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Optimal Spatial Adaptation for
Patch-Based Image Denoising

Charles Kervrann and Jérôme Boulanger

Abstract—A novel adaptive and patch-based approach is pro-
posed for image denoising and representation. The method is based
on a pointwise selection of small image patches of fixed size in the
variable neighborhood of each pixel. Our contribution is to asso-
ciate with each pixel the weighted sum of data points within an
adaptive neighborhood, in a manner that it balances the accuracy
of approximation and the stochastic error, at each spatial position.
This method is general and can be applied under the assumption
that there exists repetitive patterns in a local neighborhood of a
point. By introducing spatial adaptivity, we extend the work ear-
lier described by Buades et al. which can be considered as an ex-
tension of bilateral filtering to image patches. Finally, we propose a
nearly parameter-free algorithm for image denoising. The method
is applied to both artificially corrupted (white Gaussian noise) and
real images and the performance is very close to, and in some cases
even surpasses, that of the already published denoising methods.

I. INTRODUCTION

T
RADITIONALLY, the problem with image restoration

is to reduce undesirable distortions and noise while

preserving important features, such as homogeneous regions,

discontinuities, edges, and textures. Most of the more efficient

regularization methods are based on energy functionals mini-

mization since they are designed to explicitly account for the

image geometry, involving the adjustment of global weights

that balance the contribution of prior smoothness terms and a

fidelity term [41], [48]. Thus, related partial differential equa-

tions (PDEs) and variational methods have shown impressive

results to tackle the problem of edge-preserving smoothing

[9], [10], [11], [43], [48]. For reasons of performance and

robustness in image processing, other smoothing algorithms

aggregate information over a neighborhood of fixed size, based

on two basic criteria: a spatial criterion so that filtering must

be local and a brightness criterion in order to select only

points which are similar in some sense. In view of this generic

approach, a typical filter is the sigma filter [32]. A continuous

version of this filter gives the well-known nonlinear Gaussian

filter [25] defined as

(1)
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where is the window centered at pixel , is the observa-

tion at , , and is a smoothing param-

eter to be determined and depending on the signal-to-noise ratio

(SNR). Finally, if we substitute a Gaussian window to the hard

disk-shaped window around the current position , we get vari-

ants of the bilateral filtering [2], [55] (e.g., Lee’s [32], Susan’s

[51], and Saint-Marc’s [49] filters) of the form

(2)

where and are

rescaled versions of nonnegative kernel functions and .

By definition, the continuous kernel functions and fulfill

, and have vanishing moments

, for . The

weight functions and are typically Gaussian ker-

nels where and are, respectively, the standard deviations of

the intensity and spatial components. We can control the spatial

support of the filter and, thus, the level of blurring by varying

. By varying , we can adapt the sensitivity of the filter to

abrupt changes. As effective as nonlinear Gaussian filters, they

lacked a theoretical basis and some of connections to better

understood methods have been investigated. Here, we report

some recent results. First, emphasizing the importance of ex-

tended neighborhoods, Barash and Comaniciu [3] have showed

that bilateral filtering represents a weighted averaging algo-

rithm which turns out to be an implementation of anisotropic

diffusion [43], controlled by a global scale parameter. Elad [19]

established further how the bilateral filter is algorithmically re-

lated to anisotropic diffusion [43] and robust estimation [4] in

terms of minimizing functionals. The bilateral filter can also be

viewed as an Euclidean approximation of the Beltrami flow and

originates from image manifold area minimization [52]. Fur-

thermore, Barash and Comaniciu showed that kernel density

estimation applied into the joint spatial-range domain yields a

powerful processing paradigm—the mean-shift procedure [12],

[14]—also related to bilateral filtering but having additional

flexibility [3]. The link between iterative mean-shift algorithm,

local mode filtering, clustering, local M-estimators, nonlinear

diffusion, regularization approaches were already analyzed in

[3], [19], [40], [56]. Also, all these methods have been cast into a

unified framework for functional minimization combining non-

local data and nonlocal smoothness terms in [40]. In particular,
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Mrazek et al.brought to the fore the large amount of structural

similarities between the iterated bilateral filter

(3)

and the local M-smoother

(4)

where and is the error norm for M-esti-

mators. It is confirmed that local M-smoothing uses the initial

image in the averaging procedure and searches for the minimum

of a local criterion whereas iterated bilateral filtering uses the

evolving image and has to stop after a certain number of itera-

tions in order to avoid a flat image.

The major drawback of all these smoothing methods, in-

cluding the TV minimizing process [10], [48], is that there is

no satisfying way to retrieve the smoothing or regularization

parameters from data. Note that they are usually chosen to

give a good visual impression and are heuristically chosen [2],

[55]. There have been some recent attempts to automatically

estimate the regularization parameter for smoothing (e.g., see

[24] and [39]). However, when local characteristics of the

data differ significantly across the domain, selecting global

smoothing parameters is probably not satisfying. There is

seldom a single scale that is appropriate for a complete image.

Recently, these difficulties motivated the development of more

adaptive methods to cope with inhomogeneities in images.

First, in [27], the local amount of Gaussian smoothing is com-

puted in terms of variance in a space-scale framework, through

the minimal description length criterion (MDL). An alternative

way to select the local scale is to maximize a measure of

edge strength over scale space as proposed in [36], but the

resulting scale computed from image derivatives, is sensitive to

signal-to-noise ratio. Also, the local variance is actually useful

for localization of significant image features [5], [23], [27],

[30]. More recently, Total Variation flow has been suggested

since it includes a nonexplicit scale parameter useful for de-

tecting the scale of image features [6]. Another competitive

approach consists in decomposing the image into its primary

noise, texture and bounded variation (BV) components [1],

[38], [42], which actually can be hard to compute, in practice.

The use of variable bandwidth mean-shift procedures may be

also considered for image simplification [13], but this approach

is problematic since it is known to be highly sensitive to noise

in images and to the choice of a global initial bandwidth.

What makes image denoising very hard, is that natural

images often contain many irrelevant objects. This type of

“noise” is sometimes referred to as “clutter.” To develop better

image enhancement algorithms that can deal with structured

noise, we need explicit models for the many regularities and

geometries seen in local patterns. In contrast to the above-cited

methods, another line of work consists then in modeling

nonlocal pairwise interactions from training data [59] or a

library of natural image patches [21], [47]. The idea is to

improve the traditional Markov random field (MRF) models

by learning potential functions from examples and extended

neighborhoods for computer vision applications (e.g., image

modeling [59], image denoising [47], image reconstruction and

super-resolution [21], and image rendering [20]). Also, it has

been experimentally confirmed that more intuitive patch-based

approaches are fearsome for two-dimensional texture synthesis

[18] and image inpainting [15], [58].

In our framework, we will also assume that small image

patches in the neighborhood of an estimation point contain

the essential process required for local denoising. Thus, the

proposed patch-based denoising approach is conceptually very

simple being based on the key idea of iteratively growing a

window at each pixel and adaptively weighting input data. The

data points with a similar patch to the central patch will have

larger weights in the average as recently proposed by Buades

et al. [7], [8] who defined the so-called nonlocal means filter as

(5)

where denotes a vector of pixel values taken in the neighbor-

hood of a point . In (5), the similarity between two points

and is based on the Euclidean distance between

two vectorized image patches (see also [58]). It is worth noting

that, if the size of the patch is reduced to one pixel, the nonlocal

means filter, also controlled by a small number of smoothing pa-

rameters and , is strictly equivalent to (2). As in [7], [8], [58],

we also use small image patches (e.g., 7 7 or 9 9 patches) to

compute these weights since they are able to capture local geo-

metric patterns and texels seen in images. Moreover, we adap-

tively choose a window (neighborhood) which could be large, to

balance the accuracy of approximation and the stochastic error,

at each spatial position [34]. This adaptation method is a kind

of change-point detection procedure, initiated by Lepskii [34].

In fact, our approach exploits this idea of pointwise adaptive

estimation [34], [35] combined with patch-based techniques for

denoising. The proposed approach shares some common points

with the recent nonlocal means algorithm [8], other patch-based

methods [15], [18], [58] and the DUDE algorithm [57]. In [57],

the authors propose a two-pass approach and substitute the most

frequent patch/symbol seen in a local window to the current cor-

rupted patch/symbol. If theoretically well grounded, this frame-

work cannot be easily applied to denoise one-byte images (256

values) because of infeasible complexity and robustness, and

has been only tested for denoising binary images. Other related

works to our approach are nonlinear Gaussian filters [2], [40],

[55], [56] and statistical smoothing schemes [29], [45], but are

enhanced via incorporating either a variable window scheme or

patch-based weights.

• In [30] and [45], the weights are not based on similari-

ties between small image patches but similarities between
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pointwise estimates in a local neighborhood; this corre-

sponds to the special case when the patch is made up of

one pixel.

• In [29], the authors propose to use weights calculated from

spatial distances between nearby points and to decompose

the neighborhood into sectors to construct an “aggregated”

estimator.

• Unlike [7] and [8], the set of parameters and the window

sizes vary spatially in our approach.

The remainder of the paper is organized as follows. In

Section II, we introduce the image modeling and some nota-

tions. In Section III, we formulate the problem of the selection

of the best possible window and present a practical algorithm

with no hidden parameter for image denoising. In Section IV,

we demonstrate the ability of the method to restore artificially

corrupted images with additive white Gaussian noise (WGN).

We just point out that, to our knowledge, the more competitive

methods are recent wavelet-based methods [16], [17], [33],

[44], [46], [54]. In Section IV, we have then reported the

experimental results when these wavelet-based methods are

applied to a commonly used image dataset in image denoising

[46] for comparison purposes. Conclusions and perspectives

are presented in Section V.

II. PROBLEM STATEMENT

In our framework, we propose to use image patches to take

into account complex spatial interactions in images. In con-

trast to exemplar-based approaches for image modeling [47],

[59], we propose an unsupervised method that uses no library

of image patches and no computational intensive training al-

gorithms [21], [47]. Our adaptive smoothing works in the joint

spatial-range domain as the nonlocal means filter [8] but has a

more powerful adaptation to the local structure of the data since

the size of windows and control parameters are estimated from

local image statistics as follows.

Consider the following basic image model:

(6)

where , represents the spatial coordinates

of the discrete image domain of pixels, and is the

observed intensity at location . We suppose the errors to be

independent, distributed Gaussian zero-mean random variables

with unknown variances . In order to recover

from noisy observations, we need minimal prior assumptions

on the structure of the image. In particular, we assume that the

unknown image can be calculated as the weighted av-

erage of input data over a variable neighborhood around that

pixel . The points with a similar regularized patch

to the reference regularized image patch will have larger

weights in the average. It amounts to the assumption that there

exists repetitive patterns in the local neighborhood of a point

which can help to recover . However, our ambition is not to

learn generic image priors from a database of image patches as

proposed in [21], [47], [59]. We only focus on image patches as

nonlocal image features, and adapt kernel regression techniques

for image denoising.

For simplicity, an image patch is modeled as a fixed size

square window of pixels centered at . In what follows,

will denote indifferently a patch or a vector of elements

where the pixels are concatenated along a fixed lexicographic

ordering. As with all patch-based techniques, the size of image

patches must be specified in advance [15], [18], [58]. Tradition-

ally, the size of the image patch is a parameter-free that specifies

how stochastic the user believes the image to be. However, we

shall see that a patch size of 7 7 or 9 9 pixels is able to take

care of the local geometries and textures in the image while re-

moving undesirable distortions. Finally, the proposed approach

requires no training step and may be then considered as unsu-

pervised. This makes the method somewhat more attractive for

many image processing applications.

Another important question under such an estimation ap-

proach is how to determine the size and shape of the variable

neighborhood at each pixel, from image data. The selected

window must be different at each pixel to take into account

the inhomogeneous smoothness of the image. The choice of

the set of candidate neighborhoods will play the key role.

For the sake of simplicity and computational efficiency, the

set of admissible neighborhoods will be arbitrarily chosen as a

geometric grid of nested square windows

where is the cardinality of and

is the number of elements of . For technical reasons, we

will require the following conditions: is centered at and

. In Section III, we will describe a local window

selector which achieves two objectives: spatial adaptivity and

computational efficiency. We will introduce the notion of local

risk as an objective criterion to guide the optimal selection

of the smoothing window for constructing the “best” possible

estimator. This optimization will be mainly accomplished by

starting, at each pixel, with a small window as a pilot estimate,

and growing with .

III. ADAPTIVE ESTIMATION PROCEDURE

The proposed procedure is iterative and works as follows

[30], [45]. At the initialization, we choose a local window

containing only the point of estimation . A first

estimate (and its variance ) is then given

by

and (7)

where an estimated variance has been plugged in place of

since the variance of errors are supposed to be unknown

(see Section III-D). At the next iteration, a larger window

with centered at is considered. Every point

from gets a weight1 defined by comparing pairs

of regularized patches and

1Here, the subscript i � j means “x 2 � and the index j runs through

the neighborhood of x .”
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obtained at the first iteration. Note

that is fixed for all the pixels in the image. As usual, the points

with a similar patch to will have weights close to 1

and 0 otherwise. Then we recalculate the estimate as the

weighted average of data points lying in the neighborhood .

We continue this way, growing with the considered window

while where denotes the maximal number of

iterations of the algorithm.

For each , the studied maximum likelihood (ML) esti-

mator and its variance can be then represented as

(8)

where the weights are continuous variables and satisfy

the usual conditions and .

In our modeling, they are computed from pairs of regularized

patches and obtained at iteration

and is fixed for all the pixels in the image. In what follows,

will coincide with the iteration and we will use to des-

ignate the index of the “best” window and

the “best” estimate . Finally, among all nonre-

jected window from , the optimal window is chosen as

for all

where is a positive constant. In the sequel, we will give some

cues for choosing and the threshold for practical imaging.

Also, throughout this paper, we shall see the rational behind

this pointwise statistical rule and the proposed strategy that

updates the estimator when the neighborhood increases at each

iteration. At this level, we just point out that this pointwise

stopping rule guarantees the estimator is optimal in the sense

that it enables to approximately minimize the pointwise

risk—i.e., —of the estimator (see Sec-

tion III-B). With this adaptive choice of window which depends

on the observations instead of a usual deterministic window and

defined patch-based weights, this estimator is clearly not linear.

Accordingly, the limit image cannot be easily predicted and

mainly depends on control parameters. We can just confirm that

the recovered image will be more regular that the input noisy

image but will contain more discontinuities than the image

smoothed with a rectangular window of

pixels. Moreover, for mathematical convenience, we decided

to use a rectangular spatial window but the method can be

easily extended to the case of a more usual Gaussian spatial

window to give more influence to nearby pixels and to make

the denoising method invariant to image rotation. Finally, the

use of variable and overlapping windows contributes to the

regularization performance with no block effect, enhances the

flexibility of the resulting local regularizers and make them

possible to cope well with spatial inhomogeneities in natural

images.

A. Adaptive Weights

In order to compute the similarity between patches and

, a distance must be considered. In [7], [15], [18], and [58],

several authors showed that the distance is a

reliable measure to compare image patches. To make a decision,

we have rather used the following normalized distance

(9)

where is diagonal matrix of the form (the symbol

“ ” is used to denote a spatial position)

...
...

...
...

where , , is the local standard devi-

ation of the estimator , and the index is used to

denote a spatial position in an image patch

. Moreover, we used a

symmetrized distance to test both the hypotheses that be-

longs to the region centered at and belongs to the

region centered in , at the same time. Accordingly,

the hypothesis and are similar, is accepted if

the distance is small, i.e., . In our

modeling, the parameter will be chosen as a quantile

of a distribution with degrees of freedom, and

controls the probability of type I error for the hypothesis of two

points to belong to the same region

(10)

All these tests ( tests) have to be performed at a very

high significance level, our experience suggesting to use a

-quantile. If exceeds this

critical threshold , then we have a significant difference

between and and we reject the hypothesis

that and belong to the same region. In other words, if

is large enough to have a probability

smaller than 1% , we suggest that the test gave

a result that was significant at the 1% level, and we decide to

reject the hypothesis that and are coming from

the same region.

Henceforth, we introduce the following commonly used

weight function

(11)

with denoting a monotone decreasing function, e.g., a

kernel . Due to the fast decay of the expo-

nential kernel, large distances between estimated patches lead

to nearly zero weights. Note that the use of weights enables
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Fig. 1. Decomposition of the noisy Lena image (� = 20).

to relax the structural assumption that the neighborhood is

roughly modeled by a square window.

B. “Ideal” Smoothing Window

In this section, we address the problem of the automatic se-

lection of the window adapted for each pixel . It is well

understood that the local smoothness varies significantly from

point to point in the image and global risk measures cannot

wholly reflect the performance of estimators at a point. Then, a

classical way to measure the performance of the estimator

to its target value is to choose the local risk, which is

explicitly decomposed into the sum of the squared bias and

variance as

(12)

Our goal is to minimize this local risk with respect to the

size of the window , at each pixel in the image. Actually,

the optimal solution explicitly depends on the smoothness of the

“true” function which is unknown, and so, of less prac-

tical interest [29], [53]. A natural way to bring some further un-

derstanding of the situation is then to individually analyze the

behavior of the bias and variance terms when increases or

decreases with as follows.

• The bias term is nonrandom

and characterizes the accuracy of approximation of

Fig. 2. Patch-based image denoising algorithm.

the function at the point . As it explicitly de-

pends on the unknown function , its behavior is

doubtful. Nevertheless, if we use the geometric inequality



KERVRANN AND BOULANGER: OPTIMAL SPATIAL ADAPTATION FOR PATCH-BASED IMAGE DENOISING 2871

and assume that there exists

a real constant (i.e., is Lipschitz contin-

uous) such that , then

Accordingly, is of the order and typically

increases when grows (see also [29]).

• The behavior of the variance term is just opposite. The

errors are independent and the stochastic term can be

exactly computed on the basis of observations. Since

and , it follows that:

In addition, we can reasonably assume that there exists a

constant such that .

Accordingly, as grows, more data is used to construct

the estimate , and so decreases.

Therefore, the bias and standard deviation terms are monot-

onous functions with opposite behavior. In order to approxi-

mately minimize the local risk of the estimator with respect

to , a natural idea would be to minimize an upper bound

of the form

An approximation of the optimal window size can be then ob-

tained as

which amounts to solving the following equation:

However, the closed-form solution given by

cannot be used in practice since and are unknown. Never-

theless, for the optimal value , it can be easily shown

that the ratio between the optimal bias and the optimal

standard deviation is image independent (see [29] and

[53])

Accordingly, an ideal choice of the window will be the largest

window such that is still not larger than , for some

real value . In practice, the bias is not observable and

is unknown. Henceforth, we can adopt the following strategy

which consists in decomposing the estimator as [29], [35],

[53]

(13)

where is a stochastic component. Therefore,

and the use of (12) yields

By definition, the following inequality:

(14)

then holds with a high probability and . Com-

bining (14) and the inequality yields

(15)

Finally, we modify correspondingly the definition of the ideal

window as

(16)

The crucial point is that this inequality depends no longer on

, but is yet related to the unknown function . In Sec-

tion III-C, we shall see that a data-driven window selector based

on this definition of can actually be derived.

C. Data-Driven Local Window Selector

In our approach, the collection of estimators

is naturally ordered in the direction

of increasing where can be thought as the best

possible estimator with the smallest variance. The estimator

is also discarded since its variance is too high. A

selection procedure can be then described based on pairwise

comparisons of an essentially one-dimensional family of

competing estimators . In this modeling, the differences

are Gaussian random variables with known

variances with (see

[31, Appendix A1] for the proof), and expectations equal to
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Fig. 3. Estimated noise components by applying restoration methods to the noisy (WGN) Lena image (� = 20). (a) Total variation (TV) minimizing process
[48]; (b) bilateral filtering (BF) [55]; (c) anisotropic diffusion (AD) [43]; (d) Wiener filtering (WF); (e) robust adaptive window approach (RAWA) [30]; (f) adaptive
weights smoothing (AWS) [45], (g) nonlocal means; (NLMeans) [7]; (h) wavelet-based denoising (WBD) [44]; (i) our patch-based denoising method.

the bias differences . From the definition of

[see (16)], we derive

and, among all good candidates satisfying this inequality,

one chooses the one with the smallest variance . Following

the above discussion, a window selector will be then based on

the following pointwise rule [26], [28], [34], [35]

for all

where . This rule actually ensures the balance

between the stochastic term and the bias term, and means that

we take the largest window such that the estimators and

are not too different, in some sense, for all .

Hence, if an estimated point appears far from the previous

ones, this means that the bias is already too large and the window

is not a good one. For each pixel, the detection of this

transition enables to determine the critical size of the window.

Also, this rule updates the intersection of estimated confidence

intervals at each iteration and tests if an new candidate estimator

belongs to this current confidence interval, for each point. This

idea underlying our construction definitely belongs to Lepskii

[34], [35].
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Fig. 4. Comparisons with the nonlocal means filter [7] and a wavelet-based denoising method [44] when applied to the noisy (WGN) Lena image (� = 20).

Fig. 5. Performances (PSNR values and timings in seconds) for different patch sizes when the method (� = 0:01, % = 3, and N = 4) is applied to the noisy
(WGN) 512� 512 Barbara image (� = 20).

D. Implementation

The key ingredient of the estimation procedure is an

increasing sequence of nested square windows. At the initial-

ization, we naturally choose , set the fixed size of

patches and choose the number of iterations . In

addition, the estimation procedure relies on the preliminary

estimation of the noise variance robustly estimated from

input data as [5]

where is the set of local residuals of the

entire image defined as [we note the observation at

point ]

and the constant is used to ensure in homoge-

neous regions. To complete the procedure, we choose

in order to get a good accuracy for the pointwise estimator (see

[31] for more details) and as a -quantile of

a distribution. Once the and parameters are de-

termined using these statistical arguments, the remainder of the

algorithm given in Fig. 2, is completely automatic. Finally, the

complexity of the whole procedure is bounded and of the order

if the image contains

pixels.

IV. EXPERIMENTAL RESULTS

Our results were measured by the peak signal-to-noise ratio

(PSNR) in decibels (dB) defined as

where is the noise-free original image. We have done

simulations on a commonly-used set of images available at

http://decsai.ugr.es/~javier/denoise/test_images/ and described

in [46]. In all our experiments, we have chosen image patches

of 9 9 pixels and set the algorithm parameters as follows:

, and (see also [31]).

The processing of a 256 256 image required typically about

1 minute on a PC (2.0 Ghz, Pentium IV) using a C++

implementation of the algorithm.

The potential of the estimation method is mainly illustrated

with the 512 512 Lena image [Fig. 1(a)] corrupted by an addi-

tive white-Gaussian noise (WGN) [Fig. 1(b)], PSNR 22.13 dB,

). In Fig. 1(c), the noise is reduced in a natural manner

and significant geometric features, fine textures, and original

contrasts are visually well recovered with no undesirable arti-

facts PSNR dB . The noise component is shown in

Fig. 1(e) (magnification factor of 2) and has been estimated by
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Fig. 6. Performances (PSNR values) for different values for % when the method (� = 0:01, 9� 9 patch and N = 4) is applied to the noisy (WGN) 512� 512
Barbara image (� = 20).

Fig. 7. Performances (PSNR values) for different values for � when the method (% = 3, 9� 9 patch and N = 4) is applied to the noisy (WGN) 512� 512
Barbara image (� = 20).

calculating the difference between the noisy image [Fig. 1(b)]

and the recovered image [Fig. 1(c)]. The estimated noise com-

ponent contains few geometric structures and is similar to a sim-

ulated white Gaussian noise. To better appreciate the accuracy

of the denoising process, the variance of the pointwise estimator

is shown in Fig. 1(d) where dark values correspond to high-con-

fidence estimates. As expected, pixels with a low level of confi-

dence are located in the neighborhood of image discontinuities.

Fig. 1(f) shows the probability of a patch occurring in

, i.e.,

occurring in

where the set is used to denote

. This amounts to count the number

of detected image patches in the optimal window

which are similar to the central optimal patch centered at

. In Fig. 1(f), dark values correspond low probabilities of

occurrence and, it is confirmed that repetitive patterns in the

neighborhood of image discontinuities are located along image

level lines.

We have compared the performance of our method to several

competitive methods: total variation (TV) minimizing process

[48], bilateral filtering (BF) [55], anisotropic diffusion (AD)

using a diffusivity function of the type

[43], and Wiener filtering (WF) (Matlab function wiener2).

Fig. 3(a)–(d) shows the results of the four tested methods. The

global control parameters of these algorithms were tuned (we

have to try several values) to both eliminate noise and simulta-

neously to get the best PSNR value, and to give a good visual

impression. Additionally, this noisy image has been restored

using pointwise adaptive estimation methods [30], [45] which

are not patch-based. Fig. 3(e)–(f) provides a visual comparison

of image denoising with these two algorithms: the AWS algo-

rithm [45] tends to oversmooth the image and to generate some

artificial planar segments in homogeneous regions [Fig. 3(f)],

whereas a variant of this approach (RAWA) [30] yields a similar

result [Fig. 3(e)] to the image regularizing with the TV method

[48] [see Fig. 3(a)].Moreover, our approach is also compared to

the nonlocal means algorithm (NLMeans) [7], [8] using 7 7

image patches and a fixed search window of 21 21 pixels:

The visual impression and the numerical results are improved

using our algorithm [see Figs. 3(i) and 4]. Fig. 4 shows that

most details (see the mouth and the nose) are visually better

reconstructed with no artifact when compared to previous

methods. Finally, we point out that, visually and quantitatively

(see Fig. 8), our unsupervised algorithm method favorably

compares to any of these denoising algorithms, including the
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Fig. 8. Denoising of noisy (WGN) test images (� = 20).

TABLE I
PERFORMANCES OF DENOISING ALGORITHMS WHEN APPLIED

TO TEST NOISY (WGN) IMAGES (� = 20)

more sophisticated wavelet-based denoising methods. We re-

ported the best PSNR results we obtained using these methods

in Table I. Both visually and in terms of PSNR, our method

outperforms any of the tested methods. Indeed, we have also

compared our method to the best available published results

when very competitive methods [44], [46], [47] were applied to

the same image dataset [46]. These results were taken from the

TABLE II
PSRN VALUES (DECIBELS) WHEN OUR PATCH-BASED DENOISING METHOD

(N = 4, � = 0:01) WITH DIFFERENT PATCH SIZES AND SUB-SAMPLING

(FACTOR 2) IS APPLIED TO NOISY (WGN) IMAGES (� = 20)

corresponding publications. If the PSNR gains are marginal for

some images, the visual difference can be significant as shown

in Figs. 3(h)–(i) and 4 where less artifacts are visible using our

method. To complete the experiments, Table II shows the PSNR

values using our patch-based denoising method when applied

to this set of test images for a wide range of noise variance.

This table can be used for comparison purposes with previously

published denoising methods [46], [47].

Moreover, we have also examined some complementary as-

pects of our approach. Table III shows the PSNR values ob-

tained by varying the patch size and subsampling (factor 2).

Note the PSNR values are close for every patch size and the

optimal patch size depends on the image contents. Images with

smooth parts can be satisfying regularized with small 3 3 or
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Fig. 9. Denoising of noisy (WGN) textured 512� 512 images.

TABLE III
PERFORMANCES OF OUR DENOISING METHOD (p = 9; N = 4; � = 0:01)

WHEN APPLIED TO TEST NOISY (WGN) IMAGES

5 5 image patches, the PSNR values being even higher than

those obtained by using 9 9 patches, and the time computing

is then reduced also. Some typical visual results obtained by

varying are shown in Fig. 5. Now, from our experiments, 9 9

image patches are probably more appropriate in most cases but

smaller patches can be considered, especially for processing

piecewise smooth images. Finally, from experiments shown in

Figs. 6 and 7, it turns out the method is nearly parameter-free

since by varying and in suitable ranges ( and can be cal-

ibrated using statistical arguments as explained in [31]), image

reconstruction is nearly unchanged.

The effects of the patch-based denoising approach are also il-

lustrated on artificially corrupted textured images with an addi-

tive white-Gaussian noise. The set of parameters is unchanged

for processing all these test images: , ,

. In most cases, a good compromise between the amount of

smoothing and preservation of edges and textures is automati-

cally reached (Fig. 9). In the last part of experiments, the patch-

based denoising method has been used to restore a real noisy

picture shown in Fig. 10(a). In that case, the noise variance

is automatically estimated from image data. In Fig. 10(b), some

anisotropic effects are visible, slightly enhancing coherence of

lines in the image, and the noise component corresponding to

fine texture is removed [Fig. 10(c)].

V. CONCLUSION

We have described a novel adaptive denoising algorithm

where patch-based weights and variable window sizes are

jointly used. An advantage of the method is that internal

parameters can be easily chosen and are relatively stable.

The algorithm is able to denoise both piecewise-smooth and

textured natural images since they contain enough redundancy.

Actually, the performance of our algorithm is very close, and

in some cases even surpasses, to that of the already published

denoising methods. Also we just mention that the algorithm

can be easily parallelized since at iteration , each pixel is

processed independently. However, some problems may occur

when the texture sample contains too many texels making hard

to find close matches for the neighborhood context window.
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Fig. 10. Simplification of the sailboat 512� 512 image (� = 7:70).

These problems can usually be eliminated by providing a

larger image patch. In the future, we plan to study automatic

patch-size selection with respect to the signal-to-noise ratio and

the scale of textures to better adapt to image contents.
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