
Hindawi Publishing Corporation
Journal of Automated Methods and Management in Chemistry
Volume 2009, Article ID 927426, 9 pages
doi:10.1155/2009/927426

Research Article

Optimal Solutions of Multiproduct Batch Chemical Process Using
Multiobjective Genetic Algorithm with Expert Decision System

Diab Mokeddem and Abdelhafid Khellaf

Department of Electronics, Faculty of Engineering, University of Setif, 19000 Setif, Algeria

Correspondence should be addressed to Diab Mokeddem, mokeddem d@yahoo.fr

Received 9 February 2009; Accepted 3 March 2009

Recommended by Peter Stockwell

Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In
this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective
optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have
capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front
in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a
complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II
helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective
optimization problem is illustrated through two carefully referenced examples.
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1. Introduction

Batch processes are used in production of many low-volume
but high-value-added products (such as speciality chemicals,
health care, food, agrochemicals,. . .etc.) because of operation
flexibility in today’s market-driven environment. Manufac-
tory of these products generally involves multi step synthesis
[1]. In addition, if two or more products require similar
processing steps, the same set of equipment is considered for
at least economical reason. A batch plant producing multiple
products is categorized as either a multiproduct plant or a
multipurpose plant. Multiproduct plants produce multiple
products following a sequential similar recipe. In such a
plant, all the products follow the same path through the
process and only one product is manufactured at a time. Each
step is carried out on single equipment or on several parallel
equipment units. Processing of other products is carried out
using the same equipment in successive production runs or
campaigns. In a multipurpose plant, each product follows
one or more distinct processing paths; so more than one
product may be produced simultaneously in such plants. The
present work is directed toward the optimal design problems
of multiproduct batch plants.

In conventional optimal design of a multiproduct plant,
production requirements of each product and a total pro-
duction time for all products are available and specified.
The number, the required volume, and size of parallel
equipment units in each stage are then determined to
minimize the investment. It should be emphasized that
batch plantsdesign has been for long identified as a key
problem in chemical engineering as reported in literature
[2–9]. Formulation of batch plant design generally involves
mathematical programming methods, such as linear pro-
gramming (LP), nonlinear programming (NLP), mixed-
integer linear programming (MILP) or mixed-integer non-
linear programming (MINLP). Mathematical programming
or different optimization techniques, such as branch and
bound, heuristics, genetic algorithm, simulated annealing,
are thoroughly used to derive optimal solutions.

However, in reality the multiproduct design problem
can be formulated as a multiobjective design optimization
problem in which one seeks to minimize investment, oper-
ation cost, and total production time, and, simultaneously,
to maximize the revenue. Recall that not much work has
been reported in the literature on the multiobjective optimal
design of a multiproduct batch plant. Huang and Wang
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[10] introduced a fuzzy decision-making approach for mul-
tiobjective optimal design problem of a multiproduct batch
plant. A monotonic increasing or decreasing membership
function is used to define the degree of satisfaction for each
objective function and the problem is then represented as an
augmented minmax problem formulated as MINLP models.
To obtain a unique solution, the MINLP problem is solved
using a hybrid differential evolution technique. Dedieu et al.
[11] presented the development of a two-stage methodology
for multiobjective batch plant design and retrofit according
to multiple criteria. The authors used a multiobjective
genetic algorithm based on the combination of a single-
objective genetic algorithm and a Pareto sort procedure
for proposing several plant structures and a discrete event
simulator for evaluating the technical feasibility of the
proposed configurations.

In the case of multiple objectives, an optimum solution
with respect to all objectives may not exist. In most cases,
the objective functions are in conflict, because in order
to decrease any of the objective functions, we need to
increase other objective functions. Recently, Solimanpur et
al. [12] developed a sophisticated multiobjective integer
programming model where the objectives considered were
the maximization of total similarity between parts, the
minimization of the total processing cost, the minimization
of the total processing time and the minimization of the total
investment needed for the acquisition of machines [13].

The presence of multiple objectives in a problem usually
gives rise to a family of nondominated solutions, largely
known as Pareto-optimalsolutions, where each objective
component of any solution along the Pareto front can
only be improved by degrading at least one of its other
objective components. Since none of the solutions in the
nondominated set is absolutely better than any other, any one
of them is then an acceptable solution. As it is difficult to
choose any particular solution for a multiobjective optimiza-
tion problem without iterative interaction with the decision
maker (DM) [14] one general approach is to establish
first the entire set of Pareto-optimal solutions, where an
external Decision Maker (DM) direct intervention gives
interactive information in the multiobjective optimization
loop [15]. So, a satisfactory solution of the problem is found
as soon as the knowledge is acquired [16]. Promethee II
(Preference Ranking Organisation METHod for Enrichment
Evaluations—2nd version) is a popular decision method
that has been successfully applied in the selection of the
final solution of multiobjective optimization problems. It
generates a ranking of available points, according to the
DM preferences, and the best ranked one is considered
the favourite final solution. It is based on the concept
of outranking relation, which is a binary relation defined
between every pair (a, b) of alternatives, in such way that,
if a is preferred to b (according to the DM interests), then
it is said that a outranks b. When these relations are defined
between all pairs of alternatives, they are exploited according
to some rules in order to rank all solutions from the best to
the worst.

The first GA proposed for multiobjective optimization
was VEGA [17]. This is a nonPareto based approach based

Rejected 

Pt

Qt

F1 

F2 

F3 

Pt+1 

Rt

Crowding distance 
sorting 

Non dominated 
sorting 

Figure 1: The NSGA II Procedure.

on the selection of several relevant groups of individuals,
each group being associated to a given objective. It is
reported that the method tends to crowd results at extremes
of the solution space, often yielding to poor convergence
of the Pareto front. A more recent algorithm, based on
scalarization with a weighted sum function, is proposed
in Ishibuchi and Murata [18] where the weights are ran-
domly chosen. Many successful evolutionary multiobjective
optimization algorithms were developed based on the two
ideas suggested by Goldberg [19]: Pareto dominance and
niching. Pareto dominance is used to exploit the search
space in the direction of the Pareto front and niching
technique explores the search space along the front to
keep diversity. The well-known algorithms in this category
include Multiobjective Genetic Algorithm: (MOGA) [16],
Niched Pareto Genetic Algorithm: (NPGA) [20], Strength
Pareto Evolutionary Algorithm: (SPEA) [21], Multiobjective
Evolutionary Algorithm: (MOEA) [22], the Nondominated
Sorting Genetic Algorithm (NSGA) proposed by Srinivas
and Deb [23] was one of the first evolutionary algorithm
for solving multiobjective optimization problems. Although
NSGA has been successfully applied, the main criticisms of
this approach has been its high computational complexity
of nondominated sorting, lack of elitism, and need for
specifying a tuneable parameter called sharing parameter.
Recently, Deb et al. [24] reported an improved version of
NSGA, which they called NSGA-II, to address all the above
issues.

The purpose of this study is to extend this methodology
for solution of multiobjective optimal control problems
under the framework of NSGA-II. The efficiency of the
proposed method is illustrated by solving multiobjective
optimization problem.

2. Formulation of the Multiobjective Problem

The problem of multiproduct batch plant covered in this
paper can be defined by assuming that the plant consists
of a sequence of M batch processing stages that are used
to manufacture N different products. At each stage jthere
are N j identical units in parallel operating out of phase,
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each with a size V j .Each product i follows the same general
processing sequence.

Batches are transferred from one stage to the next
without any delay, that is, we consider a zero-wait operating
policy.

In the conventional design of a multiproduct batch plant,
one seeks to minimize the investment cost by determining
the optimal number, required volume and size of parallel
equipment units in each stage for a specified production
requirement of each product and the total production time.
However, in reality the designer considers not only minimiz-
ing the investment but also minimizing the operation cost
and total production time while maximizing the revenue,
simultaneously

Max
N j ,V j ,Bi,TLi ,Qi,H

Revenue = f1 =
N
∑

i=1

CpiQi, (1)

Min
N j ,V j ,Bi,TLi ,Qi ,H

Investment cost = f2 =
M
∑

j=1

N jα jV
B j

j , (2)

Min
N j ,V j ,Bi,TLi ,Qi ,H

Operation cost = f3 =
N
∑

i=1

M
∑

j=1

CE j

Q j

Bi
+ CoiQi,

(3)

Min
N j ,V j ,Bi,TLi ,Qi ,H

Total production time = f4 = H. (4)

So, the multiobjective problem consists of determining
the following parameters:

(i) N j the number of parallel units in stage j,

(ii) V j the required volume of a unit in stage j,

(iii) Bi size of the batch of product i at the end of the M
stages,

(iv) TLi the cycle time for product i,

(v) Qi the production requirement of product i and,

(vi) H the total production time,

while satisfying certain constraints such as volume, time,
and so forth.

The constraints are expressed as follows:
(1) Volume constraints. Volume V j has to be able to

process all the products i:

Si jBi ≤ V j , ∀i = 1, . . . ,N ; ∀ j = 1, . . . ,M. (5)

(2) Time constraint.The summation of available produc-
tion time for all products is not more than the net total time
for production

N
∑

i=1

Qi

Bi
TLi ≤ H. (6)

(3) The limiting cycle time for product i:

τi j

N j
≤ TLi , ∀i = 1, . . . ,N ; ∀ j = 1, . . . ,M. (7)

(4) Dimension constraints. Every unit has restricted
allowable range

VL
j ≤ V j ≤ VU

j , ∀ j = 1, . . . ,M,

BL
j ≤ B j ≤ BU

j , ∀ j = 1, . . . ,N.
(8)

3. Elitist Nondominated Sorting Genetic
Algorithm (NSGA-II)

The NSGA II Pareto ranking algorithm is an elitist Deb et
al. [24] system and maintains an external archive of the
Pareto solutions. In contrast to the simple genetic algorithms
that look for the unique solution, the multiobjective genetic
algorithm tries to find as many elements of the Pareto
set as possible. For the case of the NSGA-II, this one is
provided with operators who allow it to know the level of
nondominance of every solution as well as the grade of
closeness with other solutions; which allows it to explore
widely inside the feasible region.

In a brief form, the functioning of the multiobjective
genetic algorithm NSGA-II can be described through the
following steps.

Fast Nondominated Sort. A very efficient procedure, is used
to arrange the solutions in fronts (nondominated arranging),
in accordance with their aptitude values. This is achieved,
creating two entities for each of the solutions. A domination
count np, the number of solutions which dominates the
solution p, and a set (Sp), that contains the solutions that
are dominated for p. The solutions of the first front have the
higher status of nondominance in the Pareto sense.

Diversity Preservation. This is achieved, by means of the cal-
culation of the crowding degree or closeness for each of the
solutions inside the population. This quantity is obtained,
by calculating the average distance of two points on either
side of a particular solution along each of the objectives.
This quantity serves as an estimate of the cuboid perimeter,
formed by using the nearest neighbours as the vertices. There
is also, an operator called Crowded-Comparison (≺n), which
guides to the genetic algorithm, towards the Pareto optimal
front, in accordance with the following criterion:

i≺n j if
(

irank < jrank

)

,

or
(

irank = jrank

)

and
(

ididtance > jdistance

)

.
(9)

In accordance with the previous criterion, between two
nondominated solutions, we prefer the solution with the
better rank. Otherwise, if both solutions belong to the same
front, then, we prefer the solution that is located in a lesser
crowded region.

Initial Loop. Initially, a random parent population (Po)
of size N is created. Later this one is ordained, using
the procedure of nondominated arranging. Then the usual
binary tournament selection, recombination and mutation
operators are used to create a new population (Q0), of size N .
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Figure 2: Pareto optimal solutions for example 1.

Table 1: Data used in example 1.

Processing times, τi j(h) Unit price for the product ($/Kg)

Product Mixer Reactor Centrifuge Product Cp C0

A 8 20 4 A 0.35 0.08

B 10 12 3 B 0.37 0.1

Product Size factors (L/kg)

A 2 3 4

B 4 6 3

Cost of equipment ($, V in litres) Minimum size = 250 L

250 V0.6 500 V0.6 340 V0.6 Maximum size = 2500 L

Operating cost factor (CE)

20 30 15

Main Loop. The NSGA-II procedure can be explained, by
describing the thgeneration just as it is showed in Figure 1.
The procedure begins with the combination of Pt and Qt

forming a new population called Rt , then the population
Rt is sorted using the nondomination criterion. Since all
previous and current population members are included in
Rt, elitism is ensure. The population Rt has a size of 2N ,
later, the different fronts of nondominated solutions are
created, being F1 the front that contains the better rank
solutions. Figure 4 shows that, during the process of forming

the new population Pt+1, the algorithm takes all members
of the fronts F1 and F2, and some elements of the front F3;
this is, because N solutions are needed exactly for the new
population Pt+1 to find them exactly N solutions, the last
front is ordained, which for this description is the number
3, arranging the solutions in descending order by means
of the crowded comparison (≺n), and selecting the best
solutions needed to fill all population slots. After having the
population Pt+1, the genetic operators of selection, crossing
and mutation, are used to create the new population Qt+1 of

size N . Finally it is mentioned that the selection process, the
crowded comparison operator is used.

4. Description of the Process

To demonstrate the effectiveness of NSGA-II on batch
plant processes two examples are given here. The first
example is about a batch plant consisting of three process-
ing stages (mixer, reactor, and centrifuge) to manufacture
two products, A and B. The second example treats four
processing stages (mixer, reactor, extraction and centrifuge)
to manufacture three products A, B and C. The data for
examples 1 and 2 are illustrated, respectively, in Tables 1 and
2 (the processing times, size factor for the units and cost for
each product).

5. Results and Discussion

5.1. Example 1. A four-objective optimization problem is
considered and expressed in (1)–(4). The set of decision
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Figure 3: Relationships between some decision variables.

Production requirement  (kg) 203058.87 143817.7
Total production time (h)  

Product

612.09Batch size (kg) 359.21

A B

Cycle time (h) 10.13 5.54 

= 5582.87

Mixer
V = 1504.41 L

Reactor
V = 2164.69 L

Centrifuge

V = 2457.71 L

Figure 4: Optimal design of batch plant for example 1.

variables consists of the batch size, the total production time,
the number of parallel units at each stage, the cycle time for
each product, and the required volume of a unit in each stage.
Since the number of parallel units at each stage is an integer
decision variable, we code this variable as a binary variable.
All other decision variables are coded as real numbers. Thus,
there are 3 integer variables and 10 real variables. In addition
to the constraints expressed by (5)–(8), we consider bounds
on objective functions as additional constraints to generate
feasible nondominated solutions in the range desired by the
decision-maker, to have 19 constraints in all

f Li ≤ fi ≤ f Ui , i = 1 . . . , 4. (10)

Then NSGA-II is employed to solve the optimiza-
tion problem with the following parameters: maximum
number of generation up to 200, population size 500,
probability of crossover 0.85, probability of mutation 0.05,
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Figure 5: Pareto optimal solutions for example 2.

Table 2: Data used in example 2.

Processing times, τ i j(h) Unit price for the product ($/Kg)

Product Mixer Reactor Extractor Centrifuge Product Cp C0

A 1.15 9.86 0.4 0.5 A 0.27 0.08

B 5.95 7.01 0.7 0.42 B 0.29 0.10

C 3.96 6.01 0.85 0.3 C 0.32 0.12

γi j 0.4 0.33 0.3 0.2

Product Size factors (L/kg)

A 8.28 9.7 6.57 2.95

B 5.58 8.09 6.17 3.27

C 2.34 10.3 5.98 5.7

Product Coefficients Ci j

A 0.2 0.24 0.4 0.5

B 0.15 0.35 0.7 0.42

C 0.34 0.5 0.85 0.3

Cost of equipment ($, V in litres) Minimum size = 250 L

250 V0.6 250 V0.6 250 V0.6 250 V0.6 Maximum size = 10000 L

Operating cost factor (CE)

20 30 15 30

distribution index for the simulated crossover operation
10 and distribution index for the simulated mutation
operation 20.

The Pareto-optimal solutions for example 1 are pre-
sented in Figure 2. The revenue ( f1) increases with the
increase in operation cost ( f3), while the investment cost
( f2) decreases. When all the four objective functions are
considered simultaneously, solutions obtained in the present
study show improvement as by Huang and Wang [10]

results for the same problem. For example, let us con-
sider the solution presented by Huang and Wang [10]
with unit reference membership level for all objectives:
f1 = 121 350, f2 = 171 624, f3 = 77 299, f4 = 5667.
The solution (1) presented in Table 3 of the present
study improves the above solution f1, f3, f4 while f2 is
comparable.

Figure 3 presents the relationships between some chosen
decision variables. The large set of multiple optimal solutions
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Figure 6: 3 Dimension plot of the relationship between some decision variables.

Table 3: Optimal objectif function values of example 1.

Optimal objectif function values

Case f1 f2 f3 f4

1 122566.41 175955.39 73499.23 5579.37

2 124283.15 177389.07 74508.91 5582.87

3 126393.23 173354.67 84896.90 5638.60

Bounds for objective function: [ f L1 , f U1 ] = [110000, 130000], [ f L2 , f U2 ] = [150000, 200000], [ f L3 , f U3 ] = [60000, 100000], [ f L4 , f U4 ] = [5500, 6000].

Table 4: Optimal objectif function values of example 2.

Optimal objectif function values

Case f1 f2 f3 f4

1 275766.10 388262.10 156449.20 5505.40

2 276096.30 369977.30 161392.30 5710.90

3 281818.70 369843.48 163552.80 5718.00

Bounds for objective function: [ f L1 , f U1 ] = [250000, 300000], [ f L2 , f U2 ] = [350000, 400000],[ f L3 , f U3 ] = [150000, 200000], [ f L4 , f U4 ] = [5500, 6000].
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Production requirement  (kg) 41067.64 347391.86 200866.3
Total production time (h) = 5505.4 

Batch size (kg) 1024.18 1233.61 903.29 
Cycle time (h) 6.3 6.12 5.48

Product A B C

Mixer
V = 8946.32 L

Reactor
V = 9990.68 L

Extraction
V = 5839.16 L

Centrifuge

V = 7851.67 L

Figure 7: Batch plant optimal design for example 2.

provides the decision maker with immediate information
about the relationship among the several objective criteria
and a set of feasible solutions. Thus, it helps the decision-
maker to select a highly confident choice of solution. The
fixed optimal plant structure as 221 corresponds to a two
mixers, two reactors, and one centrifuge design. The optimal
solution is shown in Figure 4.

5.2. Example 2. The batch plant in this case consists of four
processing stages to manufacture three products A, B, and
C, with four-objective optimization problem as expressed in
(1)–(4). The set of decision variables remains the same as
that in example 1. But we deal with 4 integer variables, 14
real variables, and 31 constraints which includes bounds on
objective functions.

The same model equations of example 1 are used here
except the processing time, τi j in (7). The time required to
process one batch of product iin stage jis expressed as:

τi j = τ i j + ci jB
γ j
i , ∀i, ∀ j, (11)

where τi j ≥ 0 , ci j ≥ 0 and γ j are constants and Bi is the
batch size for product i.

Thus, the processing time is not a constant, but depends
on the decision parameters of the batch size. Table 2 presents
the necessary data for the problem.

The constrained multiobjective MINLP problem is
solved by NSGA-II with the same set of NSGA-II parameters
as used in example 1.

As in example 1, the revenue ( f1) increases as operation
cost ( f3) increases, while the investment cost ( f2) decreases
following operation cost ( f3). The Pareto-optimal solutions
for example 2 are presented in Figure 5. The relationships
of the various decision variables are shown in Figure 6.
Let mention that when all four objective functions are
considered simultaneously, the solutions obtained in the
present study improve significantly the results presented
by Huang and Wang [10] for the same problem. For
example, the solution presented by Huang and Wang [10]

with unit reference membership level for all objectives
( f1 = 274 312, f2 = 375 688, f3 = 175 688, f4 =

5639) the solution (1) presented in Table 4 of the present
study improves the above solution f1, f3, f4 while f2
is comparable.

In this example, the plant structure evolved as optimal is:
two mixers, two reactors, two extractors, and one centrifuge
as presented in Figure 7.

Implementation of a trade-off analysis is dependent upon
the availability of the decision-maker’s preferences.

6. Conclusion

A multiobjective decision in a batch plant process design is
considered and a non dominating sorting genetic algorithm
(NSGA-II) is developed to get an optimal zone containing
solutions under the concept of Pareto set. NSGA-II capability
has been proved in evolving the entire set of nondominating
solutions along the Pareto front in a single run of the
algorithm. Thus, the Decision Maker (DM) is provided with
the best trade-off operating zone. Furthermore, a better
confident choice of design among several compromises of
the decision maker can be achieved if the decision variables
effects on the objective functions are known.

Finally, the large set of solutions presents a useful base for
further alternative approaches to fulfil the DM targets.

The inherent dynamic nature of batch processes allows
for their ability to handle variations in feedstock and
product specifications and provides the flexibility required
for multiproduct or multipurpose facilities. They are thus
best suited for the manufacture of low-volume, high-value
products, such as specialty chemicals, pharmaceuticals, agri-
cultural, food, and consumer products, and most recently
the constantly growing spectrum of biotechnology-enabled
products. Reduced time to market, lower production costs,
and improved flexibility are all critical success factors for
batch processes.

Nomenclature

Bi Size of the batch of product i at the end of
the M stages (kg)

CE j Operation cost in stage j ($)
COi Operation cost of product i to be

produced ($/kg)
CPi Price of product i ($/kg)
H Total production time (h)
M Number of stages in the batch process
N Number of products to be produced
N j Number of parallel units in stage j
Qi Production requirement of product i (kg)
Si j Size factor of product i in stage j (L/kg)
TLi Cycle time for product i (h)
V j Required volume of a unit in stage j (L)

Greek Symbols

α j Cost coefficient for unit j
β j Cost exponent for unit j
τi j Processing time of product i in stage j (h).
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