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Abstract 

The purpose of this research is to  find ways of improving optical communication 
through atmospheric turbulence by using spatial modulation. The performance of a 
class  of adaptive spatially modulated communication systems, in which the antenna 
pattern at the transmitter is modified in  accordance with the knowledge of the channel 
state obtained from a beacon signal transmitted from the receiving terminal t o  the 
transmitter,  is examined. 

For  time-invariant channels satisfying a certain reciprocity condition, there 
exists an adaptive system that achieves the maximum energy transfer possible from 
transmitter to  receiver. This result is applied to the turbulent atmospheric channel 
by regarding the atmosphere as undergoing a succession of fixed states,  and proving 
that instantaneously the atmosphere is reciprocal. The performance of adaptive spa- 
tially modulated systems for the turbulent channel is derived for both point-to-point 
and deep-space applications. In the deep-space case we find that the turbulence does 
not increase the average far-field beamwidth attainable with a given diameter aper- 
tu re ,  but fluctuations about this average beamwidth do occur as the state of the atmo- 
sphere changes. 

The effects of noise and approximate transmitter implementations on the perfor- 
mance of the adaptive systems under discussion are considered. A hypothetical deep- 
space system is specified and its performance is evaluated. 
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I. INTRODUCTION 

Optical communication systems in which the clear turbulent atmosphere comprises 

part of the transmission medium a r e  characterized by reduced system performance when 

compared with free-space systems. From a communications viewpoint, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloss of spa- 

tial coherence caused by the turbulence limits the performance of optical systems in 

two ways: (i) a receiving aperture diameter (for a heterodyne receiver) beyond which 

the signal-to-noise ratio is not enhanced by increased aperture size; and (ii) a maxi- 

mum transmitting aperture diameter (for a plane-wave transmitter) beyond which the 

far-field beamwidth is turbulence-limited and independent of aperture size. Each of 

these effects may be taken to define a coherence length for the turbulence, so  that per- 

formance saturates when the related aperture diameter is made larger  than this length. 

In point-to-point applications on the Earth with the receiving aperture in the near 

field of the transmitter,  the first of these limitations is the significant one. 

to-Deep Space applications the receiving aperture a t  the spacecraft contains only a single 

coherence area,  and thus the second of these limitations is the significant one. 

F o r  Earth- 

Much work has been devoted to finding receiver structures for  the point-to-point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1-3 

problem that a r e  capable of using more receiver aperture than a coherence area.  

These approaches, which assume a fixed (usually a plane-wave) antenna pattern at the 

transmitter,  a r e  fruitful because in point-to-point applications the turbulence does not 

greatly affect the total c a r r i e r  energy incident upon the receiving aperture. This energy 

is no longer in a single plane-wave component, and thus spatial diversity o r  wavefront 

tracking techniques must be employed, but the energy is there  a t  the receiving aperture. 

This is not the case in Earth-to-Deep Space applications. 

spacecraft is proportional to the energy in the proper plane-wave component of the field 

leaving the top of the atmosphere. Any energy that is scattered out of this component 

during propagation from the ground to the top of the atmosphere is lost, as far as the 

spacecraft is concerned. 

energy received at the spacecraft does not saturate, that is, become turbulence-limited 

rather than diffraction-limited, as the transmitting aperture diameter is increased. 

The energy received a t  the 

Our primary aim will be to find a system fo r  which the ca r r i e r  

We shall study a class  of adaptive spatially modulated transmitters in which the 

antenna pattern of the transmitter is modified in accordance with the knowledge of the 

atmospheric "state" obtained from a beacon signal sent from the receiving terminal to 

the transmitter. 

mitter of the type described whose average far-field beamwidth (over the turbulence 

ensemble) is the same as the diffraction-limited beamwidth of a lens of the same aper- 

ture  diameter. 

The principal conclusion that we reach is that there exists a trans- 

This report is organized as follows. In Sections I1 and I11 an abstract  model is 

developed for communication through a time-invariant inhomogeneous spatially modu- 

lated channel. 

to greatly improve system performance (measured in t e r m s  of received c a r r i e r  energy) 

We show that for  a class of channels (reciprocal channels) it is possible 

1 



by use of spatial modulation and feedback, even i f  the exact state of the channel were 

unknown a priori  at both the transmitter and receiver. 

time-variant turbulent atmosphere in Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV, V, VI, and VI1 with primary emphasis 

on deep- space applications. 

The results a r e  extended to the 

In Sections 11-VI1 a noiseless environment is assumed. This restriction is removed 

in Section VIII, and the effects of noise a r e  considered. 

calculation of the performance of a hypothetical adaptive system. 

Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM concludes with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 



11. APODIZATION IN THE ABSENCE OF NOISE 

2 . 1  CHANNEL MODEL 

We begin our study of spatial modulation by developing some abstract results for a 

t ime -invariant inhomogeneous spatially modulated channel. 

postulate approximates the state of the turbulent atmospheric channel at a single instant 

of time. 

The model that we shall 

Consider the system geometry shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  We wish to transmit inform- 

ation using electromagnetic radiation. We shall assume narrow-band signals and 

Fig. 1. System configuration. 

describe the electric field at any point in space a s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4  _.A 

where E ( r ,  t) is the field at a point 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo is the ca r r i e r  radian frequency. 

field amplitude, g(r, t ) ,  is due solely to temporal modulation at the transmitter. 

our work is concerned only with improving the received c a r r i e r  energy, we shall neglect 

any temporal modulation at the t ransmit ter  and suppress the time dependence of E(r, t).  

Thus the electric field is 

and time t ,  E(r, t) is the complex field amplitude, 

Note that the time dependence of the complex- 

Since 
4 4  

C 

4 4  

We would like to eliminate the vector nature of the channel. We do this by assuming 

that the channel has no depolarizing effect on the field sent through it, and by communi- 

cating with a single t ransverse component of the electric field. 

now have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor that component we 

E(:, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Re [E(;) ejWct]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

( 3 )  



From the linearity of Maxwell's equations (either in time o r  frequency domain) we 

conclude that the system shown in Fig. 1 is linear. To describe this linear system we 

introduce an impulse response (Green's function), and for convenience we choose to 

define it in t e rms  of the complex-field amplitude. Let the transmitting antenna be a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MEDIUM 

Fig. 2. Antenna geometry. 

planar aperture R1, and the receiving antenna be a planar aperture R 

parallel to that of R1 (see Fig. 2). 

complex-field amplitude at a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 in R 

point source located at point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF in R 

tion u(F) in R1, then the resulting output-field amplitude, v(?) ,  in R is 

whose plane is 
2' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 -  

The impulse response, L ( p ' ,  p ) ,  of the system is the 

in response to a complex-field amplitude 
2 

If there is some arbitrary source distribu- 
1' 

2 

Eventually we shall need to study the field at R1 that results when a field is trans- 

mitted f rom R Z ,  so we define another impulse response, &(p,  P I ) ,  to be the complex-field 

amplitude at a point F in R in response to a point source located at point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 in R Once 
1 2' 

again, i f  there is an arbi t rary complex-field source distribution v ( 2 )  in R 

resulting output field, u(;), is given by the convolution of the input with the impulse 

response. That is ,  

- -  

then the 
2' 

Within the framework just described there a re  some interesting questions that can 

1. What unit energy source distribution u(F) on R l  maximizes the total car r ie r  

given that the channel state (that i s ,  the impulse 

(By energy 

be posed. 

energy received over the aperture R 
2' 

responses h, and 2) is known to both the transmitter and the receiver? 

4 



- 2 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
we mean sR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI u( p ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI dp, which really corresponds to the power in the original field - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
not field amplitude. Since we consistently suppress the time behavior of the spatial 

waveforms, it is convenient to call the expression the "energy." This convention will  be 

maintained throughout the report.) 

2.  What unit energy source distribution u(g)  on R maximizes the total car r ie r  
1 

energy received over R if  the state is unknown a priori  at both ends of the system, but 

a channel beacon (from R2 to R l )  is available? 

unknown-channel systems ? 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 .  What a r e  the resulting output energies of these optimal known-channel and 

The extent to which an unknown-channel communication system can perform as  well 

as the optimum known-channel system, for  the spatially modulated channel under dis- 

cussion, is the crux of this report. 

2 . 2  APODIZATION FOR KNOWN CHANNELS 

We shall consider the first problem. Apodization problems (that is, maximizing the 

received energy for a given transmitted energy) when the channel state is known at both 

terminals a r e  easily solved, in principle, by solving for the natural "spatial modes" of 

the system. 

added definitions. 

given. 

In order to formulate the problem in these terms,  we must ihtroduce some 

These known-channel results a r e  not new4-6 and no proofs will  be 

We define two kernels 

These kernels a r e  both Hermitian and non-negative definite. 

Let the K kernel have orthonormal eigenfunctions qi(g), and associated eigen- 

values qi, and let the K kernel have orthonormal eigenfunctions +i(2), and associated 

eigenvalues Xi; that is, {Qi) is a set of orthonormal functions defined on R1 such that 

-c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

and similarly {+i} satisfies the corresponding Fredholm integral equation in t e r m s  of 

the kernel K,. These sets  of eigenfunctions may be assumed to be complete on their  

respective domains i f  we augment them to include eigenfunctions with zero eigenvalues. 

(The Fredholm integrals must be over finite regions, otherwise the eigenfunctions will  

not be countable. When we make use of eigenfunction expansions, we shall be careful to  

5 



Table 1. Kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, 5, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. 

DEFINITIONS MODEL 

IF ql  2 q z  3 . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. THEN 

MAXIMUM ENERGY TO R 2  

IS THE UNIT 

1 ENERGY WAVEFORM THAT DELIVERS 
'Gi Ci(F1)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, Q i ( F ) 3 ( F 1 , F )  d F  

R1 R2 

- -  IF X I  > X 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.. . THEN +iF ' )  IS THE UNIT 

MAXIMUM ENERGY TO R1 

ai(;) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI +i(P') &(P, P ' 1  6' 
R2 ENERGY WAVEFORM THAT DELIVERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t 
CON JUGATION 
T RANSMITTE R 

6 



use finite domains for the kernels K and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 
over infinite domains, but in these instances we shall not re fer  to the eigenfunctions or 

eigenvalues.) Since both kernels a r e  Hermitian and non-negative definite, we have 

On occasion we shall use these kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-c 

qi 3 0, xi 3 0. 

We now define the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 +(T)  to be the response at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 to a source field qi(F) 
1 

at R1; in other words, 

We also define the function 

at R2; that is, 

ai(;) to be the response at R1 to a source field. +i(7) 

It may be shown that (Jli} and (mi} a r e  orthonormal se t s  of functions on their respective 

domains. Furthermore,  by properly augmenting (+i} and (ai} to include functions whose 

associated eigenvalues a r e  zero, we may 

regard these se t s  as being complete on their 

respective domains. These properties of 

the input and output eigenfunctions of the 

kernels K and K, will  be used frequently, 

and so they have been summarized in 

a1Y1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 y - F  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 6 91 

-c 

Table 1 for future reference. They lead 

to parallel channel decompositions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
an f i n  *n original channels5' (see Fig. 3). 

Slepian7' has shown that the eigenfunc- 

(a) tions associated with propagation through 

free-space a r e  the prolate spheroidal wave 

functions, and Greenspan4 has used this 

result to obtain bounds on probability of 

e r r o r  for the spatially modulated f ree-  

space channel. 

medium that we a r e  modeling (the turbulent 

The impulse response of the 

atmosphere) is unknown, however, and were 
b n 6  0 n A Y F b n  *n 

(b) 

it known it would still be difficult, if  not 

impossible, to solve the resulting Fredholm 

equations for the eigenfunctions and eigen- 

values. 

not only a r e  the impulse responses h and & 
Nevertheless, we shall suppose that Fig. 3 .  Parallel  channel models. 

(a) h channel. (b) & channel. 
-c - 

7 



known at each terminal but also the eigenfunctions and eigenvalues of their  associated 

kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, a r e  known. 

energy Et to be used at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR1, and wish to adjust the t ransmit ter  to maximize the energy 

received at R2. Assuming that the eigenfunctions {qi) a r e  ordered in such a way that 

Consider the apodization problem from R1 to R2. Suppose that we have an available 

q 1 3 q 2 3 q 3 >  . . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 , 9  we find that  the optimum waveform to use is 

and the received waveform is 

which has energy Etql. 

show that 

Note that by conservation of energy q l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 1. Similarly, we can 

qi S 1, xi < 1. 

It is easy to see that i f  we had energy Et available at R 2  and wished to maximize the 

energy received at R1, then with {+i] ordered such that 

the optimum waveform is 

and the resulting received waveform is 

which has energy EtX 

to the problem of finding the solutions to a Fredholm integral equation. 

the resulting integral equation is nontrivial; for the free-space channel answers a r e  

known only for certain simple antenna g e o m e t r i e ~ . ~ ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ’  9’ 

esting comments can be made. 

In transmitting from R to R the maximum received energy, when an energy Et was 
1 2 

transmitted, is Etql, and q < 1. 
1 

be answered in t e rms  of the so-called degrees of freedom of the channel, a number that 

tells how many of the eigenvalues a r e  ”close” to unity. We shall discuss degrees of free- 

dom in more detail after we study apodization for unknown channels. 

Thus the solution to the apodization problem when the channel state is known reduces 

The solution of 

Nevertheless, some inter- 

When wil l  q I  be close to unity? This question may 

8 



2.3 APODIZATION FOR UNKNOWN CHANNELS 

There a r e  many ways of trying to find the optimum waveform for apodization through 

Since we wish to apply our work to the (time- a time-invariant unknown spatial channel. 

variant) turbulent atmosphere, without justification, we shall specify a method of com- 

munication and examine its performance. 

channels the performance of the system proposed here  approaches the optimal energy 

transfer i f  the channel is known at each terminal, and eventually we shall show that the 

atmosphere is a reciprocal channel. 

In Section 111 we show that for reciprocal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BEACON BEACON 

MONITOR XMTR 

CONTROL 

SIGNAL 

RECEIVER 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Two-way apodization, unknown channel. 

Suppose we a r e  trying to maximize the energy received at R using the system shown 
2 

in Fig. 4, subject to the following constraints. 

1' 
1. 

2. 

We transmit a unit energy beacon from R 2  to R 

Using the received beacon waveform (in a yet unspecified way), we adjust the 

transmitter at R1. 

from the beacon. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  We transmit energy Et from R1, regardless of the amount of energy received 

We denote the beacon waveform (at R ) as ~ ( 2 ) ;  thus the received signal at R1, 
2 

uo(p) ,  is 

Let us  now assume the following t ransmit ter  implementation at R 

form u (7) and transmit a replica of the u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F )  waveform, scaled to have energy E , and 

propagating in the opposite direction. Mathematically, the transmitted waveform, u ( p  ), 

may be written (see Appendix A) 

We receive the wave- 
1: 

0 t-* - 0 

9 



where Td is the lumped delay time of the propagation of the beacon from R2 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 1  and 

the t ransmit ter  adjustment time. Since Td is a constant, and just adds a delay to the 

time-domain fields, we shall delete it from the expression for u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p ) .  This makes the 

t ransmit ter  at R1 nonrealizable, but at any later point in the analysis we may add the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -  

delay in our results. 

-* - 

When we transmit u ( p  ) the signal received at R is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

A *  
Now we assume that the receiver at R 2  cannot use all the energy in v ( p ' ) ,  but ra ther  it 

heterodynes (see Appendix A) v ( p ' )  with the beacon waveform ~ ( 2 ) .  
that the (heterodyne) receiver measures is 

A *  - 
Thus the energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

where we have used the fact that v ( 7 )  has unit energy, and substituted from Eq. 13 for 

v (r'). We define a kernel 
A *  - 

in te rms  of which Eq. 14 may be written 

The Q-kernel defined in Eq. 15 is more than a notational convenience; it has the 

Let {Si> be the orthonormal eigenfunctions of the Q-kernel, following interpretation. 

with eigenvalues {Q~}.  That is 

- - L A  *-. - * -  lR2 Q ( p ' , r ' )  C i ( p ' )  dp' = Q ~ C ~ ( ~ ' ) .  

(As with the eigenfunctions of the K and ,K kernels the eigenfunctions of the Q-kernel 

a r e  countable only if  R2 is finite.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) 

10 



Note that the integration is performed on the first variable of Q, which is why the eigen- 

functions a r e  conjugated in (17). 

to the usual Fredholm equation. 

tell whether o r  not Q is Hermitian o r  non-negative definite. 

(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  and interchanging the orders  of integration, we may write (1 7) 

If Q is Hermitian symmetric,  then (17) is equivalent 

Without further information about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and & we cannot 

Substituting for Q f rom 

In other words, if  one t ransmits  Ci(2) f rom R2 and uses  the "turn around" (conjugation 

operation) t ransmit ter  at R then the signal received at R2 is uiLi (rl), where the con- 

jugation a r i ses  from the difference in propagation direction (R1 to R instead of R2 to 

R1). The energy in the signal received at R2 is I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa .  I 2, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  has unit energy. This 

property of the Q-kernel will  be used often later in this report, and so it is included in 

Table 1 (with the properties of the K and E kernels) for future reference. 

ization problem that we a r e  solving. 

tem with the one-way (K-kernel) system of section 2. 2 we must make some further 

assumptions. 

ization system described in section 2.2 a s  the 5-kernel  system. Similarly, we shall re fe r  

to the unknown-channel (two-way) system described here  a s  the Q-kernel system. Basi- 

cally we a r e  denoting each system by the kernel describing the system's  energy perfor- 

mance. We shall now discuss the performance of one-way systems in t e rms  of degrees 

of freedom. 

channels in Section 111. 

* -  
1' 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

Up to this point, we have arbitrari ly assigned a great deal of structure to the apod- 

To be able to compare our two-way (Q-kernel) sys-  

-e 

Throughout we shall refer to the optimum known-channel (one-way) apod- 

We shall re turn to two-way apodization systems in  the context of reciprocal 

2.4 DEGREES OF FREEDOM 

The discussion here will  be restricted to one-way apodization problems. 

h, channel as an example, but all comments apply equally well to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 channel. 
The degrees of freedom, Df, of the channel has the following properties. 4 ,  8, 11 

1. Df is a function of the antenna a reas  (R1 and R ) and the impulse response of the 

intervening medium, and Df increases monotonically a s  either o r  both of the antenna 

areas are increased. 

We use the 

2 

2. Under the assumption that the eigenfunctions {Qi} a r e  arranged in order  of 

decreasing eigenvalues, then if  

i > Df qi - 0. 

3.  For  the free-space channel with concentric apertures 

11 



where A1 is the a rea  of region R 
1' 

the radiation, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz is the perpendicular distance between R1 and R 

ne1 without excessive loss. 

limited, I1essentially1l bandlimited orthonormal signals in the time domain.' ' Also, since 

the higher numbered eigenfunctions will  resemble sinusoids of increasing spatial fre - 
quencies, it is apparent that the channel severely attenuates the high spatial frequen- 

cies. Spatial bandwidth considerations w i l l  be treated in detail in Section VIII, and 

extensive use w i l l  be made of the degrees-of-freedom concept. 

A2 is the a rea  of region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARZ, A is the wavelength of 

Thus D determines how many of the spatial modes can propagate through the chan- 
2' 

f 
It is analogous to the 2TW limitation on the number of time- 

13 . . 
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111. RECIPROCAL CHANNELS AND STATE KNOWLEDGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 .  1 RECIPROCITY CONDITIONS 

We have made few assumptions concerning the impulse responses, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc h, and 

their associated kernels If, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, and Q. We might expect that i f  there is some strong 

'I correlation" between the functions h and &, then the unknown-channel communication 

system could perform a s  well  a s  the optimum known-channel communication system. 

We shall now investigate possible I' correlations" between the two impulse responses, 

called I' reciprocity conditions," and the communication-oriented consequences of reci-  

procity. 

- 

For our purposes, the most important reciprocity condition is point reciprocity. We 

shall say that the channel under consideration is point-reciprocal if and only i f  

This condition implies that i f  we had a unit-energy point source located at a point F in 

R then the field received at a point 2 in R2 would be the same a s  the field received 

at p from a unit-energy point source located at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,  hence the llpoint'l nature of the prop- 

erty. 

position principle to (19) and conclude that transmitting a field from R1 to R2 has the 

same effect a s  transmitting the same input field from R 2  to R1. The superposition prin- 

ciple does allow one to  draw some interesting conclusions from (1 9), but they a r e  some- 

what different from the (false) conclusion just mentioned, 

R1. Multiplying (19) by u(F) and integrating (on R1), we obtain 

1 '- 

It should be noted that without further assumptions we cannot simply apply the super- 

Let u(F) be an input field on 

The left-hand side is the output field that results when u(F) is the input field. The right- 

hand side is the output of a receiver that heterodynes &(p, p ' )  with u(F).  Equation 20 

shows, therefore, that for a point-reciprocal channel the following a re  equivalent: t rans-  

mitting u(F) from R1 and measuring the field at the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 in R2, and placing a point 

source at 2 in R2 and heterodyning the field received at R1 with u(F).  

A -  

If u(F) = 1 (zero-phase normally incident uniform plane wave), then (20) reduces to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n n 

If a medium satisifes (21), then we say that the medium satisfies a singly integrated 

reciprocity condition. A s imilar  singly integrated reciprocity condition results from 

13 



integrating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 9) over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2. 

point-reciprocal channels, but since some arguments wi l l  only require singly integrated 

reciprocity, this weaker condition is defined explicitly. 

These singly integrated conditions a r e  always satisfied by 

A doubly integrated reciprocity condition may be obtained by integrating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21) over 

R2 '  

This equation may be interpreted as follows: Each t e rm is the output of a heterodyne 

receiver when the transmitting and local-oscillator fields a r e  both zero-phase normally 

incident uniform plane waves, with the t ransmit ter  at R1 on the left side and the t rans-  

mitter at R 2  on the right side. 

channel is point-reciprocal, and also that the impulse responses, h and h, a r e  spatially 

invariant. That is, 

We now investigate some conditions stronger than Eq. 19. Let us assume that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 c 

Point reciprocity implies that the two impulse responses a r e  equal, spatial invariance 

means that the impulse responses only depend on the single vector quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. Spatial 

invariance allows us  to rewrite our usual convolution integral (4) in the form 

It is readily seen that the output field is invariant with respect to a spatial translation in 

the input field. That is, 

which is the spatial analog of the usual time-invariance property of linear systems in 

the time domain. 

The spatial invariance of the impulse responses, in addition to point reciprocity, 

allows us  to prove the following relation. 

channel i f  an input field u(F)  at R 1  causes an output field v ( 7 )  at R2, then an input ~ ( - 7 )  
at R2 causes an output v(-F) at R 

For a spatially invariant, point-reciprocal 

In other words, if  
1' 

/- 

then 

14 



The proof of this property is presented in Appendix A, but the essential nature of (25) 

can be illustrated by the following example. 

pretation of the impulse responses h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. 
complex amplitude of the ray leaving the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF in R that arr ives  at the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 in R 

Thus for point-reciprocal channels the complex amplitude of the ray from F to 7 is 

the same as  the complex amplitude of the ray from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. 

it is apparent that the two rays in question (F to 2 and 7 to F )  travel along the same 

path through the channel medium but in opposite directions. 

tel ls  us that rays  going in opposite directions on the same path a re  equivalent (same 

complex amplitudes). 

in our ray optics terminology this means that the complex amplitude of a ray from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr in 

R I  to 4 in R2 depends only on the difference This implies that two rays a r e  

equivalent if  the vectors from their source points to their output points a r e  parallel; 

hence, such rays will  be called parallel rays. 

mind consider the following example. 

For  this example we use a ray optics inter-  

The function h(p',  p )  is assumed to be the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 -  

4 -r 

2' 1 

4 

From Fermat 's  principle 

Point reciprocity therefore 

4 -  A A  

For  spatially invariant channels we have h(  p' , p ) = F( p' -p ) and 
-c 

- g. 

With this ray optics interpretation in 

Let 

a 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 (  e )  denotes a unit-amplitude point source. 

medium is point-reciprocal, we have 

Consider a point c in R2; since the 

The medium is also spatially invariant, so 

A -  A A  A d  A d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c h(a,  c )  t & ( b ,  c )  = F ( c - a )  t F ( c - b )  

A A  d A  

= c h(-c, -a) t &(-c, -b 1. (27) 

As shown in Fig. 5, the vectors from the points and b in R1 to the point in R2 a r e  

antiparallel to the vectors from -; and -b in R to -c in R1. Equation 25 (or Eq. 27) 
2 

shows that these antiparallel rays a re  equivalent. This is what we would expect, since 

as we have seen point reciprocity implies the equivalence of rays going in opposite 

directions on the same line, and spatial invariance implies that any two parallel rays 

a r e  equivalent; together they imply (27). In fact, spatial invariance (see Eq. 24b) allows 

us  to generalize (25) to 

4 

The necessity of using ~ ( - 7 )  in (25) may be removed by imposing an additional 
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Fig. 5. Reciprocity for spatially invariant channels. 
Rays 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 a r e  antiparallel, 
rays  2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 a re  antiparallel. 

constraint on the channel medium. Let the channel be point-reciprocal, and spatially 

invariant, and in addition let it be isotropic, Thus we now have 

Using (29) ,  we can show (see Appendix A) that i f  

then 

The hierarchy of reciprocity conditions, and some of their immediate consequences, 

a r e  summarized in Table 2. Before turning to the communication-oriented consequences 

of reciprocity, it is worth while to note that the free-space channel studied by Greenspan 

satisfies all of the conditions in Table 2. This is easy to verify because we have explicit 

formulas for the impulse responses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, and &. 

4 

The inhomogeneous medium of our 
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turbulence model is neither spatially invariant nor isotropic, but it may still satisfy 

point reciprocity o r  one of the integrated reciprocity conditions. This is a question of 

importance for this work, and we shall re turn to it. 

3 . 2  APODIZATION FOR POINT-RECIPROCAL CHANNELS 

We shall compare the performance of the K-kernel (known-channel) and Q-kernel 

(unknown-channel) systems described in Section 11. 

properties of the K, K,  and Q kernels, hence the reader  may find it helpful to review 

Table 1. 

From the definitions in Section I1 it is apparent that for any point-reciprocal channel 

Extensive use wil l  be made of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- c c  

We assume throughout that the channel under consideration is point-reciprocal. 

and 

ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Xi. 

Therefore, since +. is now an eigenfunction of Q, i f  we transmit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. from R 

conjugation transmitter at R 

function of K, so when we transmit +. f rom R we receive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 a. at R Therefore we 

have shown that (ai} has the following interesting property. It is a set of orthonormal 

and use the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 * 1 

we receive Xi+i at R2. On the other hand, +i is an eigen- 
1' 

1 2 1 1  1' %k 
c 

functions on R1 that maps into a set  of orthonormal functions on R through the linear 

filter L ( p l ,  p ). 

{qi}, have. 

equation with the K kernel, and that the associated eigenvalue is Xi. 

2 

is a solution of the Fredholm integral 

So, for a point- 

A -  

This is the same property that the input eigenfunctions of the K kernel, 
-c 

.b 

In fact, it may be verified that 

- 
reciprocal channel, we have 

Recalling that the optimum waveform for apodization in the known-channel case is 

q1 ( p ) ,  we see that if  we used + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) as a beacon waveform in the unknown-channel 
1 

Unfortunately, for an unknown channel there  may be no way to 

case the renormalized waveform used at R would then be 

mum one-way result. 

determine + , ( P I ) .  

knowing +l(pl). 
We have just  shown that for reciprocal channels, knowing +1(7) is equivalent to 

knowing Ql (p ) .  We would like to obtain the weakest condition sufficient to prove this 

property. In Appendix A it is shown that if  Q = K ,  then we may make the identifica- 

tion (33), and the optimality of the Q-kernel system follows in the same manner as pre- 

sented above. It is also readily apparent that any channel satisfying (33) also must 

satisfy (32), thereby implying that Q = K. Thus Q = K is a necessary and sufficient 

a;(;), which is the opti- 
1 

4 

We shall re turn to comment about what can be done without 

c 

c c 
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condition for Eq. 33. 

From the definitions of Q and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, it directly follows that the two kernels a r e  equal 

i f  and only if  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

- 4  ....A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -  2 
That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( p ,  p' )  is orthogonal (in L (R1)) to h ( r l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 p )  -&(p ,  r l )  %h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ' ,  r' E R2. This orthog- 

onality condition is somewhat weaker than point reciprocity, as may be seen from 

applying the Schwarz inequality to (34). We obtain 

Hence a sufficient, but not necessary, condition for Q = K, is 

2 A -  A &  

In other words, h ( r ' ,  p )  = c h(p, rl) in L (R1). 

K and K kernels that is valid for point-reciprocal channels. 

condition for the validity of (33) has also been derived. 

in Table 3. 

an unknown-channel (Q-kernel) system that performs as  well a s  the optimal known- 

channel system. 

- 
We have derived a relation, (33), between the eigenfunctions and eigenvalues of the 

A necessary and sufficient 
-c c 

These results a re  summarized 

The most important result is that (33) allows us  to prove the existence of 

3 .3  OPTIMAL SPATIAL MODULATION TECHNIQUES 

We return now to the problem of selecting a beacon signal for a &-kernel communi- 

cation system, when transmitting through a point-reciprocal channel. 

we can achieve the optimal one-way energy t ransfer  from R to R i f  we can use +Jl(F) 
as the beacon signal. 

ferent cases  of interest, a "deep-space" channel, and a point-to-point channel on the 

Earth. 

We have seen that 

1 2 
We shall now discuss what can be done to obtain for two dif- 

First, consider the deep-space channel, shown in Fig. 6. We assume that all of the 

(on the Earth),  

We have called 

inhomogeneities (turbulent eddies) a r e  confined to a small  region near R 

and that the r e s t  of the path to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 (the spacecraft) is through free space. 

this a deep-space channel, to emphasize the fact that the path length from the top of the 

atmosphere to the spacecraft is quite long. How long it must be for our purposes must 

1 

1 9  



Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Consequence of reciprocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& _ L  

111. IF AND ONLY IF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(?,gl) = K ( ? , F t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc V p ' ,  r' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R2 

THEN Qi(;) = a:(;), q. i i  = X V i  

AND WE HAVE THE FOLLOWING CHANNEL MODELS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I R 2  

SPACECRAFT 

I 
I 

FREE SPACE 

Fig. 6. Deep-space apodization problem. 

6 k - P  OF ATMOSPHERE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 



be considered. Suppose the distance involved is such that when a beacon v ( 2 )  is trans- 

mitted from R the field received over a large planar region tangent to the top of the 

atmosphere and centered on the line from R to R is a normally incident uniform plane 
2 1 

wave with amplitude proportional to 

2 

We assume that regardless of the field sent from R2 the field received at R1 depends 

only on the field in that region at the top of the atmosphere where the assumption leading 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(37) is valid. 

atmosphere subtending essentially no solid angle at the spacecraft compared with the 

far-field beamwidth of the R 2  aperture. 

the region of interest at the top of the atmosphere be much smaller than the minimum 

of and zA/d, where z is the path length from the top of the atmosphere to the 

spacecraft, A is the wavelength of the radiation, and d is the diameter of the R z  aper- 

ture.)  Furthermore, for any beacon transmitted from R the field received at R1 only 

depends on the field in the region at the top of the atmosphere that we have just defined. 

We shall comment on these assumptions eventually. Let us first consider their  conse- 

quences for finding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 

We have assumed that there is a large planar region at the top of the 

(Specifically, we require that the diameter of 

2' 

the optimum beacon signal. 
1' 

Since the field at the top of the turbulence will be a normally incident uniform plane 

wave (at least as far  as  R is concerned) regardless of the v ( 2 )  that we choose and 

is the eigenfunction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, that maximizes the energy received at R 

maximize the energy received at the top of the atmosphere. 

top of the atmosphere is proportional to 

1 
C + I ~ ( ~ )  must also 

1' 
The energy received at the 

and from the Schwarz inequality we have 

= A2. 

Equality holds in (38) if  and only i f  

eJY 
v(p')  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

%h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 E R2, 

% 
where y is a rea l  constant. 
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Thus, for the deep-space channel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) is a normally incident unit-energy uniform 
1 

plane wave, regardless of the state of the turbulence, and from section 3.2 we see  that 

the Q-kernel system with this beacon wil l  transfer the maximum energy possible from 

R1 to R2. 

of any ducting phenomenon in the atmosphere it is quite reasonable to assume that for 

a finite aperture on the ground there  is a large planar region tangent to the top of the 

atmosphere through which any field energy from the spacecraft that reaches R1 must 

pass. 

direction of propagation of any incident radiation. Thus in the absence of ducting the 

distance to the spacecraft need only be long enough that the region of interest at the top 

of the atmosphere subtends essentially zero solid angle at the spacecraft compared with 

the far-field beamwidth of the R 2  aperture. For typical apertures on the ground and the 

spacecraft this condition could be satisfied at synchronous altitude. On the other hand, 

i f  there a r e  some atmospheric phenomena that disqualify the previous assumption, the 

proof of (39) wil l  still be valid i f  the path length is such that the entire Earth subtends 

essentially zero solid angle at the spacecraft compared with the far-field beamwidth of 

Hereafter, when we re fer  to a deep-space channel we shall mean that the path 

As we 

Let us re turn to the assumptions that led to the derivation of Eq. 39. In the absence 

By ducting we mean any atmospheric phenomenon that would radically alter the 

R 2 '  
length is such that the statements leading to (37) and the proof of (39) a r e  valid. 

have seen, this may be t rue  at synchronous altitude, which ordinarily would not be called 

a deep-space channel. 

Let us now consider what happens when the path length is not extremely long, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R2 

INITIAL BEACON 

.+ - vo ( P' 1 

I RECEIVED BEACON 

TRANSMITTED WAVEFORM I 

Fig. 7. Adaptive beacon system. (Arrows denote direction 
of propagation.) 
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$6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
point-to-point channel. nor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQl ( p )  will  be uniform plane 

waves, and since, conceptually, it is as difficult to solve for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, as it is to solve for Ql, 

we cannot make implementing an optimal system any eas ie r  by going to a two-way sys-  

tem. 

(in t e rms  of energy transfer).  

to R and the conjugation operation t ransmit ter  is used at R as described in sec-  

tion 2.3. 

received signal, and uses  this as an updated beacon, v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( P I ) ,  after proper renormaliza- 

tion. 

bilized with a fixed beacon signal vF(pl) .  

performance, as can be seen in the following way. Since {+i} a r e  complete on R2, we 

may express v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) in the form 

For  this channel neither * 

A two-way system can be designed, however, to give ne?r optimal performance 

2 Suppose an initial beacon signal v o ( 2 )  is sent from R 

When the signal re turns  to R2, the beacon t ransmit ter  "turns around" this 
1 1' 

A 

1 
This adaptation process (see Fig. 7)  continues until the over-all system is sta- 

This system will  then provide near optimal 
A 

' 

0 

ca 

where 

We shall have occasion to use infinite summations; in all cases  this notation should be 

interpreted a s  the limit of the partial sums in the L' space on which the summands a r e  

defined. The beacon signal a s  received at R1, therefore, is 

co 

and the signal received at R2 is 

where A is a constant that normalizes the field transmitted from R 1  to have energy Et. 

As  the process of adaptation continues, the communication system that we have described 

wil l  tend to use only those components in the expansion of vo(?) that propagate through 

the channel with (essentially) no attenuation. 

signal used after k R2-R1-R2 round t r ips ,  then we have 

In particular, i f  vk(?) denotes the beacon 

vk(;) = k =  1,2,3 , . . . ,  
1 

k 
i= 1 

(43) 

23 



where B is a constant that normalizes v k ( z )  to have unit energy. Since we have 
k 

it is apparent that as the adaptation process continues, the beacon signal converges (in 

L (R2)) to a signal that yields the optimum energy transfer from R1 to R2. 

ment requires v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 0. That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (This state- 

O1 

We assume that v o ( F )  satisfies this condition.) Moreover, this convergence is such that 

the energy performance increases monotonically as time goes on, and thus an adaptive 

system could be built that would continue changing the beacon until a certain level of per-  

formance, say 0. 9Et received at R Z ,  is achieved and then fix the beacon. Note that the 

results obtained here apply to a time-invariant channel, in Section VII they w i l l  be gen- 

eralized to the time-variant atmosphere. 

Let us  consider how long it takes for the convergence that we a r e  talking about to 

take place. Suppose that the number of degrees of freedom of the channel, Df, satisfies 

1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. 

3. 

The f i  

the following assumptions: 

Df > 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x. E 1 W i i , ( D f  

h. = 0 Y i > Df. 

1 

1 

st of these assumptions means that the two antennas a re  in the so-called ea r  

field, and the second and third assumptions a r e  idealizations of the properties of Df. 

If D has these properties, then (43) reduces to 
f 

and the convergence is completed in a single round t r ip .  

is not satisfied, then the convergence of the beacon signal will  take an infinite number 

of round t r i p s ,  although i f  Df is greater  than one, and assumptions 2 and 3 a re  approx- 

imately t rue,  then the convergence is llessentiallyll complete in one o r  two round t r i p s .  

If any one of these assumptions 

Even if  the three assumptions a r e  satisfied, and (44) is the beacon signal that we 

use, there is a difference between the known-channel and the unknown-channel situations. 

In a known-channel case with D degrees of freedom there  a re  Df orthonormal functions 

propagating through the channel without loss. 
f 

The adaptive system that we have just 
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described allows us  to obtain one unit-energy function that propagates through the chan- 

nel without attenuation, but there  seems to be no way of obtaining the other D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 eigen- 

functions of unit eigenvalue. This loss of parallel channel capability does not affect our 

ability to t ransfer  energy from R to RZ,  but it does preclude our obtaining Df useful 

spatial degrees of freedom for improving the reliability of information transmission. 

In other words, although our adaptive beacon system can obtain all of the necessary state 

information from the channel for apodization, it does not tell us  all there is to know 

about the channel. 

to-point channel because in the deep-space case there is only one branch to the parallel 

channel model with nonzero gain (see section 6 . 2 ) .  

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

Note that the loss of parallel channel capability is unique to  the point- 

We have now shown that for communicating through a fixed reciprocal channel a 

Q-kernel system exists which will  achieve optimal energy t ransfer  in the deep-space 

case, and a system exists that achieves arbitrarily close to optimal energy transfer in 

point-to-point applications on the Earth. 

i f  the channel does not satisfy point reciprocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor even the weaker condition (34) .  

It is interesting to see  how our results change 

3 . 4  APPROXIMATELY RECIPROCAL CHANNELS 

For some channels that we might wish to study, we may not be able to prove point 

We would like to say that if, in reciprocity, or even the orthogonality condition (34).  

some sense, Q = 5, then our results concerning the optimality of the unknown-channel 

feedback system would still hold, at least to some degree of approximation. We shall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R1 

RECEIVED BEACON 

R2 

BEACON 

- + 1  (2) 

TRANSMITTED WAVEFORM 

dqq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3- 
RECEIVED WAVEFORM 

TIME 

INCREASING 

", (; ) HETERODYNE 

91 
WITH 

Fig. 8. Performance bound for Q # K,. (Arrows denote direction 
of propagation,) 
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derive a performance bound in t e rms  of the difference kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4  A -  

R ( 7 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Q ( p ' ,  r l )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( p l ,  r'). (45) 

Let the orthonormal eigenfunctions and the eigenvalues of the R kernel be denoted 
14 Ei(7) and p Then we may express the Q kernel in the form 

i' 

* 
We shall lower-bound the energy in the + component of the field received at R2 after 

1 
the round-trip transmission scheme (R to R1 to R ) shown in Fig. 8. 

upper-bound the degradation in the optimality of the Q-kernel system caused by Q # K. 

As shown in Fig. 8, the received beacon field at R l  is "turned around" and renormalized, 

so that the field received at R2 is 

This result will  
2 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 

.I. 

The +; component of this field, therefore, is 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 pi 
i= 1 

and the energy in this component is 

where we have used the triangle inequality. 

obtain 

Expanding the right-hand side of (49), we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Note that i f  the channel were reciprocal, then the energy received in the +: component 

would be EtXI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso the loss in performance caused by Q # K, is bounded by the second 

t e r m  in (50).  

The bound that we have derived may not be the strongest possible bound that could 

be obtained, but it is presented here  a s  one way of measuring how the &-kernel perfor- 

mance converges to EtXl a s  the channel gets more and more "reciprocal," and the 

R kernel approaches the null function. 
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IV. TURBULENT ATMOSPHERIC CHANNEL 

4 . 1  EFFECTS OF TURBULENCE 

The central problem of this research is to  find ways of improving optical communi- 

Atmospheric turbulence causes the major limi- cation through atmospheric turbulence. 

tation on the performance of optical communication systems transmitting through the 

clear atmosphere. We shall now summarize those aspects of the turbulent channel 

that a r e  relevant to  our study. 

The atmosphere is not in equilibrium, it is constantly subject to turbulent mixing 

of inhomogeneities of varying sizes. 

tion, n ( r , t ) ,  to  be a random function of space and time, and the fluctuations in n, in 

turn, cause random perturbations in any l a se r  beam propagating through the atmosphere. 

Qualitatively, the effects of the turbulence on a received beam may be classified as fol- 

lows. 

placing it entirely outside the receiving aperture. 

These inhomogeneities cause the index of refrac-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 

Beam Steering. The beam may be deviated from the line of sight, thereby possibly 

Image Dancing. Random variations in the angle of arrival of the beam cause images 

to execute a two-dimensional random walk in the focal plane of a collecting lens. 

The c ross  section of the received beam may vary randomly in Beam Spreading. 

size. 

Image Blurring. A random crumbling of the received wavefront causes images in 

the focal plane to appear blurred. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TURBULENT 

PHASE F R ~ N T  OF 

INFINITE PLANE WAVE 

Fig. 9. 2-mo-del geometry. 
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Scintillation. Local variations in received amplitude degrade received signal modu- 

lation. 

Phase Fluctuations. Temporal fluctuations in the phase of the waveform produce 

a spurious phase modulation. 

lenc e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" 16- l9 and studying the turbulent atmosphere as a communication channel. 

With proper foresight we have collected those results that will be of use in Sec- 

tions V-VII. 

Much work has been devoted to  obtaining statistical characterizations of the turbu- 
1,3,20 

A fairly useful way of studying the effects of turbulence is the z model. Assume 

that an infinite linearly polarized uniform plane wave is normally incident on a slab of 

turbulence ( see  Fig. 9). Since it is known that the turbulence has no depolarizing 

effect on the incident radiation," we need only consider the incident polarization 

component. F o r  that component the electric field is then 

- 

with the usual complex field amplitude representation. 

field amplitude that would have existed in the absence of turbulence. 

ne1 disturbance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(r, t ) ,  as follows 

Let Eo(;) denote the complex 

We define the chan- 
A 

A 

It is convenient to  write z(r, t)  in the form 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 4 

where X ( r ,  t )  and +(r, t )  a r e  the real and imaginary par ts  of the complex process - y ( r ,  t).  

Using the Central limit theorem, we may argue that - y ( r ,  t )  is a complex Gaussian random 

process and hence g ( r , t )  a complex lognormal process," in which case the sta- 

4 

A 

4 

tistics of z(r,t) a r e  completely characterized by the second order  statistics of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and +. 

At this point it is worth showing why the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg model was not chosen as the point of 

departure for th i s  work. 

to  improve the quality of optical communication through the atmosphere. 

tion (52) of it is apparent that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz depends upon what spatial waveform was used at the 

transmitter. Thus any statistics for g must also be dependent upon the spatial wave- 

form used at the input. This coupling between the channel model and the input field 

makes analysis of spatially modulated systems difficult. Furthermore,  it we examine 

This research is concerned with the use of spatial modulation 

In the defini- 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
analytic expressions for g(r, t)  obtained through the Rytov approximation, we find that 

the 2 model is not a linear system when spatial modulation is employed. For  these 

reasons, we shall only employ 2-model results for infinite plane-wave sources, where 

the model seems to  adequately predict experimental results. 
16 

4.2 INSTANTANEOUS TURBULENCE MODEL 

Having qualitatively discussed the turbulent channel, we now show how the model 

developed in Section I1 may be applied to the time-variant atmosphere. 

that assuming a sca la r  channel is valid. 

variation of the atmosphere. 

We have seen 

The only issue that remains is the t ime 

The temporal behavior of the turbulence may be handled a s  follows. If the path length 

of interest (center-to-center distance between R1 and R2) is short enough that the atmo- 

sphere is essentially "frozen" during one propagation t ime (the t ime taken by a signal 

sent from R1 to reach R2), we may model the atmosphere as undergoing a succession 

of fixed states. 

waveform will be 

Thus if the input spatial waveform (at R1) is u(T), then the output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. - L -  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(PI, p ; t )  denotes the state of the atmospheric channel at t ime t ,  subject 

condition that the propagation time be small  compared with the characteristic 

(54) 

to the 

t ime 

(coherence time) of the turbulence. A corresponding expression exists for the prop- 

agation from R2 to R, .  Since it appears that the turbulence has a power spectrum that 

is limited to  frequencies below 1 kHz, and possibly extending only to a few hundred 

Hz," most path lengths of interest will  satisfy the necessary propagation condition. 

Specifically, by allowing 0. 1 m s  of propagation t ime a s  a worst case,  all path lengths 

l e s s  than 30 km satisfy the propagation condition. Using an exponential atmosphere 

model with a decay constant of 3 km, l7 we see that the fixed-state model will  apply 

to Earth-to-space channels with near-zenith paths through the atmosphere. For point- 

to-point channels on the ground there  may be situations in which the fixed-state model 

will  not be a good one. 

- 

In studying the atmospheric channel we shall place primary emphasis on deep-space 

applications, since it is here that the narrow beamwidths attainable (in the absence of 

turbulence) with l a se r  equipment could be used to greatly improve communication. 
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V. APODIZATION FOR DEEP-SPACE CHANNELS 

5. 1 Problem Specification 

We shall now generalize the results of Section I11 to time-variant deep-space chan- 

nels. There we studied a time-invariant point reciprocal channel. We shall now model 

the atmosphere as undergoing a succession of fixed states,  but we shall  not assume chan- 

nel reciprocity at the outset. A great deal of what we have to  say  will  not depend on our 

ability to  prove that the turbulent atmosphere is reciprocal. 

We consider an Earth-to-space communication link using a near-zenith path through 

the atmosphere. 

different f rom the structure previously studied. The aperture R1 is the transmitting 

aperture on the ground, as before, but R2 is now an imaginary "window" at the 

top of the atmosphere. We assume that R1 and R2 a r e  both circular apertures of 

diameters D and d, respectively. Also, we assume that the plane of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR1 is perpen- 

dicular to the line connecting the center of R1 t o  the spacecraft, and furthermore that 

the center of R2 l ies  along this line, and the R2 plane is parallel to the R1 plane. 

The impulse responses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(PI, p;t) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(p, p ' ;  t)  determine propagation from Rl  to  R2 

and R2 to  R1 as before, although R2 is no longer the receiving terminal. For notational 

convenience we suppress the time dependence of the impulse responses and the output 

fields whenever it is clear  that we a r e  talking about a single fixed state of the atmo- 

sphere. Referring to Fig. 10,  we see why R2 was placed at the top of the atmosphere 

instead of on the spacecraft. Ultimately we want t o  apply the results for  two-way 

(Q-kernel) systems to  the time-variant atmosphere. This will require that the 

The geometry of this system is shown in Fig. 10, and it is somewhat 

4 -  4-  

SPACECRAFT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
1 

I FREE SPACE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R p  (WINDOW)  

TIME-VARIANT ATMOSPHERE 
EARTH 

TOP OF 

R 1  (XMTR) 

Fig. 10. Deep- space apodization problem. 
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atmospheric state be essentially fixed during a round-trip propagation t ime from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 to 

R1 to R2, a condition that cannot be satisfied with R2 on the spacecraft. 

A discussion of how long a path w a s  a "deep-space" channel has been given in sec- 

tion 3. 3. 

away that when a signal is sent from R the field received at the spacecraft is propor- 

tional to  the normally incident plane-wave component of the field at the window R2 (under 

the assumption that the field is zero outside of R2). 

shall consider the following apodization problem. 

plane wave is transmitted f rom R2 to  R1 as a beacon. 

received beacon field, and adapt our transmitter accordingly. 

mitted from R1 is constrained to have energy Et, and we seek to  maximize the energy 

in the normally incident plane-wave component of the field at R2. 

maximizing the energy in  the normally incident plane wave component at R2 maximizes 

the energy received at the apacecraft. 

at the top of the atmosphere is zero outside of R2. 
by regarding R2 as the infinite plane, and assuming an infinite plane wave beacon. 

It is convenient for several  reasons to  start with R2 finite, and study the behavior of 

the resulting system as the size of R2 is varied. Ultimately, we shall s ee  that for most 

practical systems the beacon will be effectively of infinite extent. The optimal sys- 

tem that we seek distorts the waveform used at R1 to account for the effects of the 

turbulence in such a way that the field leaving the atmosphere is a normally incident 

plane wave over the window R2. 

problem. 

For the moment, let us only assume that the spacecraft is sufficiently far 

1 

In the light of this assumption, we 

A unit amplitude normally incident 

On the ground we observe the 

The waveform trans- 

Let u s  see why this is a problem of interest. Subject to  our path-length assumption, 

Strictly speaking, this is not t rue unless the field 

This requirement may be eliminated 

In this sense, we a r e  studying an adaptive equalization 

Note that the apodization problem specified above is identical t o  the two-way apodiza- 

tion problem that we studied ear l ier  i n  section 2. 3, with one exception. In the prob- 

lem just specified the beacon waveform is not a parameter under the control of the 

system designer. 

(R2) w a s  introduced rather arbitrarily, whereas heterodyning (extracting the normally 

incident plane-wave component) in the problem that we a r e  now discussing a r i s e s  nat- 

urally out of the propagation from R2 to the spacecraft. 

It is interesting to note that in section 2 . 3  heterodyning at the receiver 

5.2 Q-Kernel Apodization System for  a Single State 

The great similarity between the problems described in  sections 2. 3, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  1, together with the results for reciprocal channels in Section 111, lead us 

to examine a system that uses a conjugation ("turn around") transmitter at R1 

as a possible solution to  our apodization problem. For such a system we 

may immediately evaluate the energy, in the normally incident plane-wave 

component of the field received at R2 (for a single atmospheric state). We 

have 

Er, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4 -  - 4 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc K ( p ' , r ' )  dp'dr'  

R2 

We shall spend considerable effort studying th i s  energy expression. 

5.2 1 Asymptotic Behavior of E and Q 

We begin our evaluation of E by studying the asymptotic behavior of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and r 
Q kernels a s  D becomes infinite (R1 becomes the entire plane). From their  respec- 

tive definitions (see Table 1) it is apparent that both of these kernels a r e  functions of 

R1. 
To make this dependence explicit, we use the notation K and QR to  denote 

these kernels for  a particular finite aperture R and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, and Q, t o  denote the limit 

kernels that result  as D approaches infinity. 

-R1 1 

1' 
We shall prove the following lemma. 

Lemma 

4 4 

Let v(p')  be a unit energy signal on R2, and V ( F ' )  be its spatial Fourier transform. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE be defined as 

It follows then that 

Proof: Before getting into the details of the proof, let us  examine the meaning of the 
4 

lemma. The quantity E is the energy in v(p') ai spatial frequencies above 1 /X.  

well known that these spatial frequencies correspond t o  waves that do not propagate, the 

so-called evanescent waves. These waves a r e  exponentially attenuated in the z direc- 

tion (Rz to  R1 direction). 

waves falls on the infinite R1 plane. Equation 58 says that a Q-kernel system with 

infinite D and v(p l )  as a beacon will re turn all of the energy in the propagating com- 

ponents of v(p') t o  R,. 

R, is 

It is 

Equation 57 says that all of the energy in the propagating 

4 

4 

Thus prepared, let u s  prove the lemma. 
4 

We shall prove (57) first. The energy received at R1 when v(p') is transmitted from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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It is known that the turbulence does not absorb any energy from an incident beam, nor 

is any energy scattered far out of the beam's initial direction." Therefore the energy 

received at R1 (the infinite plane) must be all of the energy in the propagating compo- 

nents of v(p')  plus whatever energy from the evanescent waves that reaches R1. F o r  path 

lengths of kilometers (the case of interest)  we may neglect any contribution to  the 

received energy from evanescent waves; thus, as D becomes infinite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

- 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- iJ v*(F1) K R 1 ( p ' ,  r ' )  v ( r ' )  dp'dr'  --+ 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

R2 

which proves (57). 

Equation 58 is proved as follows. Let u(G) be the waveform received at R1 when 
-.% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA a3 

v(p') is transmitted from R2. 

when u (p)  is transmitted from R1. 

Let v (r ' )  be the field received over the infinite R2 plane * -  
Then we have ( see  Table 1) 

A -  A *  - 
Let V ( F ' )  be the spatial Fourier transform of v (r'). We shall prove that in the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D = w ,  

Equation 6 1  and Parseval 's  theorem wil l  then show that 

which is Eq. 58. 

Equation 6 1 is a consequence of the instantaneous time-reversibility of the atmo- 

sphere, defined as follows. Consider a single atmospheric state, and let E(;) be the 

complex-field amplitude at a point F in the turbulence that is due solely to  the 
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6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
propagating waves resulting from transmission of v(p') from RZ. 

reversibility of the atmosphere means that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r) satisfies Maxwell's equations through- 

out the medium. 

proving it let u s  observe how time reversibility implies (61). 

of interest we may assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ( p )  is due solely to  the propagating waves. Hence when 

we transmit u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p )  from the infinite R1 plane the field that will result in the medium must 

be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-g (r), since it is a solution of Maxwell's equations that satisfies all of the boundary 

conditions (note that E(:) reduces to u(F) for F i n  the R1 plane). The definition of E(;) 
allows us to conclude that v (r ') must be v (r') bandlimited t o  spatial frequencies below 

1/X, which is precisely the condition (61). 

show that instantaneously the atmosphere is time-reversible. 

Then the time * -  
We have not proved this assertion, we have only stated it. Before 

F o r  the path lengths 
4 

* -  
* -  

A *  - * -  
Therefore to  prove (58) it only remains to  

5.22 Time Reversibility 

To complete the proof of the asymptotic behavior of Q we must show that the atmo- 
R1 

sphere is time-reversible. First, let u s  see why this condition has been called t ime 

reversibility. As is shown in Appendix A, conjugation of a complex field amplitude 

reverses  the direction of propagation of the wave. On the other hand, if  we examine 

the time-domain fields, we find that conjugating the field amplitude is equivalent to  

using the original field amplitude with t ime running backwards; that is, t l  > t2 would 

then imply that t l  occurs before t2. 

evanescent waves. 

Lemma (Time- Reversibility) 

For this statement to  be t rue we must neglect the 

We turn now to  the proof. 

Consider any time-invariant, nonabsorbing, inhomogeneous medium with no sources. 

If the permittivity, E ( r ) ,  is a smoothly varying function of position, then the medium is 

time-reversible. 

Proof: 

region a r e  

Maxwell's equations for the complex-field amplitudes in  a source-free 

Since these are linear equations, the components of the complex-field amplitudes cor- 

responding to the propagating waves and the evanescent waves must satisfy (62) inde- 

pendently. W e  shall assume in  the r e s t  of this proof that we are dealing only with the 

propagating components. -* - 
Since the medium is nonabsorbing E(;) is real. It is clear,  therefore, that - E (r) and 

Also, since E(;) 
--* - 

-H - (r) are solutions to Maxwell's equations throughout the medium. 
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is smoothly varying, there a r e  no internal boundary conditions to be considered. 

medium is therefore time- rever  sible. 

The 

We know that the turbulence satisfies all of the assumptions of the lemma, on an 

instantaneous basis; therefore, we conclude that instantaneously the atmosphere is time- 

reversible. 

Some of our results are known, in  other notations, for  the free-space channel. For  

instance, it is well-known that, in the absence of evanescent fields, the diffraction oper- 

ator (in our terminology convolution with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&) from R2 to  R1 is a unitary operator, a 

statement equivalent t o  (57). Time-reversibility has been investigated for  the free-space 

channel under the title of inverse diffraction, 23' 24 with conclusions that lead to results 

Er' 
comparable t o  (58). 

for a single atmospheric state. 

We now continue our examination of the system performance, 

5.23 Lower Bound to  E for a Single Atmospheric State 

From the results of sections 5.21 and 5 . 2 2  it is apparent that for D = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ~ )  the energy 

r 

in the normally incident plane-wave component of the field received at R2, Er, given 

by Eq. 55, reduces to  

E =  
r 

= E t ( l - E ) ,  

where 

and V ( F l )  is now the spatial Fourier transform of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

Note that IV(F')  1' is just the well-known Airy disk diffraction pattern. The parameter E 

is a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and d. It will be neglected in the rest of this section, since for  typi- 
-1 0 

cal values of A and d (for example, A = 0 . 6 3 2 8 ~ ,  d = 0.1 m ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is no more than 10 . 
Therefore, we have from (63) that as D becomes infinite we can get essentially all 

of the energy transmitted from R1 into the normally incident plane-wave component 

at R2. 

relate the rate of convergence of the Q 

Since we cannot build a transmitter with an infinite aperture, we would like to  

integral to  the ra te  of convergence of the 
R1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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integral to  determine the performance of a system with D finite. 

Let us examine some conditions under which the convergence relation is particularly 

simple. 

2 implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 . )  

Suppose any one of the following conditions is true.  (Note that 1 implies 2 and 

From the definitions of the kernels (see Table l ) ,  if any of the conditions in (64) is true,  

then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& &  & &  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA &  4 -  11 QR1(p' ,  r ' )  dp'dr '  = K (p ' ,  r ' )  dp'dr' .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJJ -R, 

R Z  R2 

The integral on the right is a readily measurable quantity; hence, proving any of the 

conditions in (64) immediately solves our convergence problem. Rather than address 

ourselves directly to that task, we shall obtain a lower bound t o  Er for finite D. 
- - . A  4 4  

Observe that we may write .f.f Q (p ' ,  r ' )  dp'dr '  in the form 
R2 R1 

where 

Under the assumption that F and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, have finite energies, (66) is a valid inner product 
2 

on L (R1), 

-c 

From (58), a s  D becomes infinite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(The energy in the evanescent waves is so  small  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 2 ( 1 - ~ ) " A 2 . )  

Consider the quantity 

From Eq. 57 it is apparent that a s  D becomes infinite 

(Again, the energy in the evanescent waves is so  smal l  that A2( 1-E)  =A2.) Applying the 

Schwarz inequality t o  (66), we conclude that 

where 

and using (67) and (69) in conjunction with (701, we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 R1=w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. 

Note that equality holds in (71) if and only if F(G) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*E(;) (condition 3 in Eq. 64 is equiv- 

alent to  E(;) = E(;)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 

We assume that 

llg 11 R1=w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu d q  for some a ,  1 6 Q < m. 

Given E > 0,  we can choose Do large enough that 

/lEllRl ' $- E D 3 Do" 

Applying the triangle inequality, we have 

1 -5 I -t l(g.g)ca-R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI y  
R1 1 
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where the inner product in the second t e r m  on the right is taken over the infinite region 

outside of some finite aperture R1. 

proved concerning the norms and inner products of 

obtain 

From the Schwarz inequality and what we have 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,F as D becomes infinite, we 

where the last inequality holds fo r  all D such that D 2 D o .  

F from their  definitions in order  to  interpret the bound (74). 

is the following. Given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > 0,  for  all D such that 

We now substitute for  and 

The resulting expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 

we have 

Note that a is dimensionless, 

use (76) to  lower-bound Er. 

but E must have dimension (area)"'. We now 

If D is such that (75) is satisfied, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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One crucial question remains to be answered, How large is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ?  

argued that a is l e s s  than 10, typically from 3 to  5 .  

In Appendix E it is 

Note that for point-reciprocal channels a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, and our bound (77)  reduces to 

On the other hand, using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 6 5 ) ,  which is valid for reciprocal channels, we obtain 

as the tightest possible bound consistent with ( 7 5 ) ,  so the bound (77)  should be quite 

tight for small a and E .  

We shall extend the bound (77)  t o  a probabilistic bound on the system performance 

for the time-variant atmosphere. 

diameter (for R1) to  insure a specified performance level. 

This result  will provide a way of picking an aperture 

5.3 INTERPRETATION OF THE Q-KERNEL SYSTEM PERFORMANCE 

5.31 Performance Bound for the Time-Variant Atmosphere 

The resul ts  of section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . 2  allow us to  evaluate the performance, Er,  of a two-way 

(Q-kernel) communication system using a finite aperture, for any single state of the 

atmosphere. 

shall prove a performance bound of the following type. 

the time interval (O,T), we would like the system to yield high energy transfer (from 

R1 to  R2) with high probability during a substantial fraction p of (0 ,  T) .  In order  to 

achieve this performance, D, the diameter of R1, must be made sufficiently large. 

The actual bound is given in the next lemma. 

Lemma (Performance Bound) 

We shall now generalize these results t o  the time-variant atmosphere. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For a system operating during 

Given an operating interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 ,  T), for  each 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ p Q 1, E > 0, and 6 > 0 ,  there exists 

a Do (Do <m) and an open set  U in (0 ,  T )  such that 

and the Lebesgue measure of U is greater than TP. 

is satisfied, we have 

Moreover, for any D such that (78) 

Pr [ Er( t )  > Et ( 1 -- z); .t€U] > l - 6 .  (79 1 
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Proof: W e  first show that given T, for  each 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP G 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > 0,  and 6 > 0,  there exists 

a finite Do and an open set U of measure greater than TP such that (78) is satisfied for  

all D a  Do. We partition (0 ,  T)  into coherence intervals of length T~ ( T  > O )  such that 
C 

is constant for  t in a coherence interval. This partition may always be made within the 

framework of our fixed- state model of the time-variant atmosphere, with T~ approx- 

imately the reciprocal bandwidth of the turbulence process. Let Ii denote the ith coher- 

ence interval, then, from section 5.23, there exists Do (D < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 )  such that for all 

D >Do 
i O i  

i 

L -I 

where 

statistics of the channel do not change with t ime during ( 0 ,  T), then all the D 

equal. The proof that we employ allows for the fact that the statistics of the channel will 

change with time. Let rPN1 denote the smallest  integer larger  than PN. If we order  the 

coherence intervals in such a way that 

= 6/N, and N is the number of coherence intervals in (0 ,  T). If the ensemble 

will be 
O i  

s . . .  
Dol O2 Do3 

then choosing Do = DorPN1 we have that for all D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Do 

Pr 

2 1 - 6 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(81) 

where the first inequality follows from the union bound. If for each coherence 

interval Do is chosen to be the infimum of all D that satisfy ( 8 0 ) ,  then Do = DorpN1 

will be the infimum of all D that satisfy (81). Thus we have proved the first asser- 

tion of the lemma. 

i 
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Using the results of section 5.23, we see that in each coherence interval if  D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
i 

then 

Hence, if Do = Do as before, we have for all D 2 Do 

; V t E  u Ii 
rpN' i= 1 1 

2 1 - 6  (83) 

which proves the r e s t  of the lemma. 

Thus we have shown how the single-state performance bound of section 5.23 may 

be extended to  the time-variant case. The entire problem of choosing an aperture diam- 

e te r  on the ground in order  to achieve a desired performance level in t e r m s  of Er(t)  

has been reduced to  studying the statistics of 

the energy received at R1 when a normally incident plane wave is transmitted from R2. 

Before proceeding to  other issues,  it is worth observing that the lemma that we have 

proved shows that our two-way apodization system does not exhibit a performance satu- 

ration as the transmitting aperture is enlarged (as a nonadaptive system would). TO make 

this identification, it is necessary t o  evaluate the system performance in t e r m s  of Es(t) ,  

the energy received at the spacecraft. F o r  convenience, we neglect the propagation delay 

between R2 and the spacecraft; thus, our path-length assumption enables us  to write 

Es( t )  = CEr(t). (84) 

From our path-length assumption, the field at the spacecraft is the spatial Fourier 

transform of the field at R2 evaluated at zero spatial frequency (with the l/r2 loss  

neglected), and since the Fourier transform of the normally incident plane-wave com- 

ponent on R2 at zero frequency is proportional to  (A2)"', we may write (84) in the form 

Es(t)  = C'A2Er(t), (85) 

where C'  is independent of d. 

follows. 

Therefore we may rewrite the lemma just proved a s  
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Lemma (Performance Bound on Es(t))  

For all D such that (78) is satisfied we have 

Proof: Apply Eq. 85 to the previous performance lemma. (Because (85) is only t rue 

if the field received at the top of the atmosphere is zero outside of R2, the performance 

bound on Es(t) is only t rue when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is small enough.) 

Hence we have verified that increasing d (enlarging R2) and then increasing D until 

(78) is satisfied again continues to  increase the energy received at the spacecraft (in 

proportion to  d for small enough E )  without performance saturation occurring. We 

have accomplished one of our major goals, demonstrating the existence of an adaptive 

spatially modulated system whose far-field beamwidth is not turbulence-limited as the 

relevant aperture size is increased. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

5.32 Performance Limitation Caused by Turbulence 

We shall compare the performance (in t e r m s  of E (t))  of a system of the type 
S 

described above and a system transmitting a normally incident plane wave to the space- 

craft through free space, both systems using the same transmitting aperture diam- 

e te r ,  Do. It is clear  from our performance bound on E ( t )  for the Q-kernel system, 

that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is small  enough E (t) increases in proportion to  d2, under the assumption that 

the atmospheric state is such that we a r e  above threshold. 

S 

S 

That is, 

For a system using an aperture of diameter Do in the absence of turbulence, the energy 

received at the spacecraft will be proportional t o  D:. Furthermore,  since the path 

length to the spacecraft f rom the R2 plane is essentially the same as the path length from 

the ground, the two proportionality constants that we have mentioned will  be the same. 

Thus, when the atmospheric state is such that (87) is satisfied (for E small), the ratio 

of the energy received at the spacecraft in the turbulent case (two-way system) to  the 
2 

energy received at the spacecraft in the nonturbulent case (one-way system) is (d/Do) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
It is convenient to  define a parameter 

Y2 = ($7 
as a measure of the performance limitation imposed by the turbulence. 

(88) that y 

We assume in 
2 .  

is a function only of d, and that Do is chosen as the infimum of all D for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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which (78)  is satisfied, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1 and 6 - 0. 

incident plane wave over R1 maximizes E 

of turbulence, y upper-bounds the performance reduction (in t e r m s  of Es) caused by the 

turbulence. 

sphere, y2 is only an upper bound t o  the performance limitation.) 

enough, we can show that as d becomes infinite Y (d) approaches unity; that i s ,  in the 

limit of large d the turbulence causes no performance loss  when going from the optimal 

one-way nonturbulnet system to the Q-kernel system that we have been studying (see  

section 5.43). 

ground is infinite ( see  definition of Do above). 

Since the one-way system using a normally 

for the given aperture diameter in the absence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 2 

(Since we have not proved that a Q-kernel system is optimal for the atmo- 

Yet, interestingly 
2 

Unfortunately, this result is only achieved when the aperture on the 

5.4 EDGE EFFECTS PROBLEM 

Thus f a r ,  in our discussion of two-way apodization systems for  the turbulent channel 

we have ignored some important issues concerning the beacon signal. 

sider such problems. 

beacon used at the top of the atmosphere will be infinite o r  practically infinite in extent; 

that is, it will be so large that the aperture on the ground (R1) never sees  the edges of 

the beam. This will lead us  to  study the performance of the infinite beacon system, 

and we shall compare th i s  performance to  that of a system using a finite beacon. When 

the R1 aperture is large enough that it sometimes sees  the edges of the finite beacon, 

but not so large that it always receives the entire beacon, we shall find that the perfor- 

mance lemma for  E (t) in section 5.31 leads to anomalous results. 

effects problem. F o r  R1 as described we shall see that an assumption leading to  

the bound on E (t) is violated, so the bound itself is invalid in this region. 

We shall now con- 

The first thing that we observe is that it is most likely that the 

This is the edge 
S 

S 

5.41 Obtaining a Beacon Signal 

Until now, we have not specified how the unit amplitude normally incident plane wave 

over R2 (the beacon) is obtained. There a r e  two practical options available, we can put 

the laser on the spacecraft itself, o r  we may use a laser  located on a synchronous satel- 

lite (if we assume that the spacecraft is well beyond synchronous altitude) whose loca- 

tion is sufficiently close to  the propagation path t o  provide a beacon of the required 

aiming accuracy. 

atmosphere to  consider, we may assume that in either of the cases  described above the 

beacon at the top of the atmosphere will be such that the aperture R1 never sees the 

edges of the beacon; that is, the beacon is effectively an infinite plane wave (at R2). 

If a finite beacon can be obtained, the results of section 5. 3 apply directly. We only 

intend the present discussion as a rationale for investigating the infinite beacon 

case. 

It is worth noting that in section 3. 3 we proved that for a time-invariant point- 

Since we shall assume that there a r e  no ducting phenomena in the 

reciprocal deep-space channel the optimal energy t ransfer  from the ground to the space- 

craft is achieved by a Q-kernel system in which the spacecraft t ransmits  a normally 

44 



incident plane wave to  the ground, which corresponds (in the present terminology) to  

using an infinite plane-wave beacon at the top of the atmosphere. 

that the atmosphere is reciprocal yet, but this result should be kept in mind. 

We have not proved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.42  Infinite Beacon System 

Suppose we have a two-way apodization system of the type under discussion here, 

using a unit amplitude normally incident infinite plane wave as the beacon. 

Eqs. 55 and 85 we know that the energy received at the spacecraft will  be 

F rom 

For convenience, we assume that the channel is point-reciprocal instantaneously; there- 

fore,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L L. 

and (89) reduces t o  

We now study the behavior of the double integral in (90)  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is increased. We have 

2 -  
dP 

where the last equality follows from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz model for infinite plane-wave propagation 

through turbulence. Now we may apply some well-known resul ts  from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 model t o  

our problem. We partition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR1 into nonoverlapping coherence areas (circular a r e a s  of 

diameter 2 p c ,  where pc is the distance at which the spatial correlation function of 

I.( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, t )  I W e  adapt the simplified model that z is completely cor-  

related within a coherence distance ( 2 p c )  and completely uncorrelated outside of 

this distance. Thus we have 

2 --L 

has its f i r s t  zero). 
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where z ( t )  is the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(F, t)  in the ith coherence a rea ,  Ac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=  IT^;, and N is the num- 

ber of coherence a reas  in R1. 

uncorrelated log-normal random variables whose ensemble average, E[Ac (zi(t) 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, is 

From the model, the sum in (92)  is the sum of 
2 

18’ 22 Consider the fluctuation about its mean of the  sum in ( 9 2 ) .  That is, 

u (t) = 
N 

Using the properties of the zi, we have 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/2 
(VAR (Jzi( t )  1‘)) 

u,(t) = 
d-z 

(93) 

(94) 

The parameter  uN is also the fluctuation of Es(t)  about its mean; that is, 

Eqs. 90-92, we have 

f rom 

It is clear f rom (94) that uN(t) is an increasing function of the intensity of the turbulence 

(through VAR (Izi(t)  I )), and a decreasing function of D (through N = D /4pc). 

We have proved, therefore, that as D becomes infinite the fluctuation about its mean 

of the energy received at R1 goes to  zero, and similarly the fluctuation of Es(t) about 

i ts  mean goes to zero. 

2 2 2  

Since the mean of I zi(t) I is also the value it achieves in the absence of turbulence, 

we have also proved for  all D that the mean of Es(t) is the value that it achieves in the 

absence of turbulence. Also note that in the absence of turbulence the received beacon 

will  be a normally incident plane wave, and so the field transmitted from R1 will  be a 

plane wave of energy Et and diameter D, the optimum one-way result f o r  deep-space 

apodization. In other words, E(Es(t))  is equal to the optimum energy t ransfer  that is 

possible in the absence of turbulence, that is, the diffraction-limited result for a lens 

of diameter D. 

as D becomes infinite, we see that in this limit the Q-kernel system achieves 

diffraction-limited performance with probability one. 

Furthermore,  since the fluctuation of Es(t)  about its mean goes to zero 

The statements just made a r e  important enough to warrant one more repetition. We 

have shown that for any size R1, the turbulence does not reduce the average energy 
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transferred t o  the spacecraft. 

as R increases in size this fading decreases (relative to the mean), ultimately going 

t o  zero when R1 becomes the entire plane. 

assumed that the atmosphere was point-reciprocal instantaneously. The reciprocity 

of the atmosphere is proved in Section VI. 

paring systems with finite beacons to  the infinite beacon system. 

The turbulence does cause fading at the spacecraft, but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

We have reached some important conclusions in this section, but to  obtain them we 

The r e s t  of this section is devoted t o  com- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- - - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 

Y 

5.43 Comparison with Finite Beacon Results 

As in section 5.42 we shall assume a reciprocal channel. Consider a Q-kernel sys- 

tem using a plane-wave beacon of diameter d, and a transmitting aperture at R1 of 

diameter D such that D << d. For  d large enough (in the absolute sense) the radiation 

:-Ald=m d = dg 

d = d 2  

d = d ,  

Fig. 11. Es(t) for &-kernel systems. 

(a) dl < d < d3. S a t u r a t i o n  
2 

I + 

(0) 

LOG D 
occurs when d << D, and the 
resulting energy is Es(t) = 

AZC'Et. Slope 2 behavior 

is only valid for d >> r 
0' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) dl < d2 < dg. For d << D, 

(WAR Es(t))l/Z/E(Es(t))) -L 0. 

c 
LOG D 

received over the aperture R1 will come from the center of the beacon and its statistics 

will be well approximated by the infinite plane-wave 

compared with the diameter at which the far-field beamwidth becomes turbulence-limited, 

then the results hold as stated. Thus the performance, Es(t), will be the same as that in 

section 5.42 for  the infinite beacon. Now as D increases, Es(t)  increases monotonically 

(for eachatmospheric state) until D becomes comparable t o  d, and then a saturation 

effect begins t o  set in. This saturation a r i s e s  out of the fact  that we begin t o  receive 

the edges of the beam, and the energy received at R1 (which for reciprocal channels is 

proportional t o  Es(t))  cannot exceed A2. In section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . 3  when we commented that per- 

formance saturation is avoided with a finite beacon system we had to  keep increasing d. 

In the limit D >> d the performance of the finite beacon system has saturated at 

model. In particular, if d is large 
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Es(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= EtA2C'. 

region D - d, the finite beacon system seemingly outperforms the infinite beacon system 

for some atmospheric states. This is an anomalous result that is due to Eq. 85 not 

being valid (for all states) in this region. 

E (t), the infinite beacon system always performs as well as o r  better than the finite 

beacon system. 

These resul ts  a r e  shown in Fig. 11. It should be noted that in the 

In section 6. 2 we shall prove that, in t e rms  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

There is one last result worth obtaining. In section 5.42 we proved that for an infi- 

nite beacon system, as D approaches infinity, E (t) approaches the optimal one-way 
2 

energy t ransfer  possible in the nonturbulent case with probability one. 

the parameter that measures  the performance limitation imposed by the turbulence 

(see Eq. 8 8 ) ,  must approach one as d and D become iafinite, since in this limit the 

turbulence does not reduce our ability to get energy to the spacecraft. 

5.5 Summary of Deep-Space Apodization 

S 

Therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (d), 

We conclude our discussion of deep-space channels with a summary of the important 

results. 

1. A Q-kernel system using a plane-wave beacon w a s  investigated as a possible 

solution to  a deep- space apodization problem. 

2. An energy expression for E (t), the energy received in the normally incident 
r 

plane-wave component of the field at the window, R2, at the top of the atmosphere, w a s  

obtained from the work in Sections I1 and 111. This expression was lower-bounded in 

t e r m s  of 

the received beacon energy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 .  The resul ts  for  single atmospheric states have been extended to  probabilistic 

bounds on performance during a time interval (0 ,  T). 

4. It has  been shown that it is quite likely that the beacon will be of infinite extent. 

The performance of infinite beacon systems has been studied, under the assumption that 

the atmosphere is point-reciprocal. 

5. F o r  the infinite beacon system we found that the average energy received at the 

spacecraft, E(E (t)), is the optimal one-way energy transfer possible (ground-to- 

spacecraft) in the absence of turbulence, and as the aperture on the ground becomes infi- 

nite the fluctuation about this mean energy goes to zero. 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 .  The performance of finite beacon systems was compared with the performance 

of the infinite beacon system, under the reciprocity assumption. For  D << d the two sys- 

tems  perform equally well. For  D >> d the performance of the finite beacon system 

saturates ( see  Fig. 1 1 ) .  

7. Thus, although we  have not yet proved the optimality of our Q-kernel system, we 
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have shown that it greatly improves the energy received at the spacecraft, compared 

with a nonadaptive system. 

system (for the atmosphere) by showing that the atmosphere is reciprocal. 

In Section VI we shall prove the optimality of the Q-kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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VI. RECIPROCITY OF THE ATMOSPHERE 

W e  shall now prove that the turbulent atmospheric channel is point-reciprocal on 

an instantaneous basis. 

satisfies instantaneous reciprocity. 

are made. 

1. 

posit ion. 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. 

These assumptions, which we have already used se-;eral times, are consistent with 

Really, we shall prove that a model of the turbulence process 

In the model that we use the following assumptions 

At a single instant in t ime the permittivity is a smoothly varying function of 

The medium causes no depolarization. 

No energy is scattered far out of an incident beam's direction. 

the properties of atmospheric turbulence. 

We shall then examine some of the consequences of reciprocity for communication 

through the atmosphere. 

6.1 POINT RECIPROCITY OF THE TURBULENT CHANNEL 

We assume the atmosphere may be modeled as undergoing a succession of fixed 

states (see Section IV). We shall show that 

For convenience, we suppress the t ime dependence of the impulse responses, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc h, 

where it is understood that we a r e  always referring to  a single fixed state of the tur-  

bulence. 

conditions, and the other of Rayleigh-Sommerfeld boundary  condition^.'^ The first 

proof is presented primarily because of its relative simplicity. The second proof, 

with a more consistent set  of boundary conditions, is significantly more involved. 

Two proofs of (96) a r e  given, one under the assumption of Kirchhoff boundary 

6.11 Proof with Kirchhoff Boundary Conditions 

This proof is an application of Green's theorem for scalar fields, and is based on 
26 

an argument presented by Morse and Feshbach. 

Green's theorem states that for any well-behaved complex functions of position U, W 

(UVW-WVU) * d x  = (UT2W-WVzU) dv, (97 1 

where S is a closed surface enclosing a volume V, and the functions U and W have no 

singularities on S, 

two impulse responses, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, and h. 
2 6' 

following Helmholtz equations 

W e  shall apply this theorem t o  the case in which U and W are the 

We know that the impulse responses satisfy the 
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- 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -  2 2 -  - -  
V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc h( r ,  p ' )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt k n (r);(r, p' )  = -6( r -p t ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 9 9 )  - 4 

where k is the wave number, n ( r )  is the index of refraction at a point r, V operates 

only on the observational (r) coordinates, and 6( * ) is the volume impulse function. W e  
4 

h=O, 

&+O 

Fig. 12. Kirchhoff boundary conditions. Fig. 13. Closed-surface S. 

must specify the boundary conditions that the impulse responses satisfy. The boundary 

conditions that we wish t o  impose a r e  shown in Fig. 12. In the plane of R1, h and Vh 

a r e  zero everywhere except in a small  neighborhood of the source point; similarly, & 
and Vh a r e  zero everywhere in the R2 plane except in some small neighborhood of the 

source point. These conditions a r e  the Kirchhoff boundary conditions for a medium in 

"' 25 W e  form a closed surface S by closing the R and which there is no backscatter. 

R2 planes at infinity, and taking two small  (spherical) caps behind the source points 

( see  Fig. 13). On the surfaces at infinity both impulse responses are assumed t o  be 

zero, which is equivalent t o  assuming that the impulse responses vanish at least as fast 

as a diverging spherical wave as the distance between the observation and source points 

becomes infinite. 

zero on the cap behind its respective source point. 

conditions: (i) there  is no backscatter f rom the turbulence; and (ii) since the impulse 

responses a r e  Green's functions for  diffraction through apertures, they may be regarded 

as the fields of anisotropic point sources where the anisotropy is such that no energy is 

radiated behind the diffracting screen in  the absence of turbulence. 

rapidly. Multiplying Eq. 98 by l$r, p ' )  and Eq. 99 by &(r, p) and subtracting, we 

obtain 

- -c 

c 

1 

We shall also assume that each impulse response and its gradient is 

This assumption depends upon two 

Now that our  boundary conditions are completely specified we may proceed 
4-  _ L A  

Integrating (100) over the volume V enclosed by S, we have 
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Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, and & a r e  well-behaved functions on the surface S, we may apply Green's the- 

orem to  change the volume integral to  a surface integral. Thus 

Applying our boundary conditions to (1021, we see that the surface integral is zero'. 

Therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 -  - 4  4 

g p ' ,  p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=&h P')  V;€Rl ,  P I E R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ;  

hence, the atmosphere is point-reciprocal on an instantaneous basis. 

6. 12 Proof with Rayleigh- Sommerfeld Boundary Conditions 

The internal inconsistency in  the Kirchhoff boundary conditions is well known. We 

shall now prove point reciprocity, using more consistent boundary conditions. We wish 

t o  remove the necessity of specifying the values of both an impulse response and its 

gradient on an open surface. Our revised proof is somewhat more complicated than 

the proof with Kirchhoff boundary conditions; it is a series of three lemmas. 

Lemma 1 

4 -  

For a fixed state of the atmosphere let G(r ,  ro) be the field at a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf that results 
4 A A 

from a unit-amplitude isotropic point source located at point r 

points within the turbulence. 

That is, fo r  any ro, r1 

where r and ro a r e  
0' 

Then G is a symmetric function of its two variables. 
A 4  

Proof: This lemma will show that the atmosphere is reciprocal for isotropic 

point sources, on an instantaneous basis. 
26 

The function G satisfies the same Helmholtz equation as the functions h, and l ~ ,  

2 -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 -  - -  - 4  

V G(r,  ro) + k n (r) Wry ro) = -6(r-ro). 

Also, G satisfies a homogeneous boundary condition at infinity. That is, 

as 

Let S denote the surface of the sphere of infinite radius centered at FOy and V denote 

the volume enclosed by S. Since G satisfies the same Helmholtz equation that the 

impulse responses 4 and 2 do, we may use the argument of section 6. 11 to  show that 
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4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 4  4 -  4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -  4 4  2 - -  A &  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G(r ,  r l )  D G(r,  ro) - G(r ,  r 1 V G ( r ,  r l )  = -(Wr-ro)G(r, rl)-6(r-rl)G(r,  roll. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

(105) 

Thus, by integrating (105) over the volume V enclosed by S, we obtain 

Using Green's theorem, we t ransform the volume integral into a surface integral. 

Therefore, 

and f rom our boundary conditions on S we conclude that 

A _ . .  - 4  

G ( r l ,  ro) = G(ro, rl). 

Lemma 2 

-L 4 

Consider a small  aperture i n  the R1 plane centered on point p, and let p '  be a point 

We define the function 2 in t e r m s  of the isotropic impulse response in  the R2 plane. 

G by 

4 
n 
& 

where p '  is the m i r r o r  image of point p '  with respect t o  the R1 plane, the medium 

behind R 1  is assumed to  be the mi r ro r  image (in t e r m s  of the index of refraction) of 

the medium in front of the plane, and G is calculated when the diffracting screen  

is not present ( see  Fig. 14). F o r  thus defined it follows that 

I MIRROR IMAGE OF 

MEDIUM 

R1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 

Fig. 14. 

The function g(F,p). (G(;,;) and G(r,  p ' )  
a r e  isotropic point- source Green's func- 
tions computed in the absence of the dif- 
f racting screen. ) 

& A  

TURBULENT 

Q I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
" 8 0  

R2 
EDDY 

MIRROR IMAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

P .  

0 

A 
Fig. 15. 

The function g(r, p). (G(r, p) and G(r,  p) 
a r e  isotropic point- source Green's func- 
tions computed in the absence of the dif- 
fracting screen.) 

- &  -r-L - 4  
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In this expression and in Eq. 111 the z axis is the line from the origin of R2 t o  the 

origin of R1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(F) coordinates of G, and G,. 

Similarly, we define 

The partial derivatives are taken with respect t o  the observational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4  4 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,s  s(r, p) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWry p) - G ( r ,  PI, (110) 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 

where 

behind R2 (see Fig. 15) i s  assumed to  be the m i r r o r  image of the region in front of R2, 

and G is calculated when the diffracting screen is not present. It follows that 

is the m i r r o r  image of the point p with respect to  the R2 plane, the region 

ie 

Proof: We shall prove (109) first. 

and (108), G, satisfies the equation 

The proof of (1  11) will be the same. From (104 

Let U(F)  be the solution of the Helmholtz equation that corresponds to  diffraction 

through the aperture in R1 shown in Fig. 14. We have 

(113) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -  
G2U(F') + k n ( r )  U(F) = 0. 

Therefore from (1  12) we conclude that 

4 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5  2 - -  
-c G ( r ,  p ' )  V2U(F) - U(F) V CJr, p') = U(F) ( b( r -p ' ) -b ( r -p ' ) ) .  

- 4  

Let S be the surface obtained by closing the R1 plane at infinity to  the right 

Fig. 16. Closed-surface S for proof of Lemma 2. 
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( see  Fig. 16), a.nd let V be the volume enclosed by S. Integrating (114) over V, 

we have 

Using Green's theorem to  change the volume integral to  a surface integral, we obtain 

On the surface at infinity both U and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,G are zero, and in the R1 plane outside of the 

aperture we assume that U is zero. From (108) we know that s(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ' )  is zero fo r  all r 

in the R1 plane (really this is the purpose of defining ,G by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. Therefore, 

if S1 denotes the aperture in the R1 plane shown in Fig. 14, then (1  16) reduces to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA - 4  

108). 

If we let S 

source at p, then (117) reduces to  

become vanishingly small and on S1 let U approach a unit-amplitude point 
1, 

which proves Eq. 109. Equation 111 is proved in a similar manner. The minus sign 

a r i s e s  from the fact that the z axis will be antiparallel to  the outward normal from 

the aperture in the R2 plane. 

a ry  condition on the values of the impulse responses, h, and $; their  gradients have 

not been constrained. 

The important thing to  remember is that in this lemma we have only placed a bound- 

Lemma 3 

for sufficiently small dz. 

Proof: The proof of this lemma is straightforward. For  dz sufficiently small we 

G_(pf(dz) izy P')  = exp[-jk(dz)(cos e)n(p I ]  G(p, p ' )  - exp[tjk(dz)(cos e)n(F)] G(p, p i ) ,  

may write 
A 

.-LA 

A 
4 A -  A - 4  

(1203 

where 8 is the angle between the z axis and the vector from to F' (see Fig. 17). 
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Equation 120 follows from the fact that for small dz the only perturbation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,G is a dif- 

ferential phase delay. Similarly, we can show that for dz sufficiently small  

Since dz can be made arbitrari ly small, and the perturbations in the index of refraction 

caused by the turbulence are typically only a few parts  in 10 , we may assume n = 1 in 

all the phase t e r m s  in both (120) and (121). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 

We now have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA A  

(q(&dz) iz, pt)-G(pt-(dz) iz, p) )  

4 -  - 4  A -  - 9  
= exp[-jk(dz)(cos e)] (G(p, pt)-G(p', p)) - exp[tjk(dz)(cos e)]  (G(p, pt)-G(pt, p)). 

(122) 

From Lemma 1, the first t e rm on the right in (122) must be zero. Furthermore, 

by the construction of our m i r r o r  images in the hypothesis of Lemma 2 ,  we have 

A -  
A 

A -  

G ( p y  p t )  = G(p, p' )  

Thus, applying Lemma 1 and Eq. 123, we see that the second t e r m  on the right 

in (122) is zero, which proves the lemma. 

4 

Fig. 17. Geometry of Lemma 3. 

We are now ready to  prove that the channel is point-reciprocal. From (109), 

we have 

and substituting from (1  19) and (1031, we have 

4 -  

G(Ft-(dz) iz ,  p)  - s(29 
c 4 -  

dz hJpt,p) = lim 
dz-0 

Applying (1 11) t o  (125), we conclude that 
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and the atmosphere is point reciprocal (instantaneously). 

6 . 2  OPTIMALITY OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA TWO-WAY Q-KERNEL COMMUNICATION SYSTEM 

Now that we have proved that the atmosphere is reciprocal, we may show that a 

Q-kernel system, as described in Section V, is an optimal system for deep-space apodi- 

zation. 

path-length assumption in section 3.3) a Q-kernel system as described in Section V 

achieves the maximum energy transfer to  the spacecraft that would be possible if 

the channel were known to the transmitter at R1. 

nite plane wave at the top of the atmosphere as a beacon. 

We may conclude directly that if the spacecraft is sufficiently far away (see  the 

This optimal system uses  an infi- 

Now that we have proved the reciprocity of the atmosphere it is instructive t o  con- 

Let R1 be sider another (rather simple) proof of the optimality statement above. 

the aperture on the ground, R2 the infinite plane tangent to  the top of the atmosphere, 

and the impulse responses h, and & describe the propagation between these two planes 

for  a single atmospheric state. 

ciated with transmission from R1 to Rg, the spacecraft antenna aperture. 

impulse response for a single atmospheric state. For the path lengths of interest, 

by assumption, we have 

Let u s  evaluate the impulse response, h ( r ,  F), asso- 

This is the 

where A 

portionality constant defined in Eq. 85. 

is the area of the aperture R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3' a is a constant phase delay, and C' is the pro- 

We define a kernel 

From our discussion of one-way apodization (see Table 1) we know that the eigenfunc- 

tion of KDS with maximum eigenvalue is the optimum waveform for  transferring energy 

from the ground to  the spacecraft. Combining (126) and (127) we have 

14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 4  

Since the kernel KDs(p, r) may be written in the form 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. (p)  and p. are the eigenfunctions and eigenvalues of KDS, Eq. 128 implies that 

has only one eigenfunction, y,(p), of nonzero eigenvalue, and that the eigenfunc- 
KDS 
tion is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 

* 
d (IR2=- &(;I, F) 

Y , ( P )  = (130) 

C R l  1 'R2=m h(F', - F) dp'l d;;)ll2 

The reciprocity of the atmosphere shows that 

which is precisely the conjugated received beacon signal (normalized t o  unit energy) 

that results when we use an infinite plane-wave beacon at the top of the atmosphere. 

Thus, we have proved that the infinite beacon Q-kernel system is optimum for  deep- 

space apodization. 

Equation 128 also verifies the comment made in section 3.3 that for deep-space 

applications (through a reciprocal channel) there is only one branch t o  the parallel- 

channel model (for transmission between the ground and the spacecraft) with nonzero 

gain. 

Finally, let us  observe that the optimality proofs presented here guarantee that the 

performance in terms of E (t) of an infinite beacon system cannot be exceeded by 

the performance of any finite beacon system for deep- space applications. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 

6.3 COMPARISON OF ADAPTIVE AND NONADAPTIVE APODIZATION 

SYSTEMS 

We shall compare the optimal adaptive apodization system for deep- space appli- 

cations (the Q-kernel system with infinite plane-wave beacon) t o  the optimal nonadaptive 

system. W e  begin by deriving the optimum nonadaptive system for  a general 

apodization problem, and then apply the results obtained to  the deep-space channel 

through turbulence. 

6.3 1 Nonadaptive Apodization 

Let R and R2 be the transmitting and receiving apertures, respectively, and 

let &( p ' ,  p ;  t)  be the time-variant spatial impulse response that governs propagation 

from R1 to  R2. We shall assume that the medium between R1 and R2 may be 

modeled as a succession of fixed states; that i s ,  if  u(F) is the input field at 

R1, then the output field at R2 is 

--L -1 
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The energy in  the field received at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 is therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( p ,  r;  t )  is the usual one-way propagation kernel (see Table 1) at t ime t. 

wish to find the unit-energy waveform u(p) on R 1  that maximizes the time-average energy 

received at R2, (E(t)). In other words, we seek u(F) such that 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

and 

is a maximum. 

integral, and that the atmosphere is ergodic in the sense that the t ime average of ,K is 

the same a s  the ensemble average. 

We assume that we may bring the t ime average operation within the 

That is, 

We may now rewrite (134) in the form 

4 

The waveform u(p) is the unit-energy waveform that maximizes (136) .  

with the results of Section 11, we see that u(p) must be the eigenfunction of the kernel 

E[g( p, r; t)]  of maximum eigenvalue. 

The result just obtained is not new. 27' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28 We shall discuss the performance of this 

optimum nonadaptive system for deep- space communication through the turbulent channel. 

By analogy 
4 

4 4  

6 . 3 2  Applications to the Deep-Space Turbulent Channel 

For the deep- space channel, the time-dependent one-way propagation kernel is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where R2 is now the infinite plane at the top of the atmosphere, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(PI, p; t )  is the 

impulse response that applies to propagation from the ground to the top of the atmo- 

sphere. Since the channel is point-reciprocal, we have 

and from the 

tion IV),  we may conclude that 

model for infinite plane-wave propagation through turbulence (see Sec- 

Hence the ensemble average of the kernel of interest is 

29 
which has been evaluated theoretically with the following result 

4 -  

E[KDS(p, r; t)]  = C' exp , 

where ro is determined by the strength of the turbulence and the optical wavelength. 

Moreland and Collinsz7 have solved the resulting Fredholm integral equation numeri- 

cally for  the optimum eigenfunction and eigenvalue for several  values of D (R1 diam- 

e te r )  up to  D = 4ro. 

decreases monotonically with I p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. More important, they show that the time-average 

energy received at the spacecraft when u( p) is transmitted only slightly exceeds the 

average energy received if a plane wave u(p) = --!- - 
cases  increasing D beyond ro does not significantly improve the performance of the 

system. 

Thus, for  the deep- space application, the optimum nonadaptive (one-way) system 

has an energy performance that saturates with increasing aperture diameter. On the 

other hand, the Q-kernel system of Section V with infinite plane-wave beacon (which, 

as we have seen, is the optimum deep-space system for all atmospheric states) does 

not exhibit th i s  energy saturation with increasing D. 

compared with r there  is no nonadaptive system whose performance approximates the 

performance of the optimal Q-kernel adaptive system for  the deep-space channel. 

4 

The optimum u(p) has uniform phase over R1, but its amplitude 
4 

_. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

were used, and in both 
q P E R 1 )  

We conclude that for large D as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
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VII. POINT-TO- POINT COMMUNICATION THROUGH TURBULENCE 

7 . 1  PROBLEM SPECIFICATION 

We shall now apply the results of Section I11 for  point-to-point communication through 

a reciprocal channel to the turbulent atmospheric channel. 

study is shown in Fig. 18. 

D and d, respectively, whose centers lie along a perpendicular between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 1  and R 2  

The system that we shall 

The regions R1 and R 2  a r e  circular apertures of diameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-=-------------lcl 1 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzj;;; 3 fj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARZ 

R 1  ( DIAMETER d )  

( DIAMETER D )  

Fig. 18. Point-to-point Q-kernel system geometry. 

planes. The 

medium between the two planes is the turbulent atmosphere, characterized by the two 

impulse responses, & ( P I ,  p ; t )  and &(p,  p';t) .  We assume that z is short  enough that the 

atmosphere may be assumed to be "frozen" for at  least  one round trip, R to R1 to RZ, 

propagation time. 

We denote the path length (perpendicular distance) from R1 to R2 by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. 

4 -  -.& 

2 

We shall study the energy performance of some adaptive systems of the Q-kernel 

type. In this study we shall make frequent use of the properties of the various channel 

kernels that a r e  valid for reciprocal channels; hence, the reader  may find it helpful to 

review Tables 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  

7. 2 Optimal Spatial Modulation for Point-to-Point Channels 

Let us study the following system. A unit-energy beacon, v(>), is transmitted from 

R2, the t ransmit ter  at R1 then sends a turned-around (conjugation operation) renormal- 

ized (to energy Et) version of the received beacon field, and at R2 the received field is 

heterodyned with v (F ) .  It has been shown that for  maximizing the energy received by 

the heterodyne receiver at R2,  the optimal beacon waveform for any single state of the 

atmosphere is +1($), the eigenfunction of E ( p ' , r I )  for  the particular state with maxi- 

mum eigenvalue. We have observed that although it w a s  not possible to calculate +1(7) 
a priori, for  time-invariant channels, it w a s  possible to approximate an optimal beacon 

signal to any degree of approximation by using an adaptively updated beacon system. We 

shall now show how that result can be extended to the time-variant atmosphere. 

all of the necessary processing t ime at the transmitter. 

4 4  

Let the round-trip propagation time from R to R to R be T where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT includes 
2 1 2 P' P 

Let the coherence t ime of the 

61 



atmosphere be T ~ ;  that is, T~ is the maximum length of t ime for  which the atmosphere 

may be regarded as fixed. We define the parameter M to be the largest integer in T /T 

Thus the atmosphere is essentially "frozen" for M round-trip propagation times. 
c P' 

Consider the adaptive beacon system described here. At time zero an initial beacon, 

vo(p'), is sent from R2 to R1. When this beacon is received at R 1  it is conjugated, 

normalized, and transmitted back to R2. At R2 the received field is heterodyned with 

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p ' )  as in a nonadaptive beacon system, but the received field is also conjugated, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

INITIAL BEACON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

TIME 

INCREASING 

etc . 

Fig. 19. Adaptive beacon system. Arrows denote direction of propagation. 
The adaptation process may continue as shown for M round trips 
before the atmosphere changes significantly. 

renormalized, and used as an updated beacon, v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2). 
for  M round trips before the atmosphere changes significantly (see Fig. 19). 

This process can be continued 

Let +.(2 ;t) and X.(t) be the eigenfunctions and eigenvalues of the kernel Q(p', r!;t). 

1 

& A  

1 1 

From our assumptions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0, M T ~ ) .  

+i and X i  are essentially constant during the time interval 

Thus i f  the initial beacon is expanded in the form 

CO .-. 
A 

v 0 c h  = vo.+i(p';o), 1 

i= 1 

then we may write the jth updated version of the beacon in the form 

A 

v . ( p ' )  = A. ), v 0. XJ(0) 1 +i(F;O) j = l , 2 , 3  , . . . ,  M, 
J J 1 

i= 1 

(143) 
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where A. is a normalizing constant. The performance of this adaptive beacon system 

(in t e rms  of the output energy of the heterodyne receiver) increases monotonically (as 

long as  the channel may be regarded as time-invariant) with time, and converges toward 

the optimal energy t ransfer  possible (under the assumption that v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit 0). Again i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

h i =  1 v i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd Df, hi = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4% i > Df, 

where Df is the number of degrees of freedom of the channel a s  discussed in section 2.4, 

then the convergence wi l l  be essentially complete in one or two round t r ips ,  and the 

energy performance thereafter virtually optimum. 

Since the atmospheric state is a smoothly varying quantity (in time), the eigenfunc- 

Thus tions and eigenvalues, +i and Xi, should also be smoothly TTarying time functions. 

i f  T K T~ (M large),  the adaptive beacon system should be able to t rack the changes in 

the atmospheric state and, therefore, after some initial turn-on transient, the adaptive 

beacon system should achieve near-optimal performance for all ensuing atmospheric 

states. 

P 

To achieve this optimality, we had to  make M large,  and to do this we must res t r ic t  

ourselves to short  path lengths, and be able to rapidly process the incoming fields a t  

R1 and R 

will be the more stringent of the two. 

With the present technology it appears that the processing time restriction 
2' 

The adaptive beacon system that we have just described is an optimal spatial modu- 

lation system for the point-to-point channel when T 

is devoted to a simpler system that places less  stringent requirements on our  processing 

t imes,  but for large enough apertures achieves the same performance as the adaptive 

beacon system. 

>> T The res t  of this discussion 
c P' 

We use the same geometry as in the adaptive beacon system, but we now assume 

We that the beacon is constrained to  be a unit-energy normally incident plane wave. 

assume that T~ > T 

t r i p  propagation time. 

t e r  (with renormalization to energy E,), and the receiver a t  R 

received there  with the beacon signal (now a plane wave). 

path is horizontal, rather than vertical, this system is the same a s  the ground-to- 

"window" system discussed in Section V, when the window (R2)  a t  the top of the atmo- 

sphere is finite. Thus, for  the point-to-point system, the output energy of the heterodyne 

detector a t  R2 must be given by 

(M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 1);  so, we may employ a fixed-state model for  a single round- 
P 

The transmitter at R is sti l l  a conjugation operation transmit-  
1 

heterodynes the field 
2 

Except that the transmission 

Since the channel is point-reciprocal, we have Q = K; therefore, (144)  reduces to 
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -  Er(t)  = Et 11% 1 E(p' ,  r';t) - dp'dr' 

R Z  cZ 

(145) 

t' 
We can now apply the lemma of section 5.21 to show that given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > 0, for each atmo- 

which is the received beacon energy t imes E 

spheric state there exists a Do (Do < co) such that 

where D is the diameter of the R1 aperture. Recall that 5 depends implicitly upon R1. 

Furthermore,  we can apply the probabilistic bound of section 5.31  to show that there 

exist finite R1 apertures that achieve a given level of performance during a substantial 

fraction of a given operating interval with high probability. 

Although the system just considered achieves near-optimal performance for large 

enough transmitting apertures, the system is inefficient compared with the adaptive 

beacon system (when M is large). A n  adaptive beacon 

system w i l l  deliver good energy performance i f  the aperture a reas  a re  large enough that 

at least one eigenvalue, X , ( t ) ,  is always near  unity. The plane-wave beacon system just 

considered wil l  in general require that more than one of the X . ( t )  be "always" near  unity, 

and to achieve this condition the R1 aperture must be enlarged from the minimum value 

for which the adaptive beacon system performs well. 

beacon system requires much less  processing than the adaptive beacon system, so  we 

a r e  trading increased aperture diameter for decreased complexity. This is especially 

important in view of the processing time constraint set by the coherence time of the 

turbulence. 

This inefficiency is the following. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

On the other hand, the plane-wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 . 3  Remarks 

We conclude the discussion of point-to-point communication with some comments 

on the possible uses  of two-way communication systems. 

to the adaptive beacon system of section 7. 2 ,  although what we say may be related to 

the plane-wave beacon system, too. 

We shall restrict  ourselves 

Suppose in the adaptive beacon system shown in Fig. 19 the beacon used has energy 

E , and at R1 there is a receiver, in addition to the adaptive transmitter, which hetero- 

dynes the received beacon field with a stored version of the previous received beacon 

field. Temporal modulation may then be employed at  both terminals, R1 and RZ, and 

information transmitted in both directions simultaneously. The received ca r r i e r  energy 

for propagation in either direction, by the very nature of the system, wil l  be near the 

optimal value of energy transfer (if  M is large) for all atmospheric states, and since 

transmission of information occurs in both directions, there  is no energy used purely for 

channel measurement, a s  there would be i f  the beacon were not temporally modulated. 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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This concludes our discussion of point-to-point channels, the last  topic in our inves- 

tigation of the turbulent channel in the noise-free case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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VIII. APODIZATION IN THE PRESENCE OF NOISE 

8.1 INTRODUCTION 

Thus far in our study of adaptive spatially modulated communication systems we have 

made two implicit assumptions: (i) the beacon signal is received in the absence of noise, 

and (ii) the adaptive transmitter is capable of generating the conjugate of an arbi t rary 

incident field amplitude. W e  shall now remove these assumptions, and focus our attention 

upon the problems of beacon estimation and approximate transmitter implementation. 

W e  begin by proving two general performance lemmas for Q-kernel systems, one 

for point-to-point channels, and one for deep-space channels. These lemmas will both 

summarize the previous work and set a f i rm  foundation for the rest. Next, we shall 

develop a model for the noisy estimation problem, and derive the maximum-likelihood 

estimator. Then we shall study the optimal use of spatial bandwidth in a Q-kernel 

system, and conclude by examining the performance of a class  of approximate trans- 

mitter implementations in the absence of noise. 

8.2 PERFORMANCE LEMMAS 

We shall study the performance of some Q-kernel communication systems operating 

in the turbulent atmosphere. 

8.2 1 Point-to-Point Channel 

We begin with the point-to-point channel. 

Consider the geometry shown in Fig. 20. We have two finite apertures, R1 and R2, sep- 

arated by the turbulent atmosphere. W e  assume that the path length between these aper- 

t u re s  is short  enough that the coherence t ime of the turbulence is l e s s  than a round-trip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATURBULENCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 1  

Fig. 20. 

Point-to-point system geometry. 

THIS PATH LENGTH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS LESS THAN THE 

SPEED OF LIGHT TIMES HALF THE 

COHERENCE TIME OF THE TURBULENCE 

(R2-R1-R ) propagation time. Thus we may apply the fixed-state model of Section IV, 

and describe the system by two impulse responses: k(p ' ,  p ; t )  governing propagation 

from Rl  to  R2 and k(p,  p ' ; t )  governing propagation from R2 to  R1. 

ourselves to  considering a single atmospheric state, and, for convenience, we suppress 

the time dependence of the impulse responses. 

We wish to evaluate the performance of the following system. A beacon, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 v ( p ) ,  

A -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

- 4  

We res t r ic t  
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of energy Eb is transmitted from R2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
uo(p) .  That is ,  

We denote the received beacon field a t  R1 by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

-* - 
The transmitter at R1 transmits u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p ), and at R2 the received field is heterodyned with 

the beacon waveform v(p'). We denote the energy in the output of this heterodyne detec- 

t o r  by Er. That is, 

Note that i f  we had 

then the system just described would be our usual Q-kernel system. 

arbitrary,  the system described above may be used to model the noisy estimation or  

approximate transmitter problems. 

By leaving :(;) 

Having set  the stage, let us proceed with the lemma to be proved. 

Lemma (Point-to-Point System Performance) 

If the number of degrees of freedom of the channel Df has the following properties: 

(i) Df > 1, (ii) Xi = 1 # i GDf, and (iii) Xi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 A$ i > D , then the outpd energy of the het- 

erodyne detector at R2 is given by 
f 

Proof: First let  us  interpret what we a r e  proving. Condition (i) of the lemma 

Conditions (ii) and (iii) a r e  means that the two apertures a r e  in the near-field region. 

properties of Df that we have used from time to  time, and they w i l l  be assumed to be 

true here. Let u s  examine the f i r s t  equality in (150). From Table 1 we know that when 

u(p ) = u (F) the output energy is given by 
N -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
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E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
r 

Thus the lemma asser t s  that the effect of having E(;) # uo(;) is a multiplicative term,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 -  A -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAll eb v*((;;;) Q ( p ' ,  r ' )  v ( 2 )  dp'dr' 

R2 

4 

in the resulting energy expression. 

ponent of ;(;). 

This t e rm is precisely the energy in the u (p  ) com- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Now let  u s  begin the proof. 

We first  show that 

- 2 -  
Since u ( F )  is the received beacon field, JR I uo(p ) I  dp is the. energy in the received 

0 

beacon field. But f rom the 

received beacon field is 

Furthermore,  atmospheric 

1 

properties of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 kernel (see Table l ) ,  the energy in the 

A -  

v(?) dp'dr' .  

reciprocity implies Q = 5; therefore, 

which proves (151). To complete the proof, we need only show that 

We proceed as follows. We expand the beacon waveform in t e rms  of {+i), the input 
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eigenfunctions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE kernel. That is ,  

where 

From the properties of {chi} (see Table l ) ,  we have 

M .- 

I+-) = Xb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 vi $ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai(;). 
i= 1 

We now express ;(;) in the form 

where 

and 

(153) 

In te rms  of {@J, the output eigenfunctions of the E kernel (154) may be written in 

the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
co 

3;;) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
i= 1 

Kb avi Ki 

where a is as given above, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. = a(;) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:(;) d;. From the properties of (ai} 
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A*  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(see Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ) ,  v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PI), the field received at R2, is 

= 

Thus the output energy of the heterodyne detector at R2 is 

m 1/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco 

a:( 1 ]vi/ '  1.) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc a ~ v .  1 1  6 1 

i= 1 i= 1 

E =  
r 

- - 

E = a  
r 

co 

1 1  

i= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

1 1  

i= 1 i= 1 

E = a  
r 

We now use the assumed properties of Df to r e  

i= 1 

From (155), 

- 4 
0 = lR w ( p  ) u0(p ) d; = 

1 i= 1 

Therefore 

2 

: 

uce ( 1  

(157) 

7 )  to 
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which proves the lemma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As we have mentioned, the essence of this lemma is that Er  is given by the per- 

formance when u ( ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) = u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F )  t imes the energy in the u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p ) component of u ( ~  ). The proof 

that we have presented hinges on the fact that since u (p ) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa"(;) a r e  orthogonal 

on R1, they a r e  also orthogonal on R2 after propagation through the channel. The assump- 

tion that the eigenvalues {Xi} a r e  either zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor one implies that any two orthogonal func- 

tions on R1 have this property. 

In apodization problems we a r e  concerned with maximizing the received energy for  

a fixed transmitted energy, so we now prove the following corollary. 

-- A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O * A  

0 

0 

Corollary. If the conditions of the previous lemma a r e  satisfied, then the fraction 

of the transmitted energy that is in the output of the heterodyne detector at R, is given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 -  

v*(c') E ( p ' ,  rl) v ( p f )  

- 2 -  
where Ein = JR1 Ic(p)l dp is the transmitted energy, and 

Proof: The f i rs t  equality follows directly f rom (1  50) and the 

second equality follows from the fact that 

1 
n 

and the definition of cos (z, u ). 
0 

The interpretation of this corollary is much more important 

tion 159 says that the fraction of the transmitted energy in the 

(159) 

definition of Ein. The 

than i t s  proof. Equa- 

output is the fraction 
2 

of the beacon energy received at R1 t imes cos 

nitude of the cosine of the angle between the functions u ( ~  ) and U ~ ( ; )  in L (R1).  The 

Schwarz inequality shows that 0 6 cos 

u ( ~ )  = buo(p), 

nel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(c, u ). The t e r m  cos (z, uo) is the mag- 

(z, uo) 6 1, and cos2 (z, u ) = 1 i f  and only i f  

We now turn to the deep-space chan- 

O N-  2 

2 

where b is some scalar. 
0 

N -  & 
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8 . 2 2  Deep-Space Channel 

The geometry of interest is shown in Fig. 21. The R aperture is still a finite trans- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

mitting aperture on the ground, but R2 is now the infinite plane at  the top of the atmo- 

sphere perpendicular to the line connecting R1 with the spacecraft aperture R3. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SPACECRAFT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f TR3 
THE RI-RS PATH LENGTH, L, i IS LESS THAN THE SPEED OF [ LIGHT TIMES HALF THE 

, COHERENCE TIME O F  THE 

FREE SPACE 

-.. 
p’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS A VECTOR 

INFINITE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 PLANE 

TOP OF ATMOSPHERE 

r t  r 4 P  Cwl 

Fig. 2 1. Deep-space system geometry. 

assume that the zenith angle of the R1-R path is smal l  enough that the round-trip 
3 

propagation time (Rz-R1-R2) is l e s s  than the coherence t ime of the turbulence; thus we 

may use the fixed-state model of Section IV. We work with a single atmospheric state, 

suppressing the time dependence of the impulse responses. 

The system that we wish to consider is the following. A normally incident uniform 

plane wave of amplitude B is transmitted from R2 to R1. We denote the received beacon 

field uo(F) as in section 8 . 2 1 ,  only in this case we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
nJ* - 

The t ransmit ter  at R1 t ransmits  u (p ). We assume that the path length from R 2  to R3 

is sufficiently large that the field received at  R3 when u (p ) is transmitted from R1 is 

a normally incident plane wave whose amplitude is 

N* - 

where Q is the R2-R path length, and b is a constant phase delay. This assumption is 

the same path-length assumption that we made when discussing deep- space channels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

7 2  



before. From 161, Es, the energy received over R3, is 

where A3 is the a rea  of the aperture R3. Note that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA';;(;) = uo(F), then (162)  reduces to 

the energy received at the spacecraft from a Q-kernel system. 

We now prove the following lemma. 

Lemma (Deep-Space System Performance) 

For  the deep-space system described above we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J = -  

(?.e? B2 

Proof: First let u s  note that the definition of the Q kernel and Eq. 162 imply that 

when u ( p )  = uo(p ) the enery received at the spacecraft is 
w -  

Thus (163) says that E _  is given by the performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN--L -.L 

when u(p ) = u,(p) times the energy 
zi N -  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

in the uo(p ) component of u(p ). Since R2 is infinite, however, we cannot use the eigen- 

function expansion argument of section 8. 21 to prove the lemma above. Instead we 

proceed as follows. 

From the properties of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 kernel and reciprocity we imniediately conclude that 

R -m 
2- 

Therefore, we have 
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 3  



s o  we need only show that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Es zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - 
B2 

to complete the proof of the lemma. 

From (162) we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

Interchanging the o rde r s  of integration and using the reciprocity of the atmosphere, we 

obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 -  

Next we substitute for l, =m &(p, p ' )  d? from (160) to obtain 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w& - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(PI uo(P) dF12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

*3 Es = - 
B2 

which proves the lemma. 

The fact that the energy received at the spacecraft is due solely to the energy in the 

uo(F) component of G(F) should come a s  no surpr i se  at this point. In Section VI we 

showed that the apodization kernel for propagation from R to R had only one eigen- 

function with nonzero eigenvalue, and that eigenfunction w a s  proportional to the conju- 

gate of the received beacon field, that i s ,  u ( F )  in our  present notation. 

We now prove a simple corollary concerning the fraction of the transmitted energy 

that reaches the spacecraft. 

1 3 

0 

Corollary. For the deep-space system under consideration the fraction of the trans- 

mitted energy that is received at the spacecraft is 

E(p', r ' )  dp'dr' cos  (u, uo), 

- -  - - )  2 N  
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- 2 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where Ein zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= .fR Iz(p )I dp is the transmitted energy, and 

1 

N 

Proof: The first equality follows directly from the lemma and the definition of E 
in' 

The second equality follows from 

and the definition of cos (z, uo). 

The interpretation of this corollary is s imi la r  to that of section 8. 21. The t e rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cry-  

is the fraction of the transmitted energy that reaches the spacecraft when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ( p  ) = u0(F). 

Note that for  R1 large (see section 5.4) this t e r m  is approximately AlA3/(XP) with high 

probability. Although it might appear that we can make this t e rm arbitrari ly large by 

increasing A3 o r  A1, the path-length assumption implies that A1A3/(XQ) << 1. (Remem- 

be r  that A1A3/(~Q)  

absence of turbulence.) The cos 

because u(p ) has energy in components orthogonal to uo(p ). 

2 

2 

2 
is the number of degrees of freedom of the R1-R3 system in the 

(z, u ) t e rm measures  how much performance is lost 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 
0 

.o, - 
8. 23 Remarks 

Let us emphasize one aspect of the results just proved. The ratio of the output 

energy to the transmitted energy, that i s ,  Er/Ein for point-to-point channels and E /Ein 

for  deep-space channels, is the gain of the system. Our results show that these gains a r e  
A 

equal to the values they take on when;(;) = u (p)  t imes a gain reduction factor g = 
2 -  

cos (u,uo). 

only if E(;) is proportional to uo(;). The gain reduction factor measures how much gain 

is lost because ;(;) has components orthogonal t o  uo(;), and it will  be the center of our 

attention in discussing beacon estimation and approximate t ransmit ter  implementations. 

We shall begin this work by developing a model for the relevant noise sources in our 

system. 

A final word is in order. None of the proofs in this section depended in any way upon 

special properties of the atmospheric channel (other than the fixed-state model and reci- 

procity), so all of our results a r e  in fact valid for any time-invariant point-reciprocal 

spatially modulated channel. 

S 

A 

0 

This gain reduction factor l ies between zero and one, and it is one if and 
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8 . 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANOISE MODEL 

When a beacon is transmitted from R to R 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1' 

whether in a point-to-point channel o r  

Let us  con- a deep-space channel, the signal is received at  R1 in a noisy environment. 

sider the sources  of noise in the receiver at R 

different noise contributions : background noise from scattered sunlight, black-body and 

other radiation sources, shot noise f rom energy detectors, and thermal noise from 

amplifier circuits in the receiver, to name a few. 

ground noise and quantum shot noise as the principal noise sources in our system. 

In general there wil l  be a number of 
1' 

We shall concentrate on the back- 

8.31 Background Noise 

When a beacon is transmitted from R the received beacon field is 
2 

V(? ) &(;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  d? for point-to-point channels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 4  

Bh(p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc P ' )  d? for deep-space channels 

The quantity u (;) is the complex-field amplitude of the linearly polarized wave that 

would be received at R1 were there no noise present. 

received at R1 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
The actual field amplitude 

- - - L  4 

where nB(p,t) is the complex-field amplitude of the background noise, and ix is a unit 

vector in the direction of polarization of the transmitted beacon field. We a r e  describing 

the complex-field amplitude of the noise process by n ( p ,  t).  The actual background 

noise waveform is 

4 -  

B 

The reader  should keep in mind that when we speak of noise fields here we shall always 

be concerned with the complex amplitude of the noise. 

For light from incoherent sources the background noise may modeled as a zero- 

mean Gaussian random process whose two polarizations a r e  statistically indepen- 

dent. "' 30  Thus no loss in optimality results from passing the field received at R1 

through a polarizer that selects the Tx polarization. The output of such a polarizer is 

A 4 

U(P, t )  = u0(p + n g 6 ,  t) ,  (167) 

4 -4 4 - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

where u(p,  t )  = u(p, t)  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 
of view ng(p, t)  has the following properties. 

and nB(p, t)  = n (p ,  t)  * i F o r  receivers  with large fields 

1. Let {ui} be a complete set of orthonormal functions defined on R1. We define 

X' 4,22 4 X' 

* 

76 



the processes 

The processes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ n 

mean Gaussian processes, whose rea l  and imaginary parts a r e  statistically independent 

and identically distributed. 

(t)} a r e  then statistically independent identically distributed zero- 
Bi 

2. Suppose that R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T )  is the correlation function of nB (t), and let  S (f)  be the 
Bi i Bi 

Fourier  transform of R (T). That is, 
B: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

" I  
and 

Then S 

zero frequency. 

mated by a Gaussian process that is "white" in both time and space. 

tral density of this noise depends on both the t ime of day and the center frequency (uc/2r)  

of the radiation. For  the present, we shall assume that 

(f), the power spectral density of ng (t), is constant in a large region about 

Properties 1 and 2 imply that the background noise is well approxi- 
Bi i 

The power spec- 

S ( f )  = No, 
Bi 

where S 

in a I-Hz bandwidth (bilateral) of the noise field 

( f )  is defined by (170). (This value of S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( f )  implies that the average power 
Bi Bi 

is No.) 

8. 32 Quantum Shot Noise 

Since we must estimate the spatial variations of u(F, t ) ,  some sor t  of coherent-field 

detection is required. In particular, it wil l  be assumed eventually that heterodyne 

detection is employed to measure the components of u(?;, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalong a set of N spatial 

modes. 

Suppose that u(;,t) is heterodyned with the waveform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*o uy(F) exp(tjAwt) (see 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 ) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhw/Z.rr  is the intermediate (offset) frequency, and u , (p)  is assumed to 

have unit energy. The complex envelope of the output of the photodetector in some 

bandwidth W about the intermediate frequency will  have three components, a signal 

Thus we now consider the quantum shot noise of such systems. 
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proportional to 

a contribution from the background noise proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

where [n,(p, t)lBL is the noise process ng(p, t )  limited to a bandwidth W about zero fre- 
31  

quency, and a shot-noise te rm that a r i s e s  from the quantum nature of light. Helstrom 

has shown that in the limit 

the shot noise is a Gaussian random process, whose rea l  and imaginary parts a r e  sta- 

tistically independent and identically distributed, and whose spectral  density is flat over 

PHOTODETECTOR OF QUANTUM EFFICIENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 

OUTPUT 

BEAM SPLITTER 
INCIDENT FIELD 

AMPLITUDE AT R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c- u ( p , t ) =  

u o G ) + n B ( ’ F ; , t )  

LOCAL OSCILLATOR 

Fig. 22.  Single heterodyne detection system. The photodetector 
covers the region R1. The output of the detector is at 

the offset frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAw/2~r ,  and has bandwidth W. 

the bandwidth W. 

local oscillator power, the center frequency of the incident light, and the quantum effi- 

ciency of the photodetector used. The inequality (172)  implies that the local oscillator 

is much stronger than the received beacon plus average background noise, over the 

bandwidth of interest. 

detector may be represented by an equivalent noise field amplitude, ns(;, t ) ,  with the 

quantum nature of the detection process ignored. This noise field has the following 

properties. 

Furthermore,  the value of the spectral density depends only on the 

When (172) is satisfied the shot noise in the output of the photo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 2 ,  33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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--L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. ns(p,t) is a zero-mean Gaussian process that is statistically independent of 

2. The process ns(;;' t) may be written in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

ng(P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 t). 

where n 

tically independent and identically distributed, and whose spectral  density is E w  /2q over 

a bandwidth about zero frequency that is large compared with W, where q is the quantum 

efficiency of the photodetector in Fig. 22. 

(t) is a Gaussian random process whose real and imaginary parts a r e  statis- 
s1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C 

Now let us  suppose that u(F, t) is heterodyned with N local oscillators 

* 
where {ui ; 1 G i ,G N} is a set  of orthonormal functions on R1, and Eo satisfies (172) 

(see Fig. 23). The complex envelope of the output of each photodetector wi l l  contain 

PHOTODETECTORS BEAM SPLITTERS 

oupuTq) p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 
LOCAL OSCILLATOR 1 

LOCAL OSCILLATO~ 2 

OUTPUT N -0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe- 

LOCAL OSCILLATOR' N 

Fig. 23. Array of heterodyne detectors. L. 0. i is the ith local oscillator = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 Z J K  ui(F) e -JAwt. The photodetectors have a reas  congruent to 

R1, and a r e  all of quantum efficiency q. The outputs a re  at the 

offset frequency A.w/2n, and have bandwidth W. 

a signal component, a contribution from the background noise, and a "white" Gaussian 

shot noise over the bandwidth W. 

pendent (physically) of all other such pairs,  it is reasonable to assume that the shot 

noises a r e  independent processes. Moreover, if we use an equivalent shot-noise field, 

Since each local oscillator-photodetector pair is inde- 
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2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ns(p, t ) ,  to account fo r  the shot noise in the photodetector outputs, then ns(F, t )  has the 

following properties. 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(F, t)  is a zero-mean Gaussian process that is statistically independent of 

The process ns(F, t )  may be written in the form 

1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

nB(P > t). 

2 .  

N 

where {n (t)) is a se t  of statistically independent Gaussian noise processes whose real  

and imaginary parts a r e  statistically independent and identically distributed, and whose 

spectral  densities a r e  constant at 1zwc/271 over a bandwidth about zero frequency that is 

large compared with W. 

‘i 

Although the description of ns(& t )  in Eq. 173 is complete with respect to the shot 

noise in the outputs of the photodetectors in Fig. 23, it is not the description that we 

shall use now. 
* 

Let {ui} be a complete orthonormal set  of functions on R1, where 

* -  * -  * -  
U + P  ) >  U2(P )>  * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY uN(P ) 

a r e  the spatial waveforms used in Fig. 23. Consider the expression 

where {n, (t)) is as in condition 2. 

detectors in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3  a r e  concerned, Eq. 174 may be used instead of Eq. 173 as a 

description of the equivalent shot-noise field. 

Gaussian process that is essentially white in both time and space, and it is the descrip- 

tion of the shot noise that we use. 

It is clear that as far as the outputs of the N photo- 
i 

Equation 174 is the description of a 

From our discussions, we conclude that the reception of the beacon signal at R1 may 

be modeled as occurring in the presence of an additive noise-field amplitude 

where n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c, t)  is the background noise as described in section 8.31, and ns(F, t )  is the 

equivalent shot noise field described by Eq. 174. We have seen that both ng(F, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 

n (F, t) a r e  white Gaussian noise processes in time and space. Since the two noises 

a r e  statistically independent, n(p, t) is a white Gaussian process also. In particular, 

if  {gi} is some arbi t rary complete orthonormal set  of functions on R 

processes 

B 

A 
S 

then the 
1’ 
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a r e  statistically independent identically distributed white Gaussian noise processes with 

spectral  densities No t Ewc/2q. 

of white Gaussian noise. 

This result follows from the Karhunen-LoGve expansion 

Before continuing, let u s  emphasize the importance of this result. Although we 

a r e  concerned with the noise in the output of an a r r a y  of N heterodyne detectors 

using a particular set of local oscillator waveforms, we have shown that it is equiv- 

alent to assuming an additive white Gaussian noise at the input and ignoring the 

quantum nature of the detection process and the particular se t  of local-oscillator 

waveforms used. 

8 . 4  MAXIMUM-LIKELIHOOD TRANSMITTER 

We a r e  now ready to study apodization in the presence of noise. Consider the fol- 

A spatial waveform u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F )  is received over some finite lowing maximization problem. 

aperture R1 in the presence of an additive noise n(F, t). The noise-corrupted waveform 
0 

6, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= U o ( 5  f 

is detected by an a r r ay  of N heterodyne detectors (as in Fig. 23) using spatial wave- 

forms 

* 
where {ui : 1 Si  GN] is a set of orthonormal functions on R1. 

erodyne detectors a r e  observed over a time interval (0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT), and from this observation 

an estimate, u ( ~  ), of u (F) is made. 

mizes 

The outputs of the N het- 

N -  

We seek to find the estimation rule that maxi- 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 I 

L 

subject to the constraint 

where the expectation is over the noise ensemble. 

Let us  see why this is a problem of interest. Suppose uo(F) is the received beacon 

field in a point-to-point o r  deep-space two-way communication system (as in sec- 

tion 8. 2) .  From the results of section 8. 2 we find that the solution to the estimation 

problem above maximizes the average gain of the system, subject to an energy con- 

straint- at the transmitter. We shall begin the solution of this problem. 

8 1  



8.41 Apodization in the Presence of Weak Noise 

We shall solve the maximization problem posed above in the weak-noise limit, using 

the noise model developed in section 8.3. That i s ,  we assume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
} 

f i ( t )  = lR n(p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA t)  u r ( F )  d; 1 < i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 N 

1 

is a set of statistically independent identically distributed white Gaussian noise processes 

with spectral densities 
2No f f i W C / T  

. It is convenient to define the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

- * -  
1 < i  G N  (178) 

in t e rms  of which the gain reduction factor may be written 

where we have used (177)  for  ;(;). 

tion. The te rm 

Equation 179 has the following important interpreta- 

N 

i= 1 

is the gain reduction factor that would result  from using 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

U ( P  1 = aiui(P 1 
i= 1 

A 

as an approximation to u (p  ). 

mate, since we can only measure u ( F )  when there is no noise. 

cuss noise-free approximate transmitter implementations. For  the moment, we a r e  

interested only in the effects of the noise. 

The key word here is approximation, rather than esti- 
0 

We shall return to dis- 
0 

The term in brackets in Eq. 179, 

2 I $iar 1 
i= 1 

N h 2 ’  = I ail2 = bil 
i= 1 i= 1 

measures how much performance is lost (in addition to the noise-free gain reduction) 

8 2  



because of the presence of noise. 

factor when 

Note that this  term has the form of the gain-reduction 

N 

Since w e  have assumed a fixed set  of heterodyne waveforms, our o r i g a a l  maximiza- 

tion problem reduces to  the following form. 

{ai tni( t ) :  1 S i S N  OStdT)  

From the observation 

find the estimate, ai, of a .  that maximizes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

(Note that since we are working with a fixed atmospheric state, we have implicitly 

assumed that T is l e s s  than the coherence time of the turbulence minus the round-trip 

(R  -R1-R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) propagation time.) 
2 2 

{ait ni(t): 1 S i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS N, 0 S t d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  over the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 , ~ ) .  

follows. 

Observe that no loss in optimality is incurred by time-averaging the observation 

This assertion can be proved as 

The time-average of the observation is 

and, since {ni(t)) is a set of independent white Gaussian noise processes, the noise com- 

ponents whose time averages a r e  zero a r e  irrelevant. Let us  define the random 

variables 

n. = loT ni(t) dt 1 Si  S N .  
1 7  

The set  {nil is therefore a collection of statistically independent identically distributed 

zero-mean Gaussian random variables, whose real and imaginary parts a r e  statistically 

independent and identically distributed, and whose variances a r e  

problem is now to maximize 

2No f fiwc/q . Our 
27 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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by choice of si, given the observation (a. e n . :  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 N). 
1 1  

The problem just posed is easily solved in the weak-noise limit. Remember that 

4 
N N 

i= 1 i= 1 
is the square of the cosine of the angle between the vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ GiuiG) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ aiui(p) 

in the function space spanned by (ui(p): 1 d i d  N). Consider the e r r o r  vector 

i= 1 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 
-. 

As shown in Fig. 24, this vector has a component along Z a.u.(p ) (the in-phase e r r o r )  
N i= 1 

1 1  

and a component perpendicular to Z a .u . (p)  (the out-of-phase e r r o r ) .  If 
1 1  

i= 1 

N 
Z ̂a.u.(;) and 

N i= 1 
Z aiui(T) wi l l  also be quite small. Furthermore,  this angle w i l l  then be approximately 

i= 1 
the ratio of the length of the out-of-phase e r r o r  vector to the length of the signal vector 

(the percentage square e r r o r  is quite small) ,  then the angle between 
1 1  

X T  
I Y  

Z a.u.(F). Thus, i f  (180) is satisfied, then the e r r o r  angle, the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa between the 
1 1  

i= 1 

C 

Fig. 24. 

E r r o r q g l e  a .  This plot is in the space spanned 

OA is the signal vector, 
A 

by {ui(p ) :  1 d i C N). N 

Z aiui(p ) 
i= 1 

N A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OC is the estimate vector, Z a.u.(F) 

1 1  
i= 1 

A 

AC is the e r r o r  vector, Z (ai-ai) ui(p ) 
i= 1 

AB is the in-phase e r r o r ,  and BC is the out-of- 
phase e r ro r .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
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N 

i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 i= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN A  - 
vectors C aiui(p) and Z aiui(p), is given by 

where we have evaluated the length of the out-of-phase e r r o r  vector. 

have 

In t e rms  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa we 

2 
COS a 

and, since a is small compared with one, (182) reduces to 

2 
- 1 - a .  

Therefore in the weak-noise limit the average gain reduction factor is maximized by 

minimizing E(CZ ). From the discussion leading to (181) we see  that E(a ) is minimized, 

in the weak-noise limit, by minimizing the mean-square out-of-phase e r r o r .  It is well- 

known” that the minimum mean-square e r r o r  unbiased estimator for the unknown mean 

of a white Gaussian process with equal variances in each dimension is the maximum- 

likelihood estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2 

= ai + ni = $ loT ( lR, ut;, t) ui (p  ) dp dt 1 G i - S N .  (184) 

* -  -) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

NIL 
ai 

The Cramer-Rao bound shows that there  is no estimator with a fixed bias, a bias inde- 
N 

pendent of Z a.u.(p ), which has  a lower mean-square e r r o r  than the maximum-likelihood 
i= 1 

estimator. A variable bias system might exist that would outperform the maximum- 

likelihood system, but to find such a system we would need some a priori  information 
N 

concerning C a.u.(p ). Thus we have restricted ourselves to unbiased estimators. 
i= I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

1 1  

& 

1 1  
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The resulting mean- square out-of-phase e r r o r ,  when maximum-likelihood estimation 

is used, is 

Thus the average gain-reduction factor is maximized by the maximum-likelihood rule 

given in (184) ,  and when this rule is used the resulting average gain-reduction factor is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 -  

E(& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E(cos (u, uo)) 

The result that we have obtained is quite important, and to emphasize it we state it 

as a lemma. 

Lemma (Performance in Weak-Noise) 

At R1 we receive 

where u ( F )  is the received beacon field in a two-way adaptive communication system, 

and n(F, t) is the white Gaussian noise discussed in section 8.3. The field at R1 is 

detected by an a r r a y  of N heterodyne detectors using a set of N orthonormal waveforms, 

{uf(p) :  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is N), as local oscillators, and the outputs of these detectors a r e  observed 

over a t ime interval (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7). The average gain of a communication system using an 

unbiased estimator at R1 is maximized by the maximum-likelihood transmitter 

0 

i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf. 1 

S i  C N when the noise is weak enough that’ 

2 
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(Note that we have substituted a bound on the ratio of the average length of the e r r o r  

vector to the length of the signal vector for the condition in (180). The resulting average 

gain-reduction factor under the conditions above is 

We shall continue the study of apodization in the presence of noise by discussing the 

optimal use of spatial bandwidth in the weak-noise limit. 

8.42 Optimal Use of Spatial Bandwidth in Weak Noise 

The maximum-likelihood t ransmit ter  and the resulting gain-reduction factor perfor- 

mance a re  the complete solution of the weak-noise apodization problem when the N het- 

erodyne waveforms used at  R1 a r e  fixed. We shall now discuss what can be done when 

(ui zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 1 < i<  N} may be chosen to maximize the average gain-reduction factor. From 

Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA179, i f  u , ( p )  = u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F )  and N = 1, then the gain-reduction factor would be one 

regardless of the noise. This choice of heterodyne waveforms is equivalent to 

knowing uo(p) a priori, which is not possible. It w a s  precisely because we did not know 

the channel state a priori  that we began to consider two-way communication systems. 

We shall study the following problem. Given a complete orthonormal set  of functions 

on R1, {c:}, which subset of (5;) achieves the largest average gain-reduction factor 

when used a s  the heterodyne waveforms in a weak-noise maximum-likelihood estimator. 

Our results a r e  stated in the following lemma. 

Lemma (Optimal Use of Spatial Bandwidth in Weak-Noise) 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Consider a maximum-likelihood estimator operating in a weak-noise environment 

using some subset of as heterodyne waveforms. Let 

* -  * -  
U i ( P )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ( P I  i =  1 , 2 , 3  ,..., 

ki 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

a ..., 

and let N be such that 
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Then the optimum subset of {$:}for maximizing the average gain-reduction factor is 

{u:: 1 < i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGN}. 

Proof: In the presence of weak noise the average gain-reduction factor achieved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* 
by a maximum-likelihood system using heterodyne waveforms {ui : 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd i < M) is 

If {UT} a r e  constrained to be chosed from a given complete orthonormal set ,  {$E}, then 

for any M the choice given in (186) maximizes 

Furthermore,  when {ur} is chosen in this manner, E(g) is maximized by M = N, where 

N satisfies (187), which proves the lemma. 

This lemma has an important interpretation in t e r m s  of "matching1' spatial band- 

widths within the system. It asser t s  that the optimal subset of a given complete ortho- 

normal set  of spatial modes is the set of modes in which the signal energy exceeds the 

average noise energy. In other words, it tel ls  us  to match the spatial bandwidth of the 

t ransmit ter  at R1 to the bandwidth over which the signal energy density exceeds the noise 

spectral density. 

In general, this lemma is the only spatial bandwidth result that we can 

obtain. For  the point-to-point channel, however, there  is another lemma that 

can be proved. 

Lemma (Spatial Bandwidth for Point-to- Point Channels) 

The average gain of a point-to-point two-way communication system using a 

maximum-likelihood t ransmit ter  in the presence of weak noise with heterodyne wave- 

forms chosen from a given complete orthonormal set, { $:}, is a maximum under the 

following conditions. 

When the number of degrees of freedom of the channel, Df' is such that 1. 
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2. When the heterodyne waveforms a r e  chosen from {e:} in accordance with the 

previous lemma. 

Proof: From the corollary of section 8. 21, the average gain of the point-to-point 

channel is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_L 

and, since v(p') has unit energy, we have 

Thus applying (188) and the previous lemma completes the proof. 

that the beacon signal v ( 7 )  must propagate through the channel with essentially no atten- 

uation. 

tion 8. 2 1, we have 

Let us  see what interpretation we can attach to this lemma. Condition (188) says 

How does this result relate to spatial bandwidth? Using the notation of sec-  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 lvilZ = 1 Iv (7 ) l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -  dp' = 1. 

i= 1 R 2  

In section 2 .4  we observed that the number of degrees of freedom of the channel is in 

essence a spatial bandwidth constraint imposed upon signals propagating through the 

channel medium. 

l a rge r  than the spatial bandwidth of the beacon that we a r e  using. 

aperture sizes a r e  fixed, we must choose a beacon whose spatial bandwidth is l e s s  than 

the bandwidth of the channel. 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAz.) 

Thus Eq. 188 says that we must make the channel spatial bandwidth 

Conversely, if the 

(Remember that Df is an increasing function of AI 
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W e  have seen that the spatial bandwidth of the transmitter at R1 must be matched 

to  the bandwidth over which the signal energy density exceeds the noise spectral  

density. For point-to-point channels we have just seen that the signal spatial 

bandwidth must be less than the channel spatial bandwidth. Thus in the point- 

to-point case,  performance is optimum when the spatial bandwidths of the bea- 

con and the transmitter at R1 are properly matched to  the spatial bandwidth 

of the channel. 

8.43 System Performance in Strong Noise 

The results of sections 8.41 and 8.42 were predicated upon a weak-noise assump- 

tion. We shall  now derive some performance results that a r e  valid regardless of 

the strength of the noise. 

gain-reduction factor, which is a difficult problem when we cannot make a weak- 

noise assumption, we shall study the performance of a particular two-way sys-  

tem that reduces t o  the maximum-likelihood system of section 8.41 when the 

noise is weak. 

Rather t i a n  attack the problem of maximizing the average 

Consider the system shown in Fig. 25. The field received at R1 is 

as in section 8.41. The field transmitted from R1, however, now is 

where 

and 

This transmitter is the same as the maximum-likelihood transmitter of section 8.41, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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except for the fact that in the system of Fig. 25 the average transmitted energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ qML : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5q- TRANSMITTER 

W I T H  A V E R A G E  

E N E R G Y  

C O N S T R A I N  E D  

TRANSMITTED W A V E F O R M  

Fig. 25. Maximum-likelihood transmitter with average 
energy constrained,. 

is constrained, ra ther  than the actual transmitted energy. This normalization is 

convenient for the calculations that we shall make. 

In Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC i t  is shown that for ;(;) as defined above 

E 

and 

L 

( 1 9 1 )  

where the expectations a r e  over the noise ensemble. Using these results, we can prove 

the following lemmas. 

Lemma (Point-to-Point System Performance) 

Let u ( F )  be the received beacon field in a point-to-point system using a beacon, 

Gb v ( p ' ) ,  of energy Eb. Then the performance of the system that transmits u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p ) ,  

given by (189), is as follows. 

1. The average energy over the noise ensemble in the output of the heterodyne 

N* - 0 
4 

detector at R2 is 
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- - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 I ail 

of the 

VAR (E,) = 

output energy of the hete rodyn e detector at R2 is 

(193) 

3. The fractional fluctuation of E r  about its mean, that is ,  the ratio of the standard 

deviation of E to its mean, is 
r 

\ 

Proof: Equations 192 and 193 follow immediately f rom Eqs. 190 and l 9 l  and the 

Lemma of section 8.21. Equation 194 is obtained by taking the square root of Eq. 193 

and dividing by Eq. 192. 

We shall comment on these results after proving the next lemma. 

Lemma (Deep-Space System 

Let uo(F) be the received 

wave beacon of amplitude B. 

given by (1 89), is as follows. 

1. The average energy 

craft is 

Performance) 

beacon field in a deep-space system using an infinite plane- 

Then the performance of the system that t ransmits  u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p ), 
-* - 

(over the noise ensemble) received at the space- 
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(XQ)' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. The variance of the energy received at the spacecraft is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 .  The ratio of the standard deviation of Es to i ts  mean is 

\ 

(VAR (Es))'/' 

(197) 

Proof: Apply Eqs. 190 and 191 to the Lemma of section 8.22. 

The results that we have just obtained a r e  valid regardless of the strength of the 

noise relative to the received beacon energy. 

weak-noise results of section 8.41 when 

It can be seen that they reduce to the 

Let u s  consider what happens when we a re  not in this weak-noise limit. 

results we see  that the noise has had two effects on the system. 

that is ,  the variances of Er and E a r e  nonzero. 

onal to uo(p). 

From our 

1. The noise in the uo(T) component of the field at R1 causes fading at the receiver, 

2. The noise causes the t ransmit ter  at R1 to waste energy on spatial modes orthog- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Consider the following special case. Suppose that 

2No zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ E q l  N(2No + Ewc/ll) 

2 .  
<< 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

2 7  N 2  z /ail ZT c lai] 
i= 1 i= 1 

Since N may be quite large, we may often find ourselves in this situation. 

the in-phase noise is negligible, but the total noise is still not weak enough to use the 

results of section 8.41. From the lemmas just proved we note that although the frac- 

tion of the average transmitted energy that is received wil l  not be close to one, there  

will  be little zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor no fading caused by the noise. 

In this case 

That is ,  

(VAR (VAR (E-))'/' 

(Remember that we a re  working with a fixed atmospheric state; changes in the atmo- 

spheric state wi l l  produce fading at the receiver  even if there  were no noise in the sys- 

tem. See section 5.4 for a discussion of this type of fading.) Thus the maximum- 

likelihood t ransmit ter  delivers good energy performance, that is, little fading, for  a 

single atmospheric state, as long as the average noise energy per  spatial mode is small 

compared with the signal energy at R1, and its performance is optimum if  the total aver-  

age noise energy is small compared with the signal energy at R 

We shall leave the question of performance in the presence of noise and study the 
1' 

behavior of some approximate t ransmit ter  implementations in the absence of noise. 

8 .5  APPROXIMATE TRANSMITTER IMPLEMENTATIONS 

In the absence of noise the optimal t ransmit ter  for  maximizing the gain of a two- 

way adaptive communication system transmits  a scaled version of the conjugate of the 

received beacon field uo(p ). At present, there  does not seem to be a device capable 

of generating the conjugate of an a rb i t ra ry  received beacon field, so  we now address 

ourselves to the theoretical problem of approximating the conjugation operation in the 

absence of noise. In this mat ter  we shall find the lemmas of section 8 . 2  quite helpful. 

We shall restrict  ourselves to considering systems that heterodyne u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F )  with a set  

of N orthonormal waveforms {ui : 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG i G  N} and t ransmit  a scaled version of the conju- 

gate of 

A 

0 * 

N 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
94 



From the results of section 8.2, we know that the system gain for point-to-point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor 

deep-space channels is proportional to the gain reduction factor 

and for the case of interest here we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* 

If {ui : 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG i G  N} is such that 

then no performance has been lost by going to an approximate transmitter. 

As an example of an approximate t ransmit ter  implementation, let us consider the 

Taylor s e r i e s  arrays.  We partition the R1 aperture into nonoverlapping circular a r r ay  

elements of radius r. Over the ith a r r a y  element an nth-order Taylor se r ies  trans- 

mitter makes an nth-order Taylor se r ies  approximation of the complex phase of uo(F), 

and:(;) is taken to be the component of uo(F) parallel to the approximate phasor. That 

is, if 

then 

t h  

Bi, i’ 

where Ai denotes the i 

mation of on A 

a r r a y  element, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( F )  is the nth-order Taylor s e r i e s  approxi- 
-1, n 

is a normalizing constant, and - 

In the n = 0 case, :(;) is a piecewise plane wave normally incident on R1, whose abso- 

lute phase delay var ies  from a r r a y  element to a r r ay  element. In the n = 1 case, y(F) 
is a piecewise plane wave, whose direction of propagation and absolute phase delay 

95 



varies  from a r r a y  element to a r r a y  element. 

for the spherical and hyperbolic aberrations in the phase of u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7). 
In the n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 case, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC((;;) is compensated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

The nth-order Taylor se r ies  t ransmit ters  fall within the framework set up previously 

with 

L o  
2 

where N is now the number of a r r a y  elements in R 

se r i e s  approximation that we a r e  discussing for the deep-space channel. 

o rder  Taylor se r ies  system he has calculated a maximum a r ray  element radius pn, such 

that i f  r < pn, then 

Fr ied  has studied the Taylor 
th 

1’ 
F o r  the n - 

That is, g = 1 on the average, and if r > p then 
n’ 

decreases monotonically a s  r increases, where the expectations a r e  over the turbulence 

ensemble. 

This completes our discussion of approximate t ransmit ter  implementations. We 

have only dealt with the noise-free case. .The performance of a r r ay  systems in the 

presence of noise was considered in section 8.4. But, since the heterodyne wave- 

forms used by a Taylor s e r i e s  a r r ay  depend upon the field received at R1, the results 

of section 8.4 can only be applied to the Taylor s e r i e s  a r rays  in the weak-noise limit. 

8.6 SUMMARY 

We have covered a great deal of material, and it is worth reviewing what we have 

accomplished. The principal results a r e  as follows. 

1. The performance of a general two-way spatially modulated communication sys- 

tem w a s  evaluated for both point-to-point and deep-space channels. It w a s  shown that 

the system gain, the ratio of the output energy to the input energy, is given by the gain 

of an ideal Q-kernel system times a gain-reduction factor. 

2. The performance of Q-kernel systems in the presence of noise w a s  examined. 

The noise w a s  modeled as a white Gaussian process in space and time, and the 

maximum-likelihood estimator for the received beacon field w a s  derived. 
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3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe maximum-likelihood t ransmit ter  w a s  shown to be the unbiased estimator 

that maximizes the average system gain (over the noise ensemble) in the presence of 

weak noise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. The energy performance of the maximum-likelihood system in the presence of 

strong noise w a s  derived. 

5. The optimal matching of spatial bandwidths between the beacon, channel, and 

transmitter at R was discussed. 
1 

The performance of such systems, compared with the ideal conjugation transmitter, is 

determined by a gain-reduction factor. 

6 .  A class of approximate t ransmit ters  w a s  investigated in the absence of noise. 

The result of greatest importance is that neither the presence of noise, nor the use 

of an approximate transmitter implementation in the absence of noise, changes the 

essential fact that a two-way Q-kernel system achieves good energy performance through 

the turbulent atmosphere. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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IX. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHYPOTHETICAL DEEP-SPACE COMMUNICATION SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IS AT TOP 

We shall now specify the parameters  of a hypothetical deep-space Q-kernel com- 

munication system, and calculate i ts  energy performance. The system wil l  contain a 

beacon at synchronous altitude, an adaptive transmitter on the ground, and a receiver 

on a spacecraft approximately 80 million miles from Earth (typical M a r s  range). We 

shall calculate the following quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

1. energy performance when an ideal conjugation transmitter is used on the 

ground, in the absence of noise, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. number of elements needed by a Taylor se r ies  t ransmit ter  (of orders  zero or  

one) to achieve near-ideal performance in the absence of noise, that is, a gain reduction 

factor of approximately one, 

3. performance of a Taylor s e r i e s  system, with a noise-free gain reduction factor 

of unity in the presence of noise, and 

4. comparison of Q-kernel energy performance with the performance of nonadaptive 

optical and microwave systems. 

The geometry of the problem is shown in Fig. 26. The beacon is a 0. 01 W l aser  

operating at 0 . 6 3 2 8 ~ ,  with a diffraction-limited aperture, 0 . 2  m in diameter. The 

beacon is located on a synchronous satellite at zero zenith angle, and the field across  

the beacon aperture, R3, is assumed to be a uniform plane wave whose direction of 

SPACECRAFT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 R4 CIRCULAR APERTURE 

1.0m in 

DIAMETER i 
I 

BEACON T3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
CIRCULAR APERTURE 

0 . 2 m  in ' I  DIAMETER I 

ATMOSPHERE +/-AIMING ERROR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

0 R~ CIRCULAR APERTURE 1 .o m 

EARTH IN DIAMETER 

Fig. 26. Hypothetical deep-space Q-kernel system. The beacon is at zero 
zenith angle: power is PB = 0.01 W ;  the wavelength is X = 0. 6 3 2 8 ~ .  

The t ransmit ter  power at R1 is P = 0. 1 W; the wavelength at R1 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = 0 . 6 3 2 8 ~ .  The R2-R3 path length is z l ;  z2 is the R2-R4 path length. 

t 
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propagation is parallel to the center-to- center perpendicular from the beacon antenna 

(R3)  to the Earth antenna (R1). The aperture on the ground, R1, is a circular aperture, 

1. 0 m in diameter, and the t ransmit ter  power used at R 

length used at R1 is also 0 .6328~ .  The spacecraft is at  a distance 1.29 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo1’ m (80 

million miles) from the Earth, and it has a circular receiving aperture (R4), 1. 0 m in 

diameter. The angular displacement between the R4-R1 and R3-Rl lines is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,  

the beacon aiming e r r o r  (see Fig. 26). We begin our calculations with the energy per- 

formance in the absence of noise. 

is nominally 0. 1 W. The wave- 
1 

9 .1  SYSTEM PERFORMANCE IN THE ABSENCE OF NOISE 

Before proceeding, some preliminary comments a r e  in order. F i r s t ,  let US note 

an implicit assumption in the system specification. We have placed the beacon on a 

synchronous satellite, and we assume that the field received at the top of the atmosphere 

(R2)  is, as far as R is concerned, an infinite plane wave whose amplitude is propor- 

tional to the spatial Fourier  transform of the beacon waveform at zero spatial frequency. 

In the absence of atmospheric ducting, this assumption is satisfied for a 1-m aperture 

on the ground and a 20-cm aperture at  synchronous altitude. 

Our second comment concerns what we mean by energy. Heretofore, we have 

adopted the convention that SR dp is the energy in the spatial waveform u(F)  
1 

over R1. If c and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc0 denote the speed of light and 

the permittivity of free-space, respectively, then the power in the electric field over 

R whose complex-field amplitude is u(F) is 

1 

- 2 -  I u(p ) I  
We must now give up this fiction. 

1 

This is the convention that we shall now use. 

When a plane-wave beacon of power PB is transmitted from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR the field at the top 
3 

of the atmosphere is a plane wave whose amplitude is 

where a is a phase delay, z is the path length from R3 to R2, A is the wavelength of 

the radiation, and A Thus, if the constant phase 

delay is neglected, the field received at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR1,  for  a single atmospheric state, is 

1 
is the a rea  of the aperture R3. 

3 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(;) is the perturbation from the 2 model for infinite plane-wave propagation 

through turbulence. The power received over R1 therefore is 

If, in the absence of noise, the t ransmit ter  at R1 t ransmits  

form has power Pt), 

ficiently small, the field received at R4 (the spacecraft) is 

u:(p), (this wave- 

then, under the assumption that the aiming e r r o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is suf- 

where b is a constant phase delay, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2 is the path length from R2 to R4. 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(204), we have 

From (203)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A *  - 
v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X)' 

A 

x E R 4 .  

A *  - 
of g, v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) may be written in the form 

By interchanging the orders  of integration, using point reciprocity, and the definition 

(207) 

Hence P4, the power received by the spacecraft, is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA4 is the a rea  of the aperture R4. 

the mean of P, and P4 (the expectation is over the turbulence ensemble), and obtain 

Using the restdts of section 5. 4, we may evaluate t,,e mean anc the fluctuation about 
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- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(VAR (P1))'I2 

where N is the number of intensity coherence a reas  in the aper ture  R 
I 1' 

data we conclude that 

From the given 

(0. Ol)(nX lO-')(a/4) 

(0 .63X10-6X3.6X107)2  
W1) = 

= 5 . 1  x w 

and 

= 1. o x  10-l1 w. (213) 

To obtain the fluctuation about the mean we must evaluate NI. 

need is VAR (.fR1 I ~ ( p  ) I  dp). Fried34 has studied this expression, and we rely on his 

results. Fr ied has shown that for zenith paths, under the assumption that the variance 

of log 1141 is 0 . 5  (a typical value), 

Really the quantity we 
- 2 -  

where NI = 4A1/rD:, and Do = 2.86  X lo-' m. Thus we have 

Equations 212-214 completely describe the performance of the system using an ideal 

conjugation operation t ransmit ter  in the absence of noise. 

large average power received at R 

Note that not only is there a 

(see comparison with a microwave link below), but 
4 
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there is also relatively little fading, as indicated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(214). 

We have seen (section 8. 5) that there exists Taylor s e r i e s  approximations of the ideal 

conjugation t ransmit ter  whose performance, as measured by a gain reduction factor, is 

essentially the same a s  that of the ideal system. The number of elements used in such 

an a r r a y  is not only a measure of the system complexity, but also determines the system 

performance in the presence of noise. For that reason, we shall calculate the minimum 

number of a r r a y  elements needed by zero-order and first-order Taylor s e r i e s  a r r ays  to 

achieve gain reduction factors of approximately one. 

of Fried,' a r e  a s  follows. 

Our results, based upon the work 

1. 

se r i e s  a r ray ,  1 m in diameter, to achieve a gain reduction factor of approximately one, 
-2 

is ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
2. 

se r i e s  array,  1 m in diameter, to achieve a gain reduction factor of approximately one, 

is (3 .4  ro)-'. 

function of the phase. 

no, the minimum number of elements needed by a circular zero-order Taylor 

nl ,  the minimum number of elements needed by a circular f irst-order Taylor 

3. The parameter r is the coherence length of the turbulence from the structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

If we take ro = 4 mm as a typical value, we have 

4 
n = 6 . 2 5 x  10 

0 

The parameter ro is roughly the largest  aperture over which the far-field beamwidth 

of a plane wave t ransmit ter  is diffraction-, rather than turbulence-limited. 

4A1/=r: is the average power gain achieved by using a Q-kernel system instead of a 

nonadaptive plane-wave transmitter, since it is the ratio of the average power received 

over R4 f rom a Q-kernel system to the average power received over R4 from a plane- 

wave transmitter of diameter r using the same input power. Fo r  a Q-kernel system 

with a 1-m aperture and typical r this gain is enormous; that is ,  

Therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

0 

4Al/=r: = 6.25 X 10 4 

which is ~ 4 8  dB. 

We conclude the analysis of the noise-free case by comparing our Q-kernel system 

with a microwave link. 

tem to achieve the same average power level at the spacecraft. 

situation : 

1.  

We shall compute the input power required by a microwave sys- 

We assume the following 

The microwave transmitter is a diffraction-limited parabolic dish 64 m (210 f t )  

in diameter. 

2. The operating frequency is 2. 1 GHz. 

3. The power input is P' 

4. The antenna at R4 (the spacecraft) is a parabolic dish, 1 m in diameter. 
t' 
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Table 4. System performance in the absence of noise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ 

RESULTS FOR IDEAL CONJUGATION TRANSMITTER 

P1 = RECEIVED BEACON POWER OVER R l  

P4 = POWER RECEIVED OVER R4 

RESULTS FOR TAYLOR SERIES ARRAYS 

n = minimum number of elements required by zero-order 
a r r a y  to achieve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg s  1 on a 1-m diameter circular 

0 

aperture = 6.25  X 10 4 

nl = minimum number of elements required by first-order 
a r r a y  to achieve g z 1 on a 1-m diameter circular 
aperture = 5. 38 X 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

It can be seen that the power received a t  the spacecraft from such a system, fo r  

which we have assumed that the atmosphere is completely transparent at 2. 1 GHz, is 

where A' is the area of the transmitting aperture, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA' is the wavelength corre- 
1 

sponding to a frequency of 2.1 GHz. F o r  Pi  to equal E(P4) from Eq. 213, Pi must be 

2 
pi= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T) 

Ai 

6 = 1.03 X 10 W. 
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Equation 2 18 illustrates the tremendous antenna gains obtainable at  optical wave- 

lengths with physically small antennas. It is important to remember that we needed a 

Q-kernel system in order  to achieve diffraction-limited perfodmance (on the average) 

from antennas la rger  than ro in diameter. Indeed i f  we used a nonadaptive optical sys- 

tem of the same power as the Q-kernel system, we would need only 16.5 W input to the 

microwave system to achieve the same average received power at the spacecraft. 

This concludes our  treatment of the noise-free case. The results a r e  summarized 

Our next task is to evaluate system performance in the presence of noise. in Table 4. 

9 . 2  SYSTEM PERFORMANCE IN THE PRESENCE OF NOISE 

We be in our study of the noise-present case by evaluating the spectral  density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
, of the white Gaussian noise model of section 8.3. From measurements 

of the spectral  radiance of the zenith sky by Bolle and Leupolt, a s  reported by Moller, 

we conclude that at X = 0. 6p, we have No = 
nighttime values of No a r e  much smaller.) Assuming a photodetector with a quantum 

efficiency of 0.4,  we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEo /q = 7. 8 X 

shot noise is the dominant noise in the system. 

ZNo f Eoc,% 

35 
2 

W/Hz. (This is a daytime value of No, 

W/Hz at X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . 6 ~ .  Thus the quantum 
C 

Since a Taylor se r ies  a r r a y  is likely to be used in a system that is actually built, 

we shall res t r ic t  ourselves here to considering only Taylor se r ies  a r rays  of zero and 

first order, as described in section 8. 5. We assume that the integration time T is 1 ps 

(corresponding to a 1-MHz bandwidth), and that in both cases  the minimum number of 

elements required to achieve a gain reduction factor of approximately one in the absence 

of noise is used. Thus the average noise power collected by the Taylor s e r i e s  a r r ay  is 

for  the zero-order a r ray ,  and 

for  the first-order array.  F rom (212)  we conclude that the average signal-to-noise ratio 

at R1 is approximately 13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdB for the zero-order a r r ay  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 dB for the first-order 

array.  In either case we expect that the weak-noise results of section 8.4 wil l  apply. 

Furthermore,  since the fluctuation of the received beacon energy about its mean is 

small, we may modify the results of section 8. 43 as follows. 

1. The average beacon power received over R over the turbulence and the 
1’ 

noise ensembles (By this we mean the average power received over R 

mode corresponding to the received beacon waveform in the absence of noise. 

section 5.4  we know that the average power received at the spacecraft is proportional 

to this quantity.) is 

in the spatial 
1 

From 
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where E ( P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) is the average beacon power received in the absence of noise. Since 
1 

2No zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Boc/? 
, this average power is about the same whether o r  not the noise is E ( P i )  >> 27 

present . 
2. The average power transmitted by a system that sends dPt/E(P1) t imes the 

conjugate of the Taylor se r ies  approximation of the noisy received beacon field is 

for  the zero-order system, and 

for  the first-order system. 

(220)  with (212)], the average transmitted power is approximately P 

about the mean is about the same as the noise-free result (214). 

In either case, since the noise is weak [compare (219) and 

and the fluctuation 
t’ 

3 .  The fraction of the average transmitted power that is in the received beacon com- 

that i s ,  the gain reduction factor, is ponent of the field at  R1, 

for the zero-order system, and 

for the first-order system. 

weakness of the noise power compared with E(P1). 

The main conclusion to be drawn from these results is that the noise power is weak 

enough that the system under consideration has virtually the same performance charac- 

terist ics whether zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor not the noise is present. 

In both cases the fractions a r e  close to one because of the 
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9.3 CONCLUSIONS 

We have demonstrated that a Q-kernel system, even one using an approximate trans- 

mit ter  realization in the presence of noise, performs quite well in t e rms  of the power 

delivered to a spacecraft 80 million miles  away. 

a r e  only t rue  when some stringent aiming and alignment requirements a r e  met. We shall 

take explicit note of these requirements, and comment upon some other important 

aspects of the system. 

9. 3 1 Alignment Restrictions 

Although these results a r e  true,  they 

There a r e  4 alignment restrictions that were assumed, either explicitly o r  implic- 

itly in sections 9. 1 and 9. 2. These requirements have to do with aiming all of the anten- 

nas in the system (the beacon, t ransmit ter  at R1, and spacecraft antennas) within a 

far-field beamwidth of their respective targets. 

The direction of propagation of the plane wave transmitted from R3 (the synchro- 

nous satellite) to the ground must be aligned within -0.4 X/d rad of the perpendicular con- 

necting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR3 and R1, where A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 . 6 ~  and d = 20 cm. 

2. 

1 meter. 

aiming e r r o r  significantly grea te r  than 0.4 X/D. Whether zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor not this is possible depends 

on the size of the isoplanatic angle, but if  such a system is feasible, the phase tilt at 

R1 must be adjusted within 0.4 X/D of the desired tilt. 

1 
a r r a y  element is aligned within 0.4 X/dn rad of the estimate of the approximate incident- 

field amplitude, where A = 0 . 6 ~  and dn is the diameter of the nth-order a r r a y  element. 

must be aligned within 0.4 X/d rad of the 

R1-R4 direction, where X = 0 . 6 ~ ,  and d is the diameter of a diffraction-limited lens 

whose far-field beamwidth is the same as that of R4. 

Specifically, they a r e  as follows. 

1. 

The aiming e r r o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa must be l e s s  than 0.4 X/D rad, where A = 0 . 6 ~  and D = 

It may be possible, by using a corrective phase tilt at  R1, to tolerate an 

3. The Taylor s e r i e s  transmitter at R must produce a waveform that over any one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hr 

4. The antenna on the spacecraft, R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 4’ 

Restriction 2 is the most severe, and it is indeed s o  because 

0 . 4  X/D = 0 . 3 7 ~  R = 0. 076 seconds of arc. 

Alignment to this accuracy will  require extremely delicate adjustments and virtually 

complete mechanical and electrical stability. On the other hand, i f  any of conditions 

1-4 cannot be met, the performance of the system wi l l  not approach the values calculated 

in section 9.2. For instance, let us assume that conditions 1, 3 ,  and 4 a r e  satisfied, 

but that a = X/D. The resulting average power received at R4 wil l  be 

result given in section 9. 2. 

t imes the 

9.32 Point-Ahead Problem 

There is an issue that we have ignored completely that may be critical to the opera- 

tion of a deep-space Q-kernel system. In 

general, the spacecraft that we wish to communicate with wil l  have a nonzero relative 

That issue is the point-ahead problem. 
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velocity with respect to the Ear th  transmitter, and this motion wi l l  necessitate ou r  

pointing the beam ahead of the spacecraft. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor systems in which the beacon is on the 

spacecraft, the motion of the spacecraft relative to the Earth can cause the beacon to 

probe a different path through the atmosphere than the one we transmit through from the 

ground to the spacecraft, If 

the isoplanatic angle of the turbulence is l e s s  than the point-ahead angle, then the cor- 

rection at R1 is just a deterministic tilt of the wavefront, and our  performance results 

hold as given earlier.  (The isoplanatic angle may be regarded as the maximum 

angular displacement between two infinite plane waves incident on the top of the 

atmosphere fo r  which the effect of propagation to R1 is the same for each plane 

wave,) Since the point-ahead angle for this system is 2v/c, where v is the 

t ransverse speed of the spacecraft relative to the Earth and c is the speed 

of light, the isoplanatic angle will  se t  an upper limit t o  the t ransverse speed 

(relative to the Earth) of a spacecraft for which a Q-kernel system will work 

as  well as we have indicated. In numbers, the maximum allowable relative 

speed is 333 miles pe r  hour t imes the isoplanatic angle in  prad. If the iso- 

planatic angle is greater  than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2Op R or so, this maximum speed requirement 

will not be severe.  Unfortunately, little theoretical or experimental evidence 

is available concerning the isoplanatic angle. 

This  could invalidate our Q-kernel performance results. 

Let us not paint too gloomy a picture of this problem. Suppose that the beacon is 

not on the spacecraft, but is on a separate (synchronous) satellite. Then, regardless  

of the size of the isoplanatic angle, if the aiming e r r o r  angle between the apparent posi- 

tion of the synchronous satellite and the predicted position of the spacecraft (after point- 

ahead correction) meets the alignment restriction set  in section 9. 31, then all of the 

performance results that we have derived a r e  valid for this system. 

angle does play a role in the system just described; it determines how long (in time) a 

particular synchronous satellite may be used a s  a beacon for the Earth-to-spacecraft 

path, before the beacon probes a "different" atmospheric path from the desired path. 

Our final comments concern the sensitivity of our results to the zenith angle of the 

The work in  sections 9 . 1  and 9 . 2  w a s  

Fried 's  work34 indicates that as the zenith 

The isoplanatic 

R1-R3 line (with point-ahead questions ignored). 

predicated on this zenith angle being zero. 

angle increases, for a fixed aperture on the ground, the fluctuation factor 

(VAR (P4))'/' 

increases  in proportion to the square root of the secant of the zenith angle. 

angle is very large the Q-kernel system of section 9. 1 will exhibit severe signal fading 

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR4. Although this fading may be decreased by increasing the size of R1, if  R1 is 

made too large the path length assumption of section 3.3 will be violated by a beacon at 

synchronous altitude, thereby completely invalidating the results of section 9. 1.  

If the zenith 
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On the whole we conclude that, subject to the problems outlined above, the two-way 

system that we have discussed here  wi l l  achieve excellent power transfer to the space- 

craft with little fading. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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X. SUGGESTIONS FOR FURTHER WORK 

Perhaps the most important conclusion that we can draw is that more work needs to 

Our study of adaptive spatially modulated transmitters w a s  undertaken to find be done. 

ways of improving optical communication through atmospheric turbulence. In this matter 

we have succeeded. Our results show that there are adaptive systems whose perfor- 

mance greatly exceeds the best nonadaptive system for communication through turbu- 

lence. With the exception of some of the basic properties of the turbulence that we  have 

used, this conclusion is based wholly upon theoretical considerations. 

some experimental work be done. 

It is t ime that 

Three a reas  in which work is needed are the following. 

1. Channel Measurement 

The instantaneous reciprocity of the atmosphere should be verified experimentally. 

The temporal statistics of the quantity 

which is the energy received over an aperture R when a plane wave is transmitted from 

RZ, and which determines the performance of a Q-kernel system operating between 

R and R using a plane-wave beacon, should be measured for various s izes  of the 

R and R apertures. The isoplanatic angle of the turbulence, which is an important 

parameter to know when designing a deep-space Q-kernel system, should be measured. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

1 2 

2. Transmitter Implementation 

An effort should be made to implement a conjugation transmitter,  o r  some approxi- 

mation of i t  such as the Taylor s e r i e s  a r r a y  discussed in section 8. 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 .  System Implementation 

An experimental Q-kernel system should be implemented and its performance char- 

acterist ics compared with theoretical results. 

This program is by no means exhaustive, but it is indicative of the work that needs 

to be done. On the other hand, there a r e  other avenues of research, related to  the 

material  that we  have presented, to be explored. The reciprocity of the atmosphere 

provides a powerful tool for measuring the atmospheric state. Further research is 

needed on adaptive systems (other than the kind that we have ccnsidered) that use this 

information to improve optical communication through the atmosphere. Another research 

a r e a  is the application of reciprocity, as we have defined it, to the study of other 

slowly fading channels. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
109  



APPENDIX A 

Apodization for Reciprocal Channels 

A. 1 Conjugation Operation Transmitter 

We shall prove that Eq. 12 does represent the "turned around" and renormalized 

field at R1, in a two-way communication system. 

uo(p) received at R1 from R2, u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p )  represents a reversal in the direction of propa- 

gation of the waveform. We may represent u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(F) in R1 as 

First, we show that for any field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

0 

-4 

where k ( p )  is the wave vector, 

phase of the waveform at the origin of R1. 

tial segment of phasefront centered on the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo is parallel to  the vector c(Fo). This 

may be verified as follows. 

being a piece of plane wave; that is, there  exists a 6 > 0 such that 

/;(;)I = k is the wave number, and + is the absolute 

The direction of propagation of a differen- 

We may regard the differential segment of phasefront as 

(The smoothness of the inhomogeneities of the channel medium allows u s  to  assume 

that all fields a r e  continuous within the boundaries of R1.) The direction of propagation 

of this plane-wave segment is parallel t o  k(p ). Hence if we conjugate Eq. A. 1 we 

have 

A d  

0 

4 4- 

and we see that locally (at po) the waveform is propagating i n  the -k(po) direction. Note 

that conjugating u ( p )  does not change the shape of the surfaces of constant phase, 

although the +o surface of uo(p) becomes the -9, surface of uo(p) for any constant +,, 
and also conjugation does not change the amplitude of the wave. Thus conjugation does 

reverse  the direction of propagation of an incident waveform. 

4 

& * -  0 

To complete the verification of Eq. 12, we must show that the normalization and 

time-delay t e r m s  a r e  correct.  We have from Eq. 11 that 
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Therefore the renormalized (to energy Et) reversed direction-of-propagation wave- 

form is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -  

where we have used Eq. 7 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( p ' , r ' ) .  

Now we must account for the delay t e r m  in Eq. 12. The absolute phase, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, of uo(';;) 

represents a t ime delay in  propagation from R2 to R1 (under the assumption that the 

beacon signal had zero absolute phase). 

a signal with a negative phase, corresponding to a signal beginning before u ( p )  

ar r ives  at R1. 

to  the absolute phase of u ( p )  in  (A. 6) ;  the resulting expression when this delay is added 

is Eq. 12. 

- 
Thus, by conjugating uo(p), we have obtained 

In order  that the t ransmit ter  be realizable, we must add a delay t e r m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

N* - 

A. 2 Heterodyne Receivers 

A 

We shall explain the difference between what we mean by heterodyning with v(p') and 

We define 
A *  - --L 

what we mean by measuring the v(p') component of a received field v ( p ' ) .  

the output of a receiver that heterodynes v ( p ' )  with v ( 2 )  t o  be 
A *  -. 

Since v(pl)  has unit energy, the energy in the receiver output is 

A *  - 4 

When we measure the v(p') component of the field v ( p ' )  we a r e  determining the coef- 
A * -  

- 
ficient of the v(p') t e r m  in an expansion of v ( p ' ) ,  using some complete orthonormal set 

.-L A 

of functions of which v(p') is one. Hence the v(p')  component 

A * - -  * -  
which corresponds to heterodyning v ( p ' )  with v ( p ' ) .  The energy in this component is 

(A. 10) 

A 

since v(p') has unit energy. 
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A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Reciprocity Conditions 

We shall prove the reciprocity conditions Eqs. 25 and 30. Fi r s t ,  consider a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

reciprocal spatially invariant channel. 

when u(p) is the input field. 

Let v(p') be the output field (at R2) that results 
A 

Consider the expression 

(A. 11) 

We shall assume that R2 is made large enough that 

4 

u(-p') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF' R2. (A. 12) 

This can always be done, since we have 

A 

and R1 is a finite aperture. Making the change of variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = -p' in (A. 1 l) ,  and using 

(A. 12) and (A. 13) we have 

Now we may use the spatial invariance of the impulse responses and point reciprocity 

(see Eq. 23)  to show that 

4 

5 E R 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

= v(-p)  (A. 15) 

which proves Eq. 25. 

and proceeding through the same argument. 

To prove Eq. 30, we proceed as follows. Again, let v(;') be the output field at R2 

when u(p) is the input. 

Similarly, Eq. 28 may be proved by using u (&-2)  in (A. l l ) ,  

Next consider a point reciprocal spatially invariant channel that is also isotropic. 

W e  have t o  assume that R2 is made large enough that 

Then we have 
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which proves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. 30. 

variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p, p', and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf )  a r e  two-dimensional vectors, which may be defined with respect 

to  the origin of either aperture, R1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor R2. 

unprimed vectors i n  the R1 plane and all primed vectors i n  the R2 plane, it was not 

possible here. 

Note that in both of these proofs we have relied on the fact that all of the spatial 
- 4  A 

Although we have always tried to keep all 

A . 4  Q = K Identities 
c 

There are two statements t o  prove. F i r s t ,  we must show that if a channel is * -  -..A 

1 
point reciprocal, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. (r) is an eigenfunction of ,K(p, r) with eigenvalue Xi. Second, 

that Q = K is also a sufficient condition for this result. 
4 -  4 -  

c 

Suppose &(PI, p) = k(p, p'). Consider 

Interchanging the o rde r s  of integration, and using the fact that +i is an eigenfunction 

of Q we have 

(A. 9 I 

Now we may use point reciprocity and the fact that +i is an eigenfunction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 t o  show 

(A. 20) 

* 
It remains for  us  to  show that Q = 5 is sufficient t o  prove (A. 20). Consider {ai }. 

We shall assume that this is a complete orthonormal set. Let u s  examine the integral 
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Since this integral is a function on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 1  with finite energy, we may expand it in  t e r m s  

of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a:}. 

where 

(A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23)  

We must show that 

a . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X.6. 
ij 1 i j '  

To do this, we substitute the definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 in (A. 23) ,  interchange the orders  of inte- 

gration, and obtain 

= k.6. ., 
1 1J 

(A. 24) 

* 
where we have used the properties of {ai} that follow from Q = 5 and the orthonormal- 

ity of the {+i}. 
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APPENDIX B 

Apodization through Atmospheric Turbulence 

We shall show that the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  defined in section 5.2 as  

is small, typically from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 to  5. 

orous proof, since the point reciprocity of the atmosphere (proved in section 6. 1) enables 

u s  to write immediately 

The argument presented here  is not intended as a rig- 

where the last equality follows from the lemma of section 5. 2 1. 

In the argument presented he re  we shall use a physical interpretation of (B. 1) 

that does not r e ly  on the reciprocity of the atmosphere. We have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4  A 

The impulse response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(ply p )  may be regarded as the field at p l  resulting f r o m  a point 

source at p. Thus we may regard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 

as the output of a heterodyne receiver that heterodynes the field received at R2 from 

a point source at p with a unit-energy normally incident plane wave. 
4 

The quantity 

is then the energy in the output of this heterodyne receiver,  and therefore, from (B. 31, 

a2 may be interpreted as the sum of the heterodyne receiver output energies resulting 

from point sources in R1. 
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Consider, for the moment, the nonturbulent case. The impulse response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is 
2 5  

then 

- - 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 1/2 cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 -exp -jk( 1 p'-p I tz ) 

where z is the path length from R1 t o  R2, and 6 is the angle between the z axis and 

the vector f rom p to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ' .  Let us now apply a well-known result about heterodyning. The 

energy output of a heterodyne receiver using a normally incident plane wave of radius a 

for a local oscillator essentially resul ts  only from those plane-wave components of the 

received field that a r e  l e s s  than X/2a rad away from normal incidence. 

A A 

36 

I Ap'b)  - 
I 

I 
JR2 

PHASE FRONT 
-+4 

OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ( P:P 1 
ABSENCE OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 TURBULENCE 
P 21 

I 

Fig. B- 1. Phase-front curvature. 

L tl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 2  

PHASE FRONT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI taol. 
I /  Z 

0 '  

Note 1 :  A B = X / 2  

Note 2 : QCOBX < ACB (since a. < < Z) 

. a. x .. -=- 
Z 2a0 

Fig;. B-2. Calculation of ao. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Referring t o  Fig. B- 1, we see that for  any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp E R1 the vector normal to the phase 

front received at R2 is only close to  normal incidence on R2 in a small  circular region 

of R2 centered on the perpendicular projection of p onto R 

cular region of radius a centered on the projection of p onto R2. Let a. be the largest 

value of a for  which the incident field is within X/2a rad of normal incidence on A4(a). 

4 

Let A_(a) denote the c i r -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2' 

4 P 

From Fig. B-2, we see that a. satisfies the condition P 

-- X a  0 - -  
2ao z ' 

For  such ao, within the region AA(ao), we have 

P 

Therefore from (B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) and our statement about heterodyning we have 

N N 4 

If A is the smallest circular region in the R plane such that for all. p not in A 
1 

then we have 

2 
= 0 ,  

and substituting for  a. from (B. 5), we have 

From our discussion of heterodyning leading t o  (B. 5) we may conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  is 

117 



approximately the perpendicular projection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, onto the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR1 plane; therefore, we 

have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT/,. 

This result applies t o  the nonturbulent atmosphere, in  which case we know that a = 1. 

What we have demonstrated is a method of obtaining (I, within an order  of magnitude, i n  

the absence of turbulence. We now assume that the same method will enable us  to 

estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa within an order  of magnitude for  the turbulent channel. 
- 4  

In the presence of turbulence k(p',  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) will have a basically spherical wavefront with 

perturbations caused by the turbulence. 

the only perturbations that can affect our argument. 

The local variations in the angle of a r r iva l  are 

Since these perturbations a r e  
3 7  
J I  

typically only a few tens of microradians, 

A,(ao) such that 

P 

and the size of a. will  still be determined 

there  will  still be some circular region 

primarily by the basic curvature of the 

h phase front. Hence, within an order  of magnitude, we conclude that a should be 

about the same in  the presence of turbulence a s  i n  the absence of turbulence, which 

is the desired result. 

e 
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APPENDIX C 

Spatial Bandwidth and System Performance 

We shall calculate the mean and the variance of 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

, 

and n(;, t) is the white Gaussian noise described in section 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.  

properties of n(F, t) that {g. } is a set  of statistically independent complex Gaussian 

random variables, with means a. and variances . Furthermore,  the rea l  

and imaginary parts of a. 

i, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG i G  N. Therefore we have 

It is clear f rom the 

'NIL 2No + iiwc/q 

1 2 T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

a r e  statistically independent with equal variances for all 
'NIL 

where {ni: 1GiGN) is a set  of statistically independent zero-mean Gaussian random 

variables, whose rea l  and imaginary par t s  a r e  statistically independent and identically 
2N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt f i w  /n 

, From the properties of Gaussian 
0 C' 

2T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N -  * -  
u(p )  uo(p) d; is a Gaussian random variable 

distributed, and whose variances a r e  

random variables, we conclude that I 
with mean 

R1 
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and variance 

Also, the real  and imaginary parts of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, ;(;) ug(;) d; a re  independent with equal var i -  

ances . 
We wish to evaluate the mean and variance of 1, u(p )  uo(p) d; I . We have imme- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
2 

N -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 c -  

diately I 1  

2 
To obtain the variance of 1, ';;(;) u:(F) d; 12, we evaluate the variance of In1 , 

where n is a complex Gaussian random variable whose real  and imaginary parts a re  

statistically independent and have equal variances. 

I 1  

We have 

VAR (1.1 = E((I.1 '-E(ln( 2 ) ) 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 4  = E(  In( t (2  Re (E(n)Z*))') t E'( ') 

- 2E( 151 ') E (  I??\ t 2Re (E(n)??)) 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 WAR2 (Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6)) + VAR' (Im (z))) 
t 2 VAR (Re (z)) VAR(Im(G)) 

- (VAR (Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z)) t VAR (Im (z)))' 
+ 2 ( E ( n ) I 2  VAR (g) 

= (VAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) t 21E(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ') VAR (E), 
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where 

variables. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n - E(n),  and we have used the moment-factoring property of real  Gaussian 

Thus for the case at hand we obtain 
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The purpose of this research  is t o  find ways of improving optical communica- 
tion through atmospheric turbulence by using spatial modulation. The performance of 
a c lass  of adaptive spatially modulated communication systems, in which the antenna 
pattern at the t ransmit ter  is modified in  accordance with the knowledge of the channel 
state obtained f rom a beacon signal transmitted from the receiving terminal to the 
transmitter, is examined. 
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that instantaneously the atmosphere is reciprocal. The performance of adaptive spa- 
tially modulated systems for the turbulent channel is derived for both point-to-point 
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