
Optimal speed scaling under arbitrary power functions

Lachlan L.H. Andrew
Centre for Advanced Internet Architectures

Swinburne University of Technology, Australia

Adam Wierman
Computer Science Department

California Institute of Technology
Ao Tang

School of Electrical and Computer Engineering
Cornell University

ABSTRACT
This paper investigates the performance of online dynamic
speed scaling algorithms for the objective of minimizing a
linear combination of energy and response time. We prove
that (SRPT, P−1(n)), which uses Shortest Remaining Pro-
cessing Time (SRPT) scheduling and processes at speed
such that the power used is equal to the queue length, is
2-competitive for a very wide class of power-speed tradeoff
functions. Further, we prove that there exist tradeoff func-
tions such that no algorithm can attain a competitive ratio
less than 2.

1. INTRODUCTION
No longer is “faster” always “better”. Today’s computer

system designs must balance energy consumption with tra-
ditional quality of service measures such as response time
(a.k.a. sojourn time, flow time). There is a growing litera-
ture on power management, cf. [10, 11, 17] and references
therein. One fundamental aspect of many power manage-
ment designs is dynamic speed scaling [3, 7, 20, 22], which
reduces the processing speed at times of low workload since
processing more slowly uses less energy per operation. Speed
scaling is now common practice in CPU designs [8, 9], and
has been proposed in many other settings, e.g., switch fab-
rics [13], wireless networks [6] and TCP offload engines [14].

The growing practical importance of speed scaling designs
has spurred analytic research into the design and analysis of
algorithms for this problem. An algorithm for the speed
scaling problem must make two decisions at any given time:
(i) a scheduling policy must determine which job to service,
and (ii) a speed scaling scheme must determine how fast to
run the server. Let (p, s(n)) denote a speed scaling policy
with scheduling policy p and speed s(n) when there are n
jobs in the system. In particular, we will be interested in
(SRPT, P−1(n)), which uses Shortest Remaining Processing
Time first scheduling, and when the system has n jobs, runs
at a speed s(n) such that P (s(n)) = n, where P (s) is the
energy cost associated with running at speed s.

The analytic study of algorithms for the speed scaling
problem began with Yao et al. [19]. Since then, three main
objectives for balancing energy and quality of service have
been considered: (i) minimize the total energy used in order
to complete arriving jobs by their deadlines, e.g., [10, 19];
(ii) minimize the average response time of jobs given a set
energy/heat budget, e.g., [5, 15, 16, 21]; and (iii) minimize
a linear combination of the response time and energy usage,
e.g., [2, 11, 18]. Note that this third objective has an inter-

pretation in terms of design tradeoffs when it is possible to
quantify how much reduction in response time is required to
justify using an extra 1 joule of energy.

In this work, we focus on the third objective, minimizing
a linear combination of energy and response time. Albers
and Fujiwara [1] initiated the study of this objective. Like
most theoretical work, they studied the case when the power
associated with processing at speed s, P (s), is defined as
P (s) = sα, which is taken as a model of the power func-
tion of CMOS when α is around 2–3, cf. [11, 18]. They
considered non-preemptive schedules, and showed that the
best scheme for arbitrary job sizes must have a competitive
ratio unbounded in the number of jobs in the schedule. For
the special case of unit-work jobs, they provided both an

O
““

3+
√

5
2

”α”
competitive batch algorithm, and an efficient

offline algorithm to determine the optimal schedule.
Next, Bansal et al. [4] designed a different algorithm that

is 4-competitive in the case of unit-sized jobs. Following this
work, focus shifted back to the case of general job size dis-
tribution, and Lam et al. [12] proved that (SRPT, P−1(n))
is O(α/ log(α))-competitive if preemption is allowed.

Finally, a big step forward occurred this year when Bansal,
Cheng and Pruhs [2] tightened the competitive ratio sub-
stantially, and also provided a single competitive ratio valid
for a very general class of functions P (·), rather than only
the class sα. Define a “regular” power scaling function as
one which is

• differentiable on [0,∞)
• strictly concave
• non-negative, and 0 at the origin.

Bansal, Cheng and Pruhs [2] first show that the scaling
(SRPT, P−1(n + 1)) is 3-competitive for “regular” power
functions, They then use this to show that a related speed
scaling is (3+ ε)-competitive for arbitrary non-negative and
unbounded power functions, and arbitrary ε > 0.

The main contribution of our paper is to further tighten
the competitive ratio. In particular, we prove that the scal-
ing (SRPT, P−1(n)) is 2-competitive when the power func-
tion is regular and a related scaling is (2 + ε)-competitive
under arbitrary (non-negative and unbounded) power func-
tions. Further, we prove that this result is tight in two
senses. First, for any power function, there is an instance
of arriving jobs such that (SRPT, P−1(n)) is a factor of
arbitrarily close to 2 worse than optimal. Second, for any
scaling algorithm, there is a power function such that the
competitive ratio under that power function is arbitrarily
close to 2.



2. PRELIMINARIES
In this paper we consider the joint problem of speed scal-

ing and scheduling to minimizing a linear combination of
response time and energy usage. Specifically, a problem in-
stance consists of N jobs, with the ith job having release
time (arrival time) ri and size (work) yi. The scheduler is
online, and so is not aware of job i until time ri and at
that point learns the size yi of the job. We allow the sched-
uler to be preemptive and assume that after preemption jobs
may be restarted from the point they were interrupted with-
out any overhead. At all points, the scheduler must decide
(i) which job to serve and (ii) the processing speed. The
speed is simply the rate at which work is completed, i.e., a
job of size yi served at speed s will complete in time yi/s.

The power incurred from running at speed s is denoted by
P (s), and there is no penalty for switching from one speed
to another. We will again focus on regular power functions.
However, as shown in [2], it is possible for a system with
any non-negative power function P̃ (·) with unbounded sup-
port to emulate such a power function (provided the cost of
switching speeds is negligible) in such a way as to increase
the competitive ratio by no more than an arbitrarily small ε.

The objective that we consider is a linear combination of
response time and energy usage. Let Ti be the response time
of job i, the completion time minus the release time. Let st

be the speed used at time t, then the total energy used is
E(I) =

R
I
P (st)dt. The cost of an instance I under a given

algorithm A is then CA(I) =
P

i Ti + βE(I). Without loss
of generality, we set the unit of E such that β = 1.

The speed scaling algorithms that we study will choose the
speed as a function of n, s(n). We will focus on speed scaling
algorithms defined by P (s(n)) = n. We will evaluate the
performance of these algorithms by comparing them to the
optimal (maybe offline) algorithm, OPT. In particular, we
study the competitive ratio, defined as supI CA(I)/COPT (I)
where COPT (I) is the optimal cost achievable on instance I.

3. RESULTS AND DISCUSSION
The (SRPT, P−1(n)) algorithm has been suggested as

a good speed scaling algorithm by a number of previous
papers, cf. [1, 12]. It has previously been shown that a
slight variation of this algorithm, (SRPT, P−1(n+1)), is 3-
competitive for regular power functions and leads to a 3 + ε
competitive algorithm in general [2]. Our main result is to
tighten this competitive ratio as follows.

Theorem 1. For any regular power function P , (SRPT,
P−1(n)) has a competitive ratio of exactly 2.

This theorem gives upper and lower bounds on the compet-
itive ratio. The arguments for each are sketched below.

The proof of the upper bound uses similar techniques as
were used in [2]. It uses an amortized local competitiveness
argument with the potential function:

Φ(t) =

Z ∞

0

f(nt(q)) dq (1)

where f is defined recursively by f(0) = 0, f(i) = f(i −
1) + ∆(i), for some ∆(i), and nt(q) = max(0, nt

a(q)−nt
o(q))

with nt
a(q) and nt

o(q) the number of unfinished jobs at time t
with remaining size at least q under the scheme under inves-
tigation and the optimal scheme, respectively. In particular,

we will use the case when ∆(i) = 2P ′(P−1(i)). The key to
obtaining a tighter result than the one of [2] is the following.

Lemma 2. Let so and sa be the speeds of the optimal
scheme and (SRPT, P−1(n)) at a given time, and let no

and na be the numbers of unfinished jobs at that time. For
any scheme s, any regular power function P and any ∆, if
no < na then either

both d
dtΦ ≤ ∆(na − no + 1)(−sa + so) (2a)

and no ≥ 1, (2b)

or d
dtΦ ≤ ∆(na − no)(−sa + so). (2c)

This differs from the corresponding result in [2] in the con-
dition (2b). That ensures that the argument of ∆ in (2) is
always at most na, which gives the following.

Lemma 3. For ∆(i) = 2P ′(P−1(i)), if no < na then (2)
implies

dΦ
dt
≤ 2(P (so)− na + no). (3)

The remaining details of the upper bound on the competitive
ratio is as used in [2].

The lower bound, that the competitive ratio of (SRPT,
P−1(n)) is at least 2, can be established as follows: Consider
periodic unit-work arrivals at rate q = s(n) for some n. The
optimal schedule runs at rate q, and maintains a queue of
at most one packet (the one in service), giving a cost per
job of at most (1 + P (q))/q. In order to run at speed q, the
schedule P (s(n)) = n requires n = P (q), giving a cost per
job of (P (q) + P (q))/q. As we let the number of jobs that
arrive grow large, the competitive ratio approaches

2P (q)
1 + P (q)

.

Finally, as q becomes large the competitive ratio tends to 2
since P (q) is unbounded.

This upper bound can then be used to extend the result
to non-negative power functions using the same argument
as in [2].

Corollary 4. Let ε > 0. For any non-negative and un-
bounded P̃ , there exists a P such that emulating (SRPT,
P−1(n)) yields a (2 + ε)-competitive algorithm.

A central part of the emulation involves avoiding speeds
where P is not convex, instead emulating such speeds by
switching between a higher and lower speed on the convex
hull of P̃ . This approach is very sensitive to the assumption
that there is negligible cost incurred by changing speeds.
Further work is required to investigate the impact of this
very frequent switching.

The upper bound in Theorem 1 is tight, in two senses.
The first sense is embodied in the theorem itself: for any
power function, there exists an instance such that (SRPT,
P−1(n)) is a factor of 2 worse than optimal.

The second sense is that, for any speed scaling algorithm,
there exists a power function such that the competitive ratio
is arbitrarily close to 2.

Theorem 5. For any ε > 0 there is a regular power func-
tion Pε such that for any speed scaling algorithm A, the com-
petitive ratio of A is larger than 2− ε.



The proof of this result is constructive and shows an in-
stance and power function where a given speed scaling al-
gorithm will be at least (2− ε)-competitive. Specifically, it
uses P (s) = sα, all jobs of size 1, and two simple arrival
patterns: periodic arrivals and batch arrivals. The argu-
ment shows that, when α is large, if s(n) grows too slowly
then a high backlog must be maintained to run fast enough
to handle the periodic instance; conversely if s(n) grows too
quickly then it will run too fast in the case when no more
arrivals occur (the batch arrival case).

Even though (SRPT, P−1(n)) is 2-competitive and this is
the best competitive ratio possible for any speed scaling al-
gorithm given an arbitrary power function, if the power func-
tion is known, it may be possible to improve upon (SRPT,
P−1(n)). In the case that P (s) has bounded derivative (but
unbounded support), there exists a k > 1 such that (SRPT,
P−1(kn)) has competitive ratio is strictly less than 2. In
particular, if P (s) is linear, then the competitive ratio tends
to 1 for large k.

We conjecture that, for regular functions, the scaling with
the lowest possible competitive ratio will in general have the
form (SRPT, P−1(kn+o(n))) for some k ≥ 1. In particular,
under the optimal speeds, it can be shown that P (s(n))
grows at least as fast as n, but not as fast as ω(n). This is
the subject of ongoing work.

4. CONCLUDING REMARKS
The results in this paper show that, for regular power

functions, (SRPT, P−1(n)) achieves a competitive ratio of 2;
this is the best possible competitive ratio for the objective
of minimizing a linear combination of response time and
power, without further information about the shape of P
being known.

Our current work on this topic is looking to extend this
analysis in number of important directions. First, in many
applications it is not possible to schedule using SRPT. How-
ever, even under different scheduling policies it is natural
to expect that choosing s(n) such that P (s(n)) = n should
work well. Second, we have proven that dynamic speed scal-
ing using P (s(n)) = n is 2-competitive, but how well does
it compare to the case when an optimal static speed is cho-
sen as a function of the workload? It may be possible to
achieve nearly the same performance using a scheme that
uses s(0) = 0 and for n ≥ 1 uses s(n) = q, where q is a
fixed speed optimally tuned to workload parameters. This
scheme would be much more implementable in practice than
a completely dynamic speed scaling design. To answer this
question, we will need to perform an analysis of the speed
scaling problem in a stochastic environment [18], rather than
the worst-case framework considered in this paper.

5. REFERENCES
[1] S. Albers and H. Fujiwara. Energy-efficient algorithms

for flow time minimization. In Lecture Notes in
Computer Science (STACS), volume 3884, pages
621–633, 2006.

[2] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling
with an arbitrary power function. In Proc.
ACM-SIAM SODA, 2009.

[3] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to
manage energy and temperature. J. ACM, 54(1):1–39,
Mar. 2007.

[4] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for
weighted flow times. In Proc. ACM-SIAM SODA,
pages 805–813, 2007.

[5] D. P. Bunde. Power-aware scheduling for makespan
and flow. In Proc. ACM Symp. Parallel Alg. and
Arch., 2006.

[6] R. Chandra, R. Mahajan, T. Moscibroda,
R. Raghavendra, and P. Bahl. A case for adapting
channel width in wireless networks. In Proc. ACM
SIGCOMM, pages 135–146, Seattle, WA, Aug. 2008.

[7] S. Herbert and D. Marculescu. Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors. In
Proc. ISLPED, page 6, 2007.

[8] IBM PowerPC. http://www-03.ibm.com/technology/
power/powerpc.html.

[9] Intel Xscale. www.intel.com/design/intelxscale.
[10] S. Irani and K. R. Pruhs. Algorithmic problems in

power management. SIGACT News, 36(2):63–76,
2005.

[11] S. Kaxiras and M. Martonosi. Computer Architecture
Techniques for Power-Efficiency. Morgan and
Claypool, 2008.

[12] T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H.
Wong. Speed scaling functions for flow time
scheduling based on active job count. In Proc.
European Symposium on Algorithms, 2009.

[13] L. Mastroleon, D. O’Neill, B. Yolken, and N. Bambos.
Power aware management of packet switches. In Proc.
High-Perf. Interconn., 2007.

[14] S. Narendra et al. Ultra-low voltage circuits and
processor in 180 nm to 90 nm technologies with a
swapped-body biasing technique. In Proc. IEEE Int.
Solid-State Circuits Conf, page 8.4, 2004.

[15] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting
the best response for your erg. In Scandinavian
Worksh. Alg. Theory, 2004.

[16] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed
scaling of tasks with precedence constraints. In Proc.
Worksh. Approx. Online Alg., 2005.

[17] O. S. Unsal and I. Koren. System-level power-aware
deisgn techniques in real-time systems. Proc. IEEE,
91(7):1055–1069, 2003.

[18] A. Wierman, L. L. H. Andrew, and A. Tang.
Power-aware speed scaling in processor sharing
systems. In Proc. IEEE INFOCOM, 2009.

[19] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In Proc. IEEE Symp.
Foundations of Computer Science (FOCS), pages
374–382, 1995.

[20] L. Yuan and G. Qu. Analysis of energy reduction on
dynamic voltage scaling-enabled systems. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst.,
24(12):1827–1837, Dec. 2005.

[21] S. Zhang and K. S. Catha. Approximation algorithm
for the temperature-aware scheduling problem. In
Proc. IEEE Int. Conf. Comp. Aided Design, pages
281–288, Nov. 2007.

[22] Y. Zhu and F. Mueller. Feedback EDF scheduling of
real-time tasks exploiting dynamic voltage scaling.
Real Time Systems, 31:33–63, Dec. 2005.


