∈ {1, 2, . . .}). For a while, fix i and k, and define
the following conditional probabilities:

qj� =
pj�

1− pik
for any (j, �) �= (i, k).

Utilizing these conditional probabilities, we define a related
distribution p0 = (p0j�; j ∈ {0, . . . , n− 1}, � ∈ {1, 2, . . .}) by

p0ik = 0, p0j� = qj� for any (j, �) �= (i, k),

and still another related distribution p1 = (p1j�; j ∈ {0, . . . , n−
1}, � ∈ {1, 2, . . .}) by

p1ik = 1, p1j� = 0 for any (j, �) �= (i, k).

We note that, with I = 0, these three distributions (p,p0,p1)
define three different control policies that all belong to Πmixed.

It follows from (9), (11), and (13) that the mean response
time E[T ] and the mean power consumption E[P ] for these
three policies can be written as follows:

E[T |p] = A1 +
B1pik+C1
Dpik+E

, E[P |p] = A2 +
B2pik+C2
Dpik+E

,

E[T |p0] = A1 +
C1
E
, E[P |p0] = A2 +

C2
E
,

E[T |p1] = A1 +
B1+C1
D+E

, E[P |p1] = A2 +
B2+C2
D+E

,

(16)
where A1, A2, C1, C2, E > 0 and B1+C1, B2+C2, D+E > 0
but B1, B2, and D may be negative.4

4While we use partly the same symbols, do not confuse these
constants with those given in (15).

If D �= 0, then an elementary polynomial division results in
the following formulas:

E[T |p] = A′
1 +

C′
1

Dpik+E
, E[P |p] = A′

2 +
C′

2
Dpik+E

E[T |p0] = A′
1 +

C′
1

E
, E[P |p0] = A′

2 +
C′

2
E
,

E[T |p1] = A′
1 +

C′
1

D+E
, E[P |p1] = A′

2 +
C′

2
D+E

,

(17)

where A′
j = Aj +

Bj

D
and C′

j = Cj − BjE

D
for j = 1, 2.

Proposition 3. For the ERWS cost metric (1), the op-
timal policy in Πmixed is deterministic, i.e., there are i∗ and
k∗ such that pi∗,k∗ = 1.

Proof: 1◦ Assume first that D = 0. By (16), the objective
function (1) can be written in the following form:

w1E[T |p] + w2E[P |p] =
w1(A1 +

C1
E
) + w2(A2 +

C2
E
) + w1B1+w2B2

E
pik,

which is a linear and, thus, monotonic function of pik in the
interval [0, 1]. Thus, any distribution p can be improved by
one of the related distributions p0 or p1 for any i and k,
which proves the claim in this case.

2◦ Assume now that D �= 0. By (17), the objective function
(1) can be written in the following form:

w1E[T |p] + w2E[P |p] = w1A
′
1 + w2A

′
2 +

w1C
′
1+w2C

′
2

Dpik+E
,

which is clearly a monotonic function of pik in the interval
[0, 1]. Thus, also in this case, any distribution p can be
improved by one of the related distributions p0 or p1 for
any i and k, which completes the proof. �

Proposition 4. For the generalized ERP cost metric (4),
the optimal policy in Πmixed is deterministic, i.e., there are
i∗ and k∗ such that pi∗,k∗ = 1.

Proof: 1◦ Assume first that D = 0. By (16), the objective
function (1) can be written in the following form:

wE[T |p]aw2E[P |p]b =
w
(
A1 +

C1
E

+ B1
E
pik

)a (
A2 +

C2
E

+ B2
E
pik

)b
.

If B1 and B2 have the same sign, then the objective function
is clearly a monotonic function of pik in the interval [0, 1],
implying that any distribution p can be improved by one of
the related distributions p0 or p1 for any i and k.

From this on (until the end of 1◦), we assume that B1B2 < 0.
Consider now the function f(x) defined for x ∈ [0, 1] as
follows:

f(x) =
(
A1 +

C1
E

+ B1
E
x
)a (

A2 +
C2
E

+ B2
E
x
)b

.

By inspecting the first and the second derivatives of f(x), it
is a straightforward task to prove that f(x) has its minimum
value at x = 0 or x = 1 (cf. the proof of Proposition 2). It
follows that again in this case any distribution p can be



improved by one of the related distributions p0 or p1 for
any i and k.

2◦ Assume now that D �= 0. By (17), the objective function
(4) can be written in the following form:

wE[T |p]aE[P |p]b =
w
(
A′

1 +
C′

1
Dpik+E

)a (
A′

2 +
C′

2
Dpik+E

)b

.

If C′
1 and C′

2 have the same sign, then the objective function
is clearly a monotonic function of pik in the interval [0, 1],
implying that any distribution p can be improved by one of
the related distributions p0 or p1 for any i and k.

Thus, from this on, we assume that C′
1C

′
2 < 0. Let us now

consider the function f(x) defined for x ∈ [0, 1] as follows:

f(x) =
(
A′

1 +
C′

1
Dx+E

)a (
A′

2 +
C′

2
Dx+E

)b

.

By again inspecting the first and the second derivatives of
f(x), it is easy to prove that f(x) has its minimum value at
x = 0 or x = 1 (cf. the proof of Proposition 2). It follows
that again in this case any distribution p can be improved
by one of the related distributions p0 or p1 for any i and k,
which completes the proof. �

Remark: In [6, Theorem (1)] the optimal switch-on thresh-
old for the ERP cost metric is proven to be k∗ = 1 for
exponentially distributed service times. However, we show,
via counter-example, that this optimality result does not
hold for generally distributed service times by considering
job sizes with high variability.

Mean service time of E[S] = 1.0 and arrival rate of λ = 0.5
are assumed giving a load value of ρ = 0.5. The second
moment of service time is assumed to be E[S2] = 30.0. Fur-
thermore, we assume that the system is equipped with a
single sleep state having the same parameter values as the
suspend state given in Section 6 with a deterministic setup
delay of E[D] = E[S] = 1.0. With these assumptions, the
ERP metric of the standard M/G/1 system, I = ∞, will
read as 2560 while that of the sleeping policy with I = 0 is
2329 for k = 1 and 2230 for k = 2. Therefore, the optimal
policy, in this case, has a threshold value different from 1.
Intuitively, the reason why the optimal k may be greater
than 1 is that with highly variable job sizes it does not hurt
the overall delay so much to have k > 1 and wait for some
additional jobs to save more energy, because the delays are
anyway dominated by the long busy period delays caused by
the highly variable job sizes.

All the optimality results proved above are summarized in
the following theorem.

Theorem 3. For the cost metrics ERWS (1) and gener-
alized ERP (4), the optimal policy in Πmixed has either I = 0
or I = ∞ and there are i∗ and k∗ such that pi∗,k∗ = 1.

Remark: Below we demonstrate, by constructing a counter-
example, that the optimal idling time may be different from
I = 0 and I = ∞ if there are multiple terms in the general
cost metric (3), unlike as argued in [14].

Assume that new jobs arrive with rate λ = 0.1 and service
times are exponential with mean E[S] = 1.0 so that ρ = 0.1.
In addition, assume that the only sleep state is state off. The
corresponding setup delay D0 is assumed to be deterministic
with D0 = 1.0. The power consumption in different states is
as follows: Pbusy = Psetup = 1.0, Pidle = 0.6, and Poff = 0.0.
With these parameters, we have, for the ordinary M/G/1
queue (i.e., I = ∞),

E[TM/G/1] = 1.111, E[PM/G/1] = 0.640.

Consider now the general cost metric (3) with parameters
w1 = 1, a1 = 1, b1 = 0, w2 = 3, a2 = 0, b2 = 3 so that the
objective function is

E[T ] + 3E[P ]3.

For the ordinary M/G/1 queue with I = ∞, the objective
function takes value 1.898, while for the policy with I = 0
and k = 1, it is 2.084. With I = 0 and k > 1, the objective
function takes even higher values. On the other hand, it is
easy to check that a strictly lower value, 1.776, is achieved
when the mean idling time is E[I] = 20.7 and the switch-on
threshold k = 1. Thus, the optimal idling time is, indeed,
different from I = 0 and I = ∞ in this case.

5. RESETTING THE IDLE TIME TIMER
Thus far, we have assumed, as in [14], that the idling time
timer is reset (to 0) only when it expires. Let us now consider
a modified system where the timer is reset after each idle
period (whether the timer expired or not). We still assume
that I can have a general distribution.

Recall from Section 3 that Tidle refers to the aggregate time
during one cycle that the system is in state idle. Now, as
the timer is reset after each idle period, we clearly have

E[Tidle] =

∞∑
j=1

j E[min{I, A}] P{I ≥ A}j−1P{I < A} =

E[min{I, A}]
P{I < A} , (18)

where I denotes the idling time (as before) and A is an
independent exponentially distributed random variable with
mean 1/λ.

In the analysis part, the only modification needed is to re-
place E[I] with E[Tidle] in Equation (9) for the mean cycle
length E[C] so that

E[C] =
1

1− ρ

(
E[Tidle] +

∞∑
k=1

qk
k

λ
+

n−1∑
i=0

piE[Di]

)
. (19)

With this expression for E[C], the formulas (11) and (13) for
E[P ] and E[T ], respectively, remain still valid. In addition,
note that conditions I = 0 and I = ∞ are equivalent with
conditions Tidle = 0 and Tidle = ∞, respectively. Thus,
using exactly the same arguments as in the optimization
part (Section 4), we can conclude that the optimality results
in Theorem 3 remain valid even when the timer is reset after
each idle period.

6. NUMERICAL RESULTS
From the analytical results we already know that there is
no need to randomize between sleep states. However, the
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Figure 1: ERP and ERWS of the sleeping policies
as a function of the switch-on threshold, normalized
with respect to the non energy-aware M/G/1 system.

optimal sleep state under specific system parameters can
only be determined numerically. To address this question
we study three energy states that are available in modern
servers. These are the common sleep states suspend and
hibernate along with the off state, which shuts down the
server completely. In the suspend state, operational state of
the server is saved in the RAM so as to take shorter time
to set it up. The hibernate state writes the system state in
a hard disk and turns all devices off consuming less power
than the suspend state at a price of higher setup delay.

Power consumption values of Pbusy = Psetup = 200W, Pidle =
120W Ps = 15W, Ph = 5W and Poff = 0 will be used in
this demonstration with subscripts s and h representing the
suspend and hibernate states, respectively. Moreover, mean
setup delays of 100 s, 50 s and 10 s will be used for the
off, hibernate and suspend states, respectively. All values
are taken from experimental measurements performed in [7,
10] while the service times obey an exponential distribution,
where the mean is exaggerated to E[S] = 1 s for illustra-
tion. Weighting factors of w1 = 1 and w2 = 0.75 are used
for all the ERWS plots. Using these parameters, the system
cost of the sleeping policies relative to the non energy-aware
M/G/1 system is illustrated in Figures 1-3. Thus, whenever
a policy has an ERP or ERWS score of less than 1, it has a
lower cost than the standard M/G/1 system.

The normalized ERP and ERWSmetrics under light load are
depicted in Figure 1 as a function of the switch-on thresh-
old. As already proven in [6, Theorem (1)] for exponentially
distributed service times, the upper panel shows that k = 1
is the optimal choice that minimizes ERP. In the case of
ERWS, the lower panel of Figure 1 clearly shows that the
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Figure 2: ERP and ERWS of the sleeping policies as
a function of system load, normalized with respect
to the non energy-aware M/G/1 system. At a given
load value, each policy is optimized with respect to
the switch-on threshold to produce these plots.

optimal value of k may lie elsewhere. In line with the find-
ings in [10] suspend gives the best ERP and ERWS amongst
the sleep options. This is because setup delay from the sus-
pend sleep state is significantly lower while the power con-
sumption is still kept reasonably low. This affects ERP the
most since it gives equal weight to both performance and
power reductions.

Figure 2 shows the normalized ERP and ERWS metrics as
a function of system load. The ERWS curves in the lower
panel are produced by first optimizing with respect to the
switch-on threshold at a given load value. With the sus-
pend state giving the lowest cost, all the sleeping policies
are found to have a worse ERP as compared to the stan-
dard M/G/1 system. However, suspend is found to have
significant improvement in ERWS for up to moderate sys-
tem load.
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Figure 3: Normalized ERP metric with ideally low
setup delay (E[Tsetup] = E[S]).



Motivated by this observation, we studied the ERP of sus-
pend further. If technological advancements were to reduce
the setup delay to the level of the mean service time, the
system would have had the ERP curve given in Figure 3. In
this ideal case, a significant reduction in system cost can be
achieved by suspending the server whenever the load is low.

7. CONCLUSIONS
We analyzed the energy-performance tradeoff in the M/G/1
queue, where the server can utilize sleep states to reduce
the energy consumption. Specifically, we considered poli-
cies, where first, after becoming idle, the server waits if the
idling time timer expires. If it does, the server goes into sleep
state, which may be selected randomly as well as the num-
ber of jobs needed in the queue before restarting the server
again. However, the cost of reduced energy consumption is
the extra delay, the setup delay, needed to get the server
operational when waking up from the sleep state. In our
model, the service time, the setup delay and the idling time
timer may have a general distribution. This model includes
as special cases certain previously studied models.

The mean performance and power metrics were derived us-
ing standard regenerative techniques. Our main result for
ERWS and ERP cost metrics provided the characterization
of the optimal policy: either the server never uses any of
the sleep states, i.e., only uses the idle state, or the server
directly enters some specific sleep state without any idling
time. Moreover, the optimal threshold for the the number
of jobs in the sleep state was shown to be deterministic.
However, we also demonstrated that these results may not
hold for more general metrics. Our numerical results high-
lighted that with realistic values for the power consumption
and setup delays, the potential gain from using sleep states
may be limited, except at light loads.

8. ACKNOWLEDGEMENTS
This research was partially supported by the TOP-Energy
project funded by Academy of Finland (grant no. 268992).

9. REFERENCES
[1] S. Albers and H. Fujiwara. Energy-efficient algorithms

for flow time minimization. ACM Trans. Algorithms,
3(4), Nov. 2007.

[2] L. L. Andrew, M. Lin, and A. Wierman. Optimality,
fairness, and robustness in speed scaling designs.
SIGMETRICS Perform. Eval. Rev., 38(1):37–48, Jun.
2010.

[3] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling
with an arbitrary power function. In Proc. of the
Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’09), pages 693–701, Jan. 2009.

[4] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for
weighted flow time. In Proc. of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA ’07), pages 805–813, Jan. 2007.

[5] O. Boxma, S. Schlegel, and U. Yechiali. A note on the
M/G/1 queue with waiting server, timer and
vacations. American Mathematical Society
Translations, 207:25–35, 2002.

[6] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A.
Kozuch. Optimality analysis of energy-performance

trade-off for server farm management. Perform. Eval.,
67(11):1155–1171, Nov. 2010.

[7] A. Gandhi, M. Harchol-Balter, and M. A. Kozuch. Are
sleep states effective in data centers? In Proc. of the
2012 International Green Computing Conference
(IGCC), pages 1–10, Jun. 2012.

[8] R. Gonzales and M. Horowitz. Energy dissipation in
general purpose microprocessors. IEEE Journal of
Solid-State Circuits, 31(9):1277–1284, Sep. 1996.
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