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Optimal spaced seeds were developed as a method to increase sensitivity of local align-
ment programs similar to BLASTN. Such seeds have been used before in the pro-
gram PatternHunter, and have given improved sensitivity and running time relative to
BLASTN in genome-genome comparison. We study the problem of computing optimal
spaced seeds for detecting homologous coding regions in unannotated genomic sequences.
By using well-chosen seeds, we are able to improve the sensitivity of coding sequence
alignment over that of TBLASTX, while keeping runtime comparable to BLASTN. We
identify good seeds by first giving effective hidden Markov models of conservation in
alignments of homologous coding regions. We give an efficient algorithm to compute the
optimal spaced seed when conservation patterns are generated by these models. Our
results offer the hope of improved gene finding due to fewer missed exons in DNA/DNA
comparison, and more effective homology search in general, and may have applications
outside of bioinformatics.

Keywords: Spaced seeds, local alignment, gene prediction, homology search, hidden
Markov models, BLAST, probabilistic models

1. Introduction

In their program PatternHunter, Ma et al.! introduced spaced seeds as a way of
improving the sensitivity of homology search programs at minimal cost. In this
framework, as in the traditional one typified by BLASTN?, DNA alignments are
based on short matches, called seeds, between the two sequences. With spaced
seeds, however, there are specific positions in the seed match that need not be
identical. This contrasts with programs such as BLASTN, which is based on eleven
consecutive characters found in both sequences.

Here, we extend this idea of spaced seeds to the case of detecting homolo-
gous coding regions in unannotated DNA sequences. For distantly related species,
these regions form the majority of pairwise alignments. Also, DNA alignments be-
tween homologous coding regions can aid in gene finding®. Therefore, programs for
genome-genome comparison must be able to find such alignments.
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We develop a sequence alignment method that substantially improves upon
existing algorithms for identifying homologous DNA sequences. In particular, our
experiments on homologous human and mouse sequences show that our method has
comparable sensitivity to TBLASTX, while requiring forty times less CPU time;
alternatively, with different parameter settings, our methods give fewer than half as
many false negatives while still running 24 times faster than TBLASTX. Compared
to BLASTN, our method gives far fewer false negatives: four times fewer for seeds
with comparable runtimes, in the case of human/fruit fly comparisons.

Our method is successful because it is based on spaced seeds that are optimal
for probabilistic models that accurately represent alignments of coding regions.
By contrast, PatternHunter’s seed is the seed most likely to have a match in a
homologous region of length 64 where each position is the same with probability
0.7. PatternHunter’s seed is optimal in the sense that it has highest probability of
all seeds in a given family of matching an alignment drawn from this distribution.
Keich et al.* have given an algorithm which computes these probabilities for the
simple alignment model in PatternHunter.

Since coding region alignments have complicated structure, including three-
periodicity and internal dependencies, this simple model of alignments is not ap-
propriate for identifying homologous coding regions. We develop models that take
these factors into account, and thus model conservation in alignments much more
accurately. Our models are represented by hidden Markov models, where the prob-
ability that a position is conserved depends on the state of the model. In Section 4,
we extend the algorithm of Keich et al. to the case of hidden Markov models, and
show that one can still compute the optimal spaced seed efficiently. It is these seeds
which underly our successful method for alignment.

We note that the use of spaced seeds for homology search in coding sequences
has implicitly been studied before, in the software package WABAS. This program
uses the trivial three-periodic seed 110110110... Our method is more sensitive,
while having comparable runtime. We also note that our methods were developed
contemporaneously with other work by Buhler et al.%, who extend Keich et al.’s
algorithm? to the case of multiple seeds used for the same model. They do not,
however, consider the case of either HMMSs, or of probabilistic models specifically
developed for coding regions.

2. Spaced seeds and simple probabilistic models of local
alignments

Following ideas introduced in Ma et al.!, we consider the use of spaced seeds,
which generalize the algorithm used in BLASTN to identify homologous regions.
BLASTN first finds short exact matches, called hits. A BLASTN hit consists of
several consecutive positions (the default is 11). For each, an alignment is built
that extends the hit on both sides. If the alignment score exceeds a threshold, the
alignment is reported. Some significant alignments do not contain 11 consecutive
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matches; thus, they are not discovered by BLASTN.

In a generalization introduced by Ma et al.!, a hit consists of several non-
consecutive matches in a prescribed configuration, called a spaced seed. A seed can
be represented as a binary sequence, in which a 1 denotes a position that is required
to match and a 0 denotes a position that is not required to match. For example, the
seed 110111 requires two consecutive matches followed by one position which may
or may not match, and another 3 consecutive matches. The seed corresponding to
a BLASTN hit is simply 11111111111,

Local alignments can be represented as binary sequences, where 1 represents
a match and O a mismatch. We model only ungapped alignments, as seed hits
are found only in gapless regions. We can characterize a particular type of local
alignment by giving a probabilistic model defining a probability distribution over
all binary strings of a given length.

Then, given a particular probabilistic model, we can find a seed s* from a class
of seeds C maximizing the probability of a hit in an alignment sampled from this
model. For us, the class C is all seeds with W ones and length at most M. To
avoid redundancy, we require that the first and last positions of a seed are 1. The
parameter W is the weight of a seed.

Ma et al.! introduced the concept of optimal seeds in PatternHunter. Pat-
ternHunter’s probabilistic model of alignment PH(N,p) represents a similarity
region of length N, where each position is a match independently with prob-
ability p. Formally, it is a sequence of N independent Bernoulli random vari-
ables Xy, X1,...,Xn_1, with Pr(X; = 1) = p for each i. PatternHunter’s seed
111001001001010111 optimizes this model with parameters N = 64 and p = 0.7.

Keich et al. give a dynamic programming algorithm to compute the probability
that a given seed @ of length M has at least one hit in an alignment sampled from
PH(N,p). The running time is O(2~W M (M? + N)) for each seed. One computes
the probability of a hit for each seed in C' and chooses the best.

As we will show in the next section, the simple PH model does not well represent
coding sequences, and thus is poor at picking optimal seeds for finding alignments
between them. We present richer probabilistic models for coding sequences that
take into account their dependencies and complexity.

3. Modeling Local Alignments in Protein Coding Regions

Alignments in coding regions have specific properties not modeled well by the sim-
ple PH model. First, the PH model assumes equal mutation rate on all positions
in the alignment. However, in protein coding regions, silent mutations accumulate
more quickly than mutations that change amino acids. Therefore, third positions in
codons of even closely related proteins can undergo substantial mutation, since this
is the position in codons most likely to be redundant. There also can be substantial
within-codon dependencies in alignment positions. Finally, coding sequence align-
ments (and, actually, non-coding alignments) often are quite inhomogeneous: some
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Table 1. Parameters of model M(3) estimated from our training set.
Data set | Po P1 D2

human/mouse | 0.82 0.87 0.61
human/fruit fly | 0.67 0.77 0.40

regions are highly conserved between the two species and others are not.

We address these issues by developing three models, increasing in complexity
and accuracy, for alignments of coding regions. Our models can be represented
as hidden Markov models (HMMs). HMMs model dependencies between adjacent
positions in the sequence and have sucessfully modeled biological sequences in a
number of applications”. Our work adds to this list by demonstrating that HMMs
can capture several important properties of alignments of protein coding regions in
DNA sequences.

We also extend the probabilistic model so that the length of the alignment is
a random variable, chosen from some fixed distribution of alignment lengths. The
probability of a seed match in such an extended model is the weighted average of
the probabilities for models with fixed lengths. In our experiments, in Section 5,
this distribution is the empirical one from the data in our test set.

3.1. Three-periodicity

The most obvious property of alignments in coding regions is their three-periodicity
and the fact that some of the positions of a codon are less conserved than others.
A simple extension of the PH model, which we call M®) encapsulates this idea.
Model M) (N, po,p1,p2) represents a region of length N, where the probability of
a site being a match depends on its relative codon position, but positions within
the alignment are still independent. Formally, it is a sequence of N independent
Bernoulli random variables Xg, X1, ..., Xxy_1 where Pr(X; = 1) = p; mod 3. This
model can be expressed as a simple HMM with three states, as depicted in Figure 1,
and we can use the algorithm presented in Section 4 to compute the probability
that a seed matches an alignment sampled from this model.

Table 1 shows the parameters of the model M®) estimated from our training
set of alignments between human and fruit fly protein coding regions and between
human and mouse protein coding regions (more details about the data sets can be
found in Section 5). In both cases, the third position is much less conserved than
the others, and the first position is somewhat less conserved than the second.

3.2. Dependencies within codon

Model M®) models the different conservation levels within codons arising from
the redundancy of the genetic code. However, there are also dependencies among
positions within codons. These arise in part from the differing prevalence of some
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M®) 1

a = (pooo +poot)/ (Pooo +Poo1 +poro +
pou)
b = (p10o +p101)/(Proo +P1o1 +pi1o+
P111)

¢ = pooo/ (Pooo + Poo1)

d = po1o/(po1o + pPo11)

e = p1oo/ (P1oo + p1o1)

f =p10/(P110 + P111)

g = h = pooo + Poor + Poro + Por1

Fig. 1. HMM representation of models M(3>(N7 po,Pp1,p2) and M® (n, pooo, . . . ,p111). Each state
is labeled with emission probability of ‘1’. In the HMM for M®) | each transition has probability
1. In the HMM for M (®) each state has two outgoing transitions. One of them has the transition
probability shown in the picture; the other has probability such that they add to 1.

amino acids and their corresponding codons. To model these dependencies, we use
another model, M(®).

The model M® (n, pooo, Poot, - - -  P111) represents a region of n codons (N =
3n nucleotides). Each codon has conservation pattern z € {0,1}® with prob-
ability p,; the sum of pooo,Poot,---,P111 18 1. In this model, the positions
within one codon have arbitrary dependencies specified by the parameters
D000, - - - s P111, yet individual codons are independent of each other. Formally,
this model is a sequence of n independent triples of Bernoulli random vari-
ables (Xo, Xl, XQ), ey (Xgn_g, Xgn_g, Xgn_l), such that PI‘(Xgi = a, X3i+1 =
b, X3it2 = ¢) = Pabe- Model M®) can be represented by the HMM shown in Fig-
ure 1.

Table 2 demonstrates the existence of dependencies within codon. The first row
of the table shows the probabilities of all triplets as estimated by model M),
under the assumption that codon positions are independent. The second row shows
the probabilities of all triplets in model M (®), which exactly match the data set
probabilities. In particular, triplets 000 and 111 occur in the data more often than
expected by the M) model. Hence, we expect that the M () model will be inferior
to the M®) model, since it underestimates the probability of a triplet being fully
conserved and of the triplet being entirely unconserved.
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Table 2. Comparison of probabilities of conservation patterns within a codon in models M 3) and
M®) . Parameters of models estimated from human/fruit fly alignments.

Model ‘ Pooo  Poot  Poto  Poir  Pioo  Pio1 P10 Piit

M® 1005 003 015 0.10 0.09 0.06 0.31 0.20
M® | 011 004 012 0.06 0.06 0.03 0.32 0.27

3.3. Inhomogeneity of alignments

The previous models assume that alignments have roughly the same conservation
rate throughout their length. In fact, the pattern of conservation of a typical align-
ment is highly non-uniform. Many alignments include short, highly conserved re-
gions surrounded by less well conserved regions. (This is unsurprising, as highly
conserved regions are more likely to be functional parts of the proteins®.)

We address this problem with a new HMM. In this model, regions with high and
low conservation can alternate. This model is an HMM consisting of four copies of
the HMM for M ®) shown in Figure 1, each copy corresponding to a different level
of conservation. To allow transitions between different conservation levels, we add
transitions from all copies of both states labeled by a star in Figure 1 to all copies
of both states labeled by two stars, thus allowing changes in conservation rate after
each codon. In our experiments this model will be called HMM .

In the next section, we present an algorithm for computing the probability that
a seed has a hit in a string sampled from an HMM. Our algorithm is an extension of
the algorithm presented by Keich et al.* In particular, the PH probabilistic model is
equivalent to a single state HMM, and in this special case, our algorithm is identical
to the one presented by Keich et al.

4. Finding Optimal Seeds for HMMs

Assume that we are given a seed @) with length M and weight W and an HMM that
characterizes alignments. We want to compute the probability of seed @ having at
least one hit in an alignment of length V. This probability is the sensitivity of the
seed Q.

Let S be the set of states of the HMM. Each step of the generative process
consists of emission of one character in the current state, followed by transition
to the next state. Let String(s,x) be the event that the HMM generates string z,
assuming that it starts in state s. Let State(s,t,i) be the probability that after ¢
steps the HMM will be in state t, assuming that it starts in state s. Notice that
Pr(State(s, 0,s)) =1 and >, (g 13 Pr(String(s, x)) = 1, for all 4.

We will proceed by dynamic programming, where the subproblem is defined as
follows: for any ¢ < N, binary string x of length at most min{i, M}, and s € 5,
the subproblem A; , s is the probability that the string generated by the HMM in ¢
steps starting in state s contains a match of the seed @, provided that x is a prefix
of the generated string. The probability that ) has at least one hit in the entire
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alignment then equals the sum of Ay ) s over all states s, weighted by the initial
probabilities of the states (A denotes the empty string).

Let matches(z,Q) be the event that string 1™ ~12l is a hit for seed Q. That
is, when we align the starts of x and @, = has 1 at all positions where @ has 1. If
matches(x, @), we say that x is a matching string. Let suffiz(x, Q) be the longest
suffix z of x such that z is a matching string.

The probability A; ;s can be computed by the following recurrent formula:

0 if i < M (A)
1 if |z| = M and matches(z, Q) (B)

Y oieg Pt Airjy|,ze  if not matches(x, Q), where

Ay, = x =yz, z = suffir(z,Q),
o pe = Pr[State(s, t, |y|) | String(s, )] (C)

b Ai,xl,s
+ (1 —p)-Aizs if x| <M and matches(x,Q), where
p = Pr[String(s, x1) | String(s,xz)] (D)

Case (A) recognizes that seeds of length M cannot have hits in shorter regions.
In case (B), string x guarantees a hit. In case (C), since the string z does not
match @, a hit will not start at the first position of the alignment, so only following
positions need to be considered. In particular, the longest matching suffix z of
string = corresponds to the first possible position where a hit can occur. We need
to consider all possible states ¢t in which the HMM can start to generate suffix
z. Finally, case (D) provides a formula for combining subproblems where the last
|z] + 1 characters are fixed into a subproblem where only |z| characters are fixed.

This recurrent formula can be used to compute probabilities A; ; s in order of
increasing ¢ and shrinking x. To complete the dynamic programming algorithm we
need to demonstrate how to compute the probabilities needed in cases (C) and (D).
First, the standard Forward algorithm for HMMs® can be used to compute values
Bs ¢, and Cs , defined as follows:

B 1o = Pr(String(s,xz) and State(s,t,|z|))

CS,QC = Pr(String(s, 'T)) = Z Bs,t,ac
tesS

The conditional probabilities required can now be computed using these two

formulas:
Pr(State(s,t,y|) | String(s, §2)) = Btcyict O
B.,.-
Pr(String(s, z1) | String(s, x)) = 2 Bsta Cra @)

Cs,o:
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Keich et al.* show how to efficiently organize the computation of a similar re-
current formula so that the running time is O(M2M~W (M2 + N)) for each seed

(under the assumption that numbers of size between 0 and 2~"W can be manip-
ulated in constant time). Their methods can be applied to our modified algorithm

in the following way.

Lemma 1. The probability that a given seed of length M and weight W has a
hit in an alignment of length N generated by a given HMM with o states can be
computed in O(M2M=W (M? 4 0% + 02N)) time.

Proof. Let ' = {z, 20|z is a matching string, |x| < M }. The number of strings in
[is O(M2M=-W).

First observe that to compute values Ay A s, we do not need to compute values
of A; ;s for all , but it is sufficient to compute the values for z € I'.

A value of suffiz(z0, Q) can be easily computed in O(M?) time. Then we com-
pute values of B, for each pair of states s and ¢ and for each x € I'. Using the
fact that T is closed under prefix operation this can be done in O(a3M2M~W) time.
It is possible to prove that only values of B, , for € I' are needed to compute
probabilities from formulas (1) and (2) for all € T. In particular, notice that if
x € T and = = yz where 2z = suffiz(z, @), then both y and z are also in T.

Once all auxiliary tables are computed, each value A; , s can be computed in
O(o) time. This gives total time O(M2M =W (M2 + o3 + 02N)). O

In practice, the algorithm proved quite efficient in our experiments. We were
able to evaluate the theoretical sensitivity to alignments of length 195 of all seeds
with weight 10 and length at most 18 in 3 hours and 58 minutes, on a 2.4 GHz
Pentium IV workstation.

5. Experimental Data
5.1. Data and methods

We have conducted our experiments on two data sets of protein coding region
alignments: human vs. fruit fly and human vs. mouse. The data sets were treated
separately. First, we found statistically significant interspecies protein alignments.
Then, we filtered these so that each protein occurs in at most one alignment. Next,
we split the resulting sets into testing and training halves.

We then mapped the protein sequences to their coding sequences in the genomes.
In this way, we transformed alignments of pairs of proteins into alignments of pairs of
DNA sequences. Note that one protein alignment can yield several DNA alignments
because the coding regions for each protein can be interrupted by non-coding introns
(see Figure 2). We call the DNA alignments in this set fragments. We discarded
weakly conserved and very short fragments because they cannot be detected by
alignment programs using the spaced seed method.
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in our data set

Exon 3 Exon 4 Exon 5

Fig. 2. Several alignments of coding regions corresponding to one protein alignment.

Finally, note that the fragments are gapped alignments. However, to find a
fragment by an alignment program using the spaced seed method, the seed hit must
be within an ungapped region. Thus, we broke gapped fragments in the training
set into ungapped fragments, and again discarded weak and short fragments. In
the testing set, we have kept gapped fragments, because a single hit is sufficient to
discover the entire fragment by the spaced seed method.

By this process, we have ensured that our data sets contain biologically meaning-
ful nucleotide alignments of protein coding regions. Only coding regions of related
proteins are aligned, codon boundaries are always correctly aligned, and alignments
do not extend to non-coding parts of the genome.

The initial data set consisted of all human, fruit fly (Drosophila) and mouse
proteins from SWISSPROT database!'?, release 40.38, for which a correctly an-
notated coding regions could be found in the GenBank database. The initial
alignments were created by BLASTP 2.0.82 using E-value threshold 1073%. The
resulting set contained 339 human vs. fruit fly protein alignments and 675
human vs. mouse protein alignments. In the final data sets we filtered out
gapped fragments with alignment score less than 16 (scoring scheme: match
+1, mismatch —1, gap opening —5, gap extension —1) and ungapped frag-
ments with less than 10 matches. We show the sizes and mean lengths of align-
ments in both data sets in Table 3. The complete data set can be obtained at
http://www.bioinformatics.uwaterloo.ca/supplements/03seeds.

We used the training set of ungapped fragments to estimate the parameters of
PH, M® M® and HMM. We estimated the parameters of PH, M®) and M®)
by counting frequencies of corresponding conservation patterns, while we estimated
the parameters of the HMM model by the Baum-Welch algorithm?”. We estimated
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Table 3. Parameters of the data sets.

Training set (ungapped) | Testing set (gapped)
Data set n= mean length n = mean length
Human/fruit fly | 972 104 810 138
Human/mouse | 2171 120 1660 152

the length distribution of alignments from the set of ungapped fragments as well.

In our experiments we studied all 24310 seeds of weight 10 and length at most
18. We used the dynamic programming algorithm to compute the probability of a
hit in a random alignment for each seed under each of the models.

To evaluate the seed performance, we have computed for each seed how many
gapped alignments from the testing set contain a hit of the seed and can be thus
potentially found by an alignment program using this seed. The results of these
experiments are discussed in the following sections.

5.2. Optimal seeds and their performance

Here, we present the optimal seeds under different probabilistic models of align-
ments, and we compare their sensitivity on the testing data set as well as sensitiv-
ity when using the seeds with alignment program PatternHunter. The theoretical
sensitivity of a seed is the probability that the seed has at least one match to an
alignment. In our experiments with real data, the sensitivity of a seed is the fraction
of alignments that have a match to the seed.

Table 4 lists the seeds we selected for further examination, and presents the
sensitivity of each seed on both testing sets. We also evaluated the seeds with the
program PatternHunter and we list the fraction of testing fragments overlapping
an alignment reported by PatternHunter.

On the human vs. fruit fly data set, the seed DATA-OPT has the highest sen-
sitivity on the testing set. It was not discovered by any model. Models HMM and
M®) both discovered the seed HMM-OPT, which has almost the same performance
as DATA-OPT. The seed M3-OPT is optimal under model M) but its perfor-
mance is lower than that of the other seeds. We also include the seeds used by
WABA, PatternHunter and BLASTN for comparison. Out of these, only WABA
performs comparably with M3-OPT. We also include the seed globally worst on the
testing set.

The results are similar on the human vs. mouse data set. Here, models M (®)
and M®) found the seed DATA-OPT, which is again optimal for the testing data.
Model HMM reported the seed HMM-OPT again. Note that in this case, there is
much less difference between the best and the worst seeds, since alignments between
human and mouse are much more conserved than alignments between fruit fly and
mouse, and are thus easier to detect by any seed. Still, there is a clear separation
between performance of the seeds tailored to detecting alignments in coding regions



August 7, 2003 23:46 WSPC/INSTRUCTION FILE main

Optimal Spaced Seeds for Homologous Coding Regions 11

Table 4. Performace of selected seeds on both testing sets. Columns labeled Hit indicate how many
fragments in the testing set have a hit of the seed. Columns labeled PH indicate how many of
these fragments overlap an alignment discovered by the PatternHunter program using the seed.

Seed Fruit Fly Mouse

Hit PH | Hit PH
11011011000011011  DATA-OPT | 86% 85% | 94% 92%
11011000011011011  HMM-OPT | 85% 85% | 94% 92%
11001011001011011  M3-OPT 82% 6% | 93% 90%

11011011011011 WABA 81% 79% | 92%  90%
111001001001010111 PH-OPT 59% 57% | 87% 86%
1111111111 BLAST 45% 43% | 82% 81%

101010101010101011  WORST 38% 39% | 80% 79%

and other seeds.

In both data sets, the seeds that take into account the 3-periodic structure of
the coding regions (WABA, M3-OPT, HMM-OPT and DATA-OPT), have higher
sensitivity than other seeds. Further, the optimal seeds under models HMM and
M®) have significantly better performance than the WABA seed, currently used
for local alignments in coding regions®. By using these seeds we were able to reduce
the number false negatives by 29% in the fruit fly set and by 20% in the mouse set.

This increase in sensitivity does not come at a cost of greatly increased running
time. The running time of PatternHunter increased by at most 3% compared to the
original PH-OPT seed.

5.3. Our models as predictors of seed performance

To validate our approach further, we studied how well the sensitivity predicted
under each of the models corresponds to the sensitivity measured on the testing
data set. Good models should assign higher probability to seeds which perform
better in practice, and the probability predicted by the model should correspond
to sensitivity on real data.

As illustrated in Figure 3, the predicted probability increases with the sensitivity
of the seed on testing data in model M®), M®) and HMM. This is in contrast
to the model PH where there is no clear correspondence between predicted and
real sensitivity. Models HMM and M®) exhibit better quality of ordering among
the top seeds as well as among the worst seeds. In addition to that, HMM is
clearly the best predictor of the real sensitivity; in fact, the correlation between
the estimated sensitivity by HMM and the actual sensitivity is the highest, at
r2 = 0.9687. Sensitivity is consistently underpredicted in all models, since the
training set consisted of ungapped fragments, which are slightly shorter than the
gapped fragments in the testing set.

Table 5 further demonstrates the ordering capabilities of each of the models.
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Fig. 3. Sensitivity of all seeds on the testing set versus their predicted sensitivity under differ-
ent probabilistic models. Each dot represents one seed under one model. Vertical lines indicate
sensitivity of the WABA, PH-OPT and BLAST seeds.

Table 5. Ranks of seeds under different probabilistic models. The table shows the rank of each
of the chosen seeds in the testing data set as well as under each of the considered probabilistic

models.
Testing data Rank under a prob. model

Seed Rank Sens. | HMM M® MG PH | Name
11011011000011011 1 0.855 2 2 17 9746 | DATA-OPT
11011000011011011 2 0.851 1 1 16 9746 | HMM-OPT
11000011011011011 3 0.843 3 3 42 19124
11011011001011001 4 0.836 15 15 15 23212
101101100001101101 5 0.835 42 18 37 13208
11001011001011011 15 0.824 4 6 1 17945 | M3-OPT
11011011011011 22 0.814 17 27 129 24187 | WABA
111001001001010111 | 11258 0.585 10427 10350 3254 1 | PH-OPT
1111111111 24270 0.451 | 24285 24233 24310 24310 | BLAST
101010101010101011 | 24310 0.386 | 24310 24310 24298 24306 | WORST

Models HMM and M® correctly identified the top 3 seeds, while the seed classified
as the best in M®) model ranks 15th on the testing data. Also, there is no clear
correspondence between ranks in PH model and rank on the testing data. The
BLASTN seed (which is currently the most widely used) is among the worst seeds
in any of the considered models.
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5.4. Performance relative to TBLASTX, BLASTN and BLAT

Finally, and perhaps most importantly, we have compared the performance of Pat-
ternHunter using our optimal seed HMM-OPT with the performance of TBLASTX,
and with the performance of translated BLAT!!, which is a sequence alignment
program for genome comparison focusing on coding regions and also allowing mis-
matches in original seeds. Both TBLASTX and translated BLAT find hits from the
sequences translated into all frames, and then extend these hits using an amino acid
scoring matrix. On the other hand, PatternHunter with our seed works directly on
the genomic sequences.

The results of our experiments comparing the exonic sequences in our data sets
from human and mouse and from human and fruit fly are summarized in Table 6.

Here, we see that the false negative rates of TBLASTX and our method are quite
close, 6.4% for TBLASTX versus 8.4% for our method. However, the runtimes are
not at all close: TBLASTX required fifteen minutes to align these exonic sequences,
while our program required 22 seconds. To see if a more sensitive seed might still
beat TBLASTX, we computed the optimal seed for model M (®) with eight ones in
a seed length of at most eighteen. In Table 6, we call this seed M8-18-8. Using this
seed, 11000011011011, we found 97.2% of the BLASTP alignments, with a runtime
of 37 seconds. This is still 24 times faster than TBLASTX, yet has fewer than
half as many false negatives. While this seed does generate more false positives,
as detected in the slower runtime, the runtime is only two times slower than the
runtime for the weight 10 seeds.

In experiments on the full genomic regions containing the exons, results were
also not comparable: TBLASTX required 7.26 hours (26141 s) to align these regions,
while PatternHunter using the HMM-OPT seed required 23 minutes (1394 s). Using
the more sensitive weight 8 seed, the alignment still required only two hours (7219 s).

Compared to the BLASTN seed, our methods were also much more successful.
With comparable runtimes, we found only 81% of alignments with the BLASTN
seed. When we used the comparisons between human and fruit fly, things were
worse: there, BLASTN’s seed matched only 42.6% of alignments, while HMM-OPT
matched 84.7%. This corresponds to a factor of four difference in false negatives.

BLAT also fared substantially less well than our alignment method. At its de-
fault seed length setting of five amino acids, BLAT found 80.7% of alignments,
about 1.73 times faster than our method, which found 92.5% of them. BLAT did
not have a false positive rate comparable to our method until we reduced the seed
length to three amino acids; then, it took almost three hundred times as long to do
its alignments, while still only finding 90.7% of alignments. However, we note that
BLAT also stitches mRNA alignments together, and in general attempts to solve
a different problem than just identifying homologous coding alignments as for our
system.

Our experiments show that PatternHunter, using our optimal seeds, is substan-
tially more effective than existing sequence alignment packages tailored to align
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Table 6. Sensitivity and runtime of various methods for aligning homologous coding sequences.
The DATA-OPT, HMM-OPT and MS8-18-8 rows correspond to using various spaced seeds with
PatternHunter; the other rows correspond to other programs. The M8-18-8 seed is a weight 8 seed
that offers sensitivity comparable to or superior to TBLASTX with vastly reduced runtimes.

Human / mouse Human / fruit fly
Seed Sensitivity —runtime (s) | Sensitivity —runtime (s)
DATA-OPT 0.925 21.8 0.851 13.8
HMM-OPT 0.916 21.9 0.847 14.0
TBLASTX 0.936 891.1 0.947 123.7
BLAT 0.807 12.6 0.581 9.0
MS8-18-8 0.972 37.3 0.946 19.9

homologous coding regions, offering greater sensitivity and much lower runtime
costs.

6. Conclusion

We have found the optimal spaced seeds for detecting homologous coding regions,
whose conservation pattern is characterized by hidden Markov models. These seeds
turn out to be substantially more sensitive to alignments than the seeds used by
existing sequence alignment methods, while alignments based on them require es-
sentially no additional time. In our experiments, we found that they substantially
outperform the naive BLAST search, and the PatternHunter seed, developed for a
different model. They also outperform the simple 3-periodic seed used in WABA,
matching 20-29% of the alignments missed by that seed in our experiments.

In identifying these optimal seeds, we have given an algorithm to compute the
optimal spaced seeds for detecting sequences generated by a hidden Markov model.
By extending work of Keich et al.?, we have given an efficient algorithm for com-
puting the probability that a sequence generated by such a model matches a given
seed; then, by examining all such seeds, one can find the best.

Our specific models for conservation patterns in homologous coding sequences
incorporate many properties of these regions. We developed HMMs for local align-
ments that take into account their 3-periodic nature, dependence among positions
within triplets, and the inhomogeneity of local coding alignments. The best of these
HMDMs is much better at predicting the sensitivity of a given seed than more naive
models are. In particular, in one experiment, the 3 best seeds according to this
model were, in fact, the best overall.

Other questions for future work remain open. First, is it possible to develop sim-
ilar seed-finding algorithms for other probabilistic models more complicated than
HMMs, while still keeping a reasonable runtime? Alternatively, can one approxi-
mate the probability of a seed match without the expensive dynamic programming
we have described? Also, do other pattern-finding applications of this sort exist,
where one searches for patterns in the output of HMMs, and if so, how readily can
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these fit within our framework? Finally, can still more accurate models for coding
alignments be developed, or can similar techniques be used to study patterns of
conservations in sequence elements other than protein coding regions?
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