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Abstract

We analyze the problem of sparse-matrix dense-vector multiplication (SpMV) in the I/O model. In
the SpMV, the objective is to compute y = Ax, where A is a sparse matrix and x and y are vectors. We
give tight upper and lower bounds on the number of block transfers as a function of the sparsity k, the
number of nonzeros in a column of A.

Parameter k is a knob that bridges the problems of permuting (k = 1) and dense matrix
multiplication (k = N). When the nonzero elements of A are stored in column-major order,

SpMV takes O
“
min

n
kN
B

“
1 + logM/B

N
max{M,k}

”
, kN

o”
memory transfers and has a lower bound

of Ω
“
min

n
κ(ε) kN

B

“
1 + logM/B

N
max{M,k}

”
, κ′(ε)kN

o”
, for k ≤ Nε, 0 < ε < 1. If N ≤ M

the problem is trivially Θ(N/B). Thus, these bounds are tight. When A’s layout can be opti-

mized, SpMV takes O
“
min

n
kN
B

“
1 + logM/B

N
kM

”
, kN

o”
memory transfers and has a lower bound

of Ω
“
min

n
kN
B

“
1 + logM/B

N
kM

”
, kN

o”
memory transfers, for k ≤ 3

√
N . As before, these bounds are

tight.
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1 Introduction

Sparse-matrix dense-vector multiplication (SpMV) is one of the core operations in the computational sciences.
The idea of SpMV is compute y = Ax, where A is a sparse matrix (most of its entries are zero) and
x is a vector. Applications abound in scientific computing, computer science, and engineering, including
iterative linear-system solvers, least-squares problems, eigenvalue problems, data mining, and web search
(e.g., computing page rank). In these and other applications, the same sparse matrix is used repeatedly;
only the vector x changes.

It has long been known that SpMV is memory limited, typically exhibiting poor cache (and I/O) perfor-
mance. According to [16], untuned code runs at below 10% of machine peak, and tuned code runs with some
improved percentage of machine peak. Untuned code is likely to run even more inefficiently, as memory hier-
archies grow “steeper.” In contrast, dense matrix-vector multiplication (e.g., in dense linear-system solvers)
does not suffer from this memory bottleneck. Because the same matrix is used repeatedly in these SpMV
applications, it is worth the effort to lay out and encode the matrices to optimize performance. Examples
of techniques include “register blocking” and “cache blocking,” which are designed to optimize register and
cache use, respectively. See e.g., [3, 16] for excellent surveys of the dozens of papers on this topic; sparse
matrix libraries include [4,7,10,11,15,16]. In these papers, the metric is the running time on test instances
and current hardware.

In this paper we analyze the SpMV problem in the disk access machine [1] and cache-oblivious [5] models.
Our objective is to analyze worst-case instances of matrices and to gain asymptotic insight into running
times on current and future hardware. The disk access machine (DAM) model is a two-level abstraction of a
memory hierarchy, modeling either cache and main memory or main memory and disk. The small memory
level has size M , the large level is unbounded, and the block-transfer size is B. The objective is to minimize
the number of block transfers between the two levels. The cache-oblivious (CO) model enables one to reason
about a two-level model but proves results about an unknown, multilevel memory hierarchy. The CO model
is essentially the DAM model, except that the block size B and main memory size M are unknown to the
coder or algorithm designer. The main idea of the CO model is that if it can be proved that some algorithm
performs a nearly optimal number of memory transfers in the DAM model without parameterizing by B
and M , then the algorithm also performs a nearly optimal number of memory transfers on any unknown,
multilevel memory hierarchy.

We give upper and lower bounds on the I/O complexity of the SpMV in both the DAM and CO models.
Our analyses are parameterized by the degree of sparsity of the matrix. Specifically, we let parameter k be
the number of nonzeros, in each column of the N by N matrix. We show how the upper bound depends on
matrix layout and we give lower bounds that apply for all layouts. Our results apply to worse-case instances.
To best of our knowledge, our results represent the first upper and lower I/O bounds for this important
computational problem.

One appealing aspect of the SpMV with k as the sparsity parameter is that the problem acts as a bridge
between two well studied problems in the DAM model, dense matrix multiplication and permuting. When
k = Θ(N), the matrix is dense. In this case, matrix multiplication requires Θ(N2/B) memory transfers.
This analysis is tight since it matches the scan bound, i.e., the cost to scan the matrix. When k = 1, i.e.,
the matrix is sparse, the SpMV requires Θ

(
min

{
(N/B) logM/B(N/B), N

})
memory transfers [1]. This is

because when k = 1, SpMV is a minor generalization of external-memory permutating.
We now explain this permutation bound and its connection to the SpMV; see, e.g., [14]. Permuta-

tion matrices are a particular kind of sparse matrix for k = 1: the non-zeros are 1’s and there is exactly
one 1 in each row and column. To permute N elements, either sort by final destination, which requires
Θ

(
(N/B) logM/B(N/B)

)
memory transfers, or put each element in its final destination, which requires

O(N) memory transfers. The permutation cost is the minimum of these two quantities. A counting argu-
ment shows that this bound is tight, and holds for any layout of the permutation matrix and vectors. The
same strategy applies for any sparse matrix with k = 1. For nonzeros that are not 1’s, multiply the elements
of the source vector before permuting. If some column or row has two nonzeros, then one element of the
source vector x may have several final destinations or one element of the target vector y may be composed
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of several elements of x.
Results. In this paper we give upper and lower bounds parameterized by k on the number of memory
transfers to solve the SpMV. Our bounds show how the permutation bound gradually transforms into the
dense matrix-multiplication bound as k increases. Specifically, we prove the following:

• We give an upper bound parameterized by k on the cost for the SpMV when the (nonzero) ele-
ments of the matrices are stored in column-major order. Specifically, the cost for the SpMV is
O

(
min

{
kN
B

(
1 + logM/B

N
max{M,k}

)
, kN

})
.

This bound generalizes the permutation bound above, where the first term measures a generalization
of sorting by destination, and the second term measures moving each element directly to its final
destination.

• We also give an upper bound parameterized by k on the cost for the SpMV when the (nonzero)
elements of the matrices can be stored in arbitrary order. The cost for the SpMV now reduces to
O

(
min

{
kN
B

(
1 + logM/B

N
kM

)
, kN

})
.

• We next define a model of computation to prove lower bounds on SpMV.

• We give a lower bound parameterized by k on the cost for the SpMV when the nonzero elements of
the matrices are stored in column-major order. Thus, the cost for the SpMV is

Ω
(

min
{

κ(ε)
kN

B

(
1 + logM/B

N

max{k, M}
)
, κ′(ε)kN

})
.

This result applies for k ≤ Nε, 0 < ε < 1 (and the trivial conditions that B > 2, M ≥ 4B). This
shows that our algorithm is optimal up to a constant factor.

• We conclude with a lower bound parameterized by k on the cost for the SpMV when the nonzero
elements of the matrices can be stored in any order, and, for k > 21, even if the layout of the input
and output vector can be chosen by the algorithm. Thus, the cost for the SpMV is

Ω
(

min
{

kN

B

(
1 + logM/B

N

kM

)
, kN

})
for the former case. This result applies for k ≤ 3

√
N (and the trivial conditions that B > 6, M ≥ 3B).

Map. This paper is organized as follows: In Section 3 we present upper bounds on the SpMV. We prove
the upper bound for column-major layout, and then for free layout. We conclude with a description of an
upper bound in the cache-oblivious model. In Section 2 we describe the computational model in which our
lower bounds hold. Section 4 presents our lower bound for column-major layouts. Section 5 presents our
lower bound for free layouts.

We use the established ` = O (f(N, k, M,B)) notation, which here means that there exists a constant c >
0 such that ` ≤ c · f(N, k, M,B) for all N, k, M,B, unless otherwise stated.

1.1 Roadmap of the Lower Bound
Our lower bound is the main technical contribution of this paper, and we here give a high-level outline of it.

The overall reasoning is to prove that there are many different inputs that all require different program
executions, and then bound the number of essentially different program executions with at most ` I/Os,
thereby yielding a lower bound on `. For this, we first normalize and simplify the program execution. Then,
we bound the number of program executions by encoding the program with a short string over a small
alphabet.

In general (for upper and lower bounds), we consider N ×N matrices with kN non-zero entries. For the
lower bound, we in particular focus on a special case of sparse matrices, namely the k-regular matrices,
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characterized by exactly k non-zero entries in each column. We define the conformation of a matrix as the
locations of its non-zero entries.

We observe that in the machine model we use (defined in Section 2), we may assume that the algorithm
is normalized in the sense that only ”canonical” intermediate results can be produced. This again allows us
to uniquely assign to every intermediate result either the one variable xj it is representing, or the result ci

it contributes to. Using this, we then define three traces of the computation. These are the compact
encodings describing the actions of the normalized algorithm. There is a time-forward trace of the movement
of the xj , and a time-backward trace of the movement of partial results. Additionally, based on these
two traces describing the movements, there is a third trace that gives a compact representation of the
algebraic operations. We show that these traces uniquely determine the normalized algorithm, and hence
the conformation of the matrix it is computing.

Finally, we calculate the number of different traces of computations with ` I/Os, and we compare it to
the number of different k-regular conformations of N ×N -matrices. This shows in particular that there are
many sparse matrices that require many I/Os.

2 Model of Computation

Our aim is to analyze the I/O cost of computing a matrix-vector product. I/Os are generated by movement
of data, so our real object of study is the dataflow of matrix-vector product algorithms, and the interaction
of this dataflow with the memory hierarchy. Hence, we need a model of computation defining the allowed
forms of intermediate results and their possible movements in the memory hierarchy.

In this section, we define our model. Intuitively, it contains all algorithms which compute the values
ci =

∑
j aijxj of the output vector through multiplications and additions, starting from the coefficients and

variables of the input matrix and vector. The model encompasses all proposed algorithms that we are aware
of. We discuss the model further in Section 2.1.

Our model is based on the notion of a commutative semiring S, i.e., a set of numbers with addition
and multiplication, where operations are assumed to be associative and commutative, and are distributive.
There is a neutral element 0 for addition, 1 for multiplication, and multiplication with 0 yields 0. In contrast
to a field, there are no inverse elements guaranteed, neither for addition nor for multiplication. One well
investigated example of such a semiring (actually having multiplicative inverses) is the max-plus algebra
(tropical algebra), where matrix multiplication can be used to for example compute shortest paths with
negative edge length. Another semiring obviously is R with usual addition and multiplication. The semiring
model is established in the context of matrix multiplication, see Section 2.1.

We now define our model, which we call the semiring I/O-machine. It has an infinite size disk D,
organized in tracks of B numbers each, and main memory containing M numbers. Accordingly, a con-
figuration can be described by a vector of M numbers M = (m1, . . . ,mM ), and an infinite sequence D of
tracks modeled by vectors ti ∈ SB . A step of the computation leads to a new configuration according to the
following allowed operations:

• Computation on numbers in main memory: algebraic evaluation mi := mj + mk, mi := mj ×mk,
setting mi := 0, setting mi := 1, and assigning mi := mj ,

• Input operations, each of which moves an arbitrary track of the disk into the first B cells of memory,
(m1, . . . ,mB) := ti, ti := 0.

• Output operations, each of which copies the first B cells of memory to an arbitrary track, ti :=
(m1, . . . ,mB) and assume ti = 0.

Input and output operations are collectively called I/O operations. Note that in a input operation we move
a track. This may cause at most a factor two loss with respect to a copy operation, but it is important as it
preserves a time symmetry, as it will be clear later.

A program is a finite sequence of operations allowed in the model, and an algorithm is a set of programs.
For the sparse matrix-vector multiplication, we allow the algorithm to choose the program based on N and
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the conformation of the matrix. More precisely, we say that an algorithm solves the sparse matrix-vector
multiplication problem with `(k, N) I/Os if for all dimensions N , all k, and all conformations of N × N
matrices with kN non-zero coefficients, the program chosen by the algorithm performs at most `(k, N) I/Os.

For the algorithm to be fully specified, we still need to decide on the layout in memory of the input matrix
and vector, and the output vector. One option is to consider fixed layouts (such as column major layout for
the matrix and sequential layout for the vectors). Another is to allow the algorithm to use a different layout
for each program. We consider both possibilities in the rest of the paper.

Clearly, every intermediate result can be represented as a polynomial in the input numbers (the xjs of
the vector and the non-zero aijs of the matrix) with natural coefficients1 (i.e. coefficients in {0, 1, 1 + 1, 1 +
1+1, . . . }). As the algorithm must work over any commutative semiring, in particular the free commutative
semiring over the input numbers where this representation is unique, the result values can only be represented
as the polynomials ci = 1 ·

∑
aijxj , where the sum is taken over the conformation (i.e., the non-zero entries)

of row i of the matrix.
We below observe that all intermediate results can be assumed to be a ”subset” of the final results. This

will later allow us to classify every intermediate result as either part of one column or part of one row.
First some nomenclature: We call intermediate results of one of the forms xj , aij , or si =

∑
j∈S aijxj , where

1 ≤ i, j ≤ N , S ⊆ Ri ⊆ {1, . . . , N}, and Ri is the conformation of row i of the matrix, for canonical partial
results. The various forms above are called input variable, coefficient, and partial sum, respectively,
with i being the row of the partial sum. If S = Ri, we simply denote the partial result a result. One partial
result p is a predecessor of another p′ if it is an input to the addition or multiplication leading to p′, and
is said to be used for calculating p′ if p is related to p′ through the closure of the predecessor relation.
Lemma 1. If there is a program for matrix-vector multiplication for the semiring I/O-machine that per-
forms ` I/Os, then there is also a program with ` I/Os that computes only canonical partial results, that does
only compute partial results which are used for some output value, and that has never two partial sums of
the same row in memory when an I/O is performed.

Proof. First, intermediate results that are computed but are not used for a result can as well not be computed.
Second, if two partial sums are in memory, they can be merged into one of them.

Multiplication by 0 can be replaced by setting the result to 0. Hence, the constant 0 is useless to the
algorithm, and we can assume that intermediate results are not the 0-polynomial.

If two such polynomials f, g are multiplied or added, then the set of variables of the resulting polynomial is
the union of the variables of f and g. For multiplication, the degree is equal to the sum of the (non-negative)
degrees. For addition, the number of terms cannot decrease.

If an intermediate result has a poly-coefficient > 1, the result cannot be used for a final result, because
in all successor results there will remain a term with poly-coefficient > 1. If an intermediate result contains
(matrix) coefficients from different rows, it can never be used for a final result. If an intermediate result
contains the product of two variables or two coefficients, this product remains in all successors and it is
not useful for the final results. If an intermediate result contains two terms of total degree one (i.e., single
variables or coefficients), then it needs to be multiplied with a non-constant polynomial before it can become
a result. But then, there will be products of two variables or two coefficients, or a product of a variable with
a coefficient of the wrong column. Hence, such a result cannot be useful for a result.

2.1 Discussion of the model
As noted, all efficient algorithms for matrix-vector multiplication known to us work in the model. As do
many natural algorithms for related problems, in particular matrix multiplication, but not all—the most
notable exception is the algorithm for general dense matrix multiplication by Strassen. It is unclear if ideas
similar to Strassens can be useful for the matrix-vector multiplication problem.

Models similar to the semiring I/O-machine above have been considered before, mainly in the context
of matrix multiplication, in [13], implicitly in [12], and also in [8]. Another backing for the model is that

1We denote these poly-coefficients, to distinguish them from the input coefficients aij of the matrix.
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all known efficient circuits to compute multilinear results (as we do here) use only multilinear intermediate
results, as described in [9].

We note that the model is non-uniform, not only allowing an arbitrary dependence on the size of the
input, but even on the conformation of the input matrix. In this, there is similarity to algebraic circuits,
comparison trees for sorting, and lower bounds in the standard I/O-model of [1].

One natural idea is to extend the algorithm to compare numbers, along the lines of comparison trees. In
the plain semiring model, this would be binary equality tests. Or one could assume an additional ordering,
giving ternary inequality tests. A program for the machine then consists of a tree, with binary (ternary)
comparison nodes, and all other nodes being unary. The input is given as the initial configuration of the
disk and all memory cells empty. The root node of the tree is labeled with this initial configuration, and the
label of a child of a unary node is given by applying the operation the node is marked with. For branching
nodes, only the child corresponding to the outcome of the comparison is labeled. The final configuration is
given by the only labeled leaf node. It is assumed that main memory is again all zero. However, adding
comparisons cannot really help the algorithm:
Lemma 2. Consider the conformation of a matrix A. If there is a program P computing the matrix-vector
product c = Ax for all inputs in Rd (for appropriate d) with at most ` I/Os, then there is a program Q
without comparisons computing the same product with at most ` I/Os.

Proof. Consider the tree of the program P . Since the number of leaves is finite, there must be a leaf which
is reached exactly when all tests on the internal nodes have been negative; define T to be the path from the
root to that leaf. By definition the set of inputs of Rd reaching that leaf (also following T ) is an open set in
the Zariski topology and thus dense in the usual metric topology.
The program Q is induced by following T and deleting the comparison nodes from the path. Every result
of Q is given by a polynomial q on the input and it is equal to the multilinear result p of the computation
for an open set C of inputs. Thus it follows that p = q on the closure of C, hence on the whole space.

3 Algorithms

A number of standard algorithms for sparse-matrix dense-vector multiplication exist. One is the naive
algorithm, which for increasing i computes the sums ci =

∑N
j=1 aijxj by summing for increasing j. This

takes O (kN) I/Os. A blocked version (see [6]) uses a blocked row major mode—think of the matrix as N/M
matrices of size N × M , store each of these in row major mode, and calculate the matrix vector product
as the pointwise sum of the N/M products of these matrices with the appropriate size M segments of the
vector. This takes O

(
min{kN,N2/(BM)}+ kN/B

)
I/Os. A different appoach is to create all products

aijxj by sorting the input values on j, and then create the sums by sorting the products on i. This takes

O
(
(kN/B) logM/B(kN/B)

)
I/Os independently of the matrix layout.

Only the sorting based version exploits the sparsity of the matrix efficently. However, for dense matrices
(k = θ(N)), even the naive method is better by a logarithmic factor. This indicates that for non-sparse
matrices, the sorting method can be improved.

In this section, we propose improved algorithms based on the sorting approach. Essentially, the resulting
improvement in I/O cost consists of exchanging Nk with N/k inside the logarithm. In particular, the
algorithms beat the basic sorting based algorithm for k = ω(1), meets the algorithms above for k = N , and
provides a smooth transition in running time between k = 1 and k = N . Furthermore, in the remaining
sections we prove that the algorithms are optimal for large fractions of parameter space.

In the following, we assume k ≤ N , and M ≥ 3B.

3.1 Column Major Layout
For matrices stored in column-major layout, any algorithm computing the product of the all ones vector
with a sparse matrix can be used (with one additional scan) to compute a matrix-vector product with the
same matrix. To do so, an initial simultaneous scan of the coefficients and the input variables is performed,
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where the coefficients are replaced by the elementary products. This scan can also be incorporated without
really changing the number of I/Os when the algorithm reads the coefficients for the first time.

The task of computing the product of the all ones vector with a matrix can be understood as having
to sort the coefficients (here stored in column major mode) according to rows. The idea used here to gain
efficiency over plain sorting is to add partial sums used for the same output value as soon as they meet
(reside in memory simultaneously) during the sorting. The resulting gradual decrease in data size during
the sorting gives the speedup.

In more detail: If k < M , we start by sorting the input in chunks of M consecutive elements in internal
memory, leading to kN/M < N many runs. Otherwise, the input itself constitutes N runs of average
length k. These runs are merged with an M/B-multiway merge sort—with online additions of partial results
meeting during the merging—until there are ≤ k runs. This marks the end of phase one, which costs at most
O

(
kN
B logM/B r/k

)
, where r is the initial number of runs. Due to the merging, no run can ever become

longer than N , as this is the number of output values, so at the start of phase two, we have at most k runs
of length at most N . The algorithm finishes phase two by simply merging (again with online additions) each
run into the first, at a total I/O cost of O (kN/B) for phase two.

For k < M we get O
(

kN
B

(
1 + logM/B

N
M

))
I/Os and otherwise O

(
kN
B

(
1 + logM/B

N
k

))
, hence the

overall number of I/Os is O
(

kN
B

(
1 + logM/B

N
max{M,k}

))
.

3.2 Free Layout of the Matrix
For general layouts, we can get a further speed-up by using the blocked row major layout described above.
More precisely, we store the coefficients in blocks of M − 2B full columns, where each such block is stored
in row-major layout.

We first, in each of N/M mergings, load the next M−2B variables of the input vector into main memory,
and then produce the next B elements of the merged run by loading the appropriate coefficients (accessed
in scanning time due to the layout), and multiplying them with the corresponding variable. This way,
with kN/B I/Os, we get N/M runs of total length kN . Then, we continue as in the previous algorithm. For
M > 4B, the number of merging steps until the (average) length of a run is N , i.e., until there are k runs,
is O

(
logM/B N/(kM)

)
.

Hence, the overall number of I/Os of this algorithm is

O
(

kN

B

(
1 + logM/B

N

kM

))
.

3.3 Cache Oblivious algorithm
We can execute the algorithm of Section 3.1 in a cache-oblivious setting (under the tall cache assumption M ≥
B1+ε, as is needed for optimal sorting in this model). Recall that the algorithm uses column major layout.
We first do all multiplications of coefficients and variables in a single scan, as in Section 3.1. We then
group the columns into k groups of N/k columns each. In memory, each group will form a file consisting
of N/k sorted runs, which by the cache-oblivious adaptive sorting algorithm of [2] can be sorted using
O

(
n/B logM/B N/k

)
I/Os, where n is the number of coefficients in the group. Summed over all groups we

get O
(
kN/B logM/B N/k

)
I/Os for this. The first phase ends by compressing each group to size at most N

by doing additions during a scan of each group. The second phase proceeds exactly as in Section 3.1. The
total I/O cost is O

(
kN/B(1 + logM/B N/k)

)
, which under a tall cache assumption is asymptotically equal

to the bounds in Section 3.1 and 3.2.

4 A Lower Bound
For all the algorithms of Section 3, there are parameter ranges in which they are optimal up to a constant
factor. Because the number of I/Os of the algorithms differ by more than that, we have different lower bound
proofs. All of these proofs are building on the same assumptions about the algorithms.
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4.1 Producing k-Regular Conformations
We consider a computational task, which is the time-backward version of computing the row-sums of a
k-regular matrix in column major layout. This time-duality is an important ingredient to our analysis. The
process considered here, reflects the possibilities how the variables of the vector can be distributed by the
computation.

Consider the problem where some numbers y1, . . . , yN are initially on disk, in this order. The algorithm
produces a list of length kN of copies of these variables, in N blocks of length k. Now, the i-th block consists
of k variables (of the N input variables), stored in ascending order of index. This block corresponds to the i-
th column of a k-regular N ×N -matrix. We assume that variables can only be copied, moved, or destroyed.
We normalize the program to comply with the following rules: In the final configuration, non-output tracks
of the disk and the memory have an arbitrary content. Variables are only destroyed if they are overwritten
by a write operation (on disk) or by a read operation (in memory). Tracks are used consecutively, such that
no track address is bigger than the number of I/Os performed.

Further, we abstract from the order in which numbers are stored in main memory and on disk. To
describe the content of the main memory of the machine, we only record the subset M⊆ [N ], |M| ≤ M of
variables currently in memory. This is an important difference to the vector of numbers that describe the
main memory in the general model. Similarly, the tracks of the disk are described by the list D as subsets
Ti ⊆ [N ], |Ti| ≤ B (for i ≥ 1).

In this setting, we can ask how many different k-regular N × N -matrices can be “produced” in time `.
We give an answer by counting the number of different descriptions of the program flow.

For an output operation, it is sufficient to state which subset of the variables in main memory are written,
and to which track they are written. For an input operation, we denote the subset of variables in memory
that get destroyed (overwritten), and which track is read. With this encoding of the program flow, we can
recreate the sequence of configurations.

By counting the number of matrix-conformations that can result from the same final configuration in the
separated model and by counting the number of different “instructions” per input or output, we can relate
the running time to the number of different matrices that can be created. These calculations are done in the
next section.

This process is interesting because it is time-inverse to computing row-sums of a k-regular matrix in
column major layout: The produced matrix can be understood as an input matrix in column major layout,
and following the data-flow backward, we arrive at a single copy of each variable, which is to be understood
as the row sum. More precisely, we exchange input with output and the copying of a variable becomes the
merging of two partial results. Hence, whenever we can produce a matrix with ` I/Os, we can also compute
its row-sums with ` I/Os.

4.2 Column Major Layout
For the lower bound proof, we consider the special situation where the vector has all entries equal to one,
and the algorithm we consider does not even need to read this vector. Accordingly, the algorithm computes
the sum of the rows of a matrix stored in column major layout.

We define a trace of the algorithm when running on the algebraic I/O-machine, using only canonical
partial results. First, we extract a symbolic configurations: we replace the real values by the index of the
row they belong to, i.e., are a partial sum. Now, to describe the contents of the main memory of the machine,
we only record the subset M⊆ [N ], |M| ≤ M of partial results currently in memory. Similarly, the tracks of
the disk can be described by subsets Ti ⊆ [N ], |Ti| ≤ B. Here, we in particular allow stubs of partial results,
i.e., zeros that are already marked with the row for which they will become partial results. At first sight, this
is perhaps a strange concept, but it is actually quite natural if we want to analyze time-backward. Then,
having stubs is dual to the policy of destroying elements only when it is necessary because the memory
locations are needed again. The possibility that we keep an element in memory without using it again
corresponds to the possibility to have a stub.

The final configuration of the machine is determined uniquely, it has M = ∅, and T1 = {1, . . . , B},
T2 = {B + 1, . . . , 2B}, and so on, until TN/B = {N − B + 1, . . . , N}. Additionally, the initial configuration
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(M = ∅) almost identifies which of the k-regular conformations the algorithm works on: If k = B, then
there is a one-to-one correspondence between the precisely k entries in a column and the content of a track.
Since the column major layout dictates that the entries of the matrix are stored in order of increasing row,
the set Ti uniquely identifies the vector ti. For other values of B < k, some tracks belong completely to a
certain column. The other tracks are shared between two neighboring columns. Every element of the track
can hence belong either to the left column, the right column, or both columns, i.e., there are at most 3
choices for at most kN elements. Once it is clear to which column an entry belongs to, the order within a
track is given. For B > k we describe these choices per column of the resulting matrix. Such a column has
to draw its k entries from one or two tracks of the disk, these are at most

(
2B
k

)
choices. Over all columns,

this results in up to
(
2B
k

)N
different matrices that are handled by the same initial configuration. Hence, an

initial configuration can be used for at most 3kN conformations if B ≤ k, and (2eB/k)kN otherwise.
The sequence of the M, D is described according to the I/Os, starting from the unique final configuration,

“backward” in time. Accordingly, we will reconstruct the sequence starting from the unique final configu-
ration. In any case, we specify the track of the disk that is touched by the I/O. Consider the transition
from M, D (earlier in time) to M′

R, D′
R (later in time). Since we want to reconstruct backwards, M′, D′ is

assumed to be known already, and we want to specify M, D compactly. For an input operation we specify
the up to B row-indices that come into memory by a subset of M′. With this information we can reconstruct
in particular D merging back the right memory positions into the considered track. Memory itself does not
change since we assume at least stubs of partial sums to be already there, that is remain there if thinking
backward. For an output operation, it is sufficient to denote the change in memory, which amounts to stating
which stubs got created, again a subset of M′. With this encoding we can reconstruct the sequence of result
configurations. There are less than `

(
M+B

B

)
choices for each step, where ` is a bound of the considered tracks

on the disk and the term
(
M+B

B

)
keeps in consideration the possibility to read incomplete tracks.

In total, using ` ≤ kN + N ≤ 2kN , we get the following inequalities for the different cases noting that(
N
k

)N
is the number of distinct conformations of a N ×N k-regular matrix:

For k < B:
(
N
k

)N ≤
((

M+B
B

)
2kN

)`

· (2eB/k)kN taking logs and using k < B we get kN log N
k ≤

`
(
log(2kN) + B log e(M+B)

B

)
+ kN log(2eB/k) . With M ≥ 4B, implying M + B < 4M/3, and hence

e4M/3 < 4M we get

` ≥ kN
log N

2eB

log(2kN) + B log 4M
B

. (1)

For k ≥ B:
(
N
k

)N ≤
((

M+B
B

)
2kN

)`

·3kN taking logs: kN log N
k ≤ `

(
log(2kN) + B log e(M+B)

B

)
+kN log 3

` ≥ kN
log N

3k

log(2kN) + B log 4M
B

. (2)

Now assume M ≥ 4B. Combining (1) and (2) we get

` ≥ kN
log N

max{3k,2eB}

log(2kN) + B log 4M
B

. (3)

Distinguish between the dominating term in the denominator. Fix an ε > 0 and assume that k ≤ N1−ε; if
log 2kN ≥ B log(4M/B) we get

` ≥ kN
log N

max{3k,2eB}

2 log(2kN)

For N big enough, Lemma 11 gives B ≤ 3N1−ε/2e, and using k ≤ N1−ε, N > 32/ε we get ` ≥ kN
log N

3N1−ε

2 log(2kN) ≥
kN ε log N−log3

2(2−ε) log N+2 ≥ kN ε/2 log N
2·2(2−ε) log N ≥ εkN

16−8ε .
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Otherwise (log 2kN < B log(4M/B)), by using log M/B ≥ 2, we get ` ≥ kN
log N

max{3k,2eB}

2B log 4M
B

≥ kN
2B ·

log N
2e max{k,B}

log M
B +2

≥ kN
2B ·

−3+log N
max{k,B}

2 log M
B

. Now, assume further N ≥ 16B, which, together with N/k ≥ Nε ≥ 16

for N ≥ 161/ε, implies log N
max{k,B} > 4. Hence, ` ≥ kN

2B ·
log N

max{k,B}

8 log M
B

≥ kN
16B ·log M

B

N
max{k,M} . Here, we estimate

M > B which is certainly weakening the lower bound, but since this estimation is inside a logM/B it merely
loses an additive constant. We summarize this discussion in the following theorem, that does not need the
assumed lower bound on N . If N ≤ max{161/ε, 91/ε, 22/(1−ε)2}, then logM/B N ≤ max{3/ε, 2/(1 − ε)2}
(M ≥ 4B), and hence the stated formula is smaller than the scanning bound for accessing all kN entries of
the matrix, being also correct. Similarly, if N ≤ 16B, then logM/B N ≤ −1 + log2 16 = 3, and the claimed
formula is again weaker than the scanning bound.
Theorem 3. Assume an algorithm computes the row sums for all k-regular N×N matrices stored in column
major layout in the algebraic I/O-model using only canonical partial results with at most `(k, N) I/Os. Then,
for B > 2, M ≥ 4B,and k ≤ N1/ε, 0 < ε < 1, there is the lower bound

`(k, N) ≥ min
{

κ · kN

B
logM/B

N

max{k, M}
,

1
8
· ε

2− ε
kN

}
.

for κ = min
{

ε
3 , (1−ε)2

2 , 1
16

}
.

For all values of N, k, M, and B the scanning bound holds `(k, N) ≥ kN/B .
For example, taking ε = 1/2, previous theorem provides following lower bound:

`(k, N) ≥ min
{

1
16

kN

B
logM/B

N

max{k, M}
,

1
24

kN

}
.

Comparing these lower bounds to the algorithms of Section 3.1 that achieve a performance of

O
(

min
{

kN

B

(
1 + logM/B

N

max{k, M}
)
, kN

})
,

it becomes clear that the algorithms for fixed layout are optimal up to a constant factor as long as k ≤ Nε.
Indeed the missing “1+” term in the lower bound can be safely added because of the scanning bound.

5 Lower Bound: Free Layout

In this section, we consider algorithms that are free to choose the layout of the matrix; we refer to this case
as the free matrix layout. In this setting, computing row-sums can be done by one single scan if the matrix
is stored in row major layout. Hence, the input vector becomes an important part of the input, whereas
the coefficients of the matrix are no longer important. Accordingly, we do not even count the accesses to
coefficients as I/Os. As already hinted at in the introduction, we trace both the movements of variables and
the movements of canonical partial sums while the algorithm is executing.

5.1 The separated model
At this point, we introduce a slight structural modification of the algebraic I/O-machine, that formalizes this
classification of intermediate results without changing the I/O-behavior. Each configuration in the separated
model encapsulates the sequence of internal operations between two I/Os. In particular, it abstracts away
the order of multiplications and summations, and thus focuses on the resulting movement of partial results
and variables. The input variable memory MV ⊆ [N ], |MV | ≤ M is the set of variables in memory right
after the preceding I/O, before the internal computation at hand starts. The result memory MR ⊆ [N ],
|MR| ≤ M gives the row index of the matrix (or the result vector) for which some partial sum is in memory
after the internal computation, before the succeding I/O. The multiplication table P ⊆MR×MV represents
which coefficients of the matrix A are used in this internal computation. We have (i, j) ∈ P if the partial
result for row i contains the term aijxj after the internal computation, but not before. Note that this can
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only be the case if xj is in variable memory at the start of this sequence of internal computations. We also
separate the disks into DV containing copies of variables, and DR containing partial results. Each track of
such a disk contains at most B items.

This way of describing the computation separates the distribution of the input variables from the collection
of the results. This allows us to analyse the distribution process time forward, whereas we can analyse the
collection process time backward, such that in both cases the trees of information flow can be analyzed from
the root towards the leaves. Importantly, there is a strong symmetry between a read operation time-forward
and a write operation time-backward. In fact a configuration A can be the predecessor of a configuration B
by a write operation if and only if B can be the predecessor of A for a read operation, and the other
way round with respect of the read/write operation. Hence, counting the number of allowed distribution
sequences (time forward) also gives the number of allowed collection sequences (time backward).
Lemma 4. The conformation of the computed matrix is determined by the sequence of configuration in the
separated model.

Proof. Because all intermediate results are used, the conformation is the union of the multiplication tables.
If a product aijxj is computed, it is in one of the multiplication tables. Because all intermediate results are
assumed to become part of some result, if a product aijxj is in one of the multiplication tables, it is part of
the conformation.

For a computation with ` I/O-operations, consider the sequences (over time) ofMV , DV , P, andMR, DR

separately. Observe that there is no harm in overestimating MV or MR with a superset, just as we could
assume this for the variables yi in the example setting of Section 4.1. Hence, we assume that variables are
only deleted when this is necessary to provide space for other variables to be loaded into MV . That is, as
long as there are less than M − B variables in memory, no variable is deleted. Then, only at the moments
when new variables are loaded into memory, variables previously residing in memory are deleted. This is
the only occasion where we trace numbers that are no longer used in the computation. This is dual to the
concept of a stub. It is useful to separate the time of using a variable from its movement in memory and on
disk. It is not important how we decide upon which variables to keep, but for the sake of concreteness we can,
for example, deterministically always delete the variable that is not in the memory of the original algorithm
and has not been used for the most number of I/Os, breaking ties by index (variable name). Symmetrically,
we can assume that MR is always filled by allowing empty partial results (stubs) of a specific row. Then,
immediately after writing some partial results to disk, the new stubs can be created. For concreteness, we
can create the empty stub for which there is no partial result in memory, which is used next (time forward)
by the algorithm.

With this normalization, we can compactly describe the sequence of the MV , DV , by following the
performed I/Os. For an output operation, it is sufficient to specify the track of the disk and the subset of at
most B variables currently in memory that are copied to this track. For an input operation, it is sufficient
to specify the track of the disk and the subset of at most B variables currently in memory that are deleted
from memory to make space for the new variables. Because there is no choice for the initial configuration,
this information uniquely determines the sequence of configurations MV , DV (forward in time)

Symmetrically, similar to the argument of Section 4.2, the sequence of the MR, DR is described backward
in time, starting from the unique final configuration.

For all four cases, there are at most `
(
M+B

B

)
choices for each step.

It remains to specify the multiplication tables compactly. Every multiplication is specified by an index
into the current subset of variables and rows present in the respective memories. Additionally, we can assume
that every coefficient aij is only used once, say as early as possible. Then, at the time of multiplication,
either the variable or the partial sum needs to be just loaded into memory (is not present in the predecessor
configuration). Because the differences in memory-configurations stem from I/Os of at most B elements,
there are at most B such variables and at most B such partial sums. Now, over the run of the algorithm there
are at most 2`B such elements, each can combine with at most M other elements. Out of these possibilities,
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we have to identify a subset of precisely kN positions where actually a multiplication happens. Hence the
number of (codes for) multiplication tables for the complete computation is at most

(
2`MB

kN

)
.

We summarize this discussion in the following lemma:
Lemma 5. Any computation of a matrix-vector product, taking ` ≤ kN + N ≤ 2kN I/Os that uses only
canonical partial results, can be characterized by two sequences of length ` of `

(
M+B

B

)
codes, and a specification

of the multiplication tables by a subset of size kN out of a universe of size 2`BM . This code uniquely
determines the conformation of the matrix.

It remains to compare the compact coding of Lemma 5 with the number of different conformations of a
matrix.
Lemma 6. Assume an algorithm computes the matrix-vector product for all k-regular N×N matrices in the
algebraic I/O-model with free matrix layout using only canonical partial results with at most `(k, N) I/Os.

Then, for M ≥ 3B and B ≥ 2, there is the lower bound 2`
kN ≥ log( N

keBM · kN
2` )

log(2kN)+B log 4M
B

.

Proof. The conformation of a k-regular N × N matrix is given by choosing N times k-subset of N po-
sitions. Because of the naive algorithm we can estimate ` ≤ kN + N ≤ 2kN such that Lemma 5

gives
(
N
k

)N ≤
((

M+B
B

)
2kN

)2`

·
(
2`BM

kN

)
. Taking logarithms and using (x/y)y ≤

(
x
y

)
≤ (xe/y)y, we get

kN log N
k ≤ 2`

(
log(2kN) + B log e(M+B)

B

)
+ kN log 2e`BM

kN rearranging terms and using e(M + B) ≤ 4M

we get 2` ≥ kN
log N

k
kN

2e`BM

log(2kN)+B log 4M
B

Now, we can conclude the following theorem that shows that the algorithm presented in Section 3 is
optimal up to a constant factor for large ranges of the parameters.
Theorem 7. Assume an algorithm computes the matrix-vector product for all k-regular N ×N matrices in
the algebraic I/O-model with free matrix layout using only canonical partial results with at most `(k, N) I/Os.
Then for M ≥ 3B, B ≥ 6, and k ≤ 3

√
N there is the lower bound `(k, N) ≥ min

{
1
84kN, 1

24 ·
kN
B log M

B

N
kM

}
Proof. Assume N

kM > 5 and N ≥ 210. Otherwise the logarithmic term is inferior to the scanning bound and
the theorem is true.

We combine the statement of Lemma 6 and of Lemma 10 with s := N
keBM and t := log(2kN)+B log 4M

B ,
and x := 2`/kN . Because s > 5/eB we have st > 5

e log 4M
B > 5

e log 4 > 1, such that the assumption of
Lemma 10 is satisfied. Hence, we conclude 2`/kN ≥ log(st)/2t. Now, we distinguish according to the
leading term of t. If log(2kN) < B log 4M

B , then we get 2`/kN ≥ log( N
keBM B log 4M

B )

4B log 4M
B

.

Using log 4M
B ≥ 3 ≥ e (recall that 4M ≥ 8B) ` ≥ kN

8B · log N
kM

2+log M
B

. Using log M
B ≥ 1, we get ` ≥ kN

24B

log N
kM

log M
B

which is the statement of the theorem.
Otherwise, if log(2kN) > B log(4M/B), then have to compare log st with log kN . In this case, N ≥ 210,

t ≥ 1 and Lemma 11 (iv) yields st ≥ N
keBM B log 4M

B ≥ N
keM ≥ 2 9

√
N . Now, log st

log 2kN ≥
1
9 log N

4
3 log N+1

≥ 1
9 ·

3
7 = 1

21 .

Hence, ` ≥ kN/84.

Corollary 8. Assume an algorithm computes the matrix-vector product for all k-regular N × N matrices
in the algebraic I/O-model with free matrix layout using only canonical partial results with at most `(k, N)
I/Os. Furthermore, we assume that the input vector and the result vector might be stored in an arbi-
trarly order. Then for M ≥ 3B, B ≥ 6, and 21 < k ≤ 3

√
N there is the lower bound: `(k, N) ≥

min
{(

1
96 −

3
16k

)
kN, 1

24 ·
kN
B log M

B

N1−2/k

kM

}
Proof. We proceed as in the proof of Lemma 6 and Theorem 7. The input vector can be stored in an
arbitrarily order, generating N ! different initial configurations. This arguments applies also for the end
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configurations.

Summarizing, ` has to be as least so large, that
(
N
k

)N ≤
((

M+B
B

)
2kN

)2`

·
(
2`BM

kN

)
(N !)2 is satisfied.

The remaining computations follows as easy as in Theorem 7 with help of Lemma 11 (v).
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A Technical Lemmas

Here comes a list of technical Lemmas that we make use of during the exposition of the lower bounds.
Lemma 9. For every x > 1 and b ≥ 2, following inequality holds: logb 2x ≥ 2 logb logb x

Proof. By exponentiating both sides of the inequality we get 2x ≥ log2
b x. Define g(x) := 2x− log2

b x, then,
since g(1) = 2 > 0 and g′(x) = 2− 2

ln2 b
ln x
x ≥ 2− 2

ln2 b
· 1

e ≥ 2− 2
ln2 2

· 1
e > 0 for all x ≥ 1, since ln(x)/x ≤ 1/e.

Thus g is always positive and the claim follows.

Lemma 10. Let b ≥ 2 and s, t > 0 such that s · t > 1. For all positive real numbers x, we have x ≥
logb(s/x)

t ⇒ x ≥ 1
2

logb(s·t)
t

Proof. Assume x ≥ logb(s/x)/t and, for a contradiction, also x < 1/2 logb(s · t)/t. Then we get

x ≥ logb(s/x)
t

>
logb

2s·t
logb(s·t)

t
=

logb(2s · t)− logb logb(s · t)
t

≥
logb(2s · t)− 1

2 logb(2s · t)
t

=
1
2

logb(2s · t)
t

,

where the last inequality stems from Lemma 9. This contradiction to the assumed upper bound on x
establishes the lemma.

Lemma 11. Assume log kN ≥ B log(4M/B), k ≤ N , B ≥ 2, and M ≥ 2B. Then

(i) N ≥ 210 implies B ≤ 2
3

3
√

N .

(ii) 0 < ε < 1, N ≥ 22/(1−ε)2 implies B ≤ 3
2eN1−ε.

(iii) N ≥ 210 and B ≥ 6 implies M ≤ 1
6N

5
9

(iv) N ≥ 210, B ≥ 6, and k ≤ 3
√

N implies N
keM ≥ 2 9

√
N .

(v) N ≥ 210, B ≥ 6, and k ≤ 3
√

N implies N1−2/k

ke1+2/kM
≥ 1

4N1/9−2/k.

Proof. By M ≥ 2B, we have log(4M/B) ≥ log 8 = 3. Thus B ≤ log kN
log 4M

B

≤ 2
3 log N ≤ 2

3
3
√

N for N ≥ 210,
which proves (i).

For statement (ii) one can easily check, that N is big enough to fulfill the inequality similarly to (i).
To see (iii), we rewrite the main assumption as (kN)1/B > 4M/B, with B ≥ 6, k ≤ 3

√
N , and (i) we get

M ≤ 1
4B(kN)1/B ≤ 1

6
3
√

N(kN)1/6 ≤ 1
6N

1
3+ 4

3 ·
1
6 = 1

6N
5
9 .

(iv) stems from (iii) and N
keM ≥ 6N

3√
NeN

5
9
≥ 2N1− 1

3−
5
9 = 2 9

√
N . The proof of (v) is similar as that of

(iv).

Note that statements like Lemma 11 (iv) are true for all restrictions k ≤ Nε, for sufficiently large bounds
on N and B, and with a deterioration of the exponent in the achieved bound. With this, the lower bound
holds asymptotically for all k ≤ Nε, we have optimal algorithms.
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