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Abstract— Software Defined Radio (SDR) capitalizes advances
in signal processing and radio technology and is capable of
reconfiguring RF and switching to desired frequency bands. It
is a frequency-agile data communication device that is vastly
more powerful than recently proposed multi-channel multi-
radio (MC-MR) technology. In this paper, we investigate the
important problem of multi-hop networking with SDR nodes.
For such network, each node has a pool of frequency bands (not
necessarily of equal size) that can be used for communication.
The uneven size of bands in the radio spectrum prompts the
need of further division into sub-bands for optimal spectrum
sharing. We characterize behaviors and constraints for such
multi-hop SDR network from multiple layers, including modeling
of spectrum sharing and sub-band division, scheduling and
interference constraints, and flow routing. We give a formal
mathematical formulation with the objective of minimizing the
required network-wide radio spectrum resource for a set of user
sessions. Since such problem formulation falls into mixed integer
non-linear programming (MINLP), which is NP-hard in general,
we develop a lower bound for the objective by relaxing the integer
variables and linearization. Subsequently, we develop a near-
optimal algorithm to this MINLP problem. This algorithm is
based on a novel sequential fixing procedure, where the integer
variables are determined iteratively via a sequence of linear
programming. Simulation results show that solutions obtained
by this algorithm are very close to lower bounds obtained via
relaxation, thus suggesting that the solution produced by the
algorithm is near-optimal.

I. INTRODUCTION

A Software Defined Radio (SDR) or Cognitive Radio (CR)
is a frequency-agile data communication device with a rich
control and monitoring (spectrum sensing) interface.1 It capi-
talizes advances in signal processing and radio technology, as
well as recent advancements in spectrum policy [16], [20]. A
frequency-agile radio module is capable of reconfiguring RF
and switching to newly-selected frequency bands. Thus, an
SDR can be programmed to tune to and operate on specific
frequency bands over a wide range of spectrum [20]. An even
more profound advance in SDR technology is that there is no
requirement that selected frequencies/channels be contiguous:
the radio can send packets over non-contiguous frequency
bands. From an application perspective, SDR allows a single

1SDR with spectrum sensing and artificial intelligence is also called
cognitive radio [8], [16]. In this paper, we use the term SDR to stand for
programmable radio in the broad sense (including cognitive radio) when there
is no confusion.

radio to provide a wide variety of functions, acting as a cell
phone, broadcast receiver, GPS receiver, wireless data terminal
or node, etc.

It is important to understand that an SDR is vastly more
powerful and flexible than recently proposed multi-channel
multi-radio (MC-MR) technology (e.g., [1], [2], [6], [10],
[12], [13], [11], [17], [19]). First, MC-MR platform employs
traditional hardware-based radio technology (i.e., signal pro-
cessing, modulation etc. are all implemented in hardware) and
thus each radio can only operate on a single channel at a time
and there is no switching of channel on packet level. As a
result, the number of concurrent channels that can be used
at a wireless node is limited by the number of hardware-
based radios. In contrast, the radio technology in SDR is
software-based; a soft-radio is capable of switching frequency
bands on packet level. As a result, the number of concurrent
frequency bands that can be shared by a single soft-radio is
typically much larger than that can be supported by MC-MR.
Second, due to the nature of hardware-based radio technology
in MC-MR, a common assumption in MC-MR is that there
is a set of “common channels” available for every node in
the network; each channel typically has the same bandwidth.
However, such assumption is hardly true for SDR networks, in
which each node may have a different set of frequency bands,
each of un-equal size. Due to this difference, SDR is required
to work on a set of “heterogeneous” channels that are scattered
on widely-separated slices of the frequency spectrum with
different bandwidths. These important differences between
MC-MR and SDR warrant that the algorithm design for an
SDR network is substantially complex than that under MC-
MR. In some sense, an MC-MR based wireless network can
be considered as a special case of an SDR based wireless
network. Thus, algorithms designed for SDR network can be
tailored to address MC-MR network while the converse is not
true.

In this paper, we focus on the multi-hop networking problem
for an SDR-based wireless network. For such network, each
node has a set of spectrum bands that it can use. Due to
the uneven nature of spectrum bands, it may be necessary
to further divide each band into sub-bands (likely uneven)
for transmission and reception. There are many fundamental
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problems that can be posed for such wireless networks in the
context of rates and capacity. In this paper, we consider the
following problem. Suppose there are a set of user sessions
in the network that is characterized by a set of source-
destination pairs each having certain rate requirement. How
to perform spectrum allocation, scheduling and interference
avoidance, and multi-hop multi-path routing such that the
required network-wide radio spectrum resource is minimized?

Our motivation to pursue this problem is two-fold. First, it
has been shown in [14] that the so-called space-bandwidth
product (SBP) is an extremely useful performance metric
in the context of multi-hop SDR network. In the absence
of power control, this SBP metric degenerates into the per-
formance objective in this paper. Second, the cross-layer
constraints that we will present in this paper is general
and characterize common agreed behaviors of packet radio
networks. Therefore, the solution procedure can be easily
modified to address other performance objectives (e.g., rates
or capacity).

To formulate the problem mathematically, we characterize
behaviors and constraints from multiple layers for a general
multi-hop SDR network. Special attention is given to mod-
eling of spectrum sharing and (un-even) sub-band division,
scheduling and interference modeling, and multi-path routing.
We formulate an optimization problem with the objective of
minimizing the required network-wide radio spectrum resource
for a set of source-destination pair rate requirements. Since
such problem formulation falls into mixed integer non-linear
programming (MINLP), which is NP-hard in general [7], we
aim to develop near-optimal solutions.

We develop a near-optimal algorithm to the MINLP prob-
lem. As for preparation, we first develop a lower bound for the
objective by relaxing the integer variables and linearization.
This lower bound can be used as a measure for the quality
of any solution. We propose a novel sequential fixing (SF)
solution procedure where the determination of integer vari-
ables is performed iteratively through a sequence of linear
programming (LP). Upon completing of fixing the integer
variables, other variables in the optimization problem can be
solved with an LP. Since the solution obtained by the proposed
SF algorithm represents an upper bound for the objective,
we compare it to the lower bound that we developed earlier.
Simulations show that the results obtained by the SF algorithm
are very close to the lower bound, thus suggesting that (1) the
lower bound is very tight; and (2) the solution obtained by
the SF algorithm is even closer to the optimum and thus is
near-optimal.

The rest of this paper is organized as follows. In Section II,
we review related work on SDR and also discuss current state-
of-the-art on cross-layer optimization for MC-MR networks.
In Section III, we characterize the behavior of SDR network
from multiple layers and formulate them into mathematical
constraints. We also elaborate the optimal radio resource

sharing problem and formulate it into an MINLP problem.
Section IV presents a lower bound for this MINLP problem
by relaxing integer variables and linearization. In Section V,
we present the SF algorithm. Section VI presents simulation
results and demonstrates the near-optimal performance of the
SF algorithm. Section VII addresses implementation consid-
erations and Section VIII concludes this paper.

II. RELATED WORK

There has been extensive studies on multi-channel multi-
radio (MC-MR) networks (e.g., [1], [2], [6], [10], [12], [13],
[11], [17], [19]). As discussed, SDR is vastly more powerful
and flexible than MC-MR. Due to their significant differences
in terms of radio hardware technology and how to use available
frequency bands, algorithm design for an SDR network is
substantially complex than that for MC-MR. An MC-MR
based wireless network could be considered as a special case
of an SDR based wireless network. We review the following
recent work on cross-layer optimization for MC-MR networks
and understand the current state-of-the-art on problems for
MC-MR networks.

In [2], Alicherry et al. formulated a joint channel assignment
and routing problem for an MC-MR network, with the aim of
maximizing network throughput (defined as a scaling factor
for a given rate vector in the network). The main result is an
algorithm that produces a solution within a constant factor of
the optimal solution. The constant factor is K · c(q)/I where
K is number of channels in the network, c(q) is a constant
greater than 4 (8 is considered a typical case in the proof in
[2]) and I is the number of radios at each node.

In [11], Kodialam and Nandagopal also formulated a cross-
layer problem for an MC-MR network, with the aim of
maximizing network capacity (also defined as a scaling factor
for a given rate vector in the network). The main results are (1)
an upper bound for capacity region (through integer relaxation
and LP) and (2) a lower bound that is obtained by finding a
feasible solution for link channel assignment and scheduling.
The feasible solution is obtained by first fixing routes and then
finding link channel assignment and scheduling solution, or a
layer-decoupling approach. Simulation results show that, for
random topology, there is an average of 25% gap between the
feasible solution and upper bound.

Although there is some work on spectrum sharing for
single-hop communications (see, e.g., [4], [18] and references
therein), there is limited amount of work available in the
literature on multi-hop wireless networking with SDRs. In
[23], Xin et al. studied how to assign frequency bands at
each node to form a topology such that a certain performance
metric can be optimized. A layered graph was proposed to
model frequency bands available at each node and to facil-
itate topology formation and achieve optimization objective.
The authors considered the so-called fixed channel approach
whereby the radio is assumed to operate on only one channel at
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TABLE I

NOTATION.

Symbol Definition
N The set of nodes in the network
L The set of active user sessions in the network

r(l) Rate of session l ∈ L
s(l), d(l) Source and destination nodes of session l

Mi The set of available bands at node i ∈ N
M The set of available bands in the network, i.e.,

⋃
i∈N Mi

M = |M|
Mij The set of available bands on link (i, j), i.e., Mi

⋂
Mj

W (m) Bandwidth of band m ∈ M
K(m) Total number of sub-bands in band m
dij Distance between nodes i and j
n Path loss index

gij Propagation gain from node i to node j
Q Transmission power spectral density at a transmitter
η Ambient Gaussian noise density

QT The minimum threshold of power spectral density to
decode a transmission at a receiver

QI The maximum threshold of power spectral density for
interference to be negligible at a receiver

RT , RI Transmission range and interference range, respectively
T m

i The set of nodes that can use band m and are within the
transmission range to node i

Ti =
⋃

m∈Mi
T m

i
Im

j The set of nodes that can use band m and are within the
interference range to node j

u(m,k) The fraction of bandwidth for the k-th sub-band in
band m

x
(m,k)
ij Binary indicator to mark whether or not sub-band (m, k)

is used by link (i, j).
fij(l) Data rate that is attributed to session l on link (i, j)

a specific time. In [22], Steenstrup studied three different fre-
quency assignment problems: common broadcast frequencies,
non-interfering frequencies for simultaneous transmissions,
and frequencies for direct source-destination communications.
Each is viewed as a graph-coloring problem, and both central-
ized and distributed algorithms are presented.

III. SDR NETWORK MODEL AND PROBLEM

FORMULATION

Table I lists all notation in this paper. We consider an ad
hoc network consisting a set of N nodes. Among these nodes,
there are a set of L uni-cast communication sessions. Denote
s(l) and d(l) the source and destination nodes of session l ∈ L
and r(l) the rate requirement (in b/s) of session l.

A. Modeling of Multi-layer Characteristics

Modeling of Spectrum Sharing and Sub-band Division.
This part of mathematical modeling and constraints are unique
to SDR networks and do not exist in MC-MR networks. In
a multi-hop SDR network, the available spectrum bands at
one node may be different from another node in the network.
Given a set of available frequency bands at a node, one
additional subtle issue is that the size (or bandwidth) of
each band may differ drastically. For example, among the
least-utilized spectrum bands found in [15], the bandwidth
between [1240, 1300] MHz (allocated to radio amateur) is

(1) WW(2) (m) (M)

(m)
(m,K )

(m)
(m,K   )u(m,1)u W

(m)
W

(m)(m,2)u (m)
W

21 m M

(m,1) (m,2)

W W

Fig. 1. A schematic illustrating bands and sub-bands concept in spectrum
sharing.

60 MHz while bandwidth between [1525, 1710] MHz (allo-
cated to mobile satellites, GPS systems, and meteorological
applications) is 185 MHz. Such uneven bandwidth among
the available bands suggests the need for further division of
the larger bands into smaller sub-bands for more flexible and
efficient frequency allocation. Since equal sub-band division
of the available spectrum band is likely to yield sub-optimal
performance, an un-equal division is necessary.

More formally, we model the union of available spectrum
in the network as a set of M un-equal sized bands (see Fig. 1).
Denote M the set of these bands and Mi ⊆ M the set of
available bands (or white space) at node i ∈ N , which is likely
to be different from another node, say j ∈ N , i.e., Mi �= Mj .
For example, at node i, Mi may consist of bands I, III, and
V while at node j, Mj may consist of bands I, IV, and VI.

Denote W (m) the bandwidth of band m ∈ M. To overcome
the uneven size of bands in the spectrum, we assume that band
m can be further divided into K(m) sub-bands, each of which
may be unequal. Denote u(m,k) the fraction of bandwidth for
the k-th sub-band in band m, which is part of our cross-layer
optimization variables. Then we have

K(m)∑
k=1

u(m,k) = 1 .

As an example, Fig. 1 shows M bands in the network and
for a specific band m, it may be further divided into K(m)

sub-bands. Then the M bands in the network are effectively

divided into
∑M

m=1 K(m) sub-bands, each of which may be
of different size.

Transmission Range and Interference Range. We assume
that the power spectral density from the transmitter of an SDR
node is Q. In this paper, we assume all nodes use the same
power density for transmission. The more complex issue of
power control will be deferred for future research. A widely-
used model for power propagation gain is

gij = d−n
ij , (1)

where n is the path loss index and dij is the distance between
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nodes i and j.2 We assume a data transmission is successful
only if the received power spectral density at a receiver
exceeds a threshold QT . Likewise, we assume interference will
become non-negligible only if it produces a power spectral
density over a threshold of QI at a receiver. Based on the
threshold QT , the transmission range for a node is thus
RT = (Q/QT )1/n, which comes from gij · Q = QT and
(1). Similarly, based on the interference threshold QI (< QT ),
the interference range for a node is RI = (Q/QI)1/n. Since
QI < QT , we have RI > RT . Both transmission range RT

and interference range RI will be used in the modeling of
interference constraints as follows.

Scheduling and Interference Constraints. Scheduling can
be done either in time domain or frequency domain. In this
paper, we consider frequency domain sub-band assignment,
i.e., how to assign sub-bands at a node for transmission and
reception. A feasible scheduling of frequency bands must
ensure that there are no interference at the same node and
among the nodes.

Suppose that band m is available at both node i and node
j, i.e., m ∈ Mi

⋂
Mj . To simplify the notation, let Mij =

Mi

⋂
Mj . Denote

x
(m,k)
ij =




1 If node i transmits data to node j on
sub-band (m, k),

0 otherwise.

For a node i ∈ N and a band m ∈ Mi, denote T m
i the set

of nodes that can use band m and are within the transmission
range of node i, i.e.,

T m
i = {j : dij ≤ RT , j �= i,m ∈ Mj} .

Note that node i cannot transmit to multiple nodes on the same
frequency sub-band. We have

∑
q∈T m

i

x
(m,k)
iq ≤ 1 . (2)

Also node i cannot use the same frequency sub-band for
transmission and reception, due to “self-interference” at the

physical layer. That is, if x
(m,k)
ij = 1, then for any q ∈ T m

j ,

x
(m,k)
jq must be 0. In other words, we have

x
(m,k)
ij +

∑
q∈T m

j

x
(m,k)
jq ≤ 1 . (3)

Note that in (3), we are referring to a specific node j to which

node i is transmitting. If x
(m,k)
ij = 1, then

∑
q∈T m

j
x

(m,k)
jq = 0,

i.e., node j cannot use the same frequency sub-band (m, k)

for transmission. On the other hand, if x
(m,k)
ij = 0, then

2In this paper, we consider a uniform gain model and assume the same gain
model on all frequency bands. The case of non-uniform gain model or band-
dependent gain behavior can be extended without much technical difficulty.

3

I

R I

1

2

6

5

4

R

Fig. 2. An example illustrating interference among links.

∑
q∈T m

j
x

(m,k)
jq ≤ 1, i.e., node j may use frequency sub-band

(m, k) for transmission, but can only use it for one receiving
node q ∈ T m

j (same as in (2)).
In addition to the above constraints at the same node, there

are also constraints on frequency sub-band use due to potential
interference among the nodes in the network. In particular, for
a frequency sub-band (m, k), if node i uses this sub-band for
transmitting data to a node j ∈ T m

i , then any other node
that can produce interference on node j should not use this
sub-band.3 To model this constraint, we denote Pm

j the set of
nodes that can produce interference on node j on band m, i.e.,

Pm
j = {p : dpj ≤ RI , p �= j, T m

p �= ∅} .

The physical meaning of T m
p �= ∅ in the above definition for

Pm
j is that the interference node p can use band m for a valid

transmission to a node in T m
p . Then we have

x
(m,k)
ij +

∑
q∈T m

p

x(m,k)
pq ≤ 1 (p ∈ Pm

j , p �= i) . (4)

In (4), if x
(m,k)
ij = 1, i.e., node i using frequency sub-band

(m, k) to transmit to node j, then any node p that can produce
interference on node j should not transmit on this sub-band,

i.e.,
∑

q∈T m
p

x
(m,k)
pq = 0. On the other hand, if x

(m,k)
ij = 0,

(4) degenerates into (2), i.e., node p may transmit on sub-band

(m, k) to one node q ∈ T m
p , i.e.,

∑
q∈T m

p
x

(m,k)
pq ≤ 1.

It is important to understand that in the interference con-

straint (4), if x
(m,k)
ij = 0, two nodes that can produce

interference on node j but are far apart and outside each
other’s interference range can use the same sub-band (m, k)
for transmission. We use an example to illustrate this point.
In Fig. 2, suppose node 1 is transmitting to node 2 on sub-
band (m, k), then any node that can produce interference on

3Note that the so-called “hidden terminal” problem is a special case under
this constraint.
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node 2 (i.e., node 3 or 5) cannot use the same sub-band for
transmission. On the other hand, if node 1 is not using sub-
band (m, k) to transmit to node 2, then node 3 may use this
sub-band to transmit (to node 4) as stated in (4). Likewise,
node 5 may also use this sub-band to transmit (to node 6) as
stated in (4). That is, both nodes 3 and 5 may use the same
sub-band for transmission.

Routing. At the network level, a source node may need
a number of relay nodes to route the data stream toward its
destination node. Clearly, a route having a single path may be
overly restrictive and is not able to take advantage of load
balancing. A set of paths (or multi-path) is more flexible
to route the traffic from a source node to its destination.
Mathematically, this can be modeled as follows.

Denote fij(l) the data rate on link (i, j) that is attributed
to session l, where i ∈ N , j ∈

⋃
m∈Mi

T m
i , and l ∈ L. To

simplify the notation, let Ti =
⋃

m∈Mi
T m

i . If node i is the

source node of session l, i.e., i = s(l), then
∑
j∈Ti

fij(l) = r(l) . (5)

If node i is an intermediate relay node for session l, i.e., i �=
s(l) and i �= d(l), then

j �=s(l)∑
j∈Ti

fij(l) =
p�=d(l)∑
p∈Ti

fpi(l) . (6)

If node i is the destination node of session l, i.e., i = d(l),
then ∑

p∈Ti

fpi(l) = r(l) . (7)

It can be easily verified that if (5) and (6) are satisfied, (7)
must be satisfied. As a result, it is sufficient to list (5) and (6)
in the formulation.

In addition to the above flow balance equations at each
node i for each session l, the aggregate flow rates on each
radio link cannot exceed this link’s capacity. To model this
mathematically, we need to first find the capacity on link (i, j)
in sub-band (m, k). If node i sends data to node j on sub-

band (m, k), i.e., x
(m,k)
ij = 1, then the capacity on link (i, j)

in sub-band (m, k) is

c
(m,k)
ij = u(m,k)W (m) log2

(
1 +

gijQ

η

)
,

where η is the ambient Gaussian noise density. Note that the
denominator inside the log function contains only η. This is
due to one of our interference constraints stated earlier, i.e.,
when node i is transmitting to node j on sub-band (m, k),
then all the other neighbors of node j within its interference
range are refrained from using this sub-band. This interference
constraint significantly helps to simplify the calculation of link

capacity c
(m,k)
ij . When x

(m,k)
ij = 0, we have c

(m,k)
ij = 0. Thus,

c
(m,k)
ij can be written in the following compact form.

c
(m,k)
ij = x

(m,k)
ij · u(m,k)W (m) log2

(
1 +

gijQ

η

)
. (8)

Now getting back to our earlier requirement that the ag-
gregate data rates on each link (i, j) cannot exceed the link’s
capacity, we have

s(l) �=j,d(l) �=i∑
l∈L

fij(l) ≤
∑

m∈Mij

K(m)∑
k=1

c
(m,k)
ij

=
∑

m∈Mij

K(m)∑
k=1

x
(m,k)
ij · u(m,k)W (m) log2

(
1 +

gijQ

η

)
.

B. Problem Formulation

For the multi-hop SDR networks we are investigating,
various performance objectives can be used as optimization
objective (e.g., network throughput as measured by a scaling
factor of rates of flows in the network [2], [11]). In this paper,
we use the total required radio resource to support the user
sessions as our performance objective. Such radio resource
can be measured in terms of the total bandwidth used by all
nodes in the network, which is the simplified form of the so-
called space-bandwidth product (SBP) proposed in [14] when
transmission power spectral density is fixed. It is not hard to
see that the solution procedure in this paper is not constrained
by the particular objective. The solution procedure can be
easily modified to tailor other performance objectives if needed
(e.g., rates or capacity).

To re-cap, we are given a set of source-destination pairs
(user sessions) in the network each with a certain rate re-
quirement. Each node in the network has a set of available
frequency bands that it can use for communication. We want
to find the optimal solution to divide the set of available
frequency bands at each node, the scheduling of sub-bands
for transmission and reception, and multi-hop routing for each
flow such that the total radio bandwidth used in the network
is minimized (or the solution declares that there is no feasible
solution). Mathematically, we have the following optimization
problem.

Min
∑

i∈N
∑

m∈Mi

∑
j∈T m

i

∑K(m)

k=1 W (m)x
(m,k)
ij u(m,k)

s.t.
K(m)∑
k=1

u(m,k) = 1 (m ∈ M)

∑
q∈T m

i

x
(m,k)
iq ≤ 1 (i ∈ N , m ∈ Mi, 1 ≤ k ≤ K(m)) (9)

x
(m,k)
ij +

∑
q∈T m

p

x(m,k)
pq ≤ 1 (i ∈ N , m ∈ Mi, j ∈ T m

i ,

1 ≤ k ≤ K(m), p ∈ Im
j , p �= i) (10)
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s(l) �=j,d(l) �=i∑
l∈L

fij(l)−
∑

m∈Mij

K(m)∑
k=1

W (m) log2

(
1+

gijQ

η

)
x

(m,k)
ij u(m,k)

≤ 0 (i ∈ N , j ∈ Ti)

∑
j∈Ti

fij(l) = r(l) (l ∈ L, i = s(l))

j �=s(l)∑
j∈Ti

fij(l)−
p �=d(l)∑
p∈Ti

fpi(l)=0 (l ∈ L, i ∈ N , i �= s(l), d(l))

x
(m,k)
ij = 0 or 1, u(m,k) ≥ 0 (i∈N , m∈Mi, j∈T m

i , 1≤k≤K(m))

fij(l) ≥ 0 (l∈L, i∈N , i �=d(l), j∈Ti, j �=s(l)) ,

where W (m), gij , Q, η, and r(l) are all constants and x
(m,k)
ij ’s,

u(m,k)’s, and fij(l)’s are all optimization variables. In (10),
Im

j is defined as

Im
j = {p : dpj ≤ RI , T m

p �= ∅}

which is equivalent to

Im
j =

{
Pm

j

⋃
{j} If T m

j �= ∅ ,
Pm

j otherwise .

This compact form enables (10) to include both (3) and (4) in
the formulation.

The above optimization problem is in the form of mixed-
integer non-linear programming (MINLP) problem, which
is NP-hard in general [7]. Although existing software (e.g.
BARON [3]) could solve very small-sized network (e.g.,
several nodes), the time complexity becomes prohibitively
high when it comes to larger networks.

Our approach to this problem is as follows. In Section IV,
we first explore a lower bound for the objective, which can be
obtained by relaxing the integer variables and linearization.
Using this lower bound as a performance benchmark, in
Section V, we develop a highly effective algorithm based on
a novel sequential fixing (SF) procedure. Using simulation
results, we show that the SF algorithm has a performance very
close to the lower bound. Since the optimal objective value lies
between the lower bound and the solution obtained by the SF
algorithm, the heuristic solution must be even closer to the
true optimum.

IV. A LOWER BOUND FOR THE OBJECTIVE FUNCTION

The complexity of the problem formulated in Section III-

B arises from the integer variables x
(m,k)
ij ’s and product of

variables x
(m,k)
ij u(m,k)’s. To pursue a lower bound for the

objective, we can relax the integer (binary) requirement on

x
(m,k)
ij with 0 ≤ x

(m,k)
ij ≤ 1 and replace x

(m,k)
ij u(m,k) with

a single variable, say s
(m,k)
ij , i.e., s

(m,k)
ij = x

(m,k)
ij u(m,k) ≤

u(m,k). Such relaxation enables us to have the following
problem formulation.

Min
∑

i∈N
∑

m∈Mi

∑
j∈T m

i

∑K(m)

k=1 W (m)s
(m,k)
ij

s.t.
K(m)∑
k=1

u(m,k) = 1 (m ∈ M)

∑
q∈T m

i

s
(m,k)
iq − u(m,k) ≤ 0 (i∈N , m∈Mi, 1≤k≤K(m)) (11)

s
(m,k)
ij +

∑
q∈T m

p

s(m,k)
pq −u(m,k)≤0 (i ∈ N , m ∈ Mi, j ∈ T m

i ,

1≤k≤K(m), p∈Im
j , p �= i)(12)

s(l) �=j,d(l) �=i∑
l∈L

fij(l)−
∑

m∈Mij

K(m)∑
k=1

W (m) log2

(
1+

gijQ

η

)
s
(m,k)
ij ≤0

(i ∈ N , j ∈ Ti)

∑
j∈Ti

fij(l) = r(l) (l ∈ L, i = s(l))

j �=s(l)∑
j∈Ti

fij(l)−
p �=d(l)∑
p∈Ti

fpi(l)=0 (l∈L, i∈N , i �=s(l), d(l))

u(m,k), s
(m,k)
ij ≥ 0 (i ∈ N , m ∈ Mi, j ∈ T m

i , 1 ≤ k ≤ K(m))

fij(l) ≥ 0 (l ∈ L, i ∈ N , i �= d(l), j ∈ Ti, j �= s(l))

This new (relaxed) formulation falls into a standard linear
programming (LP) problem, the solution of which can be
obtained in polynomial time. Due to the relaxation (and thus
enlarged optimization space), the solution to this LP problem
corresponds to a lower bound to the objective of the original
problem in Section III-B. There may not exist a feasible
solution to achieve this lower bound.

Nevertheless, this lower bound offers a benchmark to mea-
sure the quality of a feasible solution, which we will develop in
the next section. It turns out that this lower bound is extremely
tight (see results in Section V). This can be explained by the
the convex hull results presented by Sherali et al. in [21].

V. A NEAR-OPTIMAL ALGORITHM BASED ON

SEQUENTIAL FIXING

A. Basic Algorithm

We now take a closer look at the original MINLP problem
formulation in Section III-B. Observe that once the binary

values for x
(m,k)
ij are determined, i.e., whether or not a node

will indeed use certain sub-band to send data to another
node, then this MINLP reduces to an LP, which can be
solved in polynomial time. In other words, the key obstacle
in solving this MINLP problem lies in the determination of

the binary values for x
(m,k)
ij ’s. To this end, we propose a two-

step solution procedure: i) fix the binary values for x
(m,k)
ij
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Sequential Fixing (SF) Algorithm
1. Set up and solve the initial relaxed LP problem as shown

in Section IV.
2. Suppose x

(m,k)
ij is the largest among all the x values that

remain to be fixed, fix this x
(m,k)
ij = 1.

Also fix x
(m,k)
iq = 0 (for q ∈ T m

i and q �= j) and

x
(m,k)
pq = 0 (for p ∈ Im

j , p �= i, and q ∈ T m
p ).

3. If all x
(m,k)
ij are fixed, go to Step 5.

4. Otherwise, reformulate and solve a new relaxed LP
problem with newly fixed x variables and go to Step 2.

5. Formulate an LP problem based on all fixed x values.
Obtain a solution to this LP problem.

Fig. 3. Sequential Fixing (SF) algorithm.

iteratively through a sequence of LPs; ii) once all x
(m,k)
ij ’s are

fixed, find a solution (consisting of how to divide sub-bands

and flow routing) corresponding to this set x
(m,k)
ij . Such two-

step approach will yield a sub-optimal (upper bound) solution
to the original MINLP problem. The quality of this algorithm
can be assessed by how close its solution is to the lower bound
we developed in the last section.

As said, the key to the two-step approach resides in the

determination of the binary values for all x
(m,k)
ij ’s. Our main

idea is to fix (set) the values of x
(m,k)
ij ’s sequentially through

solving a series of relaxed LP problems, with each iteration to

set at least one binary value for some x
(m,k)
ij ’s. Specifically,

during the first iteration, we relax all binary variables x
(m,k)
ij to

0 ≤ x
(m,k)
ij ≤ 1 as in Section IV to have an LP. Upon solving

this LP, we have a solution with each x
(m,k)
ij = s

(m,k)
ij /u(m,k)

being a fraction between 0 and 1. Among all the x fractions,

suppose some x
(m,k)
ij has the largest value. Then we fix (set)

this particular x
(m,k)
ij to 1. As a result of this fixing, by (9),

we also need to fix x
(m,k)
iq = 0 for q ∈ T m

i and q �= j. By

(10), we also fix x
(m,k)
pq to 0 for p ∈ Im

j , p �= i, and q ∈ T m
p .

Now we have fixed some x variables in the first iteration.
We update a new LP for the second iteration as follows. For

those x
(m,k)
ij ’s that are already fixed as 1, since s

(m,k)
ij =

x
(m,k)
ij u(m,k) = u(m,k), we can replace the corresponding

s
(m,k)
ij ’s by u(m,k)’s. For those x

(m,k)
iq ’s and x

(m,k)
pq ’s that are

fixed to 0, we can set s
(m,k)
iq = 0 and s

(m,k)
pq = 0. As a

result, all the terms in the LP involving these s variables can
be removed and the corresponding constraint in (11) and (12)
can also be removed.

In the second iteration, we can solve this new LP and then
fix some additional x variables based on the same process
(now the ordering of x’s values is done only for the remaining
un-fixed x variables). The iteration continues and eventually
we can determine all x variables to either 0 and 1.

TABLE II

AVAILABLE BANDS AMONG ALL NODES IN THE NETWORK IN THE

SIMULATION STUDY.

Band Index Spectrum Range (MHz) Bandwidth (MHz)
I [1240, 1300] 60.0
II [1525, 1710] 185.0
III [902, 928] 26.0
IV [2400, 2483.5] 83.5
V [5725, 5850] 125.0

Upon fixing all the x values, the original MINLP reduces
to an LP problem, which can be solved in polynomial time.
Unlike the solutions obtained in Section IV, the final solution
obtained here is a feasible solution since all x values are
binary instead of fractions. The complete Sequential Fixing
(SF) algorithm is given in Fig. 3.

B. An Iteration-Speedup Technique

In SF algorithm, we need to solve a sequence of LPs. The
complexity of SF is polynomial. By exploiting the space and
frequency dimensions involved in radio resource allocation, we
may decrease the number of LPs by fixing more x variables
during each iteration in Fig. 3. As a result, the complexity can
be further decreased. From space dimension, a sub-band usage
will only have an impact within the interference range and the
same sub-band can be used by other links outside this range.
Thus, for the same sub-band (m, k), we can then fix multiple
links that have non-overlapping interference range within one
iteration of the sequential fixing algorithm. From frequency
dimension, the transmission in one sub-band will not interfere
transmission in a different sub-band. Thus, for the same link
(i, j), we can then fix multiple sub-bands within one iteration
of the SF algorithm. Specifically, we can use a threshold α >

0.5 in this fixing process and fix all x variables exceeding
α to 1 in one iteration. Note that α > 0.5 ensures that both
constraints (9) and (10) (interference constraints at each node
and among the nodes) will hold during the SF procedure.4 In
the case that none of the x variable exceeds α, we will fall
back to the basic algorithm in Fig. 3 and simply choose the
largest x.

VI. SIMULATION RESULTS

In this section, we present simulation results for our SF
algorithm and compare it to the lower bound obtained in
Section IV. The units for distance, rate, and power density
satisfy (1) and (8) and are all normalized with appropriate
dimensions. We consider |N | = 20 nodes in a 50x50 area.5

Among these 20 nodes, there are |L| = 5 active sessions, each
with a rate within [10, 100].

4We use α = 0.85 in our simulation results.
5Additional simulation results for 30-node and 40-node networks can be

found in [9].
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Fig. 4. Normalized cost (with respect to lower bound) for 100 data sets.

We assume there are M = 5 bands that can be used for
the entire network (see Table II). Bands I and II are among
the least-utilized (less than 2%) spectrum bands found in [15]
and bands III, IV, and V are unlicensed ISM bands used for
802.11. Recall that available bands at each SDR node is a
subset of these 5 bands based on its location and the available
bands at any two nodes in the network may not be identical.
In the simulation, this is done by randomly selecting a subset
of bands from the pool of 5 bands for each node. Further,
we assume bands I to V can be divided into 3, 5, 2, 4, and
4 sub-bands although other desirable divisions can be used.
Note that the size of each sub-band may be un-equal and is
part of the optimization problem.

We assume the transmission range on each node is 20 and
the interference range is 30, although other setting can be used.
The pass loss index n is assumed to be 4. The threshold QT

is assumed to be η. Thus, we have QI =
(

20
30

)n
QT = 16

81η

and the transmission power spectral density Q = (20)nQT =
1.6 · 105η.

Note that it is possible that for a specific data set, there is no
feasible solution. This could be attributed to dis-connectivity
in the network (due to random network topology), resource
bottleneck in a hot area, etc. In such scenario, there is no
numerical result that can be shown for comparison. Thus,
we will only show results based on those data sets that have
feasible solutions.

We show simulation results for 100 data sets that can
produce feasible solutions. For each data set, the network
topology, source/destination pair and bit rate of each session,
and available frequency bands at each node are randomly
generated. We use the SF Algorithm to determine the cost,
which is total required bandwidth in the objective function.
As discussed, we compare this result with the lower bound
developed in Section IV. The running time for each simulation

TABLE III

SIMULATION RESULTS FOR THE FIRST 40 DATA SETS.

Data Set Lower Result Data Set Lower Result
Index Bound by SF Index Bound by SF

1 138.33 138.33 21 156.43 156.43
2 156.12 156.12 22 238.41 308.51
3 173.53 173.53 23 184.78 184.78
4 189.70 189.70 24 241.42 243.22
5 203.05 213.18 25 135.39 140.96
6 184.37 184.37 26 247.30 251.18
7 160.45 182.33 27 280.80 290.85
8 232.23 232.23 28 353.98 354.17
9 223.00 223.53 29 260.56 260.56
10 182.13 182.13 30 127.06 127.06
11 220.20 220.20 31 170.35 170.35
12 277.83 277.83 32 207.74 207.74
13 130.54 134.05 33 183.59 183.59
14 172.62 172.62 34 138.33 143.00
15 256.96 256.96 35 270.76 319.71
16 178.73 178.73 36 325.59 394.43
17 152.08 152.08 37 288.72 288.72
18 359.03 359.03 38 244.77 247.74
19 150.61 150.61 39 215.72 223.83
20 164.97 164.97 40 126.05 126.05

is less than 10 seconds on a Pentium 3.4 GHz machine.
Figure 4 shows the results of normalized cost obtained

by the SF algorithm with respect to the lower bound cost
for 100 data sets. The average normalized cost among the
100 simulations is 1.04 and the standard derivation is 0.07.
There are two observations that can be made from this figure.
First, since the ratio of the solution obtained by SF (upper
bound of optimal solution) to the lower bound solution is
close to 1 (in many cases, they coincide with each other), the
gap between them is very narrow. Second, since the optimal
solution (unknown) is between the solution obtained by the
SF algorithm and the lower bound, the lower bound is very
tight; more important, the SF solution must be even closer to
the optimum.

To get a sense of how the actual (rather than normalized)
numerical results look like in the simulations, we list the first
40 set of results in Table III. Note that in many cases, the result
obtained by the SF algorithm is identical to the respective
lower bound obtained via relaxation. This indicates that the
result found by SF is optimal.

VII. IMPLEMENTATION CONSIDERATIONS

The SF algorithm as it stands is a centralized algorithm. But
this does not prohibit it from being implemented in the real-
world for practical applications, just like Dijkstra’s algorithm
and OLSR [5] are both centralized (link state) and are used
for the Internet (OSPF) and ad hoc network, respectively.

We describe two scenarios that the SF algorithm can be
implemented in practice. The first scenario, as expected, is
based on link state paradigm. In this setting, we could use a
common control channel for all the nodes in the network to
exchange local state information. Upon such information is
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propagated and shared by all the nodes in the network, each
source node can invoke its SF algorithm and compute its route
from source to destination. Source routing could be used for
packet forwarding to reduce the route computation on non-
source nodes.

In the second scenario, we could use a pre-designated node
as a “server node” to which all the other nodes in the network
send their local state information. This server node could then
compute routes and deliver routing tables to all the nodes in
the network. Apparently, “single-point-of-failure” is a problem
in this implementation scenario and thus it is necessary to
have additional backup server nodes in the network to add
redundancies.

VIII. CONCLUSIONS

In this paper, we conducted a systematic study on the impor-
tant problem of multi-hop networking with SDR nodes. The
nature of the problem calls for characterization and modeling
of multi-layer behaviors and constraints. We characterized
behaviors and constraints for a multi-hop SDR network from
multiple layers, including modeling of spectrum sharing and
sub-band division, scheduling and interference constraints,
and flow routing. We formulated an optimization problem
with the objective of minimizing the required network-wide
radio spectrum resource for a set of user sessions. Since the
problem formulation is an MINLP, we developed a lower
bound to estimate the objective function. Subsequently, we
developed a novel sequential fixing algorithm to the cross-
layer optimization problem. Simulation results showed that
solutions obtained by this algorithm are very close to the lower
bound, thus suggesting that they are near-optimal.
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