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Abstract—We consider optimal formulations of spread spec-
trum watermark embedding where the common requirements of
watermarking, such as perceptual closeness of the watermarked
image to the cover and detectability of the watermark in the pres-
ence of noise and compression, are posed as constraints while one
metric pertaining to these requirements is optimized. We propose
an algorithmic framework for solving these optimal embedding
problems via a multistep feasibility approach that combines pro-
jections onto convex sets (POCS) based feasibility watermarking
with a bisection parameter search for determining the optimum
value of the objective function and the optimum watermarked
image. The framework is general and can handle optimal wa-
termark embedding problems with convex and quasi-convex
formulations of watermark requirements with assured conver-
gence to the global optimum. The proposed scheme is a natural
extension of set-theoretic watermark design and provides a link
between convex feasibility and optimization formulations for
watermark embedding. We demonstrate a number of optimal wa-
termark embeddings in the proposed framework corresponding
to maximal robustness to additive noise, maximal robustness to
compression, minimal frequency weighted perceptual distortion,
and minimal watermark texture visibility. Experimental results
demonstrate that the framework is effective in optimizing the
desired characteristic while meeting the constraints. The results
also highlight both anticipated and unanticipated competition
between the common requirements for watermark embedding.

Index Terms—Optimum watermark design, projections onto
convex sets (POCS), set theoretic watermarking, spread spectrum
watermarking.

I. INTRODUCTION

D
IGITAL watermarking is a special form of digital com-

munication where a multimedia cover signal is utilized as

the carrier of auxiliary information. This carrier data, along with
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the embedded watermark, is communicated to the receiver over

a channel that may include distortion and noise. The receiver

extracts the watermark information for its use, possibly using

a cryptographic key shared with the embedder in the extraction

process. Watermarking is often the only solution available when

secure out-band channels are unavailable for carrying the aux-

iliary information or when the information is susceptible to re-

moval. Today, watermarking is employed in many areas [2]–[4],

including, but not limited to, copyright enforcement [5], authen-

tication [6], broadcast monitoring [7], and fingerprinting [8].

The watermark design process is composed of three major

steps: coding the watermark data, modulating the coded data

with a suitable technique, and embedding the modulated data

into the cover file while taking into account the perceptual im-

pact of the embedding and potential interference from the cover

and the channel. For instance, conventionally in spread spec-

trum (SS) embedding [9], if the data to be embedded contains

redundancy it may be compressed to reduce the data load, then

utilizing a key, a pseudo-noise (pn)-sequence is generated for

each bit/symbol to be embedded, and these pn-sequences are

then embedded into the cover after perceptual shaping. These

steps can be performed separately or jointly, and some of them

may be entirely skipped depending on the needs of the applica-

tion.

The coding step is used to make the watermark data re-

silient to perturbations introduced during transmission of the

watermarked image to the intended users (i.e., error correcting

coding), to reduce the size of the watermark data when there

is redundancy (i.e., compression), or to provide the necessary

adaptation of the information to the cover (i.e., informed

coding). Error-coding adds carefully designed redundancy to

the watermark data [10]. Compression, on the other hand,

works in the opposite direction removing the redundancy of

the watermark data thereby making it more fragile. Coding

can also be utilized to provide adaptation to the cover, Trellis

codes [11] and wet paper codes [12] fall in this class. The

modulation step consists of selecting a carrier signal format

suitable for carrying the watermark information within the

cover. This choice is usually made according to the distortion,

capacity, and robustness properties desired of the watermark.

The most common forms of modulations are quantization index

modulation (QIM) [13] or SS [9] modulation, either of which

may be utilized in different domains (e.g., spatial/frequency or

wavelet). The watermark embedding step is the final step to

adaptively incorporate the modulated watermark signal within

the cover signal. This step involves the choice of additive or

multiplicative insertion of the data, perceptual shaping of the

1057-7149/$25.00 © 2009 IEEE
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carrier signal, and the interference management between the

cover and the watermark signals.

In this paper we focus on the watermark embedding step,

specifically for zero-bit spread spectrum watermarking. Em-

bedding techniques can be classified as optimization formu-

lations, feasibility formulations, and heuristic methodologies.

Heuristic methods are usually practical, computationally effi-

cient, and intuitive ways of embedding watermarks into cover

files. These methods dominate the literature and early versions

of the conventional modulation methods fall into this category

[9], [13]. The methods usually do not offer systematic guar-

antees for satisfying all the criteria, however, their simplicity

makes them rather useful. In optimization formulations of wa-

termark embedding, the watermark insertion is formulated as a

constrained optimization problem [14]–[16]. The requirements

for the watermarked signal are expressed in analytical form as an

optimization of one performance metric while meeting require-

ments for other performance metrics. Various scenarios may be

formulated in this framework. For instance, the designer may

wish to minimize the visual distortion due to embedding while

maintaining a desired level of watermark embedding strength

and robustness to compression. In other applications, the max-

imization of watermark embedding strength or robustness to

compression can be the key objective. Feasibility formulations

of watermark embedding [17], [18] provides a middle ground

between optimization methods and heuristic methods, where a

watermark signal meeting desired criteria is determined without

explicitly optimizing a performance criterion. Feasibility for-

mulations are typically computationally less demanding com-

pared with the optimization formulations. Specifically, set the-

oretic watermarking [17] provides a flexible and readily adapt-

able framework in which a wide variety of constraints can be

incorporated.

In this paper, we consider several optimal watermark embed-

ding formulations for a zero-bit spread spectrum watermarking

problem, where the detector is only concerned with establishing

the presence/absence of the watermark. We demonstrate that

these different formulations can be addressed in a common

framework that combines multistep feasibility based optimiza-

tion [19] with projections onto convex sets (POCS) based set

theoretic watermarking [17] for solving the feasible water-

marking problem at each step. The method of POCS has been

successfully applied to a number of different image processing

problems [20]–[25]. Our work can be viewed in this context as

an extension of POCS that addresses the multiple requirements

inherent in watermarking applications while simultaneously

allowing for optimization of one chosen attribute. The resulting

methodology for optimal watermark embedding is general and

allows a number of convex optimization criteria under convex

constraints.

II. OPTIMAL WATERMARK EMBEDDING

Depending on the needs of the specific application, some per-

formance requirements of watermarking can be relatively more

important compared to others. In medical and military applica-

tions, the visual quality is critical since sensitive visual informa-

tion is communicated. On the other hand, the resilience against

compression is more important in network broadcast applica-

tions or in other applications when the image is likely to be

compressed during transmission. In other applications, water-

mark detectability with high probability may be desired despite

being subject to noise in transmission. In order to emphasize

the application specific critical requirement, watermark embed-

ding can be formulated as a constrained optimization formula-

tion where an objective function corresponding to the critical re-

quirement is optimized subject to other constraints. In this paper

we will consider various optimal watermark embedding formu-

lations for SS modulation.

SS modulation is a common watermark modulation tech-

nique. This type of modulation is widely used in communi-

cations due to its wide-band nature and its immunity against

narrow-band interference signals and has been successfully

adapted to the watermarking field [9]. A key dependent

pseudo-noise (pn) sequence is inserted1 onto the cover

image and the detection is performed by correlating the

test image against the same pn-sequence. Among the

many available correlation metrics, we use a mean corrected

linear correlation metric [26, p. 127], in our description. Let

denote the image with dimensions

and denote the pn-sequence. We stack

the columns of the matrices together to generate vectors

, , and

. Throughout the paper we will use

this 1-D vector notation and assume that any image operators

are also represented as matrices conforming to the vector

representation. The mean corrected correlation is represented

as where , and denotes

the sample mean of the entries in the vector . The pres-

ence/absence of the watermark is determined by comparing

the estimated correlation value against a threshold , i.e., if

the watermark is deemed present and if

the watermark is deemed to be absent from

the image.2 We consider next a specific optimal watermark em-

bedding formulation for SS watermarking. Using the notation

and terminology established in that context we subsequently

define three other optimal watermark embedding formulations

for different criteria.

A. Maximization of Embedding Strength

In applications where maximal robustness against additive

noise is required, it is desirable that the watermarked image

at the embedder maximize the mean corrected correlation

, which we refer to as watermark embedding

strength. The maximization of the embedding strength must

clearly be subject to other constraints. The distortion in the

watermarked image with respect to (w.r.t.) the original image

should be perceptually tolerable. In addition, in some

applications, it may be desirable that the watermark survive

compression up to a given quality level. In order to account

for these constraints, we formulate the optimal watermark

1Our formulation requires only a definition of the detector. The embedding is
an implicit outcome of the optimization.

2Note that we assume oblivious detection, where the cover is unavailable at
the detector. The nonoblivious case may be similarly formulated and actually
represents a simplification.
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embedding for maximization of embedding strength as the

constrained optimization

subject to (1)

(2)

(3)

where the first two constraints (1) and (2) capture the require-

ments of perceptually tolerable distortion and the third repre-

sents the compression resilience requirement. These constraints

and the associated symbols in their definitions are defined next.

Constraint (1) is based on the contrast sensitivity of the

human visual system (HVS), where is a linear spatial filter

that represents the characteristics of the HVS. Specifically,

the higher sensitivity of the HVS to lower frequencies com-

pared with higher frequencies is encapsulated in . The term

thus represents a frequency weighted mea-

sure representing the perceptual distortion in the candidate

watermark image . In the present work, we use the para-

metric contrast sensitivity model proposed by Mannos and

Sakrison [27]. For the model, the spatial filter is repre-

sented in the frequency domain by a radially isotropic function

, where de-

notes the radial frequency in cycles per degree [27].

Constraint (2) exploits texture masking by virtue of which

watermark distortion introduced in textured regions is less vis-

ible than in smooth regions. The and in (2)

represent pixel-wise upper and lower bounds on tolerable dis-

tortion that are determined from the cover image . For de-

termining and , we use the model of Pereira

et al. [14], which is briefly summarized in Appendix I. Based

on the development in Appendix I, we will find it notationally

convenient, in the ensuing presentation, to represent constraint

(2) in an alternate form as

(4)

where is a diagonal matrix determined from the orig-

inal image using the texture masking model and

represents the -norm of the vector .

The term represents a measure of the (worst

case) visibility of the texture noise introduced in the embedding

and the parameter represents a bound on this measure.

Constraint (3) represents the compression resilience require-

ment for transform domain compression, where represents

the forward transform, represents the quantization opera-

tion in the transform domain. represents the inverse trans-

form. The constraint thus enforces a mean corrected correla-

tion greater than in the compressed image. Specifically, in

this paper we consider JPEG compression, where and

represents the forward and inverse discrete cosine transforms

(DCTs), respectively, and is the JPEG quantization function

at a predetermined quality level. In the transform coding [28],

the quantizer in fact consist of distinct scalar quan-

tizers for each of the transform domain co-

efficients. Thus, for JPEG compression the term indexes the

64 different quantizers used for 8 8 block DCT coefficients,

repeatedly tiled so as to cover the entire image. The formula-

tion addresses any transform domain coding scenarios where

the transform domain coefficients are quantized via scalar quan-

tizers.

B. Minimization of Frequency Weighted Perceptual Distortion

For applications, where a minimization of the frequency

weighted perceptual distortion metric is desirable, the optimal

watermark embedding problem can be formulated as

subject to

(5)

where denotes the desired embedding strength at the em-

bedder, and all the other terms are as defined earlier. Normally

is chosen to be larger than the detection threshold at the

watermark detector. The gap characterizes the robust-

ness of the watermark and can be related to the probability of

error for watermark detection following postwatermarking per-

turbations [2].

C. Maximization of Robustness to Compression

For scenarios where maximal compression resilience is desir-

able, an alternate optimal watermark embedding problem can be

formulated as

subject to

(6)

D. Minimizing Watermark Texture Visibility

In a manner analogous to the preceding formulations, one

may also formulate the optimal embedding problem to minimize

a metric representing the perceptibility of the texture noise in-

troduced by watermark embedding. The problem may be math-

ematically formulated as

subject to

(7)

As indicated earlier, the development of this metric is presented

in Appendix I.
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III. CONVEX OPTIMIZATION FRAMEWORK FOR OPTIMAL

WATERMARK EMBEDDING

For the optimal watermark embedding formulations in the

preceding section to be useful, efficient methods for determining

the solution for the corresponding problems are required. We

observe that with the exception of compression resilience, other

constraints and objective functions in our formulations are in-

herently convex. Note that the watermark texture perceptibility

constraint depends on the cover image in a complex fashion.

However, given the cover image it is manifested simply as an

upper and lower bound constraint on pixel values that is clearly

convex [17], [29]. Since convex optimization problems have

unique global optima and there are a variety of well behaved op-

timization algorithms for the problems, we consider the optimal

watermark embedding problem when the objective function and

the constraints are convex.

To addresscompression resilience,we introduce the convex (in

fact linear) approximation

where

represents the approximation of obtained by

approximating the scalar quantizer for the th transform

domain coefficient by which is defined as

otherwise.
(8)

This approximates the compression operation as a projection

onto the subspace of transform bases that the quantization

operation in compression does not obliterate. The efficacy

of this approximation for JPEG compression has been ex-

plored in [17]. Given the cover image, the concatenation

is also a linear operator, thus

represents a

linear and, therefore, a convex constraint.

We now consider the optimal watermarking problem formu-

lated in Section II-A and describe it in an alternate general form

subject to (9)

where ,

, , and

, where , , .

This optimization problem now represents a convex optimiza-

tion problem. Following [19, p.159], we note that a solution to

the problem can be obtained via a multistep feasibility technique

that we briefly outline.

1) Initialize , and set , such that the problem (9)

has no solution for and has a feasible solution for

2) , , and .

3) Solve feasibility problem (10) for .

4) If there exist a feasible solution, set , else .

5) If go to (2), else declare the last feasible

solution as the optimum and stop.

Fig. 1. Bisection search in the multistep feasibility formulation of optimum
watermarking.

Let denote a real-valued number, and consider the feasi-

bility problem:

Find

subject to

(10)

This feasibility problem is closely related to our optimiza-

tion problem in (9). In particular if is the optimum value for

the objective function in our constrained optimization (9), the

feasibility problem(10) has a solution if and only if .

Suppose next that an algorithm exists for solving the feasibility

problem in (10) that provides a feasible when one exists and

indicates that no solution exists otherwise. Then by combining

the algorithm with a bisection search on we can obtain a so-

lution to the optimization problem as indicated in the aforemen-

tioned multistep feasability algorithm. The operation of the al-

gorithm is illustrated pictorially in Fig. 1 for the case of two

constraints. At the start of iteration , and the problem

(10) has a feasible solution for the upper limit and

no feasible solution exists for the lower limit . There-

fore, . A solution of the feasibility problem is

attempted next for the midpoint of the lower and upper limits,

i.e., . If a solution exists oth-

erwise . Accordingly, in the former case is

set to and in the latter case is set to . At the start of the

iteration once again and the process

is repeated. In each iteration, the interval is bisected so

that after exactly iterations, the algorithm

will terminate, where is the tolerance parameter.

A. Multistep Convex Feasibility Formulation of Watermarking

Since the level set of the convex ob-

jective function is also a convex set, (10) represents a

convex feasibility problem. The solution to this problem can,

therefore, be obtained by utilizing the method of POCS [30],
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[31]. Specifically, define the sets ,

and , . Then if

, starting from any arbitrary ini-

tial image , the sequence of images converges to a

feasible solution of (10), where

and denotes the projection of

onto the convex set .

In fact this feasibility problem represents a particular case

of the set theoretic watermarking formulation [17]. Projection

operators for these sets were enumerated in [17] and are sum-

marized in Appendix II for completeness. Using these projec-

tion operators, the feasibility problem (10) can readily be solved

using POCS. By employing this “feasibility solver” in the mul-

tistep feasibility optimization of Fig. 1, we obtain a solution for

the optimal watermark embedding formulation of (10) (which

is identical to Section II-A).

For the purpose of concrete illustration, we utilized the op-

timal watermark embedding problem of Section II-A in our

description of the multistep feasibility formulation. One can

immediately see that the framework presented here is general

and also addresses the optimal embedding formulations of Sec-

tions II-B–D (with the convex approximation of compression

resilience). Furthermore, additional convex constraints can be

readily incorporated in the watermarking process through the

addition of suitable constraint sets.

IV. EXPERIMENTAL RESULTS

We report experimental results for each of the four different

optimal watermark embedding scenarios described in Sec-

tion III. We first outline our experimental setup then we present

results for a sample image that highlight the impact of the

different formulations. Finally, we present numerical results for

the optimizations in tabular format. We note that the watermark

detection performance can be inferred in large measure from the

constraint parameters and the optimal values. For the feasibility

formulation, this has also been extensively investigated in [17].

In this paper, we, therefore, focus our attention on the impact

of the different optimizations and the interactions between the

optimal values and the constraint parameters.

A. Experimental Setup

We recall that our cover image has pixels so that

and are vectors and is a matrix

representing the HVS contrast sensitivity function as a linear

spatially invariant filter. For our SS watermark , we utilize

a randomly generated iid sequence taking values and ,

equiprobably. For the robustness to compression constraints, the

quantizer approximation was determined corresponding to

a JPEG quality factor of 70.

1) Normalized Constraint Parameter Values and Objective

Functions: In order to allow more intuitive understanding of the

numerical values used in the simulations and the numerical re-

sults of the optimizations, we introduce normalized versions of

our simulation parameters that define the constraints and corre-

sponding normalized versions of the objective functions for our

four different optimization formulations. For our description we

assume that denotes the watermarked image obtained from

the optimization formulation under discussion.

Observing that represents the correlation

value of the watermark sequence with itself, we normalize

the embedding strength and the upper bound for the embed-

ding strength by this value. Thus, for the optimization of

Section II-A, we report the optimum values of the embedding

strength by recording , and for

the other formulations we establish the embedding strength

constraint in terms of the corresponding normalized parameter

value . Specifically, we utilize the values

1, 3, and 5 in our experiments.

In an analogous fashion, for the optimization formulation of

Section II-C, we report the optimal value in the normalized

form

and for the other formulations the upper-bound parameter for

the robustness to compression constraints is given in terms of

. We use the values 1, 2, and 3 in our ex-

periments.

If the image representation has a maximal value of (e.g.,

for 8 bit images), the peak signal energy at the

output of the HVS filter for any input original image can be

upper-bounded as

where denotes the Fourier transform of the HVS contrast

sensitivity filter and denotes the frequency at which the

magnitude of this Fourier transform attains a maximum. Using

this upper bound for normalization, for the optimization formu-

lation of Section II-B, we report the frequency weighted per-

ceptual distortion metric in terms of the peak

visual signal to watermark power ratio

Correspondingly, for the other optimization frameworks, the

upper bound for the frequency weighted perceptual distortion

is stated in terms of a corresponding upper bound for the peak

visual signal to watermark power ratio

We utilize the values 49.68, 51.44, and 54.45

dB in our experiments corresponding to values of 120000,

80000, and 40000, respectively (with ).

For the watermarked images, we also report the peak

signal to watermark power ratio defined as

.

The parameter for the texture masking model denotes the

maximum allowable deviation at any pixel and does not re-

quire normalization. We use the values 10, 20, and 30

for the constraints. Note that this deviation is infact allowable

only in the limit in extremely busy regions of the cover image

(where the noise visibility function tends to 1). In the optimiza-

tion formulation of Section II-D the optimum value of

is reported directly and this represents the
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Fig. 2. Original images. (a) Boat image. (b) Goldhill image. (c) Lena image. (d) Tank image.

maximum noise visibility weighted absolute deviation from the

cover image at any pixel location.

2) Test Images: We test our algorithms using four images

from USC image database [32], specifically: Lena, Barbara,

Tank, and Goldhill. These are 8-bit gray-scale images with a

size of 512 512 pixels. The original versions of these images

are shown in Fig. 2. We performed the optimal embedding

for different parameter selections for each of the four images

for each of the four optimality formulations. In each case,

all the different values of the constraint parameters listed in

the preceding section were utilized, resulting in 27 different

combinations of constraint parameters for each optimization

formulation. Due to the computationally intensive nature of the

algorithm, our evaluation is limited to this relatively small set

of images. Our results, however, serve the desired objective of

highlighting the effect of the different optimality formulations

and the interaction between the constraints and the optimal

values of the objective functions.

B. Watermarked Image for Different Optimal Embeddings

In order to demonstrate how the choice of the objective func-

tion impacts the watermarked image, we begin by presenting

results for the Boat image for each of the four optimal embed-

ding formulations.3 Since the goal is to highlight differences in-

duced by different objective criteria, constraint parameter values

are chosen corresponding to the most relaxed constraints from

among the values indicated earlier. This allows the optimiza-

tion choice over a larger set of possibilities making the im-

pact of the objective function more salient. Specifically, we use

, , , and for

defining the required constraints.4 Optimal watermarked images

corresponding to the four different embedding formulations are

shown in Fig. 3. The spatial domain watermark signal

for each of these optimal embeddings is shown in Fig. 4, where

for the purpose of clearer visual presentation, the signal has been

scaled by a factor of 4 and translated about a mid gray value

of 128 to allow both positive and negative values to be repre-

sented. In order to show the distribution of watermark energy

in the frequency domain, the magnitude of the discrete Fourier

transform (DFT) of the watermark signal for each

3Corresponding results for the other images are included in supplementary
materials posted online.

4Note each optimization formulation only requires a subset of three of these
parameter values.
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Fig. 3. Watermarked versions of the Boat image obtained for the four different optimization formulations. (a) Maximizing embedding strength. PSWR of the
image is 24.60 dB. (b) Minimizing frequency weighted perceptual distortion. PSWR of the image is 37.71 dB. (c) Maximizing robustness to compression. PSWR
of the image is 24.79 dB. (d) Minimizing the watermark texture visibility. PSWR of the image is 37.28 dB.

of these optimal embeddings is shown in Fig. 5. For each of

these figures, subfigures (a)–(d) correspond, respectively, to the

watermarked images with maximal embedding strength (Sec-

tion II-A), with minimal frequency weighted perceptual distor-

tion (Section II-B), maximal robustness to compression (Sec-

tion II-C), and minimal watermark texture noise visibility (Sec-

tion II-D).

The watermarked Boat image generated by maximizing em-

bedding strength is shown in Fig. 3(a). The PSWR of the wa-

termark image is 24.60 dB. The difference image between wa-

termarked image and the original image, representing the em-

bedded watermark signal is shown in Fig. 4(a) in the spatial do-

main. This figure clearly shows the adaptation of the embedded

watermark signal to the cover image. The textured regions of the

image, such as the sandy shore displayed at the bottom of the

image, host more watermark power compared to the smoother

regions of the image such as the sky region. The effect of the

maximization of the detectability algorithm can be observed by

examining the frequency domain representation of the water-

mark in Fig. 5(a). In the frequency domain, despite the water-

mark power shaping seen in the spatial domain, the designed

watermark largely resembles white noise with the power dis-

tributed over all the frequency bands. When maximizing the em-

bedding strength the white noise nature of the spread spectrum

watermark dominates over the other constraints for this cover

image.

The watermarked Boat image generated by minimizing fre-

quency weighted perceptual distortion is shown in Fig. 3(b). The

PSWR of the image is 37.71 dB. The watermarked image is

visually pleasing. The difference image between watermarked

image and the original image in spatial domain is shown in

Fig. 4(b). The adaptation of the embedded watermark signal to

the cover image is still visible; however, the contrast of the dif-

ference image in spatial domain is lower compared to the other

algorithms. The effect of the algorithm can be better observed by

examining the watermark in frequency domain in Fig. 5(b). The

watermark power is pushed out of the visible frequency region.

The circular region seen in the middle of the spectrum matches

the frequency region over which the filter representing the HVS

contrast sensitivity takes on significant values.

The watermarked Boat image generated by maximizing ro-

bustness to compression is shown in Fig. 3(c). The PSWR of
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Fig. 4. Embedded watermark signals corresponding to the difference � �� between the watermarked Boat image and the original Boat image for the four
different optimization formulations. (a) Maximizing embedding strength. (b) Minimizing frequency weighted perceptual distortion. (c) Maximizing robustness to
compression. (d) Minimizing the watermark texture visibility. Values have been scaled by a factor of 4 and translated to a mid gray value of 128 to make differences
clearer and to allow representation of both positive and negative values.

this image is 24.79 dB. This optimization scenario introduced

visible artifacts in the watermark image that are similar to ag-

gressive JPEG compression artifacts. This is mainly due to the

nature of the objective function. In order to provide resilience to

JPEG compression the maximization of robustness causes the

watermark signal power to be distributed in lower frequency re-

gions of the image, which usually falls into the visible regions.

It is important to note that these artifacts can be minimized by

tightening the visual quality constraints. However, we utilize

rather relaxed visual quality constraints in order to demonstrate

the dominant distortion encountered in this optimization. The

difference image between watermarked image and the original

image (i.e., embedded watermark signal) is shown in Fig. 4(c).

This figure illustrates the adaptation of the watermark to the

cover image. In addition, some blocking is seen in the embedded

watermark signal in less textured regions of the image. The ro-

bustness to compression metric measures the watermark power

distributed in the DCT bases that are preserved in the original

image in the compressed representation. The maximization of

this metric, therefore, causes the watermark power to be dis-

tributed within these bases. The frequency domain representa-

tion of the watermark power in Fig. 5(c) illustrates that the max-

imization of robustness to compression tends to push the water-

mark power toward the low frequency region.

The watermarked Boat image generated by minimizing the

watermark texture visibility metric is shown in Fig. 3(d). The

PSWR of the image is 37.28 dB. The watermarked image is

visually pleasing. The difference image between watermarked

image and the original image is shown in Fig. 4(d). The water-

mark power in the spatial domain is concentrated in regions of

high spatial activity where the embedded watermarked signal

is better masked by the content in the cover image. The spatial

distribution of energy in the watermark signal resembles the dis-

tribution obtained by maximizing robustness to compression in

Fig. 5(c), however, the scales are quite different, the overall dis-

tortion being much lower in the present case. The similarity in

the spatial distribution of watermark energy exists because more

of the high frequency DCT bases are preserved in regions with
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Fig. 5. Frequency domain distribution of watermark power for the optimally watermarked Boat images. The figures represent the magnitudes of the embedded
watermark signals for the four different optimization formulations. (a) Maximizing embedding strength. (b) Minimizing frequency weighted perceptual distortion.
(c) Maximizing robustness to compression. (d) Minimizing the watermark texture visibility.

high spatial activity in the image. The frequency domain repre-

sentation of the watermark signal in Fig. 5(d) illustrates that the

watermark power tends to concentrate at lower frequencies. This

is because the spatial domain shaping of the embedded water-

mark signal also causes the watermark signal power distribution

to approximate the low pass characteristic of the cover image.

To illustrate the impact of the cover image content, we present

in Figs. 6–8 the watermarked images, the embedded watermark

signals in the spatial domain, and the magnitude of the discrete

Fourier transforms for the embedded watermark signals for the

Lena image for the different optimality formulations. The re-

sults largely follow the trends observed for the Boat image,

though, of course the shaping of the watermark power adapts

to the different content for this image. Specifically comparing

Fig. 8(c) and (d) with Fig. 5(c) and (d), respectively, we see that

the since the power in the Lena image concentrates in lower fre-

quencies than in the Boat image, so does the watermark signal

power for the optimality formulations for maximizing robust-

ness to compression and minimizing watermark texture visi-

bility. The results for the two other images (included in the sup-

plementary materials) support these deductions.

C. Optimum Values as a Function of Constraint Parameters

The optimum value of the objective function achievable in

each of the constrained optimization formulations depends on

the constraint parameters and on the cover image content. In

general, changes in parameter values exert a varying influence

on the optimum value. We illustrate this by considering each of

the optimal formulations and tabulating the optimum values ob-

tained for the objective functions for each of the 4 images for

the 27 possible parameter values for the constraints enumerated

earlier. The variation in the optimal values with change in con-

straint parameter values not only indicate the influence of each

of the constraint parameters on the optimum but also serve to

establish limits for what is attainable under the constraints.

Table I lists the maximum embedding strength obtained

for the formulation of Section II-A for various parameter values.

The maximum embedding strength follows expected trends with

the change in the constraint parameter values: increasing with

an increase in values of and , and decreasing with an in-

crease in . For some cases, however, the relaxation of a con-

straint does not change the optimal value because the constraint
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Fig. 6. Watermarked versions of the Lena image obtained for the four different optimization formulations. (a) Maximizing embedding strength. PSWR of the
image is 26.37 dB. (b) Minimizing frequency weighted perceptual distortion. PSWR of the image is 37.08 dB. (c) Maximizing robustness to compression. PSWR
of the image is 26.14 dB. (d) Minimizing the watermark texture visibility. PSWR of the image is 36.71 dB.

is inactive at the optima. In general, the watermark texture vis-

ibility constraint parameter exerts the most influence on the

optimal value of the embedding strength, this is followed in de-

creasing order by the robustness to compression constraint pa-

rameter and by the frequency weighted perceptual distortion

bound . The maximal values of also exhibit vari-

ation along expected lines based on the content of the cover

image: the maximal values for the same parameter values for the

constraints increase progressively as the cover image becomes

busier (in the order Lena, Tank, Boat, and Goldhill).

Table II summarizes the minimum frequency weighted distor-

tion obtained for the formulation of Section II-B using the pro-

posed optimization methodology where the optimal values are

reported in terms of the peak visual signal to watermark power

ratio defined earlier. The peak visual signal to water-

mark power ratio increases as the constraints are relaxed but

once again demonstrates several scenarios where a relaxation

of one or two of the constraints does not change the optimal

value due to the constraints being nonbinding. The numerical

values indicate that the visual texture model constraint param-

eter exerts the strongest influence on the optimal value fol-

lowed by the robustness to compression constraint parameter

and then by the embedding strength parameter , in decreasing

order of impact. The strong influence of reflects the com-

plementary nature of the two visual constraints. Whereas, the

maximization of the frequency weighted measure of percep-

tual distortion , which is based on the HVS contrast

sensitivity, attempts to move the watermark signal power into

high frequencies, it is constrained from moving the power into

smooth regions of the image by the watermark texture visibility

constraints.

The maximum values for the robustness to compression

metric are enumerated in Table III for the 4 images and each

of the 27 values of the constraint parameters. The resulting

optimum values of are higher when the visual constraints

are relaxed, i.e., for higher and higher ; however, they

diminish with a higher embedding strength constraint, i.e.,

higher . While this initially appears counter-intuitive, it can

be understood from the fact that the robustness to compression

and embedding strength compete for the same “perceptual

bandwidth” controlled by the visual constraint sets. Among

the constraint parameters, the watermark texture visibility
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Fig. 7. Embedded watermark signals corresponding to the difference � �� between the watermarked Lena image and the original Lena image for the four
different optimization formulations. (a) Maximizing embedding strength. (b) Minimizing frequency weighted perceptual distortion. (c) Maximizing robustness to
compression. (d) Minimizing the watermark texture visibility. Values have been scaled by a factor of 4 and translated to a mid gray value of 128 to make differences
clearer and to allow representation of both positive and negative values.

constraint parameter once again exerts the highest influence,

followed by the embedding strength parameter and the

frequency weighted perceptual distortion bound , in

decreasing order of impact.

Table IV summarizes the minimum values for the texture

noise visibility metric obtained for

the formulation of Section II-D using the proposed optimization

algorithm. The minimum values of are nondecreasing as the

constraint parameters are adjusted to make the constraints more

restrictive. Once again, several cases are seen where a relaxation

of one of the constraints does not change the optimum value be-

cause the constraint is nonbinding at the optima. In this case,

changes in the value of the parameter corresponding to the

embedding strength constraint cause the largest variations in the

minimum value of . The value of , corresponding to the ro-

bustness to compression constraint, exercises the next strongest

influence on the optimal value, whereas the bound

for the frequency weighted perceptual distortion metric has the

smallest influence on the minimal value of .

The tables and the observations also shed light on the in-

teractions between the different objectives in watermarking

applications. In general it is well understood that the objectives

of minimizing perceptual distortion and of maximizing embed-

ding strength act in countervailing directions. However, as the

results indicate, even the objectives of maximizing embedding

strength and of maximizing robustness to compression, which

are often thought of as being aligned, can also compete with

each other. Likewise, the objectives of minimizing watermark

visibility as indicated by texture masking and by the contrast

sensitivity function are not entirely aligned. The preceding

observations also demonstrate the asymmetric nature of some

of the interactions between the different constraints in water-

marking: while the watermark texture visibility constraint

exerts a strong influence on the frequency weighted perceptual

distortion metric , the converse is not true.

The optimal values listed in Tables I–IV also provide

guidance for establishing constraints for watermarking (in op-

timality and feasibility formulations). When other constraints
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Fig. 8. Frequency domain distribution of watermark power for the optimally watermarked Lena images. The figures represent the magnitudes of the embedded
watermark signals for the four different optimization formulations. (a) Maximizing embedding strength. (b) Minimizing frequency weighted perceptual distortion.
(c) Maximizing robustness to compression. (d) Minimizing the watermark texture visibility.

are kept the same, the optimal value represents the tightest

bounds for which a feasible solution exists. Thus, values lower

than these upper bounds should be selected when imposing

constraints.

D. Computational Complexity

The computational burden of the proposed optimization

methodology tends to be rather high. An analytic characteri-

zation of the computational complexity of the overall method

is complicated by the iterative nature of the algorithm with

two nested iterations corresponding to the multistep feasibility

bi-section and the POCS algorithm for the individual feasibility

problems. We, therefore, provide estimates of run time for

our sample images for individual steps and for the overall

algorithm. All computational times are based on MATLAB

implementations under a Windows XP operating system on an

AMD 2-GHz Dual Core Athlon 64-bit processor with 2 GB of

main memory.

The primitive computational steps of the POCS algorithm for

solving the feasibility problems are the projections onto the in-

dividual sets. The computational times for the projections onto

the individual sets are approximately: 0.050 s for the projec-

tion onto the watermark embedding strength constraint, 0.023

s for the watermark texture visibility constraint, 5.67 s for ro-

bustness to compression constraint, and 5.90 s for the frequency

weighted perceptual distortion constraint. The nature of the pro-

jections accounts for the significant variation in these times. For

instance, the projection onto the frequency weighted perceptual

distortion set utilizes a (full-frame) discrete Fourier transform

of the image, which increases the computational load. One set

of successive projections, for all of the constraints requires a

computational time of approximately 11.6 s. In our experiments,

100 projections were found to be sufficient to deduce the exis-

tence/absence of a feasible solution for each of the optimization

frameworks, yielding a worst case estimate of approximately 19

min for solving a feasibility problem. The number of bi-section

iterations determines the number of feasibility problems that

need to be solved. This is dependent on the values of the upper

and lower bounds , for the optimum value of the optimiza-

tion in the algorithm of Fig. 1. For instance, for optimization of
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TABLE I
RESULTS FOR MAXIMIZATION OF EMBEDDING STRENGTH. THE TABLE LISTS THE MAXIMIZED VALUES OF NORMALIZED EMBEDDING STRENGTH � FOR EACH

SET OF CONSTRAINT PARAMETER VALUES. NC INDICATES CASES WHERE NO FEASIBLE SOLUTION WAS FOUND (FOR THE CONSTRAINTS ALONE)

TABLE II
RESULTS FOR MINIMIZATION OF FREQUENCY WEIGHTED PERCEPTUAL DISTORTION. THE TABLE LISTS THE MAXIMIZED VALUES OF NORMALIZED PERCEPTUAL

PEAK SIGNAL TO WATERMARK POWER RATIOS ���� FOR EACH SET OF CONSTRAINT PARAMETER VALUES. NC INDICATES CASES WHERE NO FEASIBLE

SOLUTION WAS FOUND (FOR THE CONSTRAINTS ALONE)

robustness to compression, a choice of upper and lower limits as

and , would require

bi-section steps to search for a solution within an

neighborhood of the optimal solution. In this case the optimiza-

tion would take a worst case time of 209 min. In practice, the

time required is significantly less than this worst case estimate.

Furthermore, utilizing relaxed projections [31] we observed a

speed up for the solution of the feasibility problems. In our ex-

periments, the average time for determining an optimal embed-

ding was around 92 min.
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TABLE III
RESULTS FOR MAXIMIZATION OF ROBUSTNESS TO COMPRESSION. THE TABLE LISTS THE MAXIMIZED VALUES OF THE NORMALIZED COMPRESSION

ROBUSTNESS METRIC � FOR EACH SET OF CONSTRAINT PARAMETER VALUES. NC INDICATES CASES WHERE NO FEASIBLE SOLUTION WAS FOUND

(FOR THE CONSTRAINTS ALONE)

V. DISCUSSION

The proposed scheme falls into the category of spread spec-

trum zero-bit watermark insertion based on an optimization for-

mulation. An alternative method that falls in the exact same

category is the technique for optimum watermark embedding

by linear programming proposed by Pereira et al. [14]. That

work adopts a similar approach, by designing an optimum wa-

termarked image under linear constraints by employing linear

programming. In the present work, we extend the class of con-

straints that can be employed for “embedding by optimization”

from the class of linear constraints employed by Pereira et al.

to a much broader class of convex constraints (since linear con-

straints constitute a subclass of convex constraints). In the for-

mulation proposed here, convex and quasi-convex constraints

can be incorporated for watermark embedding. Hence, among

the proposed optimization based formulations, the method we

propose provides the most flexible framework.

Another beneficial aspect of the proposed technique is the

ease of handling constraints formulated in various transform

domains. The scheme, as described, incorporates convex con-

straints in the spatial domain (watermark strength, watermark

texture visibility), in the frequency domain (overall frequency

weighted distortion), and in the spatio-DCT domain (robust-

ness to JPEG compression). Handling these constraints that

are naturally formulated in different domains is one of the

main strengths of the methodology which is hard to replicate

in heuristic embedding formulations. In addition the proposed

scheme also allows embedding of multiple watermarks in an

optimal sense while providing implicit shaping of watermark

signals to meet the visual constraints. We have shown the

realization of such a scheme for the feasibility formulation

of the watermarking problem in our prior work [33]. The

underlying advantage of meeting or optimizing perceptual dis-

tortion constraints with multiple watermarks is also applicable

to the present optimization formulation, though not directly

investigated here.

For the formulation of the watermark embedding strength and

compression resilience constraints, the proposed methodology

relies on modeling the “attacks” on the watermarked image,

specifically as additive noise and JPEG compression for these

two constraints. In an absolutely general setting, a modeling of

all watermark attacks is not possible due to the number and com-

plexity of the set of possible attacks. However, for a number of

applications (e.g., broadcast monitoring, robust authentication

in the present of network transcoding, etc.) “semi-fragile” wa-

termarks are recognized as an acceptable, even preferable, solu-

tion. In these scenarios, the attack channel can indeed be mod-

eled and utilized in the framework presented here. As opposed

to other approaches, in these scenarios the framework presented

here offers the clear advantage of allowing one critical require-

ment to be optimized while still meeting other constraints. In

the model of watermarking as a communication problem with

side information [26, Ch. 5], game theoretic models have been

advantageously applied in order to model (power constrained)

adversaries [26, p. 377], [34]. Similar methodologies may pro-

vide useful extensions of the framework presented here, though

this is clearly beyond the scope of the present work.

Though the visual models used in the paper are relatively

primitive, they capture the two main elements included in

most visual system models, i.e., contrast sensitivity and texture

masking. This allows us to demonstrate utility of the proposed
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optimal watermarking framework. Our framework, on the other

hand, is quite general and other visual system models can be

readily incorporated provided these can be formulated as, or

closely approximated by, convex constraints. An investigation

of more recent models [35]–[37] would be of interest as an

advance over the work presented here. The principal challenge

here is in formulating the visibility constraints as simple convex

sets for which projections can be readily obtained.

VI. CONCLUSION

Maximization or minimization of an objective function, sub-

ject to additional constraints, is often desirable in spread spec-

trum watermarking applications. Optimal watermark embed-

ding for a number of these scenarios can be accomplished by

combining a multistep feasibility formulation of the optimiza-

tion [19, p.159], with set theoretic watermarking via projec-

tions onto convex sets (POCS) [17], [18]. The combination pro-

vides a general framework for determining an optimal water-

marked image for convex objective functions with other convex

constraints. Specifically, constraints on watermark embedding

strength, compression resilience, frequency weighted percep-

tual distortion, and watermark texture visibility can be imposed

while optimizing a metric quantifying one of these performance

criteria. Experimental results demonstrate the effectiveness of

the proposed methodology.

APPENDIX I

TEXTURE MASKING MODEL AND TEXTURE VISIBILITY METRIC

We use the spatial texture masking model of Pereira et al.

[14], [38]. For the formulations in Sections II-A–C we obtain

pixel-wise distortion limits from this model and for the opti-

mization of Section II-D, we formulate a texture visibility metric

based on the model. We include a short synopsis of the model

here and refer the reader to [14], [38] for details. The cover

image is modeled as a sum of the local mean and an error term,

with the latter further modeled by a generalized Gaussian distri-

bution. A noise visibility function (NVF) at each pixel position

is obtained from this model as

(11)

where represents the estimated local variance over a

3 3 window centered at pixel and is a

tuning parameter that controls the contrast adjustment, where

is the maximal local variance of the image and is an

experimentally determined parameter [38].

Using the NVF the allowable pixel distortion at pixel location

is computed as

(12)

where and represents the allowable pixel distortion in busy

and flat regions, respectively. Following [38], we use .

The upper and lower bounds on the distortion are then set equal

to , i.e., utilized for the constraint

in Section III. The NVF lies in [0, 1] and is small in regions of

the cover image that are smooth, i.e., have low local variance and

the NVF is large in regions of the cover image that are textured

(and, therefore, have high variance). Thus, (12) indicates that a

large distortion is allowed in textured regions of the cover image

in comparison with the smooth regions.

From (12) we note that the smallest for which a

candidate image is acceptable is given by

. This value

represents a (worst case) measure of the visibility of the texture

noise in the candidate watermarked image . De-

noting and ,

we can represent above in compact form as:

. Thus, for the formulations of

Sections II-A–C the watermark texture visibility constraint can

be written as .

APPENDIX II

CONSTRAINT SET PROJECTION OPERATORS

The solution of the feasibility problem in (10) requires a com-

putation of the projections onto the sets

(13)

where and the functions and bounds are

as defined in Section II (following (9)).

The projection onto the set is given by

. The projection operators for these

sets were derived in [17]. We summarize these in the following

subsections.

Projection Onto (Embedding Strength Constraint):

(14)

where the Lagrange [39] parameter for this projection is ob-

tained as

otherwise
(15)

Projection Onto (Frequency Weighted Perceptual

Distortion Constraint): For shift invariant , the projection

and the Lagrange parameter are computed efficiently using

the discrete Fourier Transform (DFT). Denoting the

projection by , we have

(16)

where , , and represent the 2-D

DFT coefficients of , , , and , respectively, and is the

Lagrange parameter. For the Lagrange parameter is

the positive root of

(17)

and is zero if .
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TABLE IV
RESULTS FOR MINIMIZATION OF WATERMARK TEXTURE VISIBILITY. THE TABLE LISTS THE MINIMUM VALUES OF THE TEXTURE NOISE VISIBILITY METRIC

� � �� �� �� �� OBTAINED FROM THE OPTIMIZATION FOR EACH SET OF CONSTRAINT PARAMETER VALUES. NC INDICATES CASES WHERE

NO FEASIBLE SOLUTION WAS FOUND (FOR THE CONSTRAINTS ALONE).

Projection Onto (Watermark Texture Visibility Con-

straint): The constraint set actually represents a collec-

tion of term-wise upper and lower bounds on the

entries in . Using the notation of Appendix I these con-

straints can be written as

where , and denotes

the element of the vector . The projection

is then obtained term-by-term as

if

if

if
(18)

Projection Onto (Robustness to Compression Con-

straint):

(19)

where is the Lagrange parameter given by

otherwise.
(20)
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