OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL
PREDICTION
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1. Summary. A solution is given to the problem of how to determine at which
points in the interval [—1, 1] observations should be taken and what proportion
of the observations should be taken at each such point so as to minimize the
variance of the predicted value of a polynomial regression curve at a specified
point beyong the interval observations. The solution obtained states that the
points are to be chosen to be Chebychev points and the number of observations
are to be selected proportional to the absolute value of the corresponding Lag-
range polynomial at the specified point. The preceding Chebychev solution be-
comes the minimax solution for the interval (—1, ¢), provided ¢ > # > 1 where
¢, is a value satisfying a certain equation. Under the customary normality assump-
tions, the Chebychev solution to the prediction problem is used to construct a
confidence band for a polynomial curve that will possess minimum width at any
specified point beyond the interval of observations.

2. Optimum prediction. Let —1 £ z; £ 1,7=1,2, - -+, n, denote the selected
values of a variable x at which observations are to be made on a related variable
y corresponding to those selected values. If y(x;) denotes the observed value of y
corresponding to z; , it will be assumed that the variables y(z:),7 = 1,2, - -+ , n,
are uncorrelated random variables with a common variance o°. It will also be
assumed that the means of the y’s lie on a polynomial curve of known degree
k, that is, that Ely(z.)] = Bo + Buti + -++ + Buzs.

The basic problem that will be considered here is how to determine where the
2; should be chosen in the interval [—1, 1] so as to minimize the variance of the
predicted value of y at some point  beyond the interval of observations. If the
predicted value of E[y(z)], which will be denoted by #(z), for a given set of z;
values is chosen to be the traditional least squares estimator of E[y(z)], which
is also its minimum variance unbiased linear estimator, then the problem is to
choose the z; s0 as to minimize V[§(z)]. Now it is well known that this variance
is given by the matrix formula V[j(z)] = &' (X'S7X) 'z where 2’ =

(1, z, 2%, -+, «¥), S is the covariance matrix of the y’s, and X is the spacing
matrix
2 k
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It is also well known [6] that it is possible to choose at most k + 1 distinct points
z;in the interval [— 1, 1] and distribute the observations at those points in propor-
tions p; in such a way as to obtain the same information matrix X’S™'X as for
the original choice of z; values. If the total number of observations to be taken,
n, is fixed, these proportions may not yield integer values for the number of
observations to be taken at the various points; therefore the theory that is about
to be presented must be considered as an approximate theory only. Thus, if an
optimum design required n; = np; observations to be taken at z; and 7, is not an
integer, it would be necessary to choose an integer close to n; for the actual num-
ber of observations.

When only k 4 1 observation points are chosen for estimating a polynomial of
degree k, the least squares estimator passes through the & + 1 mean points

(%, §:), ¢ = 0, 1, --- | k; therefore its equation can be written in the form
k
ey 9(@) = 2 Li(2)gs,
where L;(z) is the Lagrange polynomial given by
(x — @) - (& — 2i=) (@ — Tir) -+ (¢ — @)
2 Li(z) = .
@ L) =y (o = s o = ) (o= o)

It therefore follows (1) that
(3) Vig(z)] = (cr2/n);) Li(z)/p: .

The problem is now reduced to choosing the & 4+ 1 valuesofz; ,7 = 0,1, --- , k,
and the corresponding values of p; to minimize (3). This will be accomplished by
first selecting the minimizing p’s corresponding to any chosen set of z’s, and then
selecting the minimizing z’s. The following lemma yields the desired solution for

the p’s.

LemMA 1. Ifthep;, 2 = 0,1, - -+, k, are allowed to vary continuously in (0, 1)
under the restriction Yo pi = 1, then for a fired x % z;,7 =0, 1, ---, k, the
chotice
(4) p¢=—|———-——~—— i=0,1,---,k

2 L)

will minimize V[9(x)].

The proof is carried out by using standard calculus techniques and verifying
by means of second derivatives that the critical point yields a relative minimum
which is also an abolute minimum. Although z is assumed to be a given point
outside the interval [—1, 1], and therefore it should be unnecessary to insert the
restriction z  z;, thisis done to point out the fact that these p’s yield a minimum
whether z is inside or outside [—1, 1], as long as x is not chosen at an observation
point.

The next lemma is needed for determining the minimizing x’s.

LEMMA 2. Let xo < o1 < -+ < x be k + 1 distinet points in [—1, 1] and let
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G(z) be a kth degree polynomial possessing the property that G(xzo) = 0 and the
property that G(x;) = 0 or sign G(z;) = (—=1)%, ¢ = 1,2, ---, k. Then G(z)
possesses at least j roots, counting multiplicities, in the closed interval [xo, ;.

Proor. Consider any interval (z;—1, 2;), ¢ > 1. Assume, for convenience, that
7isodd. Then G(z,1) = 0, or G(z;1) > 0 and G(z;) = 0,0r G(z;) < 0. There
are four possibilities that need to be considered:

(a) G(zi1) > 0, G(w:) <O.

Here there is obviously at least one root in the interval (z;_1, z;).

(b) G(zia) > 0, G(w:) = 0.

There is at least one root in the interval if the right end point is included in the
interval.

(¢) G(zi1) = 0, G(x:) < 0.

There is at least one root in the interval if the left end point is included in the
interval.

(d) G(zi1) = 0, G(w:) = 0.

There is at least one root in the interval if either end point is included in the in-
terval.

Assume that only the left end point will be considered as always belonging to
an interval. Then (a), (¢), and (d) all qualify as yielding at least one root in the
interval. It remains, therefore, to consider case (b). There are three possibilities
to be considered here.

(e) G'(z) =0, G(zin) Z 0.

Here z; is a double root; hence one root may be assigned to the left interval and
one to the right interval; thus yielding at least one root to each interval.

(8) Q' (z:) >0, GQzi) = 0.

Here there must exist a root between z,_; and z; ; hence the root at z; may be
assigned to the right interval, thereby yielding at least one root in each interval.

(7) G,(.’Ih) < 0, G(ZU.L'_H) = 0.

If G(ziy1) > 0, there will exist a root between x; and z.41 ; therefore the root at
z; may be assigned to the left interval and the other root to the right interval.
If G(z:1) = 0, there is either a root between z; and z.1 , in which case the root
at x; may be assigned to the interval (z;_;, #;) and the other root to (x;, Z:1),
or the graph of G(x) will lie below the z axis in that interval. Since G(z:42) =< 0,
if G(zir2) < 0 it will follow that there must be a root between z,1; and ;4 or a
double root at x,.1 ; hence the earlier roots at z; and x;y; can be assigned to the
left intervals and the remaining root to the right interval, and thus each of the
three intervals will be assigned a root. If G(xi12) = 0, the same type of situation
arises as for G(z:11) = 0 and the same type of argument can be applied repeatedly
until a non-zero value of G is obtained. If no non-zero value is obtained, it must
be that G(x;) = 0. But then x; may be assigned to the interval on its left, and
thus each preceding interval can be assigned a root.

Hence it is always possible to assign one root to each interval (z;_1, z:),7 > 1.
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For the interval (zo, 1) there is the root z, . Thus, there must exist at least j
roots of G(z) in [z, 2;]. The lemma is obviously valid also if the sign G(z;) =
(—1)™; it is merely necessary that the signs alternate.

This lemma will now be used to prove the following theorem which shows how
to choose the minimizing z; values.

THEOREM. If the minimizing p’s given by formula (4) are used, the k + 1
observation points that will minimize V[§(x)] at x > 1 are given by the Chebychev
points

(5) x; = —cos ir/k, i=0,1, -,k

Proor. If the p’s of formula (4) are substituted in (3), the variance of 7(x)
will reduce to

Vig(@)] = (/) (; |Li<x>|>2.

It sufficies therefore to find the set {z;} that will minimize D5 |L:(z)|.

It will be observed that when z > 1 the value of |Li(z)| will decrease as x,
decreases, or as x, increases; consequently the same property will hold for
V[9(x)]. In seeking for a set {x,} to minimize V[§(x)] it therefore suffices to con-

sider only those sets for which zp = —1 and 2; = 1.
For z > 1 it is readily seen that
k k
(6) 3 L) = 32 (=) Li(a).

In view of this relationship, the problem is reduced to finding the set of values
{x:} that will minimize the value of a polynomial of the type on the right side of
(6) at the fixed point z, where > 1. A polynomial of this type assumes the
value (—1)** at the point z; associated with it. Thus, the problem is to find a
polynomial C(z), if it exists, that passes through (—1)** at the x; associated
with it and such that C(z) < @(z) for x > 1, where @(z) is any other polynomial
which passes through (—1)*"* at the z; associated with it.

Now it will be shown that there exists a polynomial C(x) of degree k that
possesses the properties

C(z;) = (—1)7 i=0,1,--k
C'(x;) = 0, i=1,-, k=1

which is unique among polynomials possessing these properties, and which
satisfies the 1nequa11ty C(z) < Q(z) for x > 1, where Q(x) is any polynomial
satisfying Q(z:) = (—=1)*" ¢ =0, 1, , k and where { x,} is any set of obser-
vation points other than the set {xz} assoc1ated with C(z).

The existence and uniqueness of C(z) follows from the fact that C(x) is the
kth degree Chebychev polynomial whose properties are well known [4]. The
Chebychev polynomial oscillates between the limits 41 in the interval [—1, 1]
and has its points of tangency to these limits located at the points given by
formula (5).
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It remains to be shown that C(z) < @(z) for x > 1. Toward this end, consider
the polynomial D(z) = Q(x) — C(x). The degree of D(z) is at most k. Assume,
temporarlly, that its degree is d with 0 < d < k. Since [C'(z)| = 1, it follows
that D(z:) = (—1)" — C(x ) will possess the sign of (—1)*"*, or the value 0.
The latter may occur if xy = x; for some j Further, D(—1) = 0 because x, =
zo = —1 and C(=1) = Q(—=1) = (—1)* Thus, D(z) satisfies the conditions
of Lemma 2 and therefore possesses d roots in the interval [z, a:d] Since D(z)
is assumed to be of degree d it cannot have any roots outside [xo, a:,i] But D(xx)
= 0 because z; = 2 = 1 and C(1) = D(1) = 1. This contradiction proves
that D(z) must be of degree k. But now it follows from Lemma 2 that D(x)
possesses k roots in [—1, 1]. As a result D(z) cannot have any roots outside
[—1, 1]. Hence, when z > 1.

C(z) > Q(x), or C(z) < Q(z).

To show that the latter 1nequa11ty holds it suﬁices to study the sign changes
ofD(x) Since the sign D(x ) = signof (—1)¥* if 2y 5 ;i for any j and D(xz) =0
if z; = x, for some j with ¢ + j even, it follows that D(a:k_l) <0 unless Thoy = &
for some j for which k& + j is odd, in which case D(z1—1) = 0. Since z: cannot be
equal to some z; for ¢ + j even for every <, let k¥ — m denote the largest value
of 7 for which z; = z; for some j with 7 + j even. Then

D(wis) = 0 fori = 0,1, -, m— 1
and ,
sign D(xx_n) = sign of (—1)".

Since by Lemma 2 there are at least k¥ — m roots of D(:c) in the interval [2o , Zr_m]
and there are m roots at the points z;—;, ¢ = 0, 1, ,m— 1, all k roots are
accounted for. Thus, there cannot be any double roots at the pomts @i, 1=0,1,

-, m — 1, and therefore the graph of D(x) must cross at those points. Slnce
D(x;’c_m) has the sign of (—1)™, D(x) will possess this sign inside the open
interval (Ti—m , Troms1), the opposite sign inside the interval (Tx—mi1, Th-ms2),
etc. It will therefore possess the sign of (—1)*" " in the open interval (zr—; , @x).
Thus, D(z) < 0 in this interval and therefore D’(z;) > 0, otherwise a double
root would occur at z; . By continuity it follows that D(z) > 0 for z sufficiently
close to 1 on the right; consequently D(z) > 0 for all x > 1. This demonstrates
that C'(x) possess the optimum property claimed for it.

As an illustration of the advantage of using the optimum spacing and weighting
given by this theorem, consider the problem of predicting the value of a third
degree polynomial at the point x = 2 if 52 observations are to be taken in the
interval [—1, 1] and if ¢ = 1. Under the traditional approach of using equal
spacing and weighting, one would choose

Ty = —1,£E1 = —%,132:

Ny = 13, ny = 13, Ng = 13, Nng = 13.

ol

,$3=1

The corresponding values for the Chebychev solution given by formulas (4) and
(5) will be found to be
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Ty = _17x1= _%7:172:%)“53: 1
ne = 5, = 12, ny = 20, ny = 15.

Calculations will show that the corresponding values of V[§(2)] are, to the
nearest integer, 20 and 13, respectively. Thus, the traditional method yields a
value of the variance that is over 50 percent larger than that of the optimum
solution.

3. Minimax solutions. If one desires a solution that will be appropriate for
more than a single fixed value of z, it will be necessary to consider some other
criterion, such as that of minimax. Since V[§(z)] is an increasing function of z
for z > 1, it follows that maxi.<; V[§(x)] = V[#(¢)]. As a consequence, the
solution to the minimax problem, namely, min,,), @;; max1 <o<¢ V[§(x)] is given
by the preceding solution to the problem of minimizing V[4(¢)].

Next, consider the problem of finding the minimax solution for the interval
(—1,1%), where ¢t = 1. For { = 1 the solution is known [1] to be given by using
equal weights and choosing the z;,7 = 0, 1, -- -, k, to be the roots of the poly-
nomial which is the integral from —1 to z of the Legendre polynomial of degree
k. This solution will be called the Legendre solution. For ¢ > 1 the Legendre
solution cannot hold for the following reasons. It is known [1] that for this
design V[§(z)] assumes its maximum value in [—1, 1] at the internal Legendre
points and at the end points of the interval. Since V[§(zx)] is an increasing
funection of z for x = 1, it follows that V[§(¢)] exceeds its maximum value inside
the interval for every ¢ > 1. To show that this is not possible for an optimum
solution, assume the contrary. Choose two of the functions L;(x) that are not
equal at ¢ = ¢. Let them be denoted by L.(z) and Lg(x) with Lo(t) < Lg(2).
Now write

2 2 2

Vi) = ¥ L@y Le@) | L@)
iZa,f  Di Pa Ds
For the Legendre solution the p’s are equal; therefore consider changing this
solution slightly by altering p, and ps under the restriction that p, + ps =
2/(k + 1). Tt is easily shown that [L%(¢)/pa] + [L3(¢)/ps] is a decreasing function
of pg in a sufficiently small interval to the right of ps = 1/(k 4 1). Thus, by
increasing pg slightly from its Legendre value, the value of V[#(¢)] can be de-
creased slightly. From continuity considerations this can increase the maximum
value of V[¢(x)] inside the interval only slightly and therefore the net result is
to produce a smaller overall maximum value, contradicting the assumption that
the Legendre solution could be a minimax solution for the interval [— 1, {] where
t> 1.

For ¢ sufficiently large, the Chebychev solution will also be a minimax solution
for [—1, ¢] for the following reasons. Consider the Chebychev design based on
the point = ¢ > 1 and let V,[¢(z)] denote the corresponding variance function.
If ¢ is such that max ;<. <1 V[§(z)] < V. [§(¢)] the maximum value of V. [§(2)]
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for —1 < z =< ¢ will be attained at x = ¢ because V,[¢(z)] is an increasing
function of z for x > 1. Since no other design can have V[§(¢)] smaller than
V. [4(t)], it follows that the Chebychev design will be a minimax design for the
interval [—1, ¢]. It remains to be shown that there exists a value of ¢ satisfying
the preceding inequality.

For a given ¢, let B(t) denote the ratio

R(t) = max_ico<1 Ve[§(2)]/VG()].

When the values of the p; given by (4) with x = ¢ are substituted in (3), B(%)
will assume the form

R(t) = [max_i<o<1 D Li(z)/|La)[1/ 22 |La(t)].

Each |L;(t)| is an increasing function of ¢ for ¢ > 1; therefore R(¢) is a decreasing
function of ¢ for ¢ > 1. Since each L;(t) — » as { — «, R(t) will approach 0
as ¢t — . Since L;(t) — &a as ¢t — 1, R(¢) will become infinite as { — 1. But
R(t) is a continuous function of ¢ for ¢ > 1; consequently there will exist a
unique value of ¢, denoted by ¢, satisfying B(#) = 1. Fort > t;, R(¢) < 1;
therefore the earlier desired inequality is satisfied to insure that the Chebychev
design is a minimax design for any interval [—1, ¢] for which ¢ > ¢ .

It follows from the same type of reasoning as that just used and that employed
to reject the possibility of a Legendre design for ¢ > 1 that the Chebychev
design cannot be optimum for ¢ < ¢ . From continuity considerations one would
expect the optimum design to gradually change from the Legendre spacing and
weighting to the Chebychev spacing and weighting as ¢ increases from 1 to ¢ .

4. Confidence bands. The preceding results can be used to construct a confi-
dence band for a polynomial curve that will possess minimum width at any de-
sired external point. First it is necessary to formulate the problem in terms of the
earlier notation.

The equation of a kth degree polynomial curve can be written in the vector
form

(7) w(z) = 2'a,

where o' = (a0, a1, *++, az) is the vector of unknown coefficients and =
(20, 21, -*, 2) is the vector of Lagrange polynomial components given by
formula (2) with z; = L;(z).

If it is assumed, as before, that n; observations are taken at x; and that the
corresponding ’s are uncorrelated with a common variance o°, then it follows
fI/'OIn (1/) that the standard least squares estimator of (7) is given by fi(z) =
za=zy.

Now if one inspects the formulas [2], [5] for a confidence band for a polynomial
curve and expresses them in terms of the preceding notation, he will find that
they assume the form

da £ (¢ z%/n,-)*,



1560 P. G. HOEL AND A. LEVINE

where ¢ = o’xs, based on k + 1 degrees of freedom, if o” is known, and ¢ =
Fippimal(k + 1)/ (n — k — 1)]2 %0 D2 i(ys; — §i)*if o° is unknown. The
quantity D z/n; is the same as the quantity > Li(z)/p: in (3); consequently
the problem of minimizing the width, or the expected width, of this confidence
band at any desired point is equivalent to the earlier problem of minimizing the
variance of a predicted value at a specified point. Thus, if the z; are chosen to
be the Chebychev points and the n; to be the corresponding optimum weights,
the band width will be minimized at the selected z value. This same property
obviously holds also for the confidence interval of a single ordinate of a poly-
nomial regression curve.

As an illustration of the improvement in band width, consider the two con-
fidences bands obtained for a third degree polynomial when equal spacing and
weighting is used and when the optimizing technique is employed for z = 2.

Under equal spacing and weighting, the quantity > 2%/n; becomes

(8) i
n=
where z; is calculated using 2o = —1,2; = —3%, 22 = %, 3 = 1. Under optimum
spacing and weighting it becomes '
9) %(z—g+%+§%+%>
where z; is calculated using zp = —1, 21 = —1%, 22 = }, 23 = 1. Since it is the

square root of > z/n; that enters as a factor in the width of these confidence
bands, calculations were made of the square root of this quantity in the two
cases with n = 52, but with the common factor 13”7 omitted, with the following
results:

. ‘ 1 -3 -3 0 3 3 1 15 2
(€)) 1 1.08 1 .80 1 1.08 1 5.5 16.1
9) 1.61 1.04 1.06 .93 .84 .81 .93 4.6 13.0

The optimum band is considerably narrower for most positive values of z,
and of course is much narrower at z = 2.
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