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ABSTRACT 
Many graph-coloring register-allocation algorithms don't work well 

for machines with few registers. Heuristics for live-range split- 

ting are complex or suboptimal; heuristics for register assignment 

rarely factor the presence of fancy addressing modes; these prob- 

lems are more severe the fewer registers there are to work with. We 

show how to optimally split live ranges and optimally use address- 

ing modes, where the optimality condition measures dynamically 

weighted loads and stores but not register-register moves. Our al- 

gorithm uses integer linear programming but is much more efficient 

than previous ILP-based approaches to register allocation. We then 

show a variant of Park and Moon's optimistic coalescing algorithm 

that does a very good (though not provably optimal) job of remov- 

ing the register-register moves. The result is Pentium code that is 

9.5% faster than code generated by SSA-based splitting with iter- 

ated register coalescing. 

1. INTRODUCTION. 
Register allocation by graph coloring has been a big success for 

machines with 30 or more registers. The instruction selector gener- 

ates code using an unlimited supply of temporaries; liveness analy- 

sis constructs an interference graph with an edge between any two 

temporaries that are live at the same time (and thus cannot be al- 

located to the same register); a graph coloring algorithm finds a 

K-coloring of the interference graph (where K is the number of 

registers on the machine). If the graph is not K-colorable, then 

some nodes are spilled: the temporaries are implemented in mem- 

ory instead of registers, with a cost for loading them and storing 

them when necessary. Graph coloring is NP-complete, but simple 

algorithms can often do well. 

An important improvement to this algorithm was the idea that the 

live range of a temporary should be split into smaller pieces, with 

move instructions connecting the pieces. This relaxes the inter- 

ference constraints a bit, making the graph more likely to be K- 

colorable. The graph-coloring register allocator should coalesce 

two temporaries that are related by a move instruction if this can be 

done without increasing the number of spills. 
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Unfortunately, this approach has not worked well for machines like 

the Pentium, which have K = 6 allocable registers (there are 8 regis- 

ters but usually two are dedicated to specific purposes). What hap- 

pens is that there will typically be many nodes with degree much 

greater than K, and there is an enormous amount of spilling. Of 

course, with few registers there will inevitably be spilling, as the 

live variables cannot all be kept in registers; but if a variable is 

spilled because it has a long live range, then it stays spilled even 

(for example) in some loop where it is frequently used. On our 

test suite of 600 basic-block clusters comprising 163,355 instruc- 

tions, iterated register coalescing produces 84 spill instructions for 

a 32-register machine, but 22,123 spill instructions for an 8-register 

machine. This is about 14% of all instructions, which is worth the 

trouble to improve. 

In the last few years some researchers have taken a completely dif- 

ferent approach to register allocation: formulate the problem as an 

integer linear program (ILP) and solve it exactly with a general- 

purpose ILP solver. ILP is NP-complete, but approaches that com- 

bine the simplex algorithm with branch-and-bound can be success- 

ful on some problems. Unfortunately, the work to date in optimal 
register allocation via ILP has not quite been practical: Goodwin's 

optimal register allocator can take hundreds of seconds to solve for 

a large procedure [11, 12]. Goodwin has formulated "near-optimal 

register allocation (NORA)" as an ILP; our solution can be viewed 

as a different approach to near-optimal register allocation. 

A two-phase approach. Our new approach decomposes the regis- 

ter allocation problem into two parts: spilling, then register assign- 

ment. Instead of asking, "at program point p, should variable v be 

in register r?" we first ask, "at program point p, should variable 

v be in a register or in memory?" Clearly, this is a simpler ques- 

tion, and in fact we can formulate an integer linear program (ILP) 

that solves it optimally and efficiently (tens of milliseconds). This 

phase of register allocation finds the optimal set of splits and spills. 

Not only does our algorithm compute where to insert loads and 

stores to implement spills, but it also optimally selects addressing 

modes for CISC instructions that can get operands directly from 

memory. For example, the add instruction on the Pentium takes 

two operands s and d, and computes d +- d + s. The operands can 

be in registers or in memory, but they cannot both be in memory. 

On a modern implementation of the instruction set, the instruction 

mix] ~-- mix] + s  is no faster than the sequence of instructions r +- 

m[x]; r ~ r + x ;  mix] +- r. However, the latter sequence requires an 

explicit temporary r, and if there are many other live values at this 

point, some other value will have to be spilled; the former sequence 

wouldn't require the spilling of some other value. Therefore, it is 
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important to make use of the CISC instructions. 

The second phase is to allocate the unspilled variables to registers 

in a way that leaves as few as possible register-register moves in 

the program. This is difficult to do optimally, but we will show an 

efficient algorithm can get very good results. 

In judging our decomposition into two phases, there are three im- 

portant questions to ask: 

1. When we decompose the problem into two subproblems (spilling 

and coloring) and solve each subproblem optimally, does that 

lead to an optimal solution to the original problem? We will 

present empirical evidence that the solutions are excellent, 

but there is no theoretical reason that they will be optimal. 

2. Can the spilling subproblem be solved optimally and effi- 

ciently? We will show that it can, using integer linear pro- 

gramming. For the entire class of allocators that do not use 

rematerialization, and keeps no more than one copy of each 

variable at a time, our algorithm provably generates the least 

number of (weighted) loads, stores, and memory-operand in- 

structions. Rematerialization can be easily incorporated into 

our model, but we have not yet done so; variables that live in 

several locations at once require further research - our initial 

attempts produce integer linear programs that are too costly 

to solve. 

3. Can the coloring subproblem be solved optimally and effi- 

ciently? We can do it optimally but far too slowly using 

integer programming; we can do it quickly and adequately 

(though suboptimally) using optimistic coalescing. 

2. OPTIMAL SPILLING V I A  I L P  
We model the register-spilling problem as a 0-1 linear program: an 

optimization problem with constraints that are linear inequalities, 

a linear cost function, and the additional constraint that every vari- 

able must take the value 0 or 1. We use AMPL [8] to describe 

and generate the linear program, and CPLEX [7] to solve it. The 

AMPL compiler derives an instance of the optimization problem by 

instantiating a mathematical model with problem-specific data, and 

feeds the resulting linear program (in a suitable form) to a standard 

off-the-shelf simplex solver such as CPLEX. 

The AMPL model consists of variable, set, and parameter declara- 

tions, and templates to generate the constraints for the linear pro- 

gram. The sets, in their simplest form, are a symbolic enumeration 

and declared in the model using a declaration similar to: 

set T ; 

set R; 

Sets may also be built from cartesian products of other sets. Vari- 

ables are usually indexed over sets, so a declaration such as: 

var x {T,R}; 

defines a set of variables Xi, ] where i ranges over T and j over R. 

Parameter declarations inject concrete values into the model, so a 

declaration such as: 

param cost {T}; 

defines a parameter cos  t that is indexed over elements in the set T. 

The equations are generated from templates and are derived from 

data : I 
~t T = {tl t2} 
set R : {rt r2} ( 
param cost = {(tl 3) (t2 4)} ] 

model : 
set T; 

set R; 

var x {T,R}; 

param cos t{T}; 

Vt E 7'... 

l 
Xtz,rl +Xtz,r2 k 4 

Figure h AMPL modeling system 

logical connections among the sets. For example: 

Vt E T . ~ Xt,r _> cost[t] 
rER 

If T = {q t2} and R = {rl r2} then, the template above will gen- 

erate two equations, one for each member of T: 

Xtt,rl + Xtt,r2 ~_ cost[q] 
Xt2,rl + Xt2,r2 >_ cost[t2] 

This AMPL example is illustrated in Figure 1 which shows the 

model, data, and system of linear equations that is generated. 

Set Declarations: The description of our ILP formulation of op- 

timal spilling begins with the various set declarations required to 

characterize the input flowgraph containing Intel IA-32 instruc- 

tions. At the lowest level, our model contains a set of symbolic 

variables V corresponding to temporaries in the program, and a set 

P of points within ttle flowgraph. There is a point between any two 

sequential instructions. A branch instruction terminates in a single 

point that is then connected to all points at the targets of the branch. 

In the AMPL model, these sets are declared simply as: 

set V; 

set P; 

The remaining data declarations deal with liveness properties and 

a characterization of the type of IA-32 instructions between two 

points. There are several different classes of instructions in the IA- 

32 instruction set, such as two-address binary instructions (d ~ d @ s), 

and unary instructions (d +-- f(s)), for example. If there is an add 

instruction v2 +-- v2 + Vl between program point Pl and a successor 

point P2, with source variable vl and destination variable v2, we 

model this by writing, (Pl,P2, vb v2) E B i n a r y ,  and similarly for 

Unary .  That is, set B i n a r y  is a subset of P x P x V x V and is 

declared in the AMPL model using: l 

set Binary C (P x P x V x V) ; 

set Unary C (P×P×VxV) ; 

1AMPL actually uses the word c r o s s  instead of the symbol x, 
and w i t h i n  instead of C. The actual AMPL code is shown in the 
appendix. 
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For any variable vl that is live at a point Pl,  we write (Pl ,Vl) 6 

E x i s t s .  The E x i s t s  set is similar to the live set but not iden- 

tical: if an instruction between points Pl and P2 produces a result 

v that is immediately dead, then v is nowhere live but (p2,v) E 

E x i s t s .  If a variable vl is live and carded unchanged from point 

Pl to P2, then we say that (Pl,P2,Vl) 6 Copy. If from point Pl 

to point P2 variable Vl is copied to variable v2 (e.g., by a move 

instruction), we write (Pl, P2, vl, v2) E Copy2.  

set Exists C (PXV) ; 

set Copy C (PxP×V) ; 

set Copy2 C (P×P×VxV) ; 

The compiler will sometimes refer to specific hardware registers 

(%eax, %esp . . . .  ), either because a machine instruction requires 

an operand in a specific register or because of parameter-passing 

conventions. Now consider the instruction: 

movl %eax, %v 

that moves the contents of register %eax to the variable v. We 

model this as an instruction that takes no argument (because no 

temporary is a source operand) and produces a result into v. B i n a r y  

instructions (such as r aov l )  can take their source or destination 

operands from registers or memory, but they cannot both be from 

memory. In this case, since the source %eax is known to be a reg- 

ister, the destination can be a register or memory. The class of in- 

structions that take no argument and produce a register or memory 

result we call Nu 11 a r y .  In contrast, in the instruction 

movl 4 (%esp) , %v 

that moves the contents of memory at address (%esp+4)  to v, 

the operand v must be a register. The instruction class that take no 

argument and produce a register-only result we call Nu l  l a r y R e g .  

set Nullary C (PxPxV) ; 

set NullaryReg C (PxPxV) ; 

Some instructions accomplish v +-- f(v), where v can be in a register 

or memory (e.g. a d d l  ( S 2 5 6 ,  %v), that adds an immediate to 

the variable v);  others require that v must be in a register and noth- 

ing else (e.g. a d d l  (4 (%esp)  , %v)). We call these M u t a t e  

and M u t a t e R e g  respectively: 

set Mutate C (P x P x  V) ; 

set MutateReg C (PxPxV) ; 

For cases where no results are produced, the instruction may take 

two operands of  which at most one can be in memory (e.g., the com- 
pare instruction); or take one operand which can be either a regis- 

ter or memory (e.g. a d d l  (%v, %eax)) ;  or take one operand 

that must be in a register. We call these three instruction-classes 

UseUp2, UseUp, and UseUpReg respectively: 

set UseUp2 C (P x P x V x V) ; 

set UseUp C ( P x P x V )  ; 

set UseUpReg C ( P × P × V )  ; 

If there is a branch instruction between Pl and P2, then it is nee- 

essary to know about points such as P2, associated with a branch, 

as we cannot insert spill or reload instructions at P2. We therefore 

declare a set of branching points: 

set Branch C P 

Consider a branch instruction between points Pl and P2 that branches 

to/)4 if vl = O, but otherwise falls through to P3. Suppose v 3 is 

live throughout, and Vl is live only along the successor containing 

P4- 

i f  (Vl : o) 
®P2 

®P3 °P4 
v3 E l i v e  Vl v 3 6 1 i v e  

It is necessary to propagate this liveness information along the edges 

of the branch, and we represent this by generating: 

(Pl,P2,Vl) 6 UseUp;  

{ (Pl,P2, V3), (p2,P3, V3 ), (p2,Pa, v3 ), 
(m ,p2 , v l ) , ( p2 ,pa , v l ) , }  C Copy;  

Note that vl is used and propagated between the points Pl and P2, 

and the other variables are propagated along the appropriate branch 

edges. 

Special cases of  instructions Consider an add instruction whose 

destination is known to be in memory: mix] ~ mix] +v. This could 

occur because x is the address of an array element, for example. 

Then v must be in a register, and x must be in a register. We can 

model this as: 

(p! ,p2,x) E UseUpReg 

(Pl ~P2~ v) 6 UseUpReg 

Similarly, the instruction v +-- v + mix] is modeled as: 

(Pl, PZ, v) 6 MutateReg 

(Pit p2~X) 6 UseUpReg 

Or consider the case where the source operand is a constant, v 

v+c:  

(pl,P2,V) 6 Mutate 

There are many variations on this theme, but the point is that each 

special case of an instruction (where one of  the operands is forced 

to be in memory, or in registers, or constant) reduces to a case that 

can also be described in the model. The compiler does this reduc- 

tion before generating the data set sent to AMPL. 

Parameter  Declarations: The model declares several scalar and 

vector parameters (that are indexed symbolically using sets such 

as P). Each point in the program has an estimated frequency of 

execution that is used to weight the cost of spill or reload instruc- 

tions in our optimal spilling framework. We obtain the frequencies 

by static estimation from branch predictions, propagated using Kir- 

choff 's laws as described by Wu and Larus [18]; better frequencies 

could be obtained by dynamic profiling. In our model we have: 

param weight {P) ; 

to associate the frequency of execution with each point. 

At points where the compiler has explicitly used a machine reg- 

ister, e.g., m o v l  (%eax ,  %v), register %eax  is not available for 

coloring temporaries live at that point. We communicate this to the 

model via a parameter K: 
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fac: pushl 

movl 

mov] 

movl 

testl 

je 

L2: imull 

decl 

jnz 

Li: movl 

leave 

ret 

%ebp 

%esp, %ebp 

8(%ebp), tl 

#i t2 

tl tl 

L1 

tl t2 

tl 

L2 

t2 %eax 

;; save frame pointer 

;; new frame pointer 

;; n 

; ; fac : = 1 

;; cc := n A n 

;; if n:0 got• L1 

; ; fac :: n * fac 

;; n :: n - 1 

;; if n <> 0 got• L2 

; ; return register 

; ; done 

Figure 2: Intel IA-32 instructions for the factorial function 

param K {P}; 

where K [ p ] is the number of available registers at point p. 

Finally we have some scalar cost parameters: 

param Goad, Cstore, Groove, Cinstr 

C]oad, Cstore and (?move are the cost of executing a load, store, and 

move instruction. Cinstr is the cost of fetching and decoding one 

instruction byte. Presumably, Cload > Cstore > Cmove > Cinstr. (In 

fact, Cinstr really measures the cost of a slight extra pressure on the 

instruction cache.) 

Example.  Figure 2 shows the Intel IA-32 instructions that may be 

generated for the factorial function, and Figure 3 shows the cor- 

responding flowgraph annotated with points surrounding each in- 

struction. The AMPL sets generated are: 

set P := {Pl P2 P3 ..- PI4 P15} 

set V :: {h t2} 

set Branch := {/97 Pi[} 

set NullaryReg := {(P3 P4 tl)} 
set UseUp2 := {(P5 P6 tl t2)} 

set UseUp := {(P8 P9 tl) (PI2 PI3 t2)} 

set Mutate := {(p9 PI0 tl)} 

set MutateReg := {(P8 P9 12)} 

set Binary := {(P8 P9 tl t2)} 

set Copy : = 

{(p4 P5 tl) (P5 P6 tl) (P6 P7 tl) (P7 P8 tt) (P8 P9 tl) 
(PI0 Pn tl) (pll P8 tl) (P5 P6 t2) (P6 P7 t2) 
(P7 P8 t2) (P9 Pl0 t2) (Pl0 Pll t2) (Pll P8 t2)} 

set Exists : = 

{(P4 tl) (P5 tl) (P6 tl) (P7 tl) (P8 tl) (P9 tl) (Pl0 tl) 
(Pll tl) (P5 t2) (P6 t2) (P7 t2) (P8 t2) (P9 t2) (PI0 t2) 
(PI! t2) (Pl2 t2) (PI3 t2)} 

The imull instruction is not classified as a Binary instruction 

as the destination must be a register operand, and cannot be mem- 

ory, whi!e the source operand can be in either class. Therefore, 

i m u l l  is classified as M u t a t e R e g  for the destination operand 

and Us eUp for the source operand. 

Missing in the data are the concrete parameters such as the execu- 

tion frequency of each point, the costs, and the value of K at each 

point. If we assume that %esp and %ebp are dedicated, then the 

value of K at all points in the flowgraph is 6, except at point P13 

where %eax is defined and the value of K is 5. 

3. VARIABLES AND CONSTRAINTS 
Spilling is the insertion of loads and stores between the instructions 

of the program. Each instruction of our program spans a pair of 

f a c  : 
•Pl 

pushl %ebp 
®p2 

movl %esp, %ebp 

®P3 
movl 8(%ebp),tl 

op4 
movl #1,t 2 

~P5 

testl tl,tl 

®P6 
je L1 

oR7 

L I :  

aPl2 
movl t2, %eax 

•P13 
leave 

°Pl4 
r e t  

ePl5 

~2 : 

®P8 
imull tl,t  2 

®P9 

decl tl 

•Pl0 
j nz L2 

• Pl I 

Figure 3: Flowgraph annotated with points 

....... / 

points, and "between the instructions" means "at a point." Thus, 

we will insert loads/stores at points, not between them. 

Consider a variable v live at a program point p. The variable v 

could: 

® arrive at p in a register and depart in a register - rp,v, 

® arrive in memory and depart in memory - rap,v, 

® arrive in a register and depart in memory - Sp,v (for stored), 

• or arrive in memory and depart in a register-  lp,v (for loaded). 

A solution to the spilling problem is just the description of where 

the loads and stores are to be inserted. We model this as follows: 

vat r {Exists} binary; 

var m {Exists} binary; 

vat l {Exists} binary; 

var s {Exists} binary; 

This says that for each (p,v) in E x i s t s  - that is, for each variable 

v live at a program point p - there are linear-program variables rp,v, 
rnp,v, lp,v, and Sp,v; the b i n a r y  keyword says that the variable 

must take on the value 0 or 1. We wish to find the values of these 

variables subject to a set of linear constraints. 

Exists: The first constraint is that exactly one of these variables is 

set for any p and v: 

V(p,v) 6 E x i s t s .  lp,v + rp,v +Sp,v +me,v = 1 
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Branch:  At a branch-point it's not possible to load or store, be- 

cause we can't  insert an instruction after a conditional-branch in- 

struction but before its targets. 

V(p,v) E Exists s.t. p 6 B r a n c h ,  Ip,v+Sp,v : 0 

Coloring: At any point p, all the stores can be performed before all 

the loads. However, the variables to be stored originate in registers, 

therefore the sum of variables that are already in registers and those 

that are to be spilled must be no more than the number of registers 

available for coloring at p. 

V p C P .  K[p] > E rp,v+Sp,v 
(p,v)6Exists 

Similarly, after all the loads have been done at a point, the number 

of variables in registers should be no more than K. 

V p C P .  K[p] >_ ~ rp,v+lp,v 
(p,v)6Exists 

Copy propagation: If a variable v is copied from Pl to P2, then 

either it departs from Pt in a register and arrives at P2 in a register, 

or it departs from Pl in memory and arrives at P2 in memory. If it 

departs from Pl in a register it must have already been in a register 

(i.e. rp~,v = I), or was loaded into a register at Pl (lpt,v = 1). If it 

arrives at P2 in a register, it can either continue in a register at P2 

(rp2,v = 1) or it can be stored at P2 (sp2,v = t): 

V(pl,P2,V) e Copy. lpl,v + rp,,v = Sp2,v + rp2,v 

The constraint s m,v + mm,v = lp2,v + rnp2,v is redundant and must 

not be specified (redundant constraints will - with the inevitable 

rounding errors - overconstrain the problem so that the LP solver 

fails to find a solution). 

If  a variable Vl at Pt is copied to a variable v2 at P2, then if it 

departs Vl in a register it must arrive v2 in a register. The constraint 

is similar to the C o p y  case except that two variables are involved. 

~/(pl,P2,Vl,V2) 6 Copy2. 

lpl ,v, + rpl ,Vl = Sp2,v2 + rp2,v2 

3.1 Specifying the CISC instructions 
On the IA-32 (x86, Pentium), i f  there is a B i n a r y  instruction (e.g., 

two-operand add) between PI and P2, operating on source variable 

vl and destination variable v2, then at least one of Vl and v2 must 

depart Pl in registers: 

V(p l ,P2 ,V l  ,v2) 6 Binary 
Ip,,v, + rpt,v, + lpl,v2 + rpl,v2 >_ 1 

Furthermore, the destination operand v2 must be in registers depart- 

ing Pl if  and only if it is in registers arriving P2: 

V(pl ,p2,vl ,V2) 6 Binary 

lp, ,vz + rp, ,vz = sp2,v~ + rpz,vz 

There are similar constraints for the other classes of instructions, as 

shown in the appendix. They say that the result of a Nu l  l a r y R e 9  

must arrive P2 in a register; at least one operand of a U s e u p 2  must 

be in a register; the operand of a g s e U p R e g  must be in a register; 

the operand of a M u t a t e  must depart Pl in the same storage class 

as it arrives P2; the operand of  a M u t a t e R e g  must depart Pt in a 

register and arrive P2 in a register; and that at least one operand of 

a u n a r y  must be in a register. 

These constraints are all Pentium-specific, but by illustrating how 

easily they are specified we hope to convince the reader that many 

kinds of CISC instructions could be specified within this frame- 

work. 

3.2 Objective function 
The objective function of our linear program calculates the esti- 

mated runtime cost of the spill-related loads, stores, and CISC operands. 

The first component of the cost comes from loads and stores: 

minimize COST:  

(Z(p,v)eExi~ts 
weightp((Cload + 3Cinstr)lp,v+ 

(Cstore + 3Cinstr)Sp,v)) 

The cost of executing a load is Cload. The cost of a 3-byte load 

instruction (in i-cache occupancy) is 3Cinstr. For each point p and 

variable v such that there is a spilt-load of v at p we incur this cost; 

and similarly for stores. 

If the destination operand of a Binary instruction is in memory, 

we incur a cost Cload and Cstore, and one extra byte of Cinstr cost to 

specify the operand. If the source operand is in memory, then we 

incur a load cost and one instruction-byte cost: 

"Jff ( E ( p  I ,p2,Vl ,v2)EBinary 
weightpl ((Cload + Cins t r  )(mpl ,, + Sp, ,v~ ) 

+ (C~oa~ + Cstore + Cins t r) (mp2,v2 + lp2,v2)) ) 
~- . . .  

There are similar clauses to account for the cost of  memory operands 

of the other classes of instructions: U n a r y ,  M u t a t e ,  and so on. 

3.3 Temporary loads 
When we execute a load instruction to bring a value from mem- 

ory to registers, the value becomes accessible from both places, 

and similarly when we store from registers to memory. The model 

we have described does not account for this fact; it acts as if a 

value lives only in one place at a time. We constructed a more 

ambitious model that accurately accounts for values that continue 

to live in both memory and registers after a load or store, but we 

had little success with it: the equations seem to be sufficiently un- 

derconstrained that the integer LP solvers do enormous amounts 

of branch-and-bound search. Therefore we use the model that as- 

sumes that each value lives in one place (memory or registers) at a 

time. Our spilling is optimal only with respect to this model. 

However, we were able to incorporate one useful special case into 

our model. A variable can be loaded from (a spill location in) mem- 

ory to a register for use in the very next instruction, with the as- 

sumption that the register is then dead and the memory value lives 

on. We have not described this mathematically in the body of  the 

paper, but our implemented AMPL model includes this feature. 

This completes the description of our linear-program model of spill 

costs. 

4. SOLVING THE MODEL. 
Our compiler [2][10] feeds the data associated with a flowgraph 

together with the model to AMPL. AMPL generates a linear pro- 

gram with variables, constraints, and an objective function. From 

the example in Figure 3 the variables: 

Fp4,tl ~ Ip4,tl ~ Sp4,t I ~ mp4#l  
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would be generated for t 1 corresponding to the point P4, since 

(p4,tl) ~ Exists. A constraint corresponding to the Exlsts for- 

mula (Section 3) would establish the equation: 

I-p4~t 1 -~ [p4~t I @ Sp4,t I @ mp4,t  1 : l 

In a typical large cluster of basic blocks spanning several source- 

program functions, there will be a few thousand points p and sev- 

eral hundred temporaries v, yielding tens of thousands of linear- 

program variables. 

AMPL first runs a "presolve" phase in which as many variables as 

possible are eliminated; for example, any use of mp,v could be re- 

placed by 1 - (rp,v + lp,v + Sp,~). After the presolve, AMPL formats 

the linear program in a way acceptable to the back end, which is any 

one of several commercial or noncommercial LP solvers. Some of 

these solvers can solve integer linear programs using a combination 

of the simplex method with branch-and-bound; others can do only 

continuous LP's using simplex alone. We have used CPLEX [7] 

and IBM's OSL [13]; CPLEX is an order of magnitude faster but 

sometimes dumps core. 

After the ILP solver is finished, AMPL formats the results - a table 

of r, l, s, m for each (p, v). Our compiler computes all the spilling 

from this information inserting load and store instructions at points 

where lp,v and Sp,v is set, and introduces memory operands at in- 

structions for which mp,v is set. A prior phase assigns a logical 

spill location for every temporary, ensuring that nonoverlapping 

live ranges share the same memory location. 

5. REGISTER COALESCING 
The resulting flowgraph has no more than K variables simultane- 

ously live at any point, but it may still be the case that there is no 

K-coloring of the variables - that K registers do not suffice. If Xl 

interferes with Yl at point Pl,  Yl interferes with zl at point P2, and 

zl interferes with Xl at point P3, then even though there are only 

two temporaries live at any time, there is no 2-coloring of the inter- 

ference graph. 

Our solution is to copy every variable to a freshly named temporary 

at every program point. At point Pl we will copy x2 +- xl and 

Y2 +- Yb at P2 we copy Y3 +- Y2 and z3 +- zi, and so on. We 
assume the copies are done in parallel, so that Y2 interferes only 

with x2 and not with Xl or z3. Then each parallel copy moves at 

most K variables, and each temporary interferes with no more than 

K - 1 others, and the graph is colorable. 

Whenever there is an edge from program point Pl to P2 such that 

the optimal-spill model has a C o p y  or c o p y 2  relation, we also in- 

troduce a copy in the optimal-coalescing graph. That is, all the 

variables copied across an edge are formed into a parallel copy 

that is meant to occur simultaneously with any other instruction 

executed at the edge. For edges that don' t  contain any "real" in- 

struction, a new basic block must sometimes be introduced; this 

is called edge splitting and is common in register-allocation prob- 

lems [1, figs. 19.2-3]. The resulting flowgraph for the example in 

Figure 2 is shown in Figure 4. 

After the graph is colored, each K-way parallel copy must be im- 

plemented by a sequence of K register-register move instructions. 

If the parallel copy corresponds to a permutation with one or more 

cycles, then extra work (and extra storage) may be required to move 

a value out of the way and then move it back. Fortunately, the x c h g  

(exchange two registers) instruction on the IA-32 avoids the need 

f a c  : 

~Pl 
pushl %ebp 

QP2 
raovl %esp, %ebp 

®P3 
raovl  8( %ebp),ti ° 

,p4 q 
movl #t,t~ ) 

testl t~,t~ 

,p, t? q IL q +-4 
j e L l  

®P7 

t3, _q 

L I :  

oPl2 
m o v l  t23~ %eax 

oPl3 
i eave 

OPl4 
r e t  

®P15 

/ 

/ 

*P8 
i m u l l  4 4 t I ,t 2 

®P9 t~ 4-- t14 ][ t25 ~ t24 

decl t~ 

• pl0 4 4 II 4 
j n z  L2 

®P 11 

tl 4 +-tl6I[ 4 +- t26 

Figure 4: Flowgraph with internal splits 

for extra storage. 

Because there are no more than K live variables at any time, and 

because a variable-span live at one time is never live at any other 

time (only related to other live ranges), the graph is trivially K- 

colorable. Any conflicts that arise at an instruction can be removed 

by an appropriate set of parallel copies before the instruction. That 

is, from the result of the spill phase, we can construct an interfer- 

ence graph in which every node 2 has degree less than K. Such a 

graph can be easily colored by Kempe's algorithm [14] (rediseov- 

2The situation is more complicated for machines with instructions 
that both overwrite some of the input operands and generate new 
result operands. (Neither the IA-32 (Pentium), MIPS, Sparc, or Al- 
pha have such instructions.) The interference graph after optimal 
spilling may have some nodes of degree k K, but these nodes won't  
have high-degree neighbors, so the graph will still be trivially col- 
orable by Kempe's algorithm. 
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ered 102 years later by Chaitin [5]). 

Having K "artificial" move instructions before every "natural" in- 

struction would be expensive. Given a move instruction u +- v, if 

u and v can be colored the same - assigned to the same register - 

then the move can be deleted. The register coalescing problem is 

to find a coloring so that as many moves as possible have source 

and destination colored the same. When we formulate the coloring 

problem, we say that u and v are move-related. 

The coloring/coalescing problem is significantly simpler than the 

problem handled by most graph-coloring register allocators, be- 

cause the spills have already been identified and the graph is guar- 

anteed K-colorable. Therefore it's worth stating exactly what the 
algorithmic problem is. 

Optimal register coalescing. Given an undirected graph of max- 

imum degree K -  1 (these are the interference edges), and an ad- 

ditional set of weighted edges (these are the move edges), find a 

K-coloring of the graph such that 

1. No two nodes connected by an interference edge have the 

same color; 

2. There is the lowest possible cost, where cost is the sum of the 

weights of those move edges whose endpoints are colored 

differently. 

This problem is clearly NP-complete; it reduces the general graph- 

coloring problem (though we won't show the reduction here). 

6. ALGORITHMS FOR COALESCING 
We have tried three approaches to the coalescing problem: iterated 

register coalescing [9], integer linear programming, and optimistic 

coalescing [17]. The first two don't work: iterated coalescing is 

fast but too conservative for the highly constrained problems that 

result from our optimal spiller, and our integer programs produce 

optimal solutions but not in a reasonable amount of time. 

Optimistic coalescing. Our third approach is based on Park and 

Moon's optimistic coalescing [17] and works as follows: We per- 

form aggressive coalescing (fi lh Chaitin), which may overconstrain 

the graph so that it becomes uncolorable. We do this coalescing in 

priority order, so that the expensive moves get coalesced first. Of 

course, we do not coalesce nodes that interfere- hence the need for 

priorities. 

We then do a Briggs-style [4] optimistic coloring: that is, we re- 

move nodes of degree < K and push them on a stack. When the 

graph contains only nodes of degree > K, we select a spill candi- 
date using Chaitin's heuristics and remove it from the graph, push- 

ing it on the stack. Briggs called this optimistic because there is 

always the chance that in the stack-popping (coloring) phase, sev- 

eral neighbors of the spill candidate will be colored the same, so 

that a color is available. 

If no color is available, Briggs would spill the node. Park and Moon 

point out that we can instead undo the coalescing that caused this 

node to have high degree. We go even further: in our context, 

because we start with a graph where all nodes have low degree, we 

know that it will always be possible to undo the coalescing of a 

spill candidate and color the nodes individually. 

However, we don't always need to undo this coalescing all the way. 

We first split the spill candidate into its constituent primitive nodes. 

Then we reconsider each move instruction, and coalesce it if the 

resulting node is colorable in the current context. 

7. BENCHMARKS 
We evaluate the method as follows: 

• How costly is the optimal spilling algorithm? 

® How many spills remain, compared to other algorithms? 

o How costly is the optimistic coalescing algorithm? We will 

not even perform measurements to answer this question; the 

algorithm is clearly linear-time (for any given K), and should 

be about as fast as Briggs's algorithm, which is known to be 

very efficient when implemented carefully. 

• How many moves remain, compared to other algorithms? 

It would also be interesting to know how much suboptimality is 

caused by splitting the problem into two phases, spilling and co- 

alescing. Answering this question would require an optimal al- 

gorithm for coalescing; although we have implemented one using 

integer programming, it blows up on any but the tiniest examples. 

We measure the performance of our algorithms on the Standard ML 

of New Jersey benchmark suite. These are not microbenehmarks; 

the mean size of the 14 programs is 10,117 instructions of gener- 

ated Pentium code (exclusive of spill-related instructions). 

7.1 Optimal Spilling 
Figure 5 shows the spill statistics. The first column ("Base") in 

each pair shows the number of spills produced by iterated register 

coalescing on the Pentium (6 general-purpose registers and 2 con- 

ventionally reserved); this is the measured performance of SML/NJ 

version 110.23. The second column ("Opt") shows the perfor- 

mance of our new algorithm - optimal spilling with optimistic co- 

alescing - on the Pentium. 

Within each column, the Spills and Reloads sections show the 

number of spill and reload instructions insetted into the program. 

In other words, these subcolumns are a count of the number of 

memory loads and stores from spill instructions. Some spills and 
reloads can be combined with addressing modes, and the number of 

instructions affected is showri in the top subcolumn. No distinction 

is made between instructions that use memory as a source operand 

and a destination, and those that use memory for a source only. The 

height of each column is 100. spills/(spills + nonspills). Figure 6 

aggregates the values across the columns. 

The base compiler uses static single-assignment (SSA) form, which 

divides each program variable into several temporaries based on the 

relation of definitions of the variable to the dominator tree of the 

program. Then a Chaitin-style spiller implements each temporary 

either entirely in registers or entirely in memory. Briggs [3] con- 

jectured that SSA was the best way to split the variables prior to 

coloring with coalescing. Our current paper can be viewed as a test 
of his conjecture; we have described an entirely different method 

for splitting the variables. 

A characteristic of SSA form is that there will typically be one spill 

and multiple reloads for any temporary that is spilled. The number 
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Figure 5: Comparison of static spill statistics for SML/NJ v110.23 (Base) using previous algorithm (SSA splitting and iterated register 
coalescing) and same compiler based on optimal spilling via integer linear programming (Opt) 
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Figure 6: Aggregate values of spill statistics from Figure 5 

of spill and reloads from the base compiler is 21% higher than the 

Opt version, however the number of spills in the Opt version is 

higher than the base compiler. This can easily be explained as the 

ILP model is splitting a live range into multiple parts, some subset 
of which are implemented in registers and the others in memory. In 

other words, there is only one transition from register to memory in 

the base compiler, but multiple transitions in the ILP model. 

A different story applies to the Reloads column. The Opt column 

reloads less than half as many variables as the base compiler, as the 

ILP model effectively keeps active temporaries in registers. 

The Memory instructions column demonstrates that the optimal 

spilling has done a significantly better job at keeping temporaries 
in registers. 

7.2 Optimal-spill performance 
Figure 7 shows the size of the AMPL model and the speed of gen- 

erating an optimal solution. Each dot in these figures represents 

a cluster, and each benchmark is made up of multiple clusters. A 

cluster is a call graph in which every function in the graph has at 

1 ~ .  o 
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100, 
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Figure 7: Solve time versus program points. 
The circles show the performance of our algorithm; the polygon 

shows the approximate performance of Goodwin's algorithm 
(as reported by him [11]) on a different data set. 

least one call-edge with another function in the graph. Since this 

is a continuation passing style (CPS) compiler, there are usually 

a large number of clusters for each benchmark. Superimposed on 

. . . .  9,~ ~ ¸  ~ 
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Splits 

Base Opt 
barnes-hut 391 326 

boyer 489 254 

count-graphs 223 215 

fft 145 212 

icfpO0 1413 1008 

knuth-bendix 776 648 

lexgen 1767 1352 

life 230 203 

logic 201 163 

mandelbrot 26 16 

mlyacc 3184 2559 

ray 403 311 

simple 1288 930 
tsp 292 291 

Non-splits 

Opt 

7430 

16495 

3705 

3669 
19332 

7912 

14543 

2118 

3653 

262 
39267 

4735 

15133 
3395 

Instructions 
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23 

65 

17 

17 

19 

12 

11 

10 

22 

16 

15 

15 

16 
12 

Geometric Mean 17 

Figure 8: Number of splits and instructions 

scatter plot is a crude bounding box obtained from Figures 3.4 in 
Goodwin's thesis [1 I] .3 

The most important result from Figure 7 is that every block-cluster 

of fewer than 5000 instructions can be solved within 30 seconds. 
The complexity is close to linear (O(nl'3), taking the least square 

fit), and is significantly better than the O(n 2"5) reported by Good- 

win and Wilken [12] for general-purpose processors. Goodwin and 

Wilken's performance is so much worse because they compute op- 

timal coloring via ILP, whereas we compute only optimal register 
pressure (assuming that the cost of coalescing will be insignificant). 

Kong and Wilken [15] get much better performance (though they 

do not report any empirical complexity result), and they also solve 

the whole register allocation problem. Our number of constraints 
grows almost linearly with the program size (O(n1"3)) which is sig- 

nificantly better than the models solved by Wilken et al. [12, 15]. 

7.3 Register Allocation 
Figure 8 shows the number of splits (uncoalesced moves) remain- 
ing in the SSA-based compiler.with iterated register coalescing 

(Base), and the number remaining using ILP and optimistic co- 

alescing (Opt). The third column is the number of non-split in- 

structions in the Opt compiler; the corresponding column for the 
Base compiler should be similar. ILP with optimistic coalescing 
produces programs in which 1 in 17 instructions are moves, and 

the static number of splits in all but one benchmark is better than 

our SSA-based splitting with iterated register coalescing. We don't 

know how many of these are required by the two-address nature of 

the instruction set or by other constraints - that is, we don't know 
how many moves an optimal coalescer would leave. However, 

we have measured the overall performance of several standard ML 

benchmarks using our old algorithm (SSA-based splitting with iter- 

ated register coalescing [9]) and our new one (optimal spilling with 

optimistic coalescing). The results (in Figure 9) show a speedup of 
9.5% improvement in execution speed (taking the geometric mean 
of ratios). Some of the benchmarks have a significant improvement 

in static spills (Figure 5) but no speedup; perhaps this is because 

we weight the spill costs by static estimation, and perhaps dynamic 

3We believe the machine on which Goodwin got his results 
(HP9000/770) is about as fast as our machine (SGI Origin 2100 
@ 250 MHz). 

Benchmark 
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Figure 9: Execution speed 

Iterated Register 

Coalescing 
Liveness and 

Interference graph 8.19* 

Iter. reg. coalesce 27.11" 

Insert load/stores 9.27* 

TOTAL (seconds) 44.57 

Optimal Spilling, 
Optimistic Coalescing 

Liveness 1.3' 
I/O to AMPL 82.7* 

AMPL 419.2 t 

CPLEX 594.1 ~ 

I/O from AMPL 30.7* 

Insert load/stores 1.8" 
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Interference graph 30.6* 
Optimistic coalesce 360.4* 

TOTAL (seconds) 1522.0 

Figure 10: Time spent in the register allocators 
*433 MHz Pentium II ~250 MHz SGI Origin 2100 

profiling would significantly improve the performance of the opti- 

mal spiller. 

Figure 10 compares the compile-time cost of the old (iterated reg- 
ister coalescing) algorithm to the new one, totalled over register- 

allocating all but one of the benchmark programs (153,836 ma- 

chine instructions). We have omitted the ratio-regions benchmark 
- which produces the uppermost point of Figure 7 - but with it the 
total times would be 57 and 11306 seconds, respectively. The new 

allocator is only a prototype, however, and is not highly engineered 

for efficiency. 

8. RELATED WORK 
Goodwin and Wilken [12] address several optimization problems 
such as live range splitting, register assignment, spill placement, 

rematerialization, callee/caller-save register management, and copy 

elimination, within the single framework of 0-1 integer linear pro- 

gramming. They do not handle CISC instruction selection, though 

our new result implies that instruction selection could be incorpo- 

rated into their framework. 

Our optimal spilling algorithm can handle problem sizes at least an 
order of magnitude larger than theirs, as figure 7 shows. We believe 

this is an important benefit of separating spilling from coloring. 

Goodwin and Wilken's algorithm has a different (and incompara- 
ble) optimality guarantee than ours. They guarantee an optimal set 

of spills and register-register moves, given a predetermined set of 
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potential split points. We guarantee an optimal set of spills (but 

not optimal moves) over all possible split points. In principle, one 

could run their algorithm on an input that specifies a split point 

at every possible place, but we believe the resulting problem size 

would swamp their algorithm in practice. 

Each optimization performed by Goodwin and Wilken can be done 

in one of the two phases that we have described: 

Optimal spilling 

o Spilling 

• Live range splitting 

® Callee/caller-save management 

® Rematerialization 

Optimistic coalescing 

® Register assignment 

o Copy elimination 

We did not implement rematerialization, but it should fit naturally 

into our spilling model. 

Kong and Wilken [15] extend the work of Goodwin and Wilken to 

handle irregular architectures and in particular the IA-32 instruction 

set, but their treatment of addressing modes appears to be much 

weaker than ours. Many of the extensions deal with special aspects 

of register assignment on the Intel architecture, such as the penalty 

in code size for using addressing modes involving registers %esp 

and %ebp, and the use of short (8 and 16 bit) registers; we do not 

deal with these issues. They also consider the insertion of splits 

before commutative operations, i.e., a commutative operation such 

as $3 +-S1 + $ 2  could be translated by either moving S l  or S2 
into S3 and performing the appropriate two address instruction - 

the choice is made by the linear program. They do not consider the 

possibility of inserting splits at any program point. 

Lueh, Gross, and AdI-Tabatabai [16]. Fusion-based register al- 

location breaks up register allocation into a per-region basis, where 

the simplest region is a basic block. Spilling is performed inside 

the region so that the resulting interference graph is simplifiable. It 

may be necessary to spill transparent live ranges for the graph to 

be simplifiable, but the actual spilling of transparent live ranges is 

delayed. A transparent live range is one that is live on entry and 

exit to a region and is not used within the region. It is similar to 

members of our Copy set. As neighboring regions are fused to- 

gether, each region can be individually colored by inserting splits 

for all the transparent live ranges at the boundaries of the region 

and coloring each region individually. Of course this naive strat- 

egy is undesirable, and great effort is made to stretch the lifetimes 

of transparent live ranges in memory or registers across the multi- 

ple regions being fused together. This is precisely what our linear 

programming phase does, but with a lot less bookkeeping, and our 

version is simpler to specify. 

Chow and Hennessy [6] use priority-based coloring before in- 

struction selection. Higher-priority temporaries are more impor- 

tant to keep in registers. They assign colors to the interference 
graph in order of priority; when a temporary is uncolorable, they 
use a greedy heuristic to split it into smaller live ranges. Some of 

these live ranges will be colorable (with copies between one and 

the next, if they have different colors), and some will spill. This 

algorithm is not particularly simple to implement, makes no guar- 
antee of optimality, and they describe results only for the relatively 

unconstrained problem of a 32-register RISC machine. 

9. CONCLUSIONS 
We have formulated the register allocation problem for CISC archi- 

tectures with few registers into one involving optimal placement of 

spill code, followed by optimal register coalescing. We have given 

some empirical evidence that dividing the problem into these two 

phases does not significantly worsen the overall quality of the so- 

lution, but a full demonstration of this fact would require optimal 

solutions to the overall problem that no one has been able to cal- 

culate. We have demonstrated an efficient algorithm using integer 

linear programming for optimal spill-code placement. 

The optimal coalescing problem has a significantly simpler struc- 

ture than the general register-allocation problem, as the spilling has 

already been taken care of, and every node in the graph has small 

degree. Because of this, our adaptation of Park and Moon's opti- 

mistic coalescing algorithm is simpler and stronger than the origi- 

nal. 

Although optimistic coalescing performs well, it is not optimal. 

We have formulated the optimal coalescing problem (at the end of 

section 5) in such a simple way - significantly simpler than tradi- 

tional register-allocation problems that require spilling - that other 

researchers can continue to investigate optimal coalescing. 

Programs compiled with optimal spilling followed by optimistic 
coalescing run about 9.7% faster than when compiled with SSA- 

based splitting followed by iterated register coalescing (though this 

number is based on an inadequate set of small programs). This 

refutes a conjecture by Briggs [3] that the splits induced by SSA 

would be appropriate for register allocation and spilling. 
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Appendix: AMPL model for spilling 

model; 
set Vats; set Pts; 
set Copy within (Pts cross Pts cross Vats); 
set Copy2 within (Pts cross Pts cross Vars cross Vats); 
set Mutate within (Pts cross Pts cross Vars); 
set MutateReg within (Pts cross Pts cross Vars); 
set Unary within (Pts cross Pts cross Vars cross Vars); 
set Binary within (Pts cross Pts cross Vars cross Vars); 
set UseUp2 within (Pts cross Pts cross Vats cross Vars); 
set UseUp within (Pts cross Pts cross Vats); 
set UseUpReg within (Pts cross Pts cross Vats); 
set Nullaty within (Pts cross Pts cross Vars); 
set NullaryReg within (Pts cross Pts cross Vars); 
set Branch within Pts; 
set Connect within (Pts cross Pts); 
set Exists within (Pts cross Vars); 

param weight {Pts}; param K {Pts}; 
param loadCost; param storeCost; param moveCost; param instrCost; 

var inReg {Exists} binary; vat inMem {Exists} binary; 
var load {Exists} binary; var loadt {Exists} binary; 
vat store {Exists} binary; 

subject to BRANCH {(p,v) in Exists : p in Branch}: 
load[p,v] + store[p,v] = 0; 

subject to EXISTS {(p,v) in Exists}: 
loadt[p,v] + load[p,v] + inReg[p,v] + store[p,v] + inMem[p,v] = 1; 

subject to REGISTERS_K1 {p in Pts): 
sum { (p,v) in Exists } 

(inReg[p,v] + store[p,v]) < K[p]; 

subject to REGISTERS_K2 {p in Pts}: 
sum { (p,v) in Exists } 

(inReg[p,v] + load[p,v] + loadt[p,v]) < K[p]; 

subject to COPY_PROPAGATE {(pl,p2,v) in Copy union Mutate}: 
load[pl,v] + inReg[pl,v] = storelp2,vl + inReglp2,v]; 

subject to COPY2_PROPAGATE {(pl,p2,src,dst) in Copy2}: 
load[p 1,src] + inReg[p t,src] = store[p2,dst] + inReglp2,dstl; 

subject to NULLARY_REG {(pl,p2,v) in NullaryReg}: 
store[p2,v] + inReg[p2,v] = 1; 

subject to USEUP2{(pl, p2, srcl, src2) in UseUp2}: 
loadt[pl,srcl] + load[pl,srcl] + inReg[pl,srcl I + 
loadtlpl,src2] + load[pl,src2] + inReg[pl,src2] _> 1; 

subject to USEUP..IN_REG1 {(pl,p2,v) in UseUpReg}: 
loadt[pl,v] + load[pl,v] + inReg[pl,v] = 1; 

subject to BINARY_PROPDST {(pl,p2,src,dst) in Binary}: 
toad[pl,dst] + inReg[pl,dst] = store[p2,dst] + inReg[p2,dst]; ............... 

subject to BINARY_IN_REG {(p 1,p2,src,dst) in Binary}: 
loadt[pl,src] + load[pl,src] + inReg[pl,src] + 
Ioadt[pl,dst] + load[pl,dst] + inReg[pl,dst] > 1; 

subject to MUTATE_PROPDST {(pl,p2,dst) in Mutate}: 
load[pl,dst] + inReglpl,dst] = store[p2,dst] + inReg[p2,dst]; 

subject to MUTATE_REG 1 {(pl,p2,dst) in MutateReg}: 
load[pl,dst] + inReg[pl,dst] = 1; 

subject to MUTATE.REG2 {(p 1,p2,dst) in MutateReg}: 
store[p2.dst] + inReg[p2,dst] = 1; 

subject to UNARY_B INARY_IN_REG { (p t ,p2,src,dst) in Unary }: 
loadt[pl,sre] + Ioad[pl,src] + inReg[pl,src] + 
store[p2,dst] + inReg[p2,dst] > 1 ;  

minimize COST: 
(sum {v in Vars, p in Pts: (p,v) in Exists} 

weight[p] * ( loadt[p,v] * (loadCost + 3 * instrCost) + 
load[p,v] * (loadCost + 3 * instrCost) + 
store[p,v] * (storeCost + 3 * instrCost))) 

+ (sum {(pl,p2,src,dst) in Binary} 
weight[pl] * 
( (inMem[pl,src] + store[pl,src]) * (loadCost + instrCost) + 
(1 - (inReg[p2,dstl + store[p2,dst])) * 0.8 * 

(loadCost + storeCost + instrCost))) 
+ (sum {(pl,p2,src,dst) in Copy2} 

weight[pl] * 
((inMem[pl,src] + store[pl,src]) * (loadCost + instrCost) + 
(1 - (inReg[p2,dst] + store[p2,dst])) * (storeCost + instrCost))) 

+ (sum {(pl,p2,src,dst) in Unary} 
weight[p 1] * 
( (inMem[pl,src] + store[pl,src]) * 0.8 * (loadCost + instrCost) + 
(1 - (inReg[p2,dst]+storelp2,dst])) * 0.8 * (storeCost+instrCost))) 

+ (sum {(pl,p2,dst) in Mutate} 
weight[pl] * ( (1- - (inReg[p2,dst] + storelp2,dst])) * 0.8 * 

(loadCost + storeCost + instrCost))) 
+ (sum {(pl,p2,dst) in Nullary} 

weight[pl] * ( (1 - (inReg[p2,dst] + store[p2,dst])) * 0.8 * 
(storeCost + instrCost))) 

+ (sum {(pl,p2,src) in UseUp} 
weight[pl] * 
( (inMem[pl,src] + store[pl,src]) * 0.8 * (loadCost + instrCost))) 

+ (sum {(pl,p2,srcl,src2) in UseUp2} 
weight[p 1] * 
( (inMem[pl,srcl] + store[pl,srcl]) * 0.8 * (loadCost + instrCost)+ 
(inMem[pl,src2l + store[pl,src2]) * 0.8 * (loadCost + instrCost))); 
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