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Optimal spaced seeds were developed as a method to increase sensitivity of local align-

ment programs similar to BLASTN. Such seeds have been used before in the pro-
gram PatternHunter, and have given improved sensitivity and running time relative to
BLASTN in genome-genome comparison. We study the problem of computing optimal

spaced seeds for detecting homologous coding regions in unannotated genomic sequences.
By using well-chosen seeds, we are able to improve the sensitivity of coding sequence
alignment over that of TBLASTX, while keeping runtime comparable to BLASTN. We
identify good seeds by first giving effective hidden Markov models of conservation in

alignments of homologous coding regions. We give an efficient algorithm to compute the
optimal spaced seed when conservation patterns are generated by these models. Our
results offer the hope of improved gene finding due to fewer missed exons in DNA/DNA
comparison, and more effective homology search in general, and may have applications

outside of bioinformatics.

Keywords: Spaced seeds, local alignment, gene prediction, homology search, hidden
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1. Introduction

In their program PatternHunter, Ma et al.1 introduced spaced seeds as a way of

improving the sensitivity of homology search programs at minimal cost. In this

framework, as in the traditional one typified by BLASTN2, DNA alignments are

based on short matches, called seeds, between the two sequences. With spaced

seeds, however, there are specific positions in the seed match that need not be

identical. This contrasts with programs such as BLASTN, which is based on eleven

consecutive characters found in both sequences.

Here, we extend this idea of spaced seeds to the case of detecting homolo-

gous coding regions in unannotated DNA sequences. For distantly related species,

these regions form the majority of pairwise alignments. Also, DNA alignments be-

tween homologous coding regions can aid in gene finding3. Therefore, programs for

genome-genome comparison must be able to find such alignments.

1
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We develop a sequence alignment method that substantially improves upon

existing algorithms for identifying homologous DNA sequences. In particular, our

experiments on homologous human and mouse sequences show that our method has

comparable sensitivity to TBLASTX, while requiring forty times less CPU time;

alternatively, with different parameter settings, our methods give fewer than half as

many false negatives while still running 24 times faster than TBLASTX. Compared

to BLASTN, our method gives far fewer false negatives: four times fewer for seeds

with comparable runtimes, in the case of human/fruit fly comparisons.

Our method is successful because it is based on spaced seeds that are optimal

for probabilistic models that accurately represent alignments of coding regions.

By contrast, PatternHunter’s seed is the seed most likely to have a match in a

homologous region of length 64 where each position is the same with probability

0.7. PatternHunter’s seed is optimal in the sense that it has highest probability of

all seeds in a given family of matching an alignment drawn from this distribution.

Keich et al.4 have given an algorithm which computes these probabilities for the

simple alignment model in PatternHunter.

Since coding region alignments have complicated structure, including three-

periodicity and internal dependencies, this simple model of alignments is not ap-

propriate for identifying homologous coding regions. We develop models that take

these factors into account, and thus model conservation in alignments much more

accurately. Our models are represented by hidden Markov models, where the prob-

ability that a position is conserved depends on the state of the model. In Section 4,

we extend the algorithm of Keich et al. to the case of hidden Markov models, and

show that one can still compute the optimal spaced seed efficiently. It is these seeds

which underly our successful method for alignment.

We note that the use of spaced seeds for homology search in coding sequences

has implicitly been studied before, in the software package WABA5. This program

uses the trivial three-periodic seed 110110110 . . . Our method is more sensitive,

while having comparable runtime. We also note that our methods were developed

contemporaneously with other work by Buhler et al.6, who extend Keich et al.’s

algorithm4 to the case of multiple seeds used for the same model. They do not,

however, consider the case of either HMMs, or of probabilistic models specifically

developed for coding regions.

2. Spaced seeds and simple probabilistic models of local

alignments

Following ideas introduced in Ma et al.1, we consider the use of spaced seeds,

which generalize the algorithm used in BLASTN to identify homologous regions.

BLASTN first finds short exact matches, called hits. A BLASTN hit consists of

several consecutive positions (the default is 11). For each, an alignment is built

that extends the hit on both sides. If the alignment score exceeds a threshold, the

alignment is reported. Some significant alignments do not contain 11 consecutive
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matches; thus, they are not discovered by BLASTN.

In a generalization introduced by Ma et al.1, a hit consists of several non-

consecutive matches in a prescribed configuration, called a spaced seed. A seed can

be represented as a binary sequence, in which a 1 denotes a position that is required

to match and a 0 denotes a position that is not required to match. For example, the

seed 110111 requires two consecutive matches followed by one position which may

or may not match, and another 3 consecutive matches. The seed corresponding to

a BLASTN hit is simply 11111111111.

Local alignments can be represented as binary sequences, where 1 represents

a match and 0 a mismatch. We model only ungapped alignments, as seed hits

are found only in gapless regions. We can characterize a particular type of local

alignment by giving a probabilistic model defining a probability distribution over

all binary strings of a given length.

Then, given a particular probabilistic model, we can find a seed s∗ from a class

of seeds C maximizing the probability of a hit in an alignment sampled from this

model. For us, the class C is all seeds with W ones and length at most M . To

avoid redundancy, we require that the first and last positions of a seed are 1. The

parameter W is the weight of a seed.

Ma et al.1 introduced the concept of optimal seeds in PatternHunter. Pat-

ternHunter’s probabilistic model of alignment PH (N, p) represents a similarity

region of length N , where each position is a match independently with prob-

ability p. Formally, it is a sequence of N independent Bernoulli random vari-

ables X0,X1, . . . ,XN−1, with Pr(Xi = 1) = p for each i. PatternHunter’s seed

111001001001010111 optimizes this model with parameters N = 64 and p = 0.7.

Keich et al.4 give a dynamic programming algorithm to compute the probability

that a given seed Q of length M has at least one hit in an alignment sampled from

PH (N, p). The running time is O(2M−W M(M2 +N)) for each seed. One computes

the probability of a hit for each seed in C and chooses the best.

As we will show in the next section, the simple PH model does not well represent

coding sequences, and thus is poor at picking optimal seeds for finding alignments

between them. We present richer probabilistic models for coding sequences that

take into account their dependencies and complexity.

3. Modeling Local Alignments in Protein Coding Regions

Alignments in coding regions have specific properties not modeled well by the sim-

ple PH model. First, the PH model assumes equal mutation rate on all positions

in the alignment. However, in protein coding regions, silent mutations accumulate

more quickly than mutations that change amino acids. Therefore, third positions in

codons of even closely related proteins can undergo substantial mutation, since this

is the position in codons most likely to be redundant. There also can be substantial

within-codon dependencies in alignment positions. Finally, coding sequence align-

ments (and, actually, non-coding alignments) often are quite inhomogeneous: some
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Table 1. Parameters of model M (3) estimated from our training set.

Data set p0 p1 p2

human/mouse 0.82 0.87 0.61

human/fruit fly 0.67 0.77 0.40

regions are highly conserved between the two species and others are not.

We address these issues by developing three models, increasing in complexity

and accuracy, for alignments of coding regions. Our models can be represented

as hidden Markov models (HMMs). HMMs model dependencies between adjacent

positions in the sequence and have sucessfully modeled biological sequences in a

number of applications7. Our work adds to this list by demonstrating that HMMs

can capture several important properties of alignments of protein coding regions in

DNA sequences.

We also extend the probabilistic model so that the length of the alignment is

a random variable, chosen from some fixed distribution of alignment lengths. The

probability of a seed match in such an extended model is the weighted average of

the probabilities for models with fixed lengths. In our experiments, in Section 5,

this distribution is the empirical one from the data in our test set.

3.1. Three-periodicity

The most obvious property of alignments in coding regions is their three-periodicity

and the fact that some of the positions of a codon are less conserved than others.

A simple extension of the PH model, which we call M (3), encapsulates this idea.

Model M (3)(N, p0, p1, p2) represents a region of length N , where the probability of

a site being a match depends on its relative codon position, but positions within

the alignment are still independent. Formally, it is a sequence of N independent

Bernoulli random variables X0,X1, . . . ,XN−1 where Pr(Xi = 1) = pi mod 3. This

model can be expressed as a simple HMM with three states, as depicted in Figure 1,

and we can use the algorithm presented in Section 4 to compute the probability

that a seed matches an alignment sampled from this model.

Table 1 shows the parameters of the model M (3) estimated from our training

set of alignments between human and fruit fly protein coding regions and between

human and mouse protein coding regions (more details about the data sets can be

found in Section 5). In both cases, the third position is much less conserved than

the others, and the first position is somewhat less conserved than the second.

3.2. Dependencies within codon

Model M (3) models the different conservation levels within codons arising from

the redundancy of the genetic code. However, there are also dependencies among

positions within codons. These arise in part from the differing prevalence of some
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d = p010/(p010 + p011)

e = p100/(p100 + p101)

f = p110/(p110 + p111)

g = h = p000 + p001 + p010 + p011

Fig. 1. HMM representation of models M (3)(N, p0, p1, p2) and M (8)(n, p000, . . . , p111). Each state
is labeled with emission probability of ‘1’. In the HMM for M (3), each transition has probability

1. In the HMM for M (8), each state has two outgoing transitions. One of them has the transition
probability shown in the picture; the other has probability such that they add to 1.

amino acids and their corresponding codons. To model these dependencies, we use

another model, M (8).

The model M (8)(n, p000, p001, . . . , p111) represents a region of n codons (N =

3n nucleotides). Each codon has conservation pattern x ∈ {0, 1}3 with prob-

ability px; the sum of p000, p001, . . . , p111 is 1. In this model, the positions

within one codon have arbitrary dependencies specified by the parameters

p000, . . . , p111, yet individual codons are independent of each other. Formally,

this model is a sequence of n independent triples of Bernoulli random vari-

ables (X0,X1,X2), . . . , (X3n−3,X3n−2,X3n−1), such that Pr(X3i = a,X3i+1 =

b,X3i+2 = c) = pabc. Model M (8) can be represented by the HMM shown in Fig-

ure 1.

Table 2 demonstrates the existence of dependencies within codon. The first row

of the table shows the probabilities of all triplets as estimated by model M (3),

under the assumption that codon positions are independent. The second row shows

the probabilities of all triplets in model M (8), which exactly match the data set

probabilities. In particular, triplets 000 and 111 occur in the data more often than

expected by the M (3) model. Hence, we expect that the M (3) model will be inferior

to the M (8) model, since it underestimates the probability of a triplet being fully

conserved and of the triplet being entirely unconserved.
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Table 2. Comparison of probabilities of conservation patterns within a codon in models M (3) and
M(8). Parameters of models estimated from human/fruit fly alignments.

Model p000 p001 p010 p011 p100 p101 p110 p111
M (3) 0.05 0.03 0.15 0.10 0.09 0.06 0.31 0.20

M (8) 0.11 0.04 0.12 0.06 0.06 0.03 0.32 0.27

3.3. Inhomogeneity of alignments

The previous models assume that alignments have roughly the same conservation

rate throughout their length. In fact, the pattern of conservation of a typical align-

ment is highly non-uniform. Many alignments include short, highly conserved re-

gions surrounded by less well conserved regions. (This is unsurprising, as highly

conserved regions are more likely to be functional parts of the proteins8.)

We address this problem with a new HMM. In this model, regions with high and

low conservation can alternate. This model is an HMM consisting of four copies of

the HMM for M (8) shown in Figure 1, each copy corresponding to a different level

of conservation. To allow transitions between different conservation levels, we add

transitions from all copies of both states labeled by a star in Figure 1 to all copies

of both states labeled by two stars, thus allowing changes in conservation rate after

each codon. In our experiments this model will be called HMM .

In the next section, we present an algorithm for computing the probability that

a seed has a hit in a string sampled from an HMM. Our algorithm is an extension of

the algorithm presented by Keich et al.4 In particular, the PH probabilistic model is

equivalent to a single state HMM, and in this special case, our algorithm is identical

to the one presented by Keich et al.

4. Finding Optimal Seeds for HMMs

Assume that we are given a seed Q with length M and weight W and an HMM that

characterizes alignments. We want to compute the probability of seed Q having at

least one hit in an alignment of length N . This probability is the sensitivity of the

seed Q.

Let S be the set of states of the HMM. Each step of the generative process

consists of emission of one character in the current state, followed by transition

to the next state. Let String(s, x) be the event that the HMM generates string x,

assuming that it starts in state s. Let State(s, t, i) be the probability that after i

steps the HMM will be in state t, assuming that it starts in state s. Notice that

Pr(State(s, 0, s)) = 1 and
∑

x∈{0,1}i Pr(String(s, x)) = 1, for all i.

We will proceed by dynamic programming, where the subproblem is defined as

follows: for any i ≤ N , binary string x of length at most min{i,M}, and s ∈ S,

the subproblem Ai,x,s is the probability that the string generated by the HMM in i

steps starting in state s contains a match of the seed Q, provided that x is a prefix

of the generated string. The probability that Q has at least one hit in the entire
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alignment then equals the sum of AN,λ,s over all states s, weighted by the initial

probabilities of the states (λ denotes the empty string).

Let matches(x,Q) be the event that string x1M−|x| is a hit for seed Q. That

is, when we align the starts of x and Q, x has 1 at all positions where Q has 1. If

matches(x,Q), we say that x is a matching string. Let suffix (x,Q) be the longest

suffix z of x such that z is a matching string.

The probability Ai,x,s can be computed by the following recurrent formula:

Ai,x,s =







0 if i < M (A)

1 if |x| = M and matches(x,Q) (B)
∑

t∈S pt · Ai−|y|,z,t if not matches(x,Q), where

x = yz, z = suffix (x,Q),

pt = Pr[State(s, t, |y|) |String(s, x)] (C)

p · Ai,x1,s

+ (1 − p) · Ai,x0,s if |x| < M and matches(x,Q), where

p = Pr[String(s, x1) |String(s, x)] (D)

Case (A) recognizes that seeds of length M cannot have hits in shorter regions.

In case (B), string x guarantees a hit. In case (C), since the string x does not

match Q, a hit will not start at the first position of the alignment, so only following

positions need to be considered. In particular, the longest matching suffix z of

string x corresponds to the first possible position where a hit can occur. We need

to consider all possible states t in which the HMM can start to generate suffix

z. Finally, case (D) provides a formula for combining subproblems where the last

|x| + 1 characters are fixed into a subproblem where only |x| characters are fixed.

This recurrent formula can be used to compute probabilities Ai,x,s in order of

increasing i and shrinking x. To complete the dynamic programming algorithm we

need to demonstrate how to compute the probabilities needed in cases (C) and (D).

First, the standard Forward algorithm for HMMs9 can be used to compute values

Bs,t,x and Cs,x defined as follows:

Bs,t,x = Pr(String(s, x) and State(s, t, |x|))

Cs,x = Pr(String(s, x)) =
∑

t∈S

Bs,t,x

The conditional probabilities required can now be computed using these two

formulas:

Pr(State(s, t, |y|) |String(s,

x
︷︸︸︷
yz )) =

Bs,t,y · Ct,z

Cs,x

(1)

Pr(String(s, x1) |String(s, x)) =

∑

t Bs,t,x · Ct,1

Cs,x

(2)
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Keich et al.4 show how to efficiently organize the computation of a similar re-

current formula so that the running time is O(M2M−W (M2 + N)) for each seed

(under the assumption that numbers of size between 0 and 2M−W can be manip-

ulated in constant time). Their methods can be applied to our modified algorithm

in the following way.

Lemma 1. The probability that a given seed of length M and weight W has a

hit in an alignment of length N generated by a given HMM with σ states can be

computed in O(M2M−W (M2 + σ3 + σ2N)) time.

Proof. Let Γ = {x, x0 |x is a matching string, |x| ≤ M}. The number of strings in

Γ is O(M2M−W ).

First observe that to compute values AN,Λ,s, we do not need to compute values

of Ai,x,s for all x, but it is sufficient to compute the values for x ∈ Γ.

A value of suffix (x0, Q) can be easily computed in O(M 2) time. Then we com-

pute values of Bs,t,x for each pair of states s and t and for each x ∈ Γ. Using the

fact that Γ is closed under prefix operation this can be done in O(σ3M2M−W ) time.

It is possible to prove that only values of Bs,t,x for x ∈ Γ are needed to compute

probabilities from formulas (1) and (2) for all x ∈ Γ. In particular, notice that if

x ∈ Γ and x = yz where z = suffix (x,Q), then both y and z are also in Γ.

Once all auxiliary tables are computed, each value Ai,x,s can be computed in

O(σ) time. This gives total time O(M2M−W (M2 + σ3 + σ2N)).

In practice, the algorithm proved quite efficient in our experiments. We were

able to evaluate the theoretical sensitivity to alignments of length 195 of all seeds

with weight 10 and length at most 18 in 3 hours and 58 minutes, on a 2.4 GHz

Pentium IV workstation.

5. Experimental Data

5.1. Data and methods

We have conducted our experiments on two data sets of protein coding region

alignments: human vs. fruit fly and human vs. mouse. The data sets were treated

separately. First, we found statistically significant interspecies protein alignments.

Then, we filtered these so that each protein occurs in at most one alignment. Next,

we split the resulting sets into testing and training halves.

We then mapped the protein sequences to their coding sequences in the genomes.

In this way, we transformed alignments of pairs of proteins into alignments of pairs of

DNA sequences. Note that one protein alignment can yield several DNA alignments

because the coding regions for each protein can be interrupted by non-coding introns

(see Figure 2). We call the DNA alignments in this set fragments. We discarded

weakly conserved and very short fragments because they cannot be detected by

alignment programs using the spaced seed method.
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Fig. 2. Several alignments of coding regions corresponding to one protein alignment.

Finally, note that the fragments are gapped alignments. However, to find a

fragment by an alignment program using the spaced seed method, the seed hit must

be within an ungapped region. Thus, we broke gapped fragments in the training

set into ungapped fragments, and again discarded weak and short fragments. In

the testing set, we have kept gapped fragments, because a single hit is sufficient to

discover the entire fragment by the spaced seed method.

By this process, we have ensured that our data sets contain biologically meaning-

ful nucleotide alignments of protein coding regions. Only coding regions of related

proteins are aligned, codon boundaries are always correctly aligned, and alignments

do not extend to non-coding parts of the genome.

The initial data set consisted of all human, fruit fly (Drosophila) and mouse

proteins from SWISSPROT database10, release 40.38, for which a correctly an-

notated coding regions could be found in the GenBank database. The initial

alignments were created by BLASTP 2.0.82 using E-value threshold 10−30. The

resulting set contained 339 human vs. fruit fly protein alignments and 675

human vs. mouse protein alignments. In the final data sets we filtered out

gapped fragments with alignment score less than 16 (scoring scheme: match

+1, mismatch −1, gap opening −5, gap extension −1) and ungapped frag-

ments with less than 10 matches. We show the sizes and mean lengths of align-

ments in both data sets in Table 3. The complete data set can be obtained at

http://www.bioinformatics.uwaterloo.ca/supplements/03seeds.

We used the training set of ungapped fragments to estimate the parameters of

PH , M (3), M (8), and HMM . We estimated the parameters of PH, M (3), and M (8)

by counting frequencies of corresponding conservation patterns, while we estimated

the parameters of the HMM model by the Baum-Welch algorithm7. We estimated



August 7, 2003 23:46 WSPC/INSTRUCTION FILE main
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Table 3. Parameters of the data sets.

Training set (ungapped) Testing set (gapped)

Data set n = mean length n = mean length

Human/fruit fly 972 104 810 138

Human/mouse 2171 120 1660 152

the length distribution of alignments from the set of ungapped fragments as well.

In our experiments we studied all 24310 seeds of weight 10 and length at most

18. We used the dynamic programming algorithm to compute the probability of a

hit in a random alignment for each seed under each of the models.

To evaluate the seed performance, we have computed for each seed how many

gapped alignments from the testing set contain a hit of the seed and can be thus

potentially found by an alignment program using this seed. The results of these

experiments are discussed in the following sections.

5.2. Optimal seeds and their performance

Here, we present the optimal seeds under different probabilistic models of align-

ments, and we compare their sensitivity on the testing data set as well as sensitiv-

ity when using the seeds with alignment program PatternHunter. The theoretical

sensitivity of a seed is the probability that the seed has at least one match to an

alignment. In our experiments with real data, the sensitivity of a seed is the fraction

of alignments that have a match to the seed.

Table 4 lists the seeds we selected for further examination, and presents the

sensitivity of each seed on both testing sets. We also evaluated the seeds with the

program PatternHunter and we list the fraction of testing fragments overlapping

an alignment reported by PatternHunter.

On the human vs. fruit fly data set, the seed DATA-OPT has the highest sen-

sitivity on the testing set. It was not discovered by any model. Models HMM and

M (8) both discovered the seed HMM-OPT, which has almost the same performance

as DATA-OPT. The seed M3-OPT is optimal under model M (3), but its perfor-

mance is lower than that of the other seeds. We also include the seeds used by

WABA, PatternHunter and BLASTN for comparison. Out of these, only WABA

performs comparably with M3-OPT. We also include the seed globally worst on the

testing set.

The results are similar on the human vs. mouse data set. Here, models M (8)

and M (3) found the seed DATA-OPT, which is again optimal for the testing data.

Model HMM reported the seed HMM-OPT again. Note that in this case, there is

much less difference between the best and the worst seeds, since alignments between

human and mouse are much more conserved than alignments between fruit fly and

mouse, and are thus easier to detect by any seed. Still, there is a clear separation

between performance of the seeds tailored to detecting alignments in coding regions
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Table 4. Performace of selected seeds on both testing sets. Columns labeled Hit indicate how many
fragments in the testing set have a hit of the seed. Columns labeled PH indicate how many of
these fragments overlap an alignment discovered by the PatternHunter program using the seed.

Seed Fruit Fly Mouse

Hit PH Hit PH

11011011000011011 DATA-OPT 86% 85% 94% 92%

11011000011011011 HMM-OPT 85% 85% 94% 92%

11001011001011011 M3-OPT 82% 76% 93% 90%

11011011011011 WABA 81% 79% 92% 90%

111001001001010111 PH-OPT 59% 57% 87% 86%

1111111111 BLAST 45% 43% 82% 81%

101010101010101011 WORST 38% 39% 80% 79%

and other seeds.

In both data sets, the seeds that take into account the 3-periodic structure of

the coding regions (WABA, M3-OPT, HMM-OPT and DATA-OPT), have higher

sensitivity than other seeds. Further, the optimal seeds under models HMM and

M (8) have significantly better performance than the WABA seed, currently used

for local alignments in coding regions5. By using these seeds we were able to reduce

the number false negatives by 29% in the fruit fly set and by 20% in the mouse set.

This increase in sensitivity does not come at a cost of greatly increased running

time. The running time of PatternHunter increased by at most 3% compared to the

original PH-OPT seed.

5.3. Our models as predictors of seed performance

To validate our approach further, we studied how well the sensitivity predicted

under each of the models corresponds to the sensitivity measured on the testing

data set. Good models should assign higher probability to seeds which perform

better in practice, and the probability predicted by the model should correspond

to sensitivity on real data.

As illustrated in Figure 3, the predicted probability increases with the sensitivity

of the seed on testing data in model M (3), M (8), and HMM . This is in contrast

to the model PH where there is no clear correspondence between predicted and

real sensitivity. Models HMM and M (8) exhibit better quality of ordering among

the top seeds as well as among the worst seeds. In addition to that, HMM is

clearly the best predictor of the real sensitivity; in fact, the correlation between

the estimated sensitivity by HMM and the actual sensitivity is the highest, at

r2 = 0.9687. Sensitivity is consistently underpredicted in all models, since the

training set consisted of ungapped fragments, which are slightly shorter than the

gapped fragments in the testing set.

Table 5 further demonstrates the ordering capabilities of each of the models.
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12 Broňa Brejová, Daniel G. Brown, Tomáš Vinař
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Fig. 3. Sensitivity of all seeds on the testing set versus their predicted sensitivity under differ-
ent probabilistic models. Each dot represents one seed under one model. Vertical lines indicate

sensitivity of the WABA, PH-OPT and BLAST seeds.

Table 5. Ranks of seeds under different probabilistic models. The table shows the rank of each
of the chosen seeds in the testing data set as well as under each of the considered probabilistic
models.

Testing data Rank under a prob. model

Seed Rank Sens. HMM M
(8)

M
(3) PH Name

11011011000011011 1 0.855 2 2 17 9746 DATA-OPT
11011000011011011 2 0.851 1 1 16 9746 HMM-OPT
11000011011011011 3 0.843 3 3 42 19124
11011011001011001 4 0.836 15 15 15 23212
101101100001101101 5 0.835 42 18 37 13208

11001011001011011 15 0.824 4 6 1 17945 M3-OPT
11011011011011 22 0.814 17 27 129 24187 WABA
111001001001010111 11258 0.585 10427 10350 3254 1 PH-OPT
1111111111 24270 0.451 24285 24233 24310 24310 BLAST
101010101010101011 24310 0.386 24310 24310 24298 24306 WORST

Models HMM and M (8) correctly identified the top 3 seeds, while the seed classified

as the best in M (3) model ranks 15th on the testing data. Also, there is no clear

correspondence between ranks in PH model and rank on the testing data. The

BLASTN seed (which is currently the most widely used) is among the worst seeds

in any of the considered models.
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5.4. Performance relative to TBLASTX, BLASTN and BLAT

Finally, and perhaps most importantly, we have compared the performance of Pat-

ternHunter using our optimal seed HMM-OPT with the performance of TBLASTX,

and with the performance of translated BLAT11, which is a sequence alignment

program for genome comparison focusing on coding regions and also allowing mis-

matches in original seeds. Both TBLASTX and translated BLAT find hits from the

sequences translated into all frames, and then extend these hits using an amino acid

scoring matrix. On the other hand, PatternHunter with our seed works directly on

the genomic sequences.

The results of our experiments comparing the exonic sequences in our data sets

from human and mouse and from human and fruit fly are summarized in Table 6.

Here, we see that the false negative rates of TBLASTX and our method are quite

close, 6.4% for TBLASTX versus 8.4% for our method. However, the runtimes are

not at all close: TBLASTX required fifteen minutes to align these exonic sequences,

while our program required 22 seconds. To see if a more sensitive seed might still

beat TBLASTX, we computed the optimal seed for model M (8) with eight ones in

a seed length of at most eighteen. In Table 6, we call this seed M8-18-8. Using this

seed, 11000011011011, we found 97.2% of the BLASTP alignments, with a runtime

of 37 seconds. This is still 24 times faster than TBLASTX, yet has fewer than

half as many false negatives. While this seed does generate more false positives,

as detected in the slower runtime, the runtime is only two times slower than the

runtime for the weight 10 seeds.

In experiments on the full genomic regions containing the exons, results were

also not comparable: TBLASTX required 7.26 hours (26141 s) to align these regions,

while PatternHunter using the HMM-OPT seed required 23 minutes (1394 s). Using

the more sensitive weight 8 seed, the alignment still required only two hours (7219 s).

Compared to the BLASTN seed, our methods were also much more successful.

With comparable runtimes, we found only 81% of alignments with the BLASTN

seed. When we used the comparisons between human and fruit fly, things were

worse: there, BLASTN’s seed matched only 42.6% of alignments, while HMM-OPT

matched 84.7%. This corresponds to a factor of four difference in false negatives.

BLAT also fared substantially less well than our alignment method. At its de-

fault seed length setting of five amino acids, BLAT found 80.7% of alignments,

about 1.73 times faster than our method, which found 92.5% of them. BLAT did

not have a false positive rate comparable to our method until we reduced the seed

length to three amino acids; then, it took almost three hundred times as long to do

its alignments, while still only finding 90.7% of alignments. However, we note that

BLAT also stitches mRNA alignments together, and in general attempts to solve

a different problem than just identifying homologous coding alignments as for our

system.

Our experiments show that PatternHunter, using our optimal seeds, is substan-

tially more effective than existing sequence alignment packages tailored to align
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Table 6. Sensitivity and runtime of various methods for aligning homologous coding sequences.
The DATA-OPT, HMM-OPT and M8-18-8 rows correspond to using various spaced seeds with
PatternHunter; the other rows correspond to other programs. The M8-18-8 seed is a weight 8 seed

that offers sensitivity comparable to or superior to TBLASTX with vastly reduced runtimes.

Human / mouse Human / fruit fly

Seed Sensitivity runtime (s) Sensitivity runtime (s)

DATA-OPT 0.925 21.8 0.851 13.8

HMM-OPT 0.916 21.9 0.847 14.0

TBLASTX 0.936 891.1 0.947 123.7

BLAT 0.807 12.6 0.581 9.0

M8-18-8 0.972 37.3 0.946 19.9

homologous coding regions, offering greater sensitivity and much lower runtime

costs.

6. Conclusion

We have found the optimal spaced seeds for detecting homologous coding regions,

whose conservation pattern is characterized by hidden Markov models. These seeds

turn out to be substantially more sensitive to alignments than the seeds used by

existing sequence alignment methods, while alignments based on them require es-

sentially no additional time. In our experiments, we found that they substantially

outperform the naive BLAST search, and the PatternHunter seed, developed for a

different model. They also outperform the simple 3-periodic seed used in WABA,

matching 20-29% of the alignments missed by that seed in our experiments.

In identifying these optimal seeds, we have given an algorithm to compute the

optimal spaced seeds for detecting sequences generated by a hidden Markov model.

By extending work of Keich et al.4, we have given an efficient algorithm for com-

puting the probability that a sequence generated by such a model matches a given

seed; then, by examining all such seeds, one can find the best.

Our specific models for conservation patterns in homologous coding sequences

incorporate many properties of these regions. We developed HMMs for local align-

ments that take into account their 3-periodic nature, dependence among positions

within triplets, and the inhomogeneity of local coding alignments. The best of these

HMMs is much better at predicting the sensitivity of a given seed than more naive

models are. In particular, in one experiment, the 3 best seeds according to this

model were, in fact, the best overall.

Other questions for future work remain open. First, is it possible to develop sim-

ilar seed-finding algorithms for other probabilistic models more complicated than

HMMs, while still keeping a reasonable runtime? Alternatively, can one approxi-

mate the probability of a seed match without the expensive dynamic programming

we have described? Also, do other pattern-finding applications of this sort exist,

where one searches for patterns in the output of HMMs, and if so, how readily can
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these fit within our framework? Finally, can still more accurate models for coding

alignments be developed, or can similar techniques be used to study patterns of

conservations in sequence elements other than protein coding regions?
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