
Optimal Spilling for CISC Machines with Few Registers

Andrew W. Appel
Princeton University

appel@cs.princeton.edu

Lal George
Lucent Technologies

Bell Laboratories

george @ research, bell-labs.corn

ABSTRACT
Many graph-coloring register-allocation algorithms don't work well

for machines with few registers. Heuristics for live-range split-

ting are complex or suboptimal; heuristics for register assignment

rarely factor the presence of fancy addressing modes; these prob-

lems are more severe the fewer registers there are to work with. We

show how to optimally split live ranges and optimally use address-

ing modes, where the optimality condition measures dynamically

weighted loads and stores but not register-register moves. Our al-

gorithm uses integer linear programming but is much more efficient

than previous ILP-based approaches to register allocation. We then

show a variant of Park and Moon's optimistic coalescing algorithm

that does a very good (though not provably optimal) job of remov-

ing the register-register moves. The result is Pentium code that is

9.5% faster than code generated by SSA-based splitting with iter-

ated register coalescing.

1. INTRODUCTION.
Register allocation by graph coloring has been a big success for

machines with 30 or more registers. The instruction selector gener-

ates code using an unlimited supply of temporaries; liveness analy-

sis constructs an interference graph with an edge between any two

temporaries that are live at the same time (and thus cannot be al-

located to the same register); a graph coloring algorithm finds a

K-coloring of the interference graph (where K is the number of

registers on the machine). If the graph is not K-colorable, then

some nodes are spilled: the temporaries are implemented in mem-

ory instead of registers, with a cost for loading them and storing

them when necessary. Graph coloring is NP-complete, but simple

algorithms can often do well.

An important improvement to this algorithm was the idea that the

live range of a temporary should be split into smaller pieces, with

move instructions connecting the pieces. This relaxes the inter-

ference constraints a bit, making the graph more likely to be K-

colorable. The graph-coloring register allocator should coalesce

two temporaries that are related by a move instruction if this can be

done without increasing the number of spills.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

PLDI 2001 6/01 Snowbird, Utah, USA
© 2001 ACM ISBN 1-58113-414.2/01/06..,$5.00

Unfortunately, this approach has not worked well for machines like

the Pentium, which have K = 6 allocable registers (there are 8 regis-

ters but usually two are dedicated to specific purposes). What hap-

pens is that there will typically be many nodes with degree much

greater than K, and there is an enormous amount of spilling. Of

course, with few registers there will inevitably be spilling, as the

live variables cannot all be kept in registers; but if a variable is

spilled because it has a long live range, then it stays spilled even

(for example) in some loop where it is frequently used. On our

test suite of 600 basic-block clusters comprising 163,355 instruc-

tions, iterated register coalescing produces 84 spill instructions for

a 32-register machine, but 22,123 spill instructions for an 8-register

machine. This is about 14% of all instructions, which is worth the

trouble to improve.

In the last few years some researchers have taken a completely dif-

ferent approach to register allocation: formulate the problem as an

integer linear program (ILP) and solve it exactly with a general-

purpose ILP solver. ILP is NP-complete, but approaches that com-

bine the simplex algorithm with branch-and-bound can be success-

ful on some problems. Unfortunately, the work to date in optimal
register allocation via ILP has not quite been practical: Goodwin's

optimal register allocator can take hundreds of seconds to solve for

a large procedure [11, 12]. Goodwin has formulated "near-optimal

register allocation (NORA)" as an ILP; our solution can be viewed

as a different approach to near-optimal register allocation.

A two-phase approach. Our new approach decomposes the regis-

ter allocation problem into two parts: spilling, then register assign-

ment. Instead of asking, "at program point p, should variable v be

in register r?" we first ask, "at program point p, should variable

v be in a register or in memory?" Clearly, this is a simpler ques-

tion, and in fact we can formulate an integer linear program (ILP)

that solves it optimally and efficiently (tens of milliseconds). This

phase of register allocation finds the optimal set of splits and spills.

Not only does our algorithm compute where to insert loads and

stores to implement spills, but it also optimally selects addressing

modes for CISC instructions that can get operands directly from

memory. For example, the add instruction on the Pentium takes

two operands s and d, and computes d +- d + s. The operands can

be in registers or in memory, but they cannot both be in memory.

On a modern implementation of the instruction set, the instruction

mix] ~-- mix] + s is no faster than the sequence of instructions r +-

m[x]; r ~ r + x ; mix] +- r. However, the latter sequence requires an

explicit temporary r, and if there are many other live values at this

point, some other value will have to be spilled; the former sequence

wouldn't require the spilling of some other value. Therefore, it is

243

important to make use of the CISC instructions.

The second phase is to allocate the unspilled variables to registers

in a way that leaves as few as possible register-register moves in

the program. This is difficult to do optimally, but we will show an

efficient algorithm can get very good results.

In judging our decomposition into two phases, there are three im-

portant questions to ask:

1. When we decompose the problem into two subproblems (spilling

and coloring) and solve each subproblem optimally, does that

lead to an optimal solution to the original problem? We will

present empirical evidence that the solutions are excellent,

but there is no theoretical reason that they will be optimal.

2. Can the spilling subproblem be solved optimally and effi-

ciently? We will show that it can, using integer linear pro-

gramming. For the entire class of allocators that do not use

rematerialization, and keeps no more than one copy of each

variable at a time, our algorithm provably generates the least

number of (weighted) loads, stores, and memory-operand in-

structions. Rematerialization can be easily incorporated into

our model, but we have not yet done so; variables that live in

several locations at once require further research - our initial

attempts produce integer linear programs that are too costly

to solve.

3. Can the coloring subproblem be solved optimally and effi-

ciently? We can do it optimally but far too slowly using

integer programming; we can do it quickly and adequately

(though suboptimally) using optimistic coalescing.

2. OPTIMAL SPILLING V I A I L P
We model the register-spilling problem as a 0-1 linear program: an

optimization problem with constraints that are linear inequalities,

a linear cost function, and the additional constraint that every vari-

able must take the value 0 or 1. We use AMPL [8] to describe

and generate the linear program, and CPLEX [7] to solve it. The

AMPL compiler derives an instance of the optimization problem by

instantiating a mathematical model with problem-specific data, and

feeds the resulting linear program (in a suitable form) to a standard

off-the-shelf simplex solver such as CPLEX.

The AMPL model consists of variable, set, and parameter declara-

tions, and templates to generate the constraints for the linear pro-

gram. The sets, in their simplest form, are a symbolic enumeration

and declared in the model using a declaration similar to:

set T ;

set R;

Sets may also be built from cartesian products of other sets. Vari-

ables are usually indexed over sets, so a declaration such as:

var x {T,R};

defines a set of variables Xi,] where i ranges over T and j over R.

Parameter declarations inject concrete values into the model, so a

declaration such as:

param cost {T};

defines a parameter cos t that is indexed over elements in the set T.

The equations are generated from templates and are derived from

data : I
~t T = {tl t2}
set R : {rt r2} (
param cost = {(tl 3) (t2 4)}]

model :
set T;

set R;

var x {T,R};

param cos t{T};

Vt E 7'...

l
Xtz,rl +Xtz,r2 k 4

Figure h AMPL modeling system

logical connections among the sets. For example:

Vt E T . ~ Xt,r _> cost[t]
rER

If T = {q t2} and R = {rl r2} then, the template above will gen-

erate two equations, one for each member of T:

Xtt,rl + Xtt,r2 ~_ cost[q]
Xt2,rl + Xt2,r2 >_ cost[t2]

This AMPL example is illustrated in Figure 1 which shows the

model, data, and system of linear equations that is generated.

Set Declarations: The description of our ILP formulation of op-

timal spilling begins with the various set declarations required to

characterize the input flowgraph containing Intel IA-32 instruc-

tions. At the lowest level, our model contains a set of symbolic

variables V corresponding to temporaries in the program, and a set

P of points within ttle flowgraph. There is a point between any two

sequential instructions. A branch instruction terminates in a single

point that is then connected to all points at the targets of the branch.

In the AMPL model, these sets are declared simply as:

set V;

set P;

The remaining data declarations deal with liveness properties and

a characterization of the type of IA-32 instructions between two

points. There are several different classes of instructions in the IA-

32 instruction set, such as two-address binary instructions (d ~ d @ s),

and unary instructions (d +-- f(s)), for example. If there is an add

instruction v2 +-- v2 + Vl between program point Pl and a successor

point P2, with source variable vl and destination variable v2, we

model this by writing, (Pl,P2, vb v2) E B i n a r y , and similarly for

Unary . That is, set B i n a r y is a subset of P x P x V x V and is

declared in the AMPL model using: l

set Binary C (P x P x V x V) ;

set Unary C (P×P×VxV) ;

1AMPL actually uses the word c r o s s instead of the symbol x,
and w i t h i n instead of C. The actual AMPL code is shown in the
appendix.

244

For any variable vl that is live at a point Pl, we write (Pl ,Vl) 6

E x i s t s . The E x i s t s set is similar to the live set but not iden-

tical: if an instruction between points Pl and P2 produces a result

v that is immediately dead, then v is nowhere live but (p2,v) E

E x i s t s . If a variable vl is live and carded unchanged from point

Pl to P2, then we say that (Pl,P2,Vl) 6 Copy. If from point Pl

to point P2 variable Vl is copied to variable v2 (e.g., by a move

instruction), we write (Pl, P2, vl, v2) E Copy2.

set Exists C (PXV) ;

set Copy C (PxP×V) ;

set Copy2 C (P×P×VxV) ;

The compiler will sometimes refer to specific hardware registers

(%eax, %esp), either because a machine instruction requires

an operand in a specific register or because of parameter-passing

conventions. Now consider the instruction:

movl %eax, %v

that moves the contents of register %eax to the variable v. We

model this as an instruction that takes no argument (because no

temporary is a source operand) and produces a result into v. B i n a r y

instructions (such as r aov l) can take their source or destination

operands from registers or memory, but they cannot both be from

memory. In this case, since the source %eax is known to be a reg-

ister, the destination can be a register or memory. The class of in-

structions that take no argument and produce a register or memory

result we call Nu 11 a r y . In contrast, in the instruction

movl 4 (%esp) , %v

that moves the contents of memory at address (%esp+4) to v,

the operand v must be a register. The instruction class that take no

argument and produce a register-only result we call Nu l l a r y R e g .

set Nullary C (PxPxV) ;

set NullaryReg C (PxPxV) ;

Some instructions accomplish v +-- f(v), where v can be in a register

or memory (e.g. a d d l (S 2 5 6 , %v), that adds an immediate to

the variable v); others require that v must be in a register and noth-

ing else (e.g. a d d l (4 (%esp) , %v)). We call these M u t a t e

and M u t a t e R e g respectively:

set Mutate C (P x P x V) ;

set MutateReg C (PxPxV) ;

For cases where no results are produced, the instruction may take

two operands of which at most one can be in memory (e.g., the com-
pare instruction); or take one operand which can be either a regis-

ter or memory (e.g. a d d l (%v, %eax)) ; or take one operand

that must be in a register. We call these three instruction-classes

UseUp2, UseUp, and UseUpReg respectively:

set UseUp2 C (P x P x V x V) ;

set UseUp C (P x P x V) ;

set UseUpReg C (P × P × V) ;

If there is a branch instruction between Pl and P2, then it is nee-

essary to know about points such as P2, associated with a branch,

as we cannot insert spill or reload instructions at P2. We therefore

declare a set of branching points:

set Branch C P

Consider a branch instruction between points Pl and P2 that branches

to/)4 if vl = O, but otherwise falls through to P3. Suppose v 3 is

live throughout, and Vl is live only along the successor containing

P4-

i f (Vl : o)
®P2

®P3 °P4
v3 E l i v e Vl v 3 6 1 i v e

It is necessary to propagate this liveness information along the edges

of the branch, and we represent this by generating:

(Pl,P2,Vl) 6 UseUp;

{ (Pl,P2, V3), (p2,P3, V3), (p2,Pa, v3),
(m ,p2 , v l) , (p2 ,pa , v l) , } C Copy;

Note that vl is used and propagated between the points Pl and P2,

and the other variables are propagated along the appropriate branch

edges.

Special cases of instructions Consider an add instruction whose

destination is known to be in memory: mix] ~ mix] +v. This could

occur because x is the address of an array element, for example.

Then v must be in a register, and x must be in a register. We can

model this as:

(p! ,p2,x) E UseUpReg

(Pl ~P2~ v) 6 UseUpReg

Similarly, the instruction v +-- v + mix] is modeled as:

(Pl, PZ, v) 6 MutateReg

(Pit p2~X) 6 UseUpReg

Or consider the case where the source operand is a constant, v

v+c:

(pl,P2,V) 6 Mutate

There are many variations on this theme, but the point is that each

special case of an instruction (where one of the operands is forced

to be in memory, or in registers, or constant) reduces to a case that

can also be described in the model. The compiler does this reduc-

tion before generating the data set sent to AMPL.

Parameter Declarations: The model declares several scalar and

vector parameters (that are indexed symbolically using sets such

as P). Each point in the program has an estimated frequency of

execution that is used to weight the cost of spill or reload instruc-

tions in our optimal spilling framework. We obtain the frequencies

by static estimation from branch predictions, propagated using Kir-

choff 's laws as described by Wu and Larus [18]; better frequencies

could be obtained by dynamic profiling. In our model we have:

param weight {P) ;

to associate the frequency of execution with each point.

At points where the compiler has explicitly used a machine reg-

ister, e.g., m o v l (%eax , %v), register %eax is not available for

coloring temporaries live at that point. We communicate this to the

model via a parameter K:

245

fac: pushl

movl

mov]

movl

testl

je

L2: imull

decl

jnz

Li: movl

leave

ret

%ebp

%esp, %ebp

8(%ebp), tl

#i t2

tl tl

L1

tl t2

tl

L2

t2 %eax

;; save frame pointer

;; new frame pointer

;; n

; ; fac : = 1

;; cc := n A n

;; if n:0 got• L1

; ; fac :: n * fac

;; n :: n - 1

;; if n <> 0 got• L2

; ; return register

; ; done

Figure 2: Intel IA-32 instructions for the factorial function

param K {P};

where K [p] is the number of available registers at point p.

Finally we have some scalar cost parameters:

param Goad, Cstore, Groove, Cinstr

C]oad, Cstore and (?move are the cost of executing a load, store, and

move instruction. Cinstr is the cost of fetching and decoding one

instruction byte. Presumably, Cload > Cstore > Cmove > Cinstr. (In

fact, Cinstr really measures the cost of a slight extra pressure on the

instruction cache.)

Example. Figure 2 shows the Intel IA-32 instructions that may be

generated for the factorial function, and Figure 3 shows the cor-

responding flowgraph annotated with points surrounding each in-

struction. The AMPL sets generated are:

set P := {Pl P2 P3 ..- PI4 P15}

set V :: {h t2}

set Branch := {/97 Pi[}

set NullaryReg := {(P3 P4 tl)}
set UseUp2 := {(P5 P6 tl t2)}

set UseUp := {(P8 P9 tl) (PI2 PI3 t2)}

set Mutate := {(p9 PI0 tl)}

set MutateReg := {(P8 P9 12)}

set Binary := {(P8 P9 tl t2)}

set Copy : =

{(p4 P5 tl) (P5 P6 tl) (P6 P7 tl) (P7 P8 tt) (P8 P9 tl)
(PI0 Pn tl) (pll P8 tl) (P5 P6 t2) (P6 P7 t2)
(P7 P8 t2) (P9 Pl0 t2) (Pl0 Pll t2) (Pll P8 t2)}

set Exists : =

{(P4 tl) (P5 tl) (P6 tl) (P7 tl) (P8 tl) (P9 tl) (Pl0 tl)
(Pll tl) (P5 t2) (P6 t2) (P7 t2) (P8 t2) (P9 t2) (PI0 t2)
(PI! t2) (Pl2 t2) (PI3 t2)}

The imull instruction is not classified as a Binary instruction

as the destination must be a register operand, and cannot be mem-

ory, whi!e the source operand can be in either class. Therefore,

i m u l l is classified as M u t a t e R e g for the destination operand

and Us eUp for the source operand.

Missing in the data are the concrete parameters such as the execu-

tion frequency of each point, the costs, and the value of K at each

point. If we assume that %esp and %ebp are dedicated, then the

value of K at all points in the flowgraph is 6, except at point P13

where %eax is defined and the value of K is 5.

3. VARIABLES AND CONSTRAINTS
Spilling is the insertion of loads and stores between the instructions

of the program. Each instruction of our program spans a pair of

f a c :
•Pl

pushl %ebp
®p2

movl %esp, %ebp

®P3
movl 8(%ebp),tl

op4
movl #1,t 2

~P5

testl tl,tl

®P6
je L1

oR7

L I :

aPl2
movl t2, %eax

•P13
leave

°Pl4
r e t

ePl5

~2 :

®P8
imull tl,t 2

®P9

decl tl

•Pl0
j nz L2

• Pl I

Figure 3: Flowgraph annotated with points

....... /

points, and "between the instructions" means "at a point." Thus,

we will insert loads/stores at points, not between them.

Consider a variable v live at a program point p. The variable v

could:

® arrive at p in a register and depart in a register - rp,v,

® arrive in memory and depart in memory - rap,v,

® arrive in a register and depart in memory - Sp,v (for stored),

• or arrive in memory and depart in a register- lp,v (for loaded).

A solution to the spilling problem is just the description of where

the loads and stores are to be inserted. We model this as follows:

vat r {Exists} binary;

var m {Exists} binary;

vat l {Exists} binary;

var s {Exists} binary;

This says that for each (p,v) in E x i s t s - that is, for each variable

v live at a program point p - there are linear-program variables rp,v,
rnp,v, lp,v, and Sp,v; the b i n a r y keyword says that the variable

must take on the value 0 or 1. We wish to find the values of these

variables subject to a set of linear constraints.

Exists: The first constraint is that exactly one of these variables is

set for any p and v:

V(p,v) 6 E x i s t s . lp,v + rp,v +Sp,v +me,v = 1

246

Branch: At a branch-point it's not possible to load or store, be-

cause we can't insert an instruction after a conditional-branch in-

struction but before its targets.

V(p,v) E Exists s.t. p 6 B r a n c h , Ip,v+Sp,v : 0

Coloring: At any point p, all the stores can be performed before all

the loads. However, the variables to be stored originate in registers,

therefore the sum of variables that are already in registers and those

that are to be spilled must be no more than the number of registers

available for coloring at p.

V p C P . K[p] > E rp,v+Sp,v
(p,v)6Exists

Similarly, after all the loads have been done at a point, the number

of variables in registers should be no more than K.

V p C P . K[p] >_ ~ rp,v+lp,v
(p,v)6Exists

Copy propagation: If a variable v is copied from Pl to P2, then

either it departs from Pt in a register and arrives at P2 in a register,

or it departs from Pl in memory and arrives at P2 in memory. If it

departs from Pl in a register it must have already been in a register

(i.e. rp~,v = I), or was loaded into a register at Pl (lpt,v = 1). If it

arrives at P2 in a register, it can either continue in a register at P2

(rp2,v = 1) or it can be stored at P2 (sp2,v = t):

V(pl,P2,V) e Copy. lpl,v + rp,,v = Sp2,v + rp2,v

The constraint s m,v + mm,v = lp2,v + rnp2,v is redundant and must

not be specified (redundant constraints will - with the inevitable

rounding errors - overconstrain the problem so that the LP solver

fails to find a solution).

If a variable Vl at Pt is copied to a variable v2 at P2, then if it

departs Vl in a register it must arrive v2 in a register. The constraint

is similar to the C o p y case except that two variables are involved.

~/(pl,P2,Vl,V2) 6 Copy2.

lpl ,v, + rpl ,Vl = Sp2,v2 + rp2,v2

3.1 Specifying the CISC instructions
On the IA-32 (x86, Pentium), i f there is a B i n a r y instruction (e.g.,

two-operand add) between PI and P2, operating on source variable

vl and destination variable v2, then at least one of Vl and v2 must

depart Pl in registers:

V(p l ,P2 ,V l ,v2) 6 Binary
Ip,,v, + rpt,v, + lpl,v2 + rpl,v2 >_ 1

Furthermore, the destination operand v2 must be in registers depart-

ing Pl if and only if it is in registers arriving P2:

V(pl ,p2,vl ,V2) 6 Binary

lp, ,vz + rp, ,vz = sp2,v~ + rpz,vz

There are similar constraints for the other classes of instructions, as

shown in the appendix. They say that the result of a Nu l l a r y R e 9

must arrive P2 in a register; at least one operand of a U s e u p 2 must

be in a register; the operand of a g s e U p R e g must be in a register;

the operand of a M u t a t e must depart Pl in the same storage class

as it arrives P2; the operand of a M u t a t e R e g must depart Pt in a

register and arrive P2 in a register; and that at least one operand of

a u n a r y must be in a register.

These constraints are all Pentium-specific, but by illustrating how

easily they are specified we hope to convince the reader that many

kinds of CISC instructions could be specified within this frame-

work.

3.2 Objective function
The objective function of our linear program calculates the esti-

mated runtime cost of the spill-related loads, stores, and CISC operands.

The first component of the cost comes from loads and stores:

minimize COST:

(Z(p,v)eExi~ts
weightp((Cload + 3Cinstr)lp,v+

(Cstore + 3Cinstr)Sp,v))

The cost of executing a load is Cload. The cost of a 3-byte load

instruction (in i-cache occupancy) is 3Cinstr. For each point p and

variable v such that there is a spilt-load of v at p we incur this cost;

and similarly for stores.

If the destination operand of a Binary instruction is in memory,

we incur a cost Cload and Cstore, and one extra byte of Cinstr cost to

specify the operand. If the source operand is in memory, then we

incur a load cost and one instruction-byte cost:

"Jff (E (p I ,p2,Vl ,v2)EBinary
weightpl ((Cload + Cins t r)(mpl ,, + Sp, ,v~)

+ (C~oa~ + Cstore + Cins t r) (mp2,v2 + lp2,v2)))
~- . . .

There are similar clauses to account for the cost of memory operands

of the other classes of instructions: U n a r y , M u t a t e , and so on.

3.3 Temporary loads
When we execute a load instruction to bring a value from mem-

ory to registers, the value becomes accessible from both places,

and similarly when we store from registers to memory. The model

we have described does not account for this fact; it acts as if a

value lives only in one place at a time. We constructed a more

ambitious model that accurately accounts for values that continue

to live in both memory and registers after a load or store, but we

had little success with it: the equations seem to be sufficiently un-

derconstrained that the integer LP solvers do enormous amounts

of branch-and-bound search. Therefore we use the model that as-

sumes that each value lives in one place (memory or registers) at a

time. Our spilling is optimal only with respect to this model.

However, we were able to incorporate one useful special case into

our model. A variable can be loaded from (a spill location in) mem-

ory to a register for use in the very next instruction, with the as-

sumption that the register is then dead and the memory value lives

on. We have not described this mathematically in the body of the

paper, but our implemented AMPL model includes this feature.

This completes the description of our linear-program model of spill

costs.

4. SOLVING THE MODEL.
Our compiler [2][10] feeds the data associated with a flowgraph

together with the model to AMPL. AMPL generates a linear pro-

gram with variables, constraints, and an objective function. From

the example in Figure 3 the variables:

Fp4,tl ~ Ip4,tl ~ Sp4,t I ~ mp4#l

............ 247

would be generated for t 1 corresponding to the point P4, since

(p4,tl) ~ Exists. A constraint corresponding to the Exlsts for-

mula (Section 3) would establish the equation:

I-p4~t 1 -~ [p4~t I @ Sp4,t I @ mp4,t 1 : l

In a typical large cluster of basic blocks spanning several source-

program functions, there will be a few thousand points p and sev-

eral hundred temporaries v, yielding tens of thousands of linear-

program variables.

AMPL first runs a "presolve" phase in which as many variables as

possible are eliminated; for example, any use of mp,v could be re-

placed by 1 - (rp,v + lp,v + Sp,~). After the presolve, AMPL formats

the linear program in a way acceptable to the back end, which is any

one of several commercial or noncommercial LP solvers. Some of

these solvers can solve integer linear programs using a combination

of the simplex method with branch-and-bound; others can do only

continuous LP's using simplex alone. We have used CPLEX [7]

and IBM's OSL [13]; CPLEX is an order of magnitude faster but

sometimes dumps core.

After the ILP solver is finished, AMPL formats the results - a table

of r, l, s, m for each (p, v). Our compiler computes all the spilling

from this information inserting load and store instructions at points

where lp,v and Sp,v is set, and introduces memory operands at in-

structions for which mp,v is set. A prior phase assigns a logical

spill location for every temporary, ensuring that nonoverlapping

live ranges share the same memory location.

5. REGISTER COALESCING
The resulting flowgraph has no more than K variables simultane-

ously live at any point, but it may still be the case that there is no

K-coloring of the variables - that K registers do not suffice. If Xl

interferes with Yl at point Pl, Yl interferes with zl at point P2, and

zl interferes with Xl at point P3, then even though there are only

two temporaries live at any time, there is no 2-coloring of the inter-

ference graph.

Our solution is to copy every variable to a freshly named temporary

at every program point. At point Pl we will copy x2 +- xl and

Y2 +- Yb at P2 we copy Y3 +- Y2 and z3 +- zi, and so on. We
assume the copies are done in parallel, so that Y2 interferes only

with x2 and not with Xl or z3. Then each parallel copy moves at

most K variables, and each temporary interferes with no more than

K - 1 others, and the graph is colorable.

Whenever there is an edge from program point Pl to P2 such that

the optimal-spill model has a C o p y or c o p y 2 relation, we also in-

troduce a copy in the optimal-coalescing graph. That is, all the

variables copied across an edge are formed into a parallel copy

that is meant to occur simultaneously with any other instruction

executed at the edge. For edges that don' t contain any "real" in-

struction, a new basic block must sometimes be introduced; this

is called edge splitting and is common in register-allocation prob-

lems [1, figs. 19.2-3]. The resulting flowgraph for the example in

Figure 2 is shown in Figure 4.

After the graph is colored, each K-way parallel copy must be im-

plemented by a sequence of K register-register move instructions.

If the parallel copy corresponds to a permutation with one or more

cycles, then extra work (and extra storage) may be required to move

a value out of the way and then move it back. Fortunately, the x c h g

(exchange two registers) instruction on the IA-32 avoids the need

f a c :

~Pl
pushl %ebp

QP2
raovl %esp, %ebp

®P3
raovl 8(%ebp),ti °

,p4 q
movl #t,t~)

testl t~,t~

,p, t? q IL q +-4
j e L l

®P7

t3, _q

L I :

oPl2
m o v l t23~ %eax

oPl3
i eave

OPl4
r e t

®P15

/

/

*P8
i m u l l 4 4 t I ,t 2

®P9 t~ 4-- t14][t25 ~ t24

decl t~

• pl0 4 4 II 4
j n z L2

®P 11

tl 4 +-tl6I[4 +- t26

Figure 4: Flowgraph with internal splits

for extra storage.

Because there are no more than K live variables at any time, and

because a variable-span live at one time is never live at any other

time (only related to other live ranges), the graph is trivially K-

colorable. Any conflicts that arise at an instruction can be removed

by an appropriate set of parallel copies before the instruction. That

is, from the result of the spill phase, we can construct an interfer-

ence graph in which every node 2 has degree less than K. Such a

graph can be easily colored by Kempe's algorithm [14] (rediseov-

2The situation is more complicated for machines with instructions
that both overwrite some of the input operands and generate new
result operands. (Neither the IA-32 (Pentium), MIPS, Sparc, or Al-
pha have such instructions.) The interference graph after optimal
spilling may have some nodes of degree k K, but these nodes won't
have high-degree neighbors, so the graph will still be trivially col-
orable by Kempe's algorithm.

.......... 248

ered 102 years later by Chaitin [5]).

Having K "artificial" move instructions before every "natural" in-

struction would be expensive. Given a move instruction u +- v, if

u and v can be colored the same - assigned to the same register -

then the move can be deleted. The register coalescing problem is

to find a coloring so that as many moves as possible have source

and destination colored the same. When we formulate the coloring

problem, we say that u and v are move-related.

The coloring/coalescing problem is significantly simpler than the

problem handled by most graph-coloring register allocators, be-

cause the spills have already been identified and the graph is guar-

anteed K-colorable. Therefore it's worth stating exactly what the
algorithmic problem is.

Optimal register coalescing. Given an undirected graph of max-

imum degree K - 1 (these are the interference edges), and an ad-

ditional set of weighted edges (these are the move edges), find a

K-coloring of the graph such that

1. No two nodes connected by an interference edge have the

same color;

2. There is the lowest possible cost, where cost is the sum of the

weights of those move edges whose endpoints are colored

differently.

This problem is clearly NP-complete; it reduces the general graph-

coloring problem (though we won't show the reduction here).

6. ALGORITHMS FOR COALESCING
We have tried three approaches to the coalescing problem: iterated

register coalescing [9], integer linear programming, and optimistic

coalescing [17]. The first two don't work: iterated coalescing is

fast but too conservative for the highly constrained problems that

result from our optimal spiller, and our integer programs produce

optimal solutions but not in a reasonable amount of time.

Optimistic coalescing. Our third approach is based on Park and

Moon's optimistic coalescing [17] and works as follows: We per-

form aggressive coalescing (fi lh Chaitin), which may overconstrain

the graph so that it becomes uncolorable. We do this coalescing in

priority order, so that the expensive moves get coalesced first. Of

course, we do not coalesce nodes that interfere- hence the need for

priorities.

We then do a Briggs-style [4] optimistic coloring: that is, we re-

move nodes of degree < K and push them on a stack. When the

graph contains only nodes of degree > K, we select a spill candi-
date using Chaitin's heuristics and remove it from the graph, push-

ing it on the stack. Briggs called this optimistic because there is

always the chance that in the stack-popping (coloring) phase, sev-

eral neighbors of the spill candidate will be colored the same, so

that a color is available.

If no color is available, Briggs would spill the node. Park and Moon

point out that we can instead undo the coalescing that caused this

node to have high degree. We go even further: in our context,

because we start with a graph where all nodes have low degree, we

know that it will always be possible to undo the coalescing of a

spill candidate and color the nodes individually.

However, we don't always need to undo this coalescing all the way.

We first split the spill candidate into its constituent primitive nodes.

Then we reconsider each move instruction, and coalesce it if the

resulting node is colorable in the current context.

7. BENCHMARKS
We evaluate the method as follows:

• How costly is the optimal spilling algorithm?

® How many spills remain, compared to other algorithms?

o How costly is the optimistic coalescing algorithm? We will

not even perform measurements to answer this question; the

algorithm is clearly linear-time (for any given K), and should

be about as fast as Briggs's algorithm, which is known to be

very efficient when implemented carefully.

• How many moves remain, compared to other algorithms?

It would also be interesting to know how much suboptimality is

caused by splitting the problem into two phases, spilling and co-

alescing. Answering this question would require an optimal al-

gorithm for coalescing; although we have implemented one using

integer programming, it blows up on any but the tiniest examples.

We measure the performance of our algorithms on the Standard ML

of New Jersey benchmark suite. These are not microbenehmarks;

the mean size of the 14 programs is 10,117 instructions of gener-

ated Pentium code (exclusive of spill-related instructions).

7.1 Optimal Spilling
Figure 5 shows the spill statistics. The first column ("Base") in

each pair shows the number of spills produced by iterated register

coalescing on the Pentium (6 general-purpose registers and 2 con-

ventionally reserved); this is the measured performance of SML/NJ

version 110.23. The second column ("Opt") shows the perfor-

mance of our new algorithm - optimal spilling with optimistic co-

alescing - on the Pentium.

Within each column, the Spills and Reloads sections show the

number of spill and reload instructions insetted into the program.

In other words, these subcolumns are a count of the number of

memory loads and stores from spill instructions. Some spills and
reloads can be combined with addressing modes, and the number of

instructions affected is showri in the top subcolumn. No distinction

is made between instructions that use memory as a source operand

and a destination, and those that use memory for a source only. The

height of each column is 100. spills/(spills + nonspills). Figure 6

aggregates the values across the columns.

The base compiler uses static single-assignment (SSA) form, which

divides each program variable into several temporaries based on the

relation of definitions of the variable to the dominator tree of the

program. Then a Chaitin-style spiller implements each temporary

either entirely in registers or entirely in memory. Briggs [3] con-

jectured that SSA was the best way to split the variables prior to

coloring with coalescing. Our current paper can be viewed as a test
of his conjecture; we have described an entirely different method

for splitting the variables.

A characteristic of SSA form is that there will typically be one spill

and multiple reloads for any temporary that is spilled. The number

249

40

3 0 -

2 0 -

o ~

¢0 10 -

Memory instructions

Reloads

Spil ls

c~

% %

Figure 5: Comparison of static spill statistics for SML/NJ v110.23 (Base) using previous algorithm (SSA splitting and iterated register
coalescing) and same compiler based on optimal spilling via integer linear programming (Opt)

Total

Spills

Base Opt

3040 4310

Memory
Reloads Instructions

Base Opt Base Opt

6771 3804 12312 5009

Figure 6: Aggregate values of spill statistics from Figure 5

of spill and reloads from the base compiler is 21% higher than the

Opt version, however the number of spills in the Opt version is

higher than the base compiler. This can easily be explained as the

ILP model is splitting a live range into multiple parts, some subset
of which are implemented in registers and the others in memory. In

other words, there is only one transition from register to memory in

the base compiler, but multiple transitions in the ILP model.

A different story applies to the Reloads column. The Opt column

reloads less than half as many variables as the base compiler, as the

ILP model effectively keeps active temporaries in registers.

The Memory instructions column demonstrates that the optimal

spilling has done a significantly better job at keeping temporaries
in registers.

7.2 Optimal-spill performance
Figure 7 shows the size of the AMPL model and the speed of gen-

erating an optimal solution. Each dot in these figures represents

a cluster, and each benchmark is made up of multiple clusters. A

cluster is a call graph in which every function in the graph has at

1 ~ . o

t0~0 ,

100,

O

.1-

0 1 -

/ oo o

o ~ ° ° o o

°o o

/ /,k; Oo°2
oo ° o

I0 100 1000 10O00 100O00

Number of IA32 Instructions

Figure 7: Solve time versus program points.
The circles show the performance of our algorithm; the polygon

shows the approximate performance of Goodwin's algorithm
(as reported by him [11]) on a different data set.

least one call-edge with another function in the graph. Since this

is a continuation passing style (CPS) compiler, there are usually

a large number of clusters for each benchmark. Superimposed on

. . . . 9,~ ~ ¸ ~

250

Splits

Base Opt
barnes-hut 391 326

boyer 489 254

count-graphs 223 215

fft 145 212

icfpO0 1413 1008

knuth-bendix 776 648

lexgen 1767 1352

life 230 203

logic 201 163

mandelbrot 26 16

mlyacc 3184 2559

ray 403 311

simple 1288 930
tsp 292 291

Non-splits

Opt

7430

16495

3705

3669
19332

7912

14543

2118

3653

262
39267

4735

15133
3395

Instructions

Per Split

23

65

17

17

19

12

11

10

22

16

15

15

16
12

Geometric Mean 17

Figure 8: Number of splits and instructions

scatter plot is a crude bounding box obtained from Figures 3.4 in
Goodwin's thesis [1 I] .3

The most important result from Figure 7 is that every block-cluster

of fewer than 5000 instructions can be solved within 30 seconds.
The complexity is close to linear (O(nl'3), taking the least square

fit), and is significantly better than the O(n 2"5) reported by Good-

win and Wilken [12] for general-purpose processors. Goodwin and

Wilken's performance is so much worse because they compute op-

timal coloring via ILP, whereas we compute only optimal register
pressure (assuming that the cost of coalescing will be insignificant).

Kong and Wilken [15] get much better performance (though they

do not report any empirical complexity result), and they also solve

the whole register allocation problem. Our number of constraints
grows almost linearly with the program size (O(n1"3)) which is sig-

nificantly better than the models solved by Wilken et al. [12, 15].

7.3 Register Allocation
Figure 8 shows the number of splits (uncoalesced moves) remain-
ing in the SSA-based compiler.with iterated register coalescing

(Base), and the number remaining using ILP and optimistic co-

alescing (Opt). The third column is the number of non-split in-

structions in the Opt compiler; the corresponding column for the
Base compiler should be similar. ILP with optimistic coalescing
produces programs in which 1 in 17 instructions are moves, and

the static number of splits in all but one benchmark is better than

our SSA-based splitting with iterated register coalescing. We don't

know how many of these are required by the two-address nature of

the instruction set or by other constraints - that is, we don't know
how many moves an optimal coalescer would leave. However,

we have measured the overall performance of several standard ML

benchmarks using our old algorithm (SSA-based splitting with iter-

ated register coalescing [9]) and our new one (optimal spilling with

optimistic coalescing). The results (in Figure 9) show a speedup of
9.5% improvement in execution speed (taking the geometric mean
of ratios). Some of the benchmarks have a significant improvement

in static spills (Figure 5) but no speedup; perhaps this is because

we weight the spill costs by static estimation, and perhaps dynamic

3We believe the machine on which Goodwin got his results
(HP9000/770) is about as fast as our machine (SGI Origin 2100
@ 250 MHz).

Benchmark

barnes-hut

boyer

mlyacc

tsp

lexgen

count-graphs
icfp00

fft
logic

knuth-bendix

mandelbrot

life
simple

Base Opt

2.92 2.92

12.57 12.49
9.14 9.11

6.92 6.77

9.08 8.84

24.07 22.15
109.29 99.72

8.58 7.80
5.10 4.61

8.08 7.22

27.92 23.21

19.03 15.24

31.53 25.12

Speedup

0.0%

0.0
0.0

2.2

2.7

8.7

9.6

10.0

10.6

t l .9

20.3
24.9

25.5

Figure 9: Execution speed

Iterated Register

Coalescing
Liveness and

Interference graph 8.19*

Iter. reg. coalesce 27.11"

Insert load/stores 9.27*

TOTAL (seconds) 44.57

Optimal Spilling,
Optimistic Coalescing

Liveness 1.3'
I/O to AMPL 82.7*

AMPL 419.2 t

CPLEX 594.1 ~

I/O from AMPL 30.7*

Insert load/stores 1.8"
Liveness 1.2'

Interference graph 30.6*
Optimistic coalesce 360.4*

TOTAL (seconds) 1522.0

Figure 10: Time spent in the register allocators
*433 MHz Pentium II ~250 MHz SGI Origin 2100

profiling would significantly improve the performance of the opti-

mal spiller.

Figure 10 compares the compile-time cost of the old (iterated reg-
ister coalescing) algorithm to the new one, totalled over register-

allocating all but one of the benchmark programs (153,836 ma-

chine instructions). We have omitted the ratio-regions benchmark
- which produces the uppermost point of Figure 7 - but with it the
total times would be 57 and 11306 seconds, respectively. The new

allocator is only a prototype, however, and is not highly engineered

for efficiency.

8. RELATED WORK
Goodwin and Wilken [12] address several optimization problems
such as live range splitting, register assignment, spill placement,

rematerialization, callee/caller-save register management, and copy

elimination, within the single framework of 0-1 integer linear pro-

gramming. They do not handle CISC instruction selection, though

our new result implies that instruction selection could be incorpo-

rated into their framework.

Our optimal spilling algorithm can handle problem sizes at least an
order of magnitude larger than theirs, as figure 7 shows. We believe

this is an important benefit of separating spilling from coloring.

Goodwin and Wilken's algorithm has a different (and incompara-
ble) optimality guarantee than ours. They guarantee an optimal set

of spills and register-register moves, given a predetermined set of

251

potential split points. We guarantee an optimal set of spills (but

not optimal moves) over all possible split points. In principle, one

could run their algorithm on an input that specifies a split point

at every possible place, but we believe the resulting problem size

would swamp their algorithm in practice.

Each optimization performed by Goodwin and Wilken can be done

in one of the two phases that we have described:

Optimal spilling

o Spilling

• Live range splitting

® Callee/caller-save management

® Rematerialization

Optimistic coalescing

® Register assignment

o Copy elimination

We did not implement rematerialization, but it should fit naturally

into our spilling model.

Kong and Wilken [15] extend the work of Goodwin and Wilken to

handle irregular architectures and in particular the IA-32 instruction

set, but their treatment of addressing modes appears to be much

weaker than ours. Many of the extensions deal with special aspects

of register assignment on the Intel architecture, such as the penalty

in code size for using addressing modes involving registers %esp

and %ebp, and the use of short (8 and 16 bit) registers; we do not

deal with these issues. They also consider the insertion of splits

before commutative operations, i.e., a commutative operation such

as $3 +-S1 + $ 2 could be translated by either moving S l or S2
into S3 and performing the appropriate two address instruction -

the choice is made by the linear program. They do not consider the

possibility of inserting splits at any program point.

Lueh, Gross, and AdI-Tabatabai [16]. Fusion-based register al-

location breaks up register allocation into a per-region basis, where

the simplest region is a basic block. Spilling is performed inside

the region so that the resulting interference graph is simplifiable. It

may be necessary to spill transparent live ranges for the graph to

be simplifiable, but the actual spilling of transparent live ranges is

delayed. A transparent live range is one that is live on entry and

exit to a region and is not used within the region. It is similar to

members of our Copy set. As neighboring regions are fused to-

gether, each region can be individually colored by inserting splits

for all the transparent live ranges at the boundaries of the region

and coloring each region individually. Of course this naive strat-

egy is undesirable, and great effort is made to stretch the lifetimes

of transparent live ranges in memory or registers across the multi-

ple regions being fused together. This is precisely what our linear

programming phase does, but with a lot less bookkeeping, and our

version is simpler to specify.

Chow and Hennessy [6] use priority-based coloring before in-

struction selection. Higher-priority temporaries are more impor-

tant to keep in registers. They assign colors to the interference
graph in order of priority; when a temporary is uncolorable, they
use a greedy heuristic to split it into smaller live ranges. Some of

these live ranges will be colorable (with copies between one and

the next, if they have different colors), and some will spill. This

algorithm is not particularly simple to implement, makes no guar-
antee of optimality, and they describe results only for the relatively

unconstrained problem of a 32-register RISC machine.

9. CONCLUSIONS
We have formulated the register allocation problem for CISC archi-

tectures with few registers into one involving optimal placement of

spill code, followed by optimal register coalescing. We have given

some empirical evidence that dividing the problem into these two

phases does not significantly worsen the overall quality of the so-

lution, but a full demonstration of this fact would require optimal

solutions to the overall problem that no one has been able to cal-

culate. We have demonstrated an efficient algorithm using integer

linear programming for optimal spill-code placement.

The optimal coalescing problem has a significantly simpler struc-

ture than the general register-allocation problem, as the spilling has

already been taken care of, and every node in the graph has small

degree. Because of this, our adaptation of Park and Moon's opti-

mistic coalescing algorithm is simpler and stronger than the origi-

nal.

Although optimistic coalescing performs well, it is not optimal.

We have formulated the optimal coalescing problem (at the end of

section 5) in such a simple way - significantly simpler than tradi-

tional register-allocation problems that require spilling - that other

researchers can continue to investigate optimal coalescing.

Programs compiled with optimal spilling followed by optimistic
coalescing run about 9.7% faster than when compiled with SSA-

based splitting followed by iterated register coalescing (though this

number is based on an inadequate set of small programs). This

refutes a conjecture by Briggs [3] that the splits induced by SSA

would be appropriate for register allocation and spilling.

10. REFERENCES
[1] A. W. Appel. Modern Compiler Implementation in ML.

Cambridge University Press, Cambridge, England, 1998.

[2] A. W. Appel and D. B. MacQueen. Standard ML of New

Jersey. In M. Wirsing, editor, 3rd International Syrup. on
Prog. Lang. Implementation and Logic Programming, pages

1-13, New York, Aug. 1991. Springer-Verlag.

[3] P. Briggs. Register Allocation via Graph Coloring. PhD

thesis, Rice University, April 1992.

[4] R Briggs, K. D. Cooper, and L. Torczon. Improvements to

graph coloring register allocation. ACM Trans. on
Programming Languages and Systems, 16(3):428-455, May

1994.

[5] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,

M. E. Hopkins, and P. W. Markstein. Register allocation via

coloring. Computer Languages, 6:47-57, January 1981.

[6] E C. Chow and J. L. Hennessy. The priority-based coloring

approach to register allocation. ACM Trans. on Programming

Languages and Systems, 12(4):501-536, October 1990.

[7] CPLEX mixed integer solver, www.cplex.com, 2000.

[8] R. Fourer, D. M. Gay, and B. W. Kemighan. AMPL: A
Modeling Language for Mathematical Programming.
Scientific Press, South San Francisco, CA, 1993.

www.ampl.com.

[9] L. George and A. W. Appel. Iterated register coalescing. In

23rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 208-218, New

York, Jan 1996. ACM Press.

252

[lo]

[il]

L. George, F. Guillame, and J. Reppy. A portable and

optimizing back end for the SML/NJ compiler, volume 786 of

LNCS, pages 83-97 . Springer-Vcrlag, 1994.

D. W. Goodwin. Optimal and Near-Optimal Global Register
Allocation. PhD thesis, Universi ty of Cal i fornia at Davis,
1996.

[12] D. W. G o o d w i n and K. D. Wilken. Opt imal and near-opt imal

global register a l locat ion us ing 0-1 integer programming.

Software--Practice and Experience, 26(8) :929-965, 1996.

[13] M. S. Hung. Optimization with IBM-OSL. Scientific Press,

South San Francisco, CA, 1993.

[14] A . B . Kempe. O n the geographical p roblem of the four

colors. American Journal of Mathematics, 2:193-200, 1879.

[15] T. Kong and K. D. Wilken. Precise register al locat ion for

i rregular archi tectures . In 31st International

Microarchitecture Conference. ACM, December 1998.

[16] G. Lueh, T. Gross, and A. Adl-Tabatabai. Global register
al locat ion based on graph fusion. In Languages and

Cornpilers for Parallel Computing, pages 246-265. Spr inger

Verlag, L N C S 1239, Augus t 1997.

[17] J. Park and S.-M. Moon. Opt imis t ic register coalescing. In

Proceedings of the 1998 International Conference on
Parallel Architecture and Compilation Techniques, pages

196-204 , 1998.

[18] Y. Wu and J. R. Larus. Static branch frequency and program

profile analysis. In 27th IEEE/ACM International Symposium

on Microarchitecture (MICRO-27), Nov. 1994.

Appendix: AMPL model for spilling

model;
set Vats; set Pts;
set Copy within (Pts cross Pts cross Vats);
set Copy2 within (Pts cross Pts cross Vars cross Vats);
set Mutate within (Pts cross Pts cross Vars);
set MutateReg within (Pts cross Pts cross Vars);
set Unary within (Pts cross Pts cross Vars cross Vars);
set Binary within (Pts cross Pts cross Vars cross Vars);
set UseUp2 within (Pts cross Pts cross Vats cross Vars);
set UseUp within (Pts cross Pts cross Vats);
set UseUpReg within (Pts cross Pts cross Vats);
set Nullaty within (Pts cross Pts cross Vars);
set NullaryReg within (Pts cross Pts cross Vars);
set Branch within Pts;
set Connect within (Pts cross Pts);
set Exists within (Pts cross Vars);

param weight {Pts}; param K {Pts};
param loadCost; param storeCost; param moveCost; param instrCost;

var inReg {Exists} binary; vat inMem {Exists} binary;
var load {Exists} binary; var loadt {Exists} binary;
vat store {Exists} binary;

subject to BRANCH {(p,v) in Exists : p in Branch}:
load[p,v] + store[p,v] = 0;

subject to EXISTS {(p,v) in Exists}:
loadt[p,v] + load[p,v] + inReg[p,v] + store[p,v] + inMem[p,v] = 1;

subject to REGISTERS_K1 {p in Pts):
sum { (p,v) in Exists }

(inReg[p,v] + store[p,v]) < K[p];

subject to REGISTERS_K2 {p in Pts}:
sum { (p,v) in Exists }

(inReg[p,v] + load[p,v] + loadt[p,v]) < K[p];

subject to COPY_PROPAGATE {(pl,p2,v) in Copy union Mutate}:
load[pl,v] + inReg[pl,v] = storelp2,vl + inReglp2,v];

subject to COPY2_PROPAGATE {(pl,p2,src,dst) in Copy2}:
load[p 1,src] + inReg[p t,src] = store[p2,dst] + inReglp2,dstl;

subject to NULLARY_REG {(pl,p2,v) in NullaryReg}:
store[p2,v] + inReg[p2,v] = 1;

subject to USEUP2{(pl, p2, srcl, src2) in UseUp2}:
loadt[pl,srcl] + load[pl,srcl] + inReg[pl,srcl I +
loadtlpl,src2] + load[pl,src2] + inReg[pl,src2] _> 1;

subject to USEUP..IN_REG1 {(pl,p2,v) in UseUpReg}:
loadt[pl,v] + load[pl,v] + inReg[pl,v] = 1;

subject to BINARY_PROPDST {(pl,p2,src,dst) in Binary}:
toad[pl,dst] + inReg[pl,dst] = store[p2,dst] + inReg[p2,dst];

subject to BINARY_IN_REG {(p 1,p2,src,dst) in Binary}:
loadt[pl,src] + load[pl,src] + inReg[pl,src] +
Ioadt[pl,dst] + load[pl,dst] + inReg[pl,dst] > 1;

subject to MUTATE_PROPDST {(pl,p2,dst) in Mutate}:
load[pl,dst] + inReglpl,dst] = store[p2,dst] + inReg[p2,dst];

subject to MUTATE_REG 1 {(pl,p2,dst) in MutateReg}:
load[pl,dst] + inReg[pl,dst] = 1;

subject to MUTATE.REG2 {(p 1,p2,dst) in MutateReg}:
store[p2.dst] + inReg[p2,dst] = 1;

subject to UNARY_B INARY_IN_REG { (p t ,p2,src,dst) in Unary }:
loadt[pl,sre] + Ioad[pl,src] + inReg[pl,src] +
store[p2,dst] + inReg[p2,dst] > 1 ;

minimize COST:
(sum {v in Vars, p in Pts: (p,v) in Exists}

weight[p] * (loadt[p,v] * (loadCost + 3 * instrCost) +
load[p,v] * (loadCost + 3 * instrCost) +
store[p,v] * (storeCost + 3 * instrCost)))

+ (sum {(pl,p2,src,dst) in Binary}
weight[pl] *
((inMem[pl,src] + store[pl,src]) * (loadCost + instrCost) +
(1 - (inReg[p2,dstl + store[p2,dst])) * 0.8 *

(loadCost + storeCost + instrCost)))
+ (sum {(pl,p2,src,dst) in Copy2}

weight[pl] *
((inMem[pl,src] + store[pl,src]) * (loadCost + instrCost) +
(1 - (inReg[p2,dst] + store[p2,dst])) * (storeCost + instrCost)))

+ (sum {(pl,p2,src,dst) in Unary}
weight[p 1] *
((inMem[pl,src] + store[pl,src]) * 0.8 * (loadCost + instrCost) +
(1 - (inReg[p2,dst]+storelp2,dst])) * 0.8 * (storeCost+instrCost)))

+ (sum {(pl,p2,dst) in Mutate}
weight[pl] * ((1- - (inReg[p2,dst] + storelp2,dst])) * 0.8 *

(loadCost + storeCost + instrCost)))
+ (sum {(pl,p2,dst) in Nullary}

weight[pl] * ((1 - (inReg[p2,dst] + store[p2,dst])) * 0.8 *
(storeCost + instrCost)))

+ (sum {(pl,p2,src) in UseUp}
weight[pl] *
((inMem[pl,src] + store[pl,src]) * 0.8 * (loadCost + instrCost)))

+ (sum {(pl,p2,srcl,src2) in UseUp2}
weight[p 1] *
((inMem[pl,srcl] + store[pl,srcl]) * 0.8 * (loadCost + instrCost)+
(inMem[pl,src2l + store[pl,src2]) * 0.8 * (loadCost + instrCost)));

253

