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Optimal solvers for PDE-constrained optimization

Tyrone Rees1, H. Sue Dollar2, and Andrew J. Wathen3

ABSTRACT

Optimization problems with constraints which require the solution of a partial differential equation arise

widely in many areas of the sciences and engineering, in particular in problems of design. The solution

of such PDE-constrained optimization problems is usually a major computational task. Here we consider

simple problems of this type: distributed control problems in which the 2- and 3-dimensional Poisson

problem is the PDE. The large dimensional linear systems which result from discretization and which

need to be solved are of saddle-point type. We introduce two optimal preconditioners for these systems

which lead to convergence of symmetric Krylov subspace iterative methods in a number of iterations which

does not increase with the dimension of the discrete problem. These preconditioners are block structured

and involve standard multigrid cycles. The optimality of the preconditioned iterative solver is proved

theoretically and verified computationally in several test cases. The theoretical proof indicates that these

approaches may have much broader applicability for other partial differential equations.

Keywords: saddle-point problems, PDE-constrained optimization, preconditioning, optimal control, lin-

ear systems, all-at-once methods.
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1 Introduction

In this paper, we consider the distributed control problem which consists of a cost functional (1) to be

minimized subject to a partial differential equation problem posed on a domain Ω ⊂ R
2 or R

3:

min
u,f

1

2
||u− û||22 + β||f ||22 (1)

subject to −∇2u = f in Ω (2)

with u = g on ∂Ω1 and
∂u

∂n
= g on ∂Ω2, (3)

where ∂Ω1 ∪ ∂Ω2 = ∂Ω and ∂Ω1 and ∂Ω2 are distinct.

Such problems were introduced by J.L. Lions in [17]. Here, the function û (the ‘desired state’) is

known, and we want to find u which satisfies the PDE problem and is as close to û as possible in the L2

norm sense. In order to achieve this, the right hand side of the PDE, f , can be varied. The second term

in the cost functional (1) is added because, in general, the problem would be ill-posed, and so needs this

Tikhonov regularization term. The Tikhonov parameter β in general needs to be determined, although it

is often selected a priori—a value around β = 10−2 is commonly used (see [6],[11],[15]).

The above problem involves only the simple Poisson equation as the PDE. Our methods are not specific

to only this PDE: all that is required is an effective preconditioner—preferably an optimal preconditioner—

for the PDE problem. Here for the Laplacian we employ standard multigrid cycles with both geometric

and algebraic multigrid procedures. The above problem does not involve bound nor inequality constraints;

it is also possible that these more general constraints could be included though we have not considered

this here. It is also the case that we consider here only distributed control problems: boundary control

problems are also important and are the subject of some of our ongoing research.

In PDE-constrained optimization there is the choice as to whether to discretize-then-optimize or

optimize-then-discretize, and there are differing opinions regarding which route to take (see Collis and

Heinkenschloss [6] for a discussion). We have chosen to discretize-then-optimize, as then we are guaranteed

symmetry in the resulting linear system. The underlying optimization problems are naturally self-adjoint

and by this choice we avoid non-symmetry due to discretization that can arise with the optimize-then-

discretize approach (as shown in, for example, Collis and Heinkenschloss [6]). We are then able to use

symmetric iterative methods—in particular we use minres ([21]) and a projected Conjugate Gradient

(ppcg) method ([10]) —with the consequent advantage of rigorous convergence bounds and constant work

per iteration not enjoyed by any of the wide variety of non-symmetric Krylov subspace iterative methods

(see e.g., [7]). This still leaves the crucial question of preconditioning and this is the main contribution of

this paper. We derive and analyse both theoretically and by computation two preconditioning approaches

which lead to optimal solution of the PDE-constrained optimization problem. That is preconditioners

which when employed with minres or ppcg respectively give a solution algorithm which requires O(n)

computational operations to solve a discrete problem with n degrees of freedom.

We employ the Galerkin finite element method for discretization here, but see no reason why other

approximation methods could not be used with our approach.

We comment that for the specific problem as above for the Poisson equation, Schöberl and Zulehner

([22]) have recently developed a preconditioner based on a non-standard multigrid procedure which is both

optimal with respect to the problem size and with respect to the choice of regularization parameter, β. It is

not so clear how this method would generalize to other PDEs. Other solution methods employing multigrid

for this and similar classes of problems are described by Biros and Dogan([3]), Engel and Griebel([8]), and

Borzi([4]). Domain Decomposition and Model Order Reduction ideas are also successfully applied in this

context: see for example Heinkenschloss and Nguyen ([13]) and Heinkenschloss, Sorensen and Sun([14]).

In Section 2, we discuss the formulation and structure of our discretized problem. We then use this

structure in Sections 3 and 4 to derive optimal preconditions for minres and ppcg, respectively. The

effectiveness of our proposed preconditioners is illustrated by applying them to four different problems,

see Section 5. Finally, we draw our conclusions in Section 6.
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2 Formulation and Structure

In order to use finite elements, we require the weak formulation of (2) and (3). For definiteness and clarity

we describe this for the purely Dirichlet problem; the formulation for the mixed and purely Neumann

problem is also standard (see for example [7]). The Dirichlet problem is: find u ∈ H1
g (Ω) = {u : u ∈

H1(Ω), u = g on ∂Ω} such that

∫

Ω

∇u · ∇v =

∫

Ω

vf ∀v ∈ H1
0 (Ω). (4)

We assume that V h
0 ⊂ H1

0 is an n-dimensional vector space of test functions with {φ1, ..., φn} as a basis.

Then, for the boundary condition to be satisfied, we extend the basis by defining functions φn+1, ..., φn+∂n

and coefficients Uj so that
∑n+∂n

j=n+1 Ujφj interpolates the boundary data. Then, if uh ∈ V h
g ⊂ H1

g (Ω), it is

uniquely determined by u = (U1 . . . Un)T in

uh =

n∑

j=1

Ujφj +

n+∂n∑

j=n+1

Ujφj .

Here the φi, i = 1, . . . , n, define a set of shape functions. We also assume that this approximation is

conforming, i.e. V h
g = span{φ1, . . . , φn+∂n} ⊂ H1

g (Ω). Then we get the finite-dimensional analogue of (4):

find uh ∈ V h
g such that ∫

Ω

∇uh · ∇vh =

∫

Ω

vhf ∀vh ∈ V h
0 .

We also need a discretization of f , as this appears in (1). We discretize this using the same basis used for

u, so

fh =
n∑

j=1

Fjφj

since it is well known that fh = 0 on ∂Ω. Thus we can write the discrete analogue of the minimization

problem as

min
uh,fh

1

2
||uh − û||22 + β||fh||22 (5)

such that

∫

Ω

∇uh · ∇vh =

∫

Ω

vhf ∀vh ∈ V h
0 . (6)

We can write the discrete cost functional as

min
uh,fh

1

2
||uh − û||22 + β||fh||22 = min

u,f

1

2
uT Mu− uT b + α + βfT M f , (7)

where u = (U1, . . . , Un)T , f = (F1, . . . , Fn)T , b = {
∫

ûφi}i=1...n, α = ‖û||22 and M = {
∫

φiφj}i,j=1...n is a

mass matrix.

We now turn our attention to the constraint: (6) is equivalent to finding u such that

∫

Ω

∇
(

n∑

i=1

Uiφi

)
· ∇φj +

∫

Ω

∇
(

n+∂n∑

i=n+1

Uiφi

)
· ∇φj =

∫

Ω

(
n∑

i=1

Fiφi

)
φj , j = 1, . . . , n

which is
n∑

i=1

Ui

∫

Ω

∇φi · ∇φj =

n∑

i=1

Fi

∫

Ω

φiφj −
n+∂n∑

i=n+1

Ui

∫

Ω

∇φi · ∇φj , j = 1, . . . , n

or

Ku = M f + d, (8)
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where the matrix K = {
∫
∇φi ·∇φj}i,j=1...n is the discrete Laplacian (the stiffness matrix) and d contains

the terms coming from the boundary values of uh. Thus (7) and (8) together are equivalent to (5) and

(6).

One way to solve this minimization problem is by considering the Lagrangian

L :=
1

2
uT Mu− uT b + α + βfT M f + λT (Ku−M f − d),

where λ is a vector of Lagrange multipliers. Using the stationarity conditions of L, we find that f , u and

λ are defined by the linear system



2βM 0 −M

0 M KT

−M K 0








f

u

λ



 =




0

b

d



 . (9)

Note that this system of equations has saddle-point system structure, i.e. it is of the form
[

A BT

B −C

] [
x

y

]
=

[
c

d

]
, (10)

where A =

[
2βM 0

0 M

]
, B = [−M K], C = 0.

This system is usually very large—each of the blocks K is itself a discretization of the PDE—and

sparse, since as well as the zero blocks, K and M are themselves sparse because of the finite element

discretization. Thus matrix-vector multiplications can be easily achieved and the work in a symmetric

Krylov subspace iteration method will be linear at each iteration. In general the system is symmetric and

indefinite, so the Minimal Residual (minres) method of Paige and Saunders [21] is robustly applicable

and is the method of choice for such systems when a symmetric positive definite preconditioner is employed:

one of our optimal preconditioners is of this type. Our second preconditioner is a constraint preconditioner

[16] which we may use in conjunction with the projected conjugate gradient (ppcg) method [10]. The

crucial step to ensure that acceptably rapid convergence is guaranteed is preconditioning: we consider in

the next two sections our two preconditioning approaches.

3 Block Diagonally Preconditioned MINRES

In general, the system (9) will be symmetric but indefinite, so we may use the minres algorithm to solve

the system: this is a Krylov subspace method for symmetric linear systems. minres has to be coupled

with a preconditioner to get satifactory convergence - i.e. we want to find a matrix (or a linear process)

P for which P−1A has better spectral properties (and such that P−1v is cheap to evaluate for any given

vector v). We then solve a symmetric preconditioned system equivalent to

P−1Ax = P−1b.

The aim of preconditioning is to choose a matrix P such that the eigenvalues of P−1A are clustered. The

following result by Murphy, Golub and Wathen [20] illustrates this idea:

Theorem 3.1. If

A =

[
A BT

B 0

]

is preconditioned by

P =

[
A 0

0 BA−1BT

]

Then the preconditioned matrix T = P−1A satisfies

T (T − I)(T 2 − T − I) = 0.

3



This shows us that T is diagonalizable and has at most four distinct eigenvalues (0, 1, 1±
√

5
2 ) or only

the three non-zero eigenvalues if T is nonsingular. This means that the Krylov subspace K(T ; r) =

span(r, T r, T 2r, . . . ) will be of dimension at most three if T is nonsingular or four if T is singular. There-

fore, any Krylov subspace method with an optimality property (such as MINRES) will terminate in at

most three iterations (with exact arithmetic).

If we apply this approach to the matrix in our saddle-point system (9) then we obtain the preconditioner

PMGW =




2βM 0 0

0 M 0

0 0 1
2β M + KM−1KT



 .

minres with this preconditioner will always terminate (in exact arithmetic) in at most three steps and

so satisfies one requirement of a preconditioner. However, it fails on another count as it is, in general,

not cheap to solve a system with PMGW. However, we could still make use of the properties of this

preconditioner by approximating it in such a way that the eigenvalues remain clustered. Looking at the

structure of PMGW, the mass matrices in the (1,1) and the (2,2) blocks do not pose too much of a problem:

they can be cheaply solved by, for example, using PCG with the diagonal as the preconditioner, as shown

in [24]. Thus the difficulty comes from the (3,3) block, which is the only part that contains the PDE.

One way to approximate this is to consider only the dominant term in the (3,3) block which is, for all

but the very smallest values of β, the KM−1KT term, thus forming the preconditioner

PD1 =




2βM 0 0

0 M 0

0 0 KM−1KT



 .

The following result, which is an application and extension of a result in [1], tells us about the clustering

of the eigenvalues using this preconditioner:

Proposition 3.2. Let λ be an eigenvalue of P−1
D1A. Then either λ = 1,

1
2 (1 +

√
1 + 4σ1) ≤ λ ≤ 1

2 (1 +
√

1 + 4σm) or 1
2 (1 −

√
1 + 4σm) ≤ λ ≤ 1

2 (1 −
√

1 + 4σ1), where 0 ≤ σ1 ≤
· · · ≤ σm are the eigenvalues of 1

2β (KM−1KT )−1M + I.

Proof. First note that the eigenvalues of P−1
D1A are identical to the eigenvalues of Ã := P− 1

2

D1 AP
− 1

2

D1 , as this

is just a the result of a similarity transformation. It is readily seen that

Ã =




I 0 K̃1

T

0 I K̃2
T

K̃1 K̃2 0



 or equivalently

[
I BT

B 0

]

where K̃1 = − 1√
2β

(KM−1KT )−
1
2 M

1
2 , K̃2 = (KM−1KT )−

1
2 KM− 1

2 and B = [K̃1 K̃2].

Let
(
λ, [x y]T

)
be an eigenpair for Ã. Then

[
I BT

B 0

] [
x

y

]
= λ

[
x

y

]
. This can be written as

x + BT y = λx

Bx = λy

By inspection, one solution of this problem is λ = 1, and this has multiplicity n with eigenvectors of the

form
[

x 0
]T

, where Bx = 0.

Now we will consider the two cases (I) λ > 0 and (II) λ < 0 separately. λ cannot equal 0, since Ã is

non-singular.

4



CASE (I): λ > 0 and λ 6= 1 (the case λ = 1 has been treated above). Clearly

x = −(1− λ)−1BT y

and

−(1− λ)−1BBT y = λy,

−(1− λ)−1yTBBT y = λyTy,

−(1− λ)λ =
yTBBT y

yTy
.

Now yTBBT y

yTy
= ||By||2

||y||2 =: b, so

λ2 − λ− b = 0,

i.e.

λ =
1±
√

1 + 4b

2
.

But by assumption λ > 0, so

λ =
1 +
√

1 + 4b

2
.

We know that σ1 ≤ b ≤ σm, where σi are the eigenvalues of BBT , so we have

1 +
√

1 + 4σ1

2
≤ λ ≤ 1 +

√
1 + 4σm

2
.

CASE (II): λ < 0. Let µ = −λ. Then from above,

x = −(1 + µ)−1BT y,

b = µ(1 + µ),

µ2 + µ− b = 0.

So

µ =
−1±

√
1 + 4b

2
.

Again, µ > 0 by assumption, so

µ =
−1 +

√
1 + 4b

2
or

λ =
1−
√

1 + 4b

2
,

i.e.
1−
√

1 + 4σm

2
≤ λ ≤ 1−

√
1 + 4σ1

2
.

Finally,

BBT =
[
− 1√

2β
(KM−1KT )−

1
2 M

1
2 (KM−1KT )−

1
2 KM− 1

2

] [ − 1√
2β

M
1
2 (KM−1KT )−

1
2

M− 1
2 KT (KM−1KT )−

1
2

]

=
1

2β
(KM−1KT )−

1
2 M(KM−1KT )−

1
2 + I

and so the eigenvalues of BBT are the same as those of 1
2β (KM−1KT )−1M + I, as required.
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We can use this general result to obtain more concrete bounds that are dependent both on the PDE

in the problem being considered and on what finite element discretization is used. In our tests, we have

discretized the problem (1) using bilinear quadrilateral Q1 finite elements, and for this choice one can

prove the following.

Corollary 3.3. Let λ be an eigenvalue of P−1
D1A. Then λ satisfies one of

λ = 1,

1

2

(
1 +

√

5 +
2α1h4

β

)
≤ λ ≤ 1

2

(
1 +

√
5 +

2α2

β

)

or
1

2

(
1−

√
5 +

2α2

β

)
≤ λ ≤ 1

2

(
1−

√

5 +
2α1h4

β

)
,

where α1, α2 are positive constants independent of h.

Proof. Proposition 3.2 tells us that the clustering of eigenvalues of the preconditioned system depends on

finding the eigenvalues of the matrix T := I + 1
2β (KT M−1K)−1M . In this case, if λ is an eigenvalue of

T , then

Tx = λx,

i.e. (
1

2β
(KT M−1K)−1M + I)x = λx,

K−1MK−T Mx = 2β(λ− 1)x.

Here K = KT and if we let µ = 2β(λ− 1), we have

(K−1M)2x = µx.

If ν is an eigenvalue of K−1M , then µ = ν2, and

K−1Mx = νx,

i.e. Mx = νKx,

so xT Mx = νxT Kx,

ν =
xT Mx

xT Kx
.

We now make use the following results, which are Proposition 1.29 and Theorem 1.32 respectively in [7],

applied to our case.

Theorem 3.4. For Q1 approximation on a quasi-uniform subdivision of R
2 for which a shape regularity

condition holds the mass matrix M approximates the scaled identity matrix in the sense that

ch2 ≤ xT Mx

xT x
≤ Ch2

∀x 6= 0 ∈ R
n. The constants c and C are independent of h.

Theorem 3.5. For Q1 approximation on a quasi-uniform subdivision of R
2 for which a shape regularity

condition holds the Galerkin matrix K satisfies

dh2 ≤ xT Kx

xT x
≤ D

∀x 6= 0 ∈ R
n. The constants d and D are positive and independent of h.

6



From Theorem 3.5 we obtain
1

D
≤ xT x

xT Kx
≤ 1

dh2
.

Therefore,

ch2

D
≤ ν ≤ C

d
,

( c

D

)2

h4 ≤ ν2 ≤
(

C

d

)2

,

( c

D

)2

h4 ≤ 2β(λ− 1) ≤
(

C

d

)2

,

1

2β

( c

D

)2

h4 + 1 ≤ λ ≤ 1

2β

(
C

d

)2

+ 1.

Hence, for the 2D case, we have the bounds

1

2β
α1h

4 + 1 ≤ λ ≤ 1

2β
α2 + 1, (11)

where α1 and α2 are constants independent of h. For the 3D case, the equivalent results to Theorems 3.4

and 3.5 are

ch3 ≤ xT Mx
xT x

≤ Ch3 ∀x 6= 0

and dh3 ≤ xT Kx
xT x

≤ Dh ∀x 6= 0.

The extra h on each side will cancel, meaning (11) also holds in the 3D case (although the constants will

be different).

Note that the bounds in Corollary 3.3 do not get worse as we refine the mesh – they depend on h in

a multiplicative way only – which suggests that this is an optimal preconditioner in the sense that it is

independent of the mesh size. Figure 1 shows a plot of the actual eigenvalues and the bounds of Corollary

3.3 for two choices of β. As seen in the figure, the eigenvalues are much more clustered for the larger

value of β, and we see that for values around this our method is most successful. Taking β around this

value is common in the literature – see Collis and Heinkenschloss [6], Haber and Ascher [11], Maurer and

Mittelmann [18],[19] or Ito and Kunisch [15], for example.

5 10 15 20 25
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(a) β = 10−2
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20

40

60
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(b) β = 10−7

Figure 1: Eigenvalues of P−1
D1A and eigenvalue bounds predicted by Proposition 3.2 (lines are the predicted,

*s are the eigenvalues)

When using PD1 as a preconditioner, the main drawback is that at each iteration we have to solve for

K and KT once each, which is equivalent to solving the forward problem twice per iteration. This is costly,
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especially for more complicated PDEs. As these solves are only needed for the preconditioner, which is

itself just an approximation, all we need is to solve these approximately. Thus we want to consider

P =




2βM̃ 0 0

0 M̃ 0

0 0 K̃M−1K̃T



 , (12)

where K̃ and M̃ are some approximations to K and M , respectively. Note that we do not need to

approximate M in the Schur complement as a solve with M−1 is just a matrix-vector multiplication with

the mass matrix. If our approximations are good enough, then the spectral bounds should be close to

those shown above. Using (12) as a preconditioner will take only slightly more Krylov subspace iterations,

but with a solve for K̃ being much faster than, say, a sparse direct solve for K, hence giving us a much

more effective preconditioner.

For any choice of PDE in a problem of the type in (1), it is likely that there has been work done on

solving the forward problem (i.e. solving just for a solution to the PDE) and we propose to draw from ideas

here to help us develop effective preconditioners. If we have an effective preconditioner for the forward

problem, then we can incorporate it into our methods to give us an effective preconditioner for the PDE

constrained optimization problem.

In the case of our PDE, the Poisson equation, a fixed number of multigrid iterations is a good precon-

ditioner [7]. We apply both algebraic and geometric multigrid routines. We thus have two preconditoners,

PD2 =




2βM̃ 0 0

0 M̃ 0

0 0 K̃M−1K̃T



 and PD3 =




2βM̃ 0 0

0 M̃ 0

0 0 K̂M−1K̂T



 ,

where K̃ denotes two geometric AMG V-cycles of HSL package HSL MI20 applied via a MATLAB interface

[5]. For the geometric multigrid, as a smoother we use relaxed Jacobi, i.e. if we have to solve Bu = f ,

take D = diag(B) and iterate

u(m+1) = (I − ωD−1B)u(m) + ωD−1f (13)

where u(0) = 0 and for some relaxation parameter ω. Thus, here we have let K̂ denote two multigrid

V-cycles with 2 pre- and 2 post-smoothing steps of relaxed Jacobi with the optimal relaxation parameter

of ω = 8
9 in the 2D case (see [7, Section 2.5]). In 3D, we use 3 pre- and 3 post-smoothing steps of unrelaxed

Jacobi, i.e. we take ω = 1 in the above, which is optimal here.

For the mass matrix, M , what we would like to use is a few steps of the preconditioned conjugate

gradient method with, say, the diagonal as a preconditioner applied to the matrix, as this will give us

a good approximation. However, PCG is not linear in the right hand side, so we cannot use it as a

preconditioner without applying a flexible outer Krylov iteration. The Chebyshev semi-iteration [9] is a

method of accelerating convergence of a simple iterative method which is linear, so we can employ it here.

In 2D, we use relaxed Jacobi with a relaxation parameter of 4
5 , which, when applied to a Q1 mass matrix,

gives an iteration matrix with eigenvalues satisfying |λ| ≤ 4
5 =: ρ. In 3D, the optimal relaxation parameter

is 4
7 , which gives eigenvalues such that |λ| ≤ 13

14 =: ρ. In both cases, if we want to solve Mu = f , say, then

the kth iterate of the Chebyshev semi-iteration is given by

y(k) =

k∑

i=0

νiu
(i),

where u(i) are the iterates of the underlying iterative method (so u(i) = Su(i−1) + g where S is some

iteration matrix, defined here by relaxed Jacobi) and νi are the coefficients of the scaled Chebyshev

polynomial T̂k(z) = Tk(z/ρ)
Tk(1/ρ) . This can be implemented more efficiently by performing the iteration

y(k+1) = wk+1(Sy(k) + g − y(k−1)) + y(k−1), (14)
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where wk+1 = Tk(1/ρ)
ρTk+1(1/ρ) and S = D−1B (see Varga [23, Chapter 5]). It is very cheap to carry out an

iteration using this scheme. Moreover, we get the following convergence result, which shows this method

has essentially the same convergence behaviour as classical conjugate gradients,

||u− y(k)||2 ≤ max
r∈[−ρ,ρ]

|T̂k(r)| ||u− u(0)||2. (15)

Indeed this bound using Chebyshev polynomials is the one usually applied for Conjugate Gradient conver-

gence. This suggests that a fixed number of these iterations will give us a good approximation to M . This

is a linear operation which is cheap to implement, so it is valid to use as a preconditioner with a standard

Krylov subspace iteration such as minres. We therefore let M̃ in PD2 and PD3 denote 20 iterations of

the Chebyshev semi-iteration, as defined above. In 2D, maxr∈[−ρ,ρ] |T̂k(r)| ≈ 10−6. This bound shows that

M̃ is almost exactly M but is still a very inexpensive way of inverting this operator.

4 Constraint Preconditioning

As noted in Section 3, the coefficient matrix in (9) is of a saddle-point form. In recent years, the projected

conjugate gradient (ppcg) method [10] has become an increasingly popular method for solving saddle-

point systems. The method requires the use of a preconditioner that has a very specific structure. If, as

in (10), we write the coefficient matrix A of (9) as

A =

[
A BT

B 0

]
,

where B ∈ R
k×l, then the preconditioner must take the form

P =

[
G BT

B 0

]
,

where G ∈ R
l×l is a symmetric matrix. Let Z ∈ R

l×(l−k) be such that its columns span the nullspace

of B. The ppcg method can be reliably used if both ZT AZ and ZT GZ are positive definite. The basic

principles behind the ppcg method are as follows. Let W ∈ R
l×k be such that the columns of W together

with the columns of Z span R
l and any solution x∗ in (10) can be written as

x∗ = Wx∗
w + Zx∗

z. (16)

Substituting (16) into (10) and premultiplying the resulting system by




WT 0

ZT 0

0 I



 , we obtain the linear

system 


WT AW WAZ WBT

ZT AW ZT AZ 0

BW 0 0








x∗

w

x∗
z

y



 =




WT c

ZT c

d



 .

Therefore, we may compute x∗
w by solving

BWx∗
w = d,

and, having found x∗
w, we can compute x∗

z by applying the pcg method to the system

Azzx
∗
z = cz,

where

Azz = ZT AZ,

cz = ZT (c−AAX∗
w) .

9



If a preconditioner of the form ZT AZ is used, then Gould et al [10] suggest terminating the iteration

when the easily computable value ‖xk − x∗
z‖ZT GZ has sufficiently decreased. They also show that the

pcg algorithm may be rewritten without the need for Z at all: this results in the ppcg algorithm,

Algorithm 4.1.

Algorithm 4.1. Choose an initial point x satisfying Bx = d and compute r = Ax−c. Solve

[
G BT

B 0

] [
g

v

]
=

[
r

0

]
and set p = −g, y = v, r ← r−BT y. Repeat the following steps until a convergence test is satisfied:

α = rT g/pT Ap,

x ← x + αp,

r+ = r + αAp,

Solve

[
G BT

B 0

] [
g+

v+

] [
r+

0

]
,

δ = (r+)T g+/rT g,

p ← −g+ + δp,

g ← g+,

r ← r+ −BT v+.

If y∗ is required, then one extra step must be carried out to compute it. However, in our case, y∗

corresponds to the Lagrange multipliers which we are not interested in calculating. Note, in Algorithm 4.1,

‖xk − x∗
z‖ZT GZ = rT g (see [10]) and, hence, we can still efficiently calculate Gould et al ’s suggested

measure for termination.

The following theorem gives the main properties of the preconditioned matrix P−1A : the proof can

be found in [16].

Theorem 4.2. Let

A =

[
A BT

B 0

]
and P =

[
G BT

B 0

]
,

where B ∈ R
k×l has full rank, G ∈ R

l×l is symmetric and P is nonsingular. Let the columns of Z ∈
R

l×(l−k) span the nullspace of B, then P−1A has

• 2k eigenvalues at 1; and

• the remaining eigenvalues satisfy the generalized eigenvalue problem

ZT AZxz = λZT GZxz. (17)

Additionally, if G is nonsingular, then the eigenvalues defined by (17) interlace the eigenvalues of G−1A.

Keller et al. also show that the Krylov subspace

K(P−1A; r) = span(r,P−1Ar, (P−1A)2r, . . . )

will be of dimension at most l − k + 2, see [16].

Clearly, for our problem (9), A is positive definite and, hence, ZT AZ is positive definite. It remains

for us to show that we can choose a symmetric matrix G that satisfies the following properties:

• ZT GZ is positive definite;

• the eigenvalues of P−1A are clustered; and
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• we can efficiently carry out solves with P.

We will firstly consider setting G = diag(A). Since A is a block diagonal matrix with the blocks

consisting of mass matrices, G is guaranteed to be positive definite. From Theorem 4.2, the non-unitary

eigenvalues of P−1A will interlace the eigenvalues of G−1A. The eigenvalues of G−1A satisfy

Mx = λdiag(M)x

and, since M is a mass matrix, the eigenvalues of G−1A will be bounded above and below by constant

values, see [24]. Therefore, the non-unitary eigenvalues of P−1A are bounded above and below by constant

values. As we refine our mesh, the rate of convergence of the ppcg method (in exact arithmetic) will not

deteriorate and, hence, this preconditioner may be described as “optimal”. Unfortunately, it is not clear

that we can efficiently apply this preconditioner; in Section 5, we will show that such a preconditioner may

be prohibitive to use for small values of h. In the remainder of this section, we will consider a constraint

preconditioner that is both efficient to apply and optimal.

It is straightforward to show that the columns of

Z =

[
M−1K

I

]

span the nullspace of
[
−M K

]
and, therefore,

ZT AZ = M + 2βKT M−1K.

Suppose that we set

PC1 =




0 0 −M

0 2βKT M−1K KT

−M K 0



 ,

then, if z =
[

zT
1 zT

2 zT
3

]T
and r =

[
rT
1 rT

2 rT
3

]T
, we may solve systems of the form PC1z = r by

carrying out the following steps:

• Solve

Mz3 = −r1, (18)

• Solve

2βKT M−1Kz2 = r2 −KT z3, (19)

• Solve

Mz1 = Kz2 − r3. (20)

As noted in Section 3, systems of the form (18) and (20) may be solved efficiently because M is a mass

matrix. We will discuss the efficient (approximate) solution of (19) at the end of this section.

Proposition 4.3. Let

A =




2βM 0 −M

0 M KT

−M K 0





and

PC1 =




0 0 −M

0 2βKT M−1K KT

−M K 0



 ,

where K,M ∈ R
n×n. The preconditioned matrix P−1

C1A has
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• 2n eigenvalues at 1; and

• the remaining eigenvalues satisfy the generalized eigenvalue problem
(

1

2β

(
KT M−1K

)−1
M + I

)
x = λx. (21)

Proof. From Theorem 4.2, P−1
C1A has

• 2n eigenvalues at 1; and

• the remaining eigenvalues satisfy
(
M + 2βKT M−1K

)
x = 2λβKT M−1Kx.

This is equivalent to the generalized eigenvalue problem (21).

We can now use this general result to give solid bounds that are dependent both on the PDE problem

being considered and on the finite element discretization. In our tests, we have discretized problem (1)

using quadrilateral Q1 finite elements and, for this choice, one can prove the following.

Corollary 4.4. Let λ be an eigenvalue of P−1
C1A. Then λ satisfies either

λ = 1

or
1

2β
α1h

4 + 1 ≤ λ ≤ 1

2β
α2 + 1,

where α1 and α2 are positive constants independent of h.

Proof. From Proposition 4.3, λ = 1 or it satisfies the generalized eigenvalue problem
(

1

2β

(
KT M−1K

)−1
M + I

)
x = λx.

From the proof of Corollary 3.3 we obtain the desired result.

Therefore, as we refine the mesh, the bounds in Corollary 4.4 will not get worse. This suggests that

this will be an optimal preconditioner for (9). However, as the regularization parameter β decreases,

the bounds will worsen and we will expect the ppcg method to take more iterations to reach the same

tolerance.

It remains for us to consider how we might solve (19). As in Section 3, instead of exactly carrying

out solves with K, we may approximate K by a matrix K̃. If our approximation is good enough, then the

spectral bounds will be close to those in Corollary 4.4. In the case of our PDE, Poisson’s equation, we will

employ the same approximation as that used within the preconditioner PD2 : a fixed number of multigrid

V-cycles. This gives us the preconditioner

PC2 =




0 0 −M̃

0 2βK̃T M−1K̃ KT

−M̃ K 0



 .

Here, again, K̃ denotes the approximation of the solves with K by two AMG V-cycles applied by using

a MATLAB interface to the HSL package HSL MI20 [5], and M̃ denotes 20 iterations of the Chebyshev

semi-iterative method. PC2 is not exactly of the form of a constraint preconditioner since M̃ is not exactly

M . However, the bound (15) indicates that M̃ is close to M and we see no deterioration in using ppcg

in any of our numerical results. Note the exact use of K and KT in the constraint blocks: this is possible

because we only require matrix-vector multipications with these matrices.
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5 Results

We illustrate our methods with four different examples. For each example we compare the time to solve

the system using ‘backslash’ in MATLAB, minres with preconditioners PD2 and PD3, ppcg with

preconditioner PC2, and ppcg with preconditioner with G = diag(A). In the latter method, we factorize

the preconditioner once using MATLAB’s ldl function and then use this factorization when carrying out

the solves with the preconditioner. We terminate minres when the relative residual (in the 2-norm) has

reach the desired tolerance. ppcg is terminated when rT g has reached the desired tolerance relative to

its initial value. The number of iterations are given in brackets after the CPU time. All tests were done

using MATLAB version 7.5.0 on a machine with a dual processor AMD Opteron 244 (1.8GHz). All times

are CPU times in seconds. In all our examples we use β = 10−2.

Example 5.1. Let Ω = [0, 1]m, where m = 2, 3, and consider the problem

min
u,f

1

2
||u− û||22 + β||f ||22

s.t. −∇2u = f in Ω (22)

u = û|∂Ω on ∂Ω (23)

where, in 2D,

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2 ]2

0 otherwise

and, in 3D,

û =

{
(2x− 1)2(2y − 1)2(2z − 1)2 if (x, y, z) ∈ [0, 1

2 ]3

0 otherwise

i.e. û is bi- or tri-quadratic (depending on whether m = 2 or 3) with a peak of unit height at the origin

and is zero outside [0, 1
2 ]m.

In Tables 1 and 2, we consider the 2D version of Example 5.1 with tolerances 10−6 and 10−12, respec-

tively. We observe that the number or iterations required by our iterative methods grow only slightly as

we refine our mesh size with the minres preconditioners, and not at all when using ppcg with PC2. For

h = 2−9, MATLAB’s backslash method runs out of memory, as does its ldl function when factorizing

the constraint preconditioner with G = diag(A). The iteration count for the last preconditioner is good

for this example and, indeed, in all the examples considered, but its reliance on a direct method for its

implemention it makes infeasible for smaller values of h.

Here the geometric multigrid preconditioner (PD3) converges in a number of iterations less than or equal

to the corresponing AMG preconditioner (PD2), but also that the AMG preconditioner is significantly the

faster of the two. Note also that the minres and ppcg methods, whether using a geometric or algebraic

multigrid, are both close to linear complexity – the time taken to solve the system increases linearly with

the problem size.

In Tables 3 and 4, we consider the 3D version of Example 5.1 with tolerances 10−6 and 10−12, respec-

tively. Again we see much the same behaviour – here MATLAB’s backslash and ldl methods run out

of memory at h = 2−5. Here the geometric multigrid version of the minres preconditioner is the most

efficient, both in terms of the number of iterations and the time taken. Again, the timings are close to

scaling linearly with the problem size.

In Figure 2, we compare the number of iterations carried out by both the minres method with

preconditioner PD3 (Figure 2(a)) and the ppcg method with preconditioner PC2 (Figure 2(b)) for the

tolerance 10−12 and different values of β. As expected, for fixed β, the number of iterations does not grow

significantly as h decreases – any growth, as in minres for β = 10−6, settles to a constant. For fixed

values of h, decreasing β results in an increasing number of iterations.
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Figure 2: Number of iterations for minres with PD3 and ppcg with PC2 to converge for β =

10−2, 10−4 and 10−6

Example 5.2. Again, let Ω = [0, 1]m, where m = 2, 3, and consider the problem

min
u,f

1

2
||u− û||22 + β||f ||22

s.t. −∇2u = f in Ω (24)

u = 0 on ∂Ω (25)

where, in 2D,

û = exp
(
−64((x− 0.5)2 + (y − 0.5)2)

)
,

and in 3D,

û = exp
(
−64((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)

)
,

i.e. û is a Gaussian, with peak of unit height at [ 12 , 1
2 ].

Tables 5 to 8 show our findings for Example 5.2 which is another Dirichlet control problem – this

time with a different cost functional. Here we see identical behaviour to that in Example 5.1, which

demonstrates that our method is not dependent on û.

Example 5.3. Let Ω = [0, 1]2 and consider the problem

min
u,f

1

2
||u− û||22 + β||f ||22

s.t. −∇2u = f in Ω (26)

∂u

∂n
= 0 on ∂Ω (27)

where

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2 ]2

0 otherwise
.

Example 5.3 is an example of a distributed control problem with a Neumann boundary condition. In

this case the stiffness matrix K is singular. We comment that for simple forward solution of the Neumann

problem, a singular multigrid cycle is possible [12, Chapter 12], whereas in the control problem we require

a definite preconditioner, hence a singular multigrid cycle is not usable. This is not a difficulty, as we

simply pin one of the nodes to remove the singularity, which gives us, in effect, a mixed boundary condition
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problem with a Dirichlet boundary condition at just one point. In this case we have made u vanish at

(1, 1) (which is consistent with the objective function). Tables 9 and 10 show our results in this case. In

comparison with the Dirichlet results our methods are slightly less effective here – the iteration count and,

correspondingly, the time taken have both grown. However, the overall behaviour is simliar - we still get

mesh size independent convergence and nearly linear complexity. Interestingly, the geometric multigrid

based preconditioner, PD3, performs worse here relative to the other examples – presumably as a result of

the way we pin the node, which AMG is better suited to cope with.

Example 5.4. Let Ω = [0, 1]2 and consider the problem

min
u,f

1

2
||u− û||22 + β||f ||22

s.t. −∇2u = f in Ω (28)

u = û|∂Ω on ∂Ω1 and
∂u

∂n
= 0 on ∂Ω2 (29)

where

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2 ]2

0 otherwise

and ∂Ω1 = (0× [0, 1)) ∪ ((0, 1]× 0) and ∂Ω2 = (1× (0, 1]) ∪ ([0, 1)× 1).

Example 5.4 is a distributed control problem with mixed boundary conditions: half of the boundary

satisfies a Dirichlet boundary condition while the other half satisfies a Neumann boundary condition. As

we might expect from the nature of the problem, the results in Tables 11 and 12 lie somewhere in between

those of Examples 5.1 and 5.2 and those of Example 5.3.

6 Conclusion

We have presented optimal preconditioners for distributed control problems. We have demonstrated

that our preconditioners work effectively with regularization parameter β = 10−2, and although the

approximations become less valid as β approaches zero they still give mesh size independent convergence

down to β = 10−6. Only a handful of papers in the literature consider the saddle-point structure of the

matrices when solving problems of this type, and we believe that using this stucture is a good way of

creating efficient algorithms. A large amount of work that has been done on solving saddle point systems:

e.g. see the survey paper by Benzi, Golub and Liesen [2].

We have presented two classes of preconditioners for the simplest case of PDE, namely the Poisson

equation, but our methods are more general than that. For any PDE, if there is a preconditioner available

for the forward problem one could use that as K̃ and should still get good convergence. We have included

results using preconditioners based both on algebraic and geometric multigrid routines.

There are some β-independent methods in the literature, in particular the recent method by Schöberl

and Zulehner [22], which also uses block preconditioners, gives both h and β inedependent convergence.

However, their method is specific to this PDE problem, and so is not as general as the methods we present

here.

Although we have presented the distributed control problem, changing the problem to, for example, a

boundary control problem, or the addition of bound constraints, will require the solution of a matrix with

a similar block structure to (9) and we therefore anticipate developing our ideas further to give optimal

preconditioners for these other classes of problems.
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Table 1: Comparison of times and iterations to solve Example 5.1 in 2D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−6 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0003 0.02 (7) 0.13 (7) 0.01 (2) 0.004 (6)

2−3 147 0.002 0.03 (9) 0.16 (9) 0.02 (2) 0.02 (8)

2−4 675 0.01 0.05 (9) 0.21 (9) 0.03 (2) 0.14 (8)

2−5 2883 0.08 0.14 (9) 0.41 (9) 0.06 (1) 0.85 (7)

2−6 11907 0.46 0.61 (9) 1.29 (9) 0.29 (1) 5.94 (7)

2−7 48387 3.10 2.61 (9) 5.09 (9) 1.92 (2) 36.1 (7)

2−8 195075 15.5 15.0 (11) 23.6 (9) 8.79 (2) 190 (7)

2−9 783363 — 75.6 (11) 136 (9) 39.2 (2) —

Table 2: Comparison of times and iterations to solve Example 5.1 in 2D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−12 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0003 0.03 (12) 0.15 (12) 0.03 (4) 0.004 (6)

2−3 147 0.002 0.05 (14) 0.20 (14) 0.03 (4) 0.03 (16)

2−4 675 0.01 0.08 (14) 0.28 (14) 0.04 (3) 0.25 (17)

2−5 2883 0.08 0.21 (14) 0.63 (16) 0.10 (3) 1.77 (17)

2−6 11907 0.46 1.02 (16) 2.13 (16) 0.53 (3) 12.23 (17)

2−7 48387 2.28 4.40 (16) 8.60 (16) 2.45 (3) 74.78 (16)

2−8 195075 15.5 23.5 (18) 40.2 (16) 13.7 (4) 357 (16)

2−9 783363 — 130 (20) 189 (16) 60.9 (4) —

Table 3: Comparison of times and iterations to solve Example 5.1 in 3D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−6 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 81 0.001 0.02 (7) 0.14 (8) 0.01 (2) 0.01 (6)

2−3 1029 0.013 0.13 (9) 0.26 (8) 0.06 (2) 0.56 (8)

2−4 10125 25.1 1.89 (8) 1.69 (8) 0.96 (2) 25.7 (8)

2−5 89373 — 22.1 (8) 15.9 (8) 11.1 (2) —

Table 4: Comparison of times and iterations to solve Example 5.1 in 3D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−12 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 81 0.001 0.04 (13) 0.15 (11) 0.02 (5) 0.004 (6)

2−3 1029 0.013 0.21 (15) 0.34 (13) 0.12 (6) 1.13 (16)

2−4 10125 25.1 3.42 (16) 2.75 (14) 1.68 (5) 57.1 (17)

2−5 89373 — 39.4 (16) 28.3 (15) 19.6 (4) —
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Table 5: Comparison of times and iterations to solve Example 5.2 in 2D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−6 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0003 0.02 (7) 0.13 (7) 0.01 (2) 0.003 (3)

2−3 147 0.002 0.03 (7) 0.15(7) 0.02 (2) 0.01 (3)

2−4 675 0.01 0.05(7) 0.19 (7) 0.03 (2) 0.05 (2)

2−5 2883 0.06 0.15 (9) 0.52 (9) 0.08 (2) 0.36 (2)

2−6 11907 0.36 0.79 (9) 1.65 (9) 0.38 (2) 1.83 (1)

2−7 48387 2.27 3.08 (9) 7.18 (9) 1.68 (2) 13.4 (1)

2−8 195075 15.5 12.7 (9) 13.6 (9) 7.88 (2) 79.3 (1)

2−9 783363 — 70.7 (11) 113 (9) 50.5 (3) —

Table 6: Comparison of times and iterations to solve Example 5.2 in 2D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−12 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0003 0.04 (12) 0.14 (8) 0.02 (3) 0.003 (3)

2−3 147 0.002 0.05 (14) 0.19 (12) 0.02 (3) 0.02 (9)

2−4 675 0.01 0.09 (14) 0.28 (14) 0.04 (3) 0.09 (6)

2−5 2883 0.06 0.21 (14) 0.70 (14) 0.10 (3) 0.50 (4)

2−6 11907 0.37 1.07 (16) 3.12 (16) 0.50 (3) 2.95 (3)

2−7 48387 2.27 4.41 (16) 12.3 (16) 2.20 (3) 16.8 (2)

2−8 195075 15.5 23.9 (18) 40.3 (16) 9.96 (3) 97.9 (2)

2−9 783363 — 132 (20) 189 (16) 62.5 (4) —

Table 7: Comparison of times and iterations to solve Example 5.2 in 3D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−6 for MATLAB’s backslash method,minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 81 0.001 0.03 (8) 0.05 (8) 0.01 (2) 0.01 (4)

2−3 1029 0.013 0.12 (8) 0.16 (8) 0.06 (2) 0.30 (4)

2−4 10125 24.7 1.88 (8) 1.60 (8) 0.95 (2) 13.1 (3)

2−5 89373 — 22.1 (8) 15.8 (8) 11.1 (2) —

Table 8: Comparison of times and iterations to solve Example 5.2 in 3D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−12 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 81 0.001 0.04 (13) 0.07 (11) 0.02 (5) 0.01 (4)

2−3 1029 0.013 0.22 (15) 0.24 (13) 0.09 (4) 0.65 (12)

2−4 10125 24.7 3.17 (15) 2.64 (14) 1.65 (5) 21.4 (7)

2−5 89373 — 37.2 (15) 28.3 (15) 16.5 (4) —

19



Table 9: Comparison of times and iterations to solve Example 5.3 in 2D for different mesh sizes (h) (with 3n

unknowns) to a tolerance of 10−6 for MATLAB’s backslash method, minres with preconditioners PD2,

PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 72 0.0007 0.04 (15) 0.16 (11) 0.02 (3) 0.005 (5)

2−3 240 0.003 0.05 (14) 0.19 (11) 0.02 (3) 0.02 (3)

2−4 864 0.01 0.10 (15) 0.28 (12) 0.04 (3) 0.07 (2)

2−5 3264 0.08 0.25 (15) 0.75 (17) 0.12 (3) 0.40 (2)

2−6 12672 0.55 1.03 (15) 2.43 (17) 0.62 (3) 2.06 (1)

2−7 49920 3.99 4.52 (15) 10.1 (17) 2.72 (3) 12.7 (1)

2−8 198144 28.2 22.3 (17) 47.6 (19) 11.5 (3) 84.4 (1)

2−9 789504 — 89.2 (17) 210 (21) 46.8 (3) —

Table 10: Comparison of times and iterations to solve Example 5.3 in 2D for different mesh sizes (h) (with

3n unknowns) to a tolerance of 10−12 for MATLAB’s backslash method, minres with preconditioners

PD2, PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G =

diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 72 0.0007 0.06 (20) 0.22 (19) 0.04 (6) 0.008 (11)

2−3 240 0.003 0.09 (22) 0.27 (20) 0.04 (6) 0.04 (12)

2−4 864 0.01 0.15 (24) 0.45 (23) 0.07 (6) 0.19 (10)

2−5 3264 0.08 0.41 (24) 1.07 (26) 0.21 (6) 1.11 (9)

2−6 12672 0.55 1.59 (24) 3.65 (26) 0.97 (6) 5.80 (7)

2−7 49920 3.99 7.11 (24) 16.31 (28) 4.55 (6) 30.7 (6)

2−8 198144 28.2 35.8 (28) 78.7 (32) 19.2 (6) 161 (5)

2−9 789503 — 142 (28) 315 (32) 76.2 (6) —

Table 11: Comparison of times and iterations to solve Example 5.4 in 2D for different mesh sizes (h) (with

3n unknowns) to a tolerance of 10−6 for MATLAB’s backslash method, minres with preconditioners

PD2, PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G =

diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 48 0.0004 0.03 (9) 0.15 (9) 0.02 (3) 0.005 (8)

2−3 192 0.002 0.04 (11) 0.17 (9) 0.02 (3) 0.03 (8)

2−4 768 0.01 0.07 (11) 0.26 (11) 0.04 (3) 0.14 (8)

2−5 3072 0.07 0.18 (11) 0.52 (11) 0.08 (2) 0.81 (7)

2−6 12288 0.43 0.76 (11) 1.68 (11) 0.33 (1) 5.53 (7)

2−7 49152 2.38 3.53 (11) 7.39 (11) 2.12 (2) 35.0 (7)

2−8 196608 15.3 15.3 (11) 32.1 (11) 11.6 (3) 199 (7)

2−9 786432 — 70.4 (13) 114 (11) 46.0 (3) —
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Table 12: Comparison of times and iterations to solve Example 5.4 in 2D for different mesh sizes (h) (with

3n unknowns) to a tolerance of 10−12 for MATLAB’s backslash method, minres with preconditioners

PD2, PD3, ppcg with preconditioner PC2, and ppcg with constraint preconditioner containing G =

diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 48 0.0004 0.05 (16) 0.17 (14) 0.03 (4) 0.006 (10)

2−3 192 0.002 0.06 (16) 0.22 (16) 0.04 (5) 0.05 (17)

2−4 768 0.01 0.11 (18) 0.33 (16) 0.05 (4) 0.27 (17)

2−5 3072 0.07 0.28 (18) 0.76 (18) 0.14 (4) 1.72 (17)

2−6 12288 0.43 1.18 (18) 2.82 (18) 0.73 (4) 11.4 (17)

2−7 49152 2.38 6.19 (20) 10.66 (18) 3.33 (4) 67.4 (16)

2−8 196608 15.3 29.0 (22) 56.0 (20) 16.9 (5) 370 (16)

2−9 786432 — 124 (24) 200 (20) 66.5 (5) —
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