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S U M M A R Y

I develop least-squares (LS)-based schemes to derive globally optimal spatial explicit

staggered-grid finite-difference (SGFD) coefficients of the first-order derivative over a given

wavenumber range for a given operator length, with no iterations involved. Dispersion analyses

show that the dispersion error reduces with an increase of the operator length and a decrease of

the wavenumber range. Therefore, globally optimal spatial SGFD coefficients with the shortest

operator length can be found to satisfy the given error limitation in the given wavenumber

range. Examples of optimal explicit SGFD coefficients are given. In addition, a LS-based

scheme to derive optimal implicit SGFD coefficients is meanwhile put forward. Examples

of optimal implicit SGFD coefficients are given. Numerical experiments for a homogeneous

model and a heterogeneous model demonstrate that the LS-based SGFD method has a higher

accuracy than the Taylor-series expansion (TE)-based SGFD method for the same operator

length. Compared to the TE-based SGFD method, the LS-based SGFD method can adopt a

shorter operator to achieve the same accuracy and thus is more efficient.
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1 I N T RO D U C T I O N

Compared with conventional standard-grid finite-difference (FD)

methods, staggered-grid FD (SGFD) methods have been more

widely used in numerically solving wave equations for their greater

precision and stability, though some non-staggered schemes (e.g.

Zhang & Chen 2006; Tarrass et al. 2011; Zhang et al. 2012) have

been successfully developed to simulate seismic wave propagation.

Madariaga (1976) developed a SGFD scheme for crack propaga-

tion modelling. Virieux (1984, 1986) advanced SGFD schemes for

simulating SH and P-SV wave propagation in 2-D elastic media.

These schemes are second-order accurate. Levander (1988) de-

scribed a SGFD scheme with the fourth-order accuracy in space and

the second-order accuracy in time for 2-D P-SV wave modelling.

Graves (1996) presented a SGFD scheme to model wave propaga-

tion in 3-D elastic media. Moczo et al. (2000) studied the stability

and the grid dispersion of 3-D fourth-order displacement-stress and

velocity-stress SGFD schemes. Moczo et al. (2002) proposed a

new 3-D fourth-order SGFD scheme for modelling seismic motion

and seismic wave propagation. Some researchers (e.g. Zhang 1997;

Gottschämer & Olsen 2001; Kristek et al. 2002; Mittet 2002; Lan

& Zhang 2011) studied implementation of free surface boundary

conditions involved in elastic SGFD modelling. Surface topogra-

phy can also be included in SGFD modelling (e.g. Ohminato &

Chouet 1997; Hestholm & Ruud 1998; Hestholm 2003; Lombard

et al. 2008). In the past 20 yr, SGFD methods have been applied

in visco-acoustic and viscoelastic wave modelling (e.g. Robertsson

et al. 1994a; Robertsson 1996; Hayashi et al. 2001; Bohlen 2002;

Operto et al. 2007).

To settle the instability of standard-grid FD modelling in high

contrasts elastic media, Saenger et al. (2000) employed a partly

staggered scheme, which has all stress/tensor components at the

centre of a grid cell and all displacement/velocity components at

each corner of the cell. Upon their demonstration, its advantages

have been taken to simulate elastic waves propagation, especially

in media containing cracks, pores or free surfaces (e.g. Saenger

& Shapiro 2002; Krüger et al. 2005), anisotropic media (Saenger

& Bohlen 2004; Bansal & Sen 2008) and viscoelastic media

(Yan & Liu 2012).

High-order methods, including explicit methods (e.g. Crase 1990;

Dong et al. 2000; Etgen & O’Brien 2007; Hestholm 2009; Di

Bartolo et al. 2012) as well as implicit methods (e.g. Lele 1992; Liu

& Sen 2009a; Du et al. 2009), etc., have been universally adopted

to improve the accuracy of spatial SGFD. FD coefficients are usu-

ally determined by the Taylor-series expansion (TE; e.g. Fornberg

1987, 1988; Liu et al. 1998; Song & Fomel 2011; Chu & Stoffa

2012a). The TE-based method (TEM) uses TE to expand trigono-

metric functions in SGFD dispersion relations into polynomials,

whose coefficients are applied to derive SGFD coefficients (e.g. Liu

& Sen 2009a). The TEM usually provides a very high accuracy
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1034 Y. Liu

Figure 1. Variations of log10(εrms) and log10(εmax) of ESGFD with b for

different M by the TEM and the LSM of minimizing the absolute error of

dispersion relation, respectively. Variations of log10(εrms) with b are shown

in (a) by the TEM and (b) by the LSM. Variations of log10(εmax) with b are

shown in (c) by the TEM and (d) by the LSM. From top to bottom, lines are

from M = 2, 3, . . . , 20, respectively.

Figure 2. ε(β) of ESGFD in (a) and its zoom in (b) by the TEM and the

LSM of minimizing the absolute error of dispersion relation, respectively.

M = 6. For the LSM, b = 2.17 is used in eq. (12) together with (11) and (9)

to calculate cm , and their values are shown in Table 3. At the points R and

Q, β = b and β = B. At the points P and Q, |ε| have the same value.

over a small wavenumber range, but it has to adopt a long operator

to obtain a high accuracy over a large wavenumber range and thus

takes great computational time.

To obtain a high accuracy at a low computational cost, truncation-

based methods (e.g. Zhou & Greenhalgh 1992; Igel et al. 1995; Liu

& Sen 2009b) and optimization-based methods (e.g. Tam & Webb

1993; Takeuchi & Geller 2000; JafarGandomi & Takenaka 2009)

have been developed to derive FD coefficients. The truncation-based

methods obtain FD coefficients by truncating spatial convolution se-

ries of the pseudospectral method (e.g. Zhou & Greenhalgh 1992;

Igel et al. 1995), omitting small values in the TE-based high-order

FD coefficients (Liu & Sen 2009b; Chang & Liu 2013) or using

scaled binomial windows (Chu & Stoffa 2012b) to reduce the oper-

ator length while maintaining the same approximate accuracy. The

truncation-based methods are easy to use but do a little to improve

the accuracy and reduce the computation cost.

Optimization-based methods are usually adopted to compute op-

timized FD coefficients at a given wavenumber range and operator

length, commonly using gradient-like algorithms, such as the least-

squares (LS) method, to minimize FD dispersion relations (e.g.

Tam & Webb 1993; Yang & Balanis 2006; Shan 2009; Kosloff

et al. 2010; Zhou & Zhang 2011; Liu 2013), phase velocity errors
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Table 1. The B values of ESGFD for different M and

maximum relative errors η from the TEM and the LSM

of minimizing the absolute error of dispersion relation,

respectively. εmax < η is satisfied in the interval [0, B].

M B

η = 10−3 η = 10−4 η = 10−5

TEM LSM TEM LSM TEM LSM

2 0.68 1.04 0.38 0.59 0.21 0.32

3 1.08 1.73 0.73 1.19 0.49 0.81

4 1.36 2.13 1.00 1.63 0.74 1.24

5 1.56 2.38 1.21 1.94 0.94 1.57

6 1.71 2.53 1.37 2.16 1.11 1.82

7 1.83 2.64 1.50 2.31 1.24 2.00

8 1.92 2.72 1.61 2.43 1.36 2.15

9 2.00 2.79 1.70 2.52 1.46 2.26

10 2.07 2.84 1.77 2.59 1.54 2.36

11 2.12 2.87 1.84 2.65 1.61 2.43

12 2.17 2.90 1.90 2.69 1.68 2.50

13 2.22 2.93 1.95 2.73 1.74 2.55

14 2.26 2.95 2.00 2.77 1.79 2.60

15 2.29 2.97 2.04 2.80 1.83 2.64

16 2.32 2.98 2.08 2.82 1.88 2.67

17 2.35 2.99 2.11 2.84 1.92 2.71

18 2.38 3.00 2.14 2.86 1.95 2.74

19 2.40 3.01 2.17 2.88 1.98 2.76

20 2.42 3.02 2.20 2.89 2.01 2.78

30 2.57 3.07 2.39 2.99 2.23 2.91

40 2.66 3.10 2.50 3.03 2.36 2.98

50 2.72 3.11 2.57 3.05 2.45 3.01

Figure 3. Variations of B of ESGFD with M for different maximum errors

η by the TEM and the LSM of minimizing the absolute error of dispersion

relation, respectively. εmax < η in the interval [0, B].

(e.g. Chen 2012) or group velocity errors (e.g. Jastram & Behle

1993; Robertsson et al. 1994b) over a wavenumber range (e.g. Jas-

tram & Behle 1993; Tam & Webb 1993; Yang & Balanis 2006; Zhou

& Zhang 2011; Chen 2012) or a frequency range (e.g. Robertsson

et al. 1994b; Shan 2009). To maximize the wavenumber range at a

given accuracy and operator length, Holberg (1987) designed FD

coefficients by minimizing the peak relative error of group velocity.

Kindelan et al. (1990) put forward an alternative frame to sim-

plify the computation of Holberg’s operators and used Newton’s

method to solve the optimization problem. Because gradient-like

algorithms are locally optimal and may not obtain the global opti-

mum, Zhang & Yao (2012, 2013) tried to obtain the best optimized

FD coefficients and the bandwidth through simulated annealing of

Table 2. The b values of ESGFD used to calculate LS-

based ESGFD coefficients by minimizing the absolute

error of dispersion relation for different M and maximum

relative errors η. εmax < η is satisfied in the interval [0,

B], B is shown in Table 1.

M b

η = 10−3 η = 10−4 η = 10−5

2 1.08 0.61 0.34

3 1.76 1.21 0.83

4 2.16 1.65 1.25

5 2.40 1.95 1.58

6 2.55 2.17 1.83

7 2.66 2.32 2.01

8 2.74 2.44 2.16

9 2.80 2.53 2.27

10 2.85 2.60 2.37

11 2.88 2.66 2.44

12 2.91 2.70 2.51

13 2.94 2.74 2.56

14 2.96 2.78 2.60

15 2.98 2.81 2.64

16 2.99 2.83 2.68

17 3.00 2.85 2.71

18 3.01 2.87 2.74

19 3.02 2.89 2.76

20 3.03 2.90 2.78

30 3.08 3.00 2.91

40 3.11 3.04 2.98

50 3.12 3.06 3.01

global optimization algorithms. The current global optimization-

based methods, with the highest computational expense, may not

find the best optimization solution.

Liu (2013) proposed a LS-based scheme to derive globally opti-

mal FD coefficients for second-order spatial derivatives, computing

them over a given wavenumber range using the LS method, with

no iterations involved. The results showed that the FD accuracy

tends to increase as the operator length increases and the wavenum-

ber range drops. Therefore, for a given error and operator length,

globally optimal spatial FD coefficients can be obtained. This pa-

per develops optimal explicit SGFD (ESGFD) and implicit SGFD

(ISGFD) schemes based on the LS method. Dispersion analyses

and numerical modelling demonstrate that the optimal ESGFD and

ISGFD methods can significantly improve the modelling accuracy

or reduce the computational cost compared to the TE-based ESGFD

and ISGFD methods.

2 O P T I M A L E S G F D S C H E M E S

2.1 ESGFD coefficients calculated with the LS method

An ESGFD operator involving 2M points is used to calculate the

first-order derivative of a function p(x) (Kindelan et al. 1990; Liu

& Sen 2009a), that is,

∂p

∂x
≈

1

h

M
∑

m=1

cm [p(x + mh − 0.5h) − p(x − mh + 0.5h)], (1)

where x is a real variable, h is a small positive value and cm are FD

coefficients.

Let

p(x + mh) = p0 exp [ik(x + mh)] , (2)
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1036 Y. Liu

Table 3. Optimized ESGFD coefficients by the LSM of minimizing the absolute error of dispersion relation for the

maximum relative error η = 10−4.

Coefficient M = 2 M = 3 M = 4 M = 5

c1 0.1129136E+1 0.1186247E+1 0.1218159E+1 0.1236425E+1

c2 −0.4304542E-1 −0.7266808E-1 −0.9397218E-1 −0.1081130E+0

c3 0.6351497E-2 0.1519043E-1 0.2339911E-1

c4 −0.1742128E-2 −0.5061550E-2

c5 0.7054313E-3

Coefficient M = 6 M = 7 M = 8 M = 9 M = 10

c1 0.1247576E+1 0.1254380E+1 0.1259012E+1 0.1262147E+1 0.1264362E+1

c2 −0.1174969E+0 −0.1235307E+0 −0.1277647E+0 −0.1306967E+0 −0.1327958E+0

c3 0.2997288E-1 0.3467231E-1 0.3820715E-1 0.4075792E-1 0.4264687E-1

c4 −0.8741572E-2 −0.1192915E-1 −0.1458251E-1 −0.1665221E-1 −0.1824918E-1

c5 0.2262285E-2 0.4057090E-2 0.5845385E-2 0.7377057E-2 0.8656223E-2

c6 −0.3745306E-3 −0.1191005E-2 −0.2213861E-2 −0.3258150E-2 −0.4200034E-2

c7 0.2263204E-3 0.7243880E-3 0.1336259E-2 0.1989180E-2

c8 −0.1566173E-3 −0.4775830E-3 −0.8686637E-3

c9 0.1151664E-3 0.3342741E-3

c10 −0.8854090E-4

where p0 is a constant value, i =
√

−1, k represents the wavenum-

ber. Substitute eq. (2) into (1) and obtain

2

M
∑

m=1

cm sin [(m − 0.5)β] ≈ β, (3)

where β = kh, and it only ranges from 0 to π because kh equals π

at the Nyquist frequency.

Let

ϕm(β) = 2 sin [(m − 0.5)β] , f (β) = β. (4)

Then

M
∑

m=1

cmϕm(β) ≈ f (β). (5)

When the TE-based strategy is employed to calculate ESGFD

coefficients, (2M)th-order accuracy can be obtained. Generally, the

TE-based ESGFD coefficients can be used to compute accurate

derivatives within the interval [0, b] of β. Outside this interval, the

accuracy of calculated derivatives tends to drop as β increases (Liu

& Sen 2009a).

Optimal ESGFD coefficients can be calculated by minimizing the

square error over a given interval [0, b] (0 < b < π ) as follows:

E =
∫ b

0

[

M
∑

m=1

cmϕm(β) − f (β)

]2

dβ. (6)

Because ϕ1(β), ϕ2(β), . . . , ϕM (β) are linearly independent on the

interval [0, b], globally optimal cm can be obtained by solving the

following equations using the LS method,

M
∑

m=1

[∫ b

0

ϕm(β)ϕn(β)dβ

]

cm

=
∫ b

0

f (β)ϕn(β)dβ, (n = 1, 2, . . . , M). (7)

Constraint conditions are usually adopted to improve the accuracy

of optimal FD stencils near zero wavenumber (e.g. Zhou & Zhang

2011; Zhang & Yao 2013; Liu 2013). I introduce the following

constraint condition:

2

M
∑

m=1

cm sin [(m − 0.5)β] → β while β → 0. (8)

Then, I obtain

c1 = 1 −
M

∑

m=2

(2m − 1)cm . (9)

Substituting eq. (9) into (6) and using (4), I obtain

E =
∫ b

0

[

M
∑

m=2

cmψm(β) − g(β)

]2

dβ, (10)

where

ψm(β) = 2 {sin [(m − 0.5)β] − 2(m − 0.5) sin (0.5β)} ,

g(β) = β − 2 sin (0.5β) . (11)

It should be noted that ψ2(β), ψ3(β), . . . , ψM (β) are still linearly

independent on the interval [0, b]. With the LS method, globally

optimal cm (m = 2, 3, . . . , M) can be obtained by solving

M
∑

m=2

[∫ b

0

ψm(β)ψn(β)dβ

]

cm

=
∫ b

0

g(β)ψn(β)dβ, (n = 2, 3, . . . , M). (12)

c1 can be obtained by using eq. (9).

Usually, the ESGFD error is expected to be small in the given

interval [0, b] (b > 0). The expected error for any given interval

decreases as the ESGFD operator length increases. Therefore, it is

possible to find the shortest length of the ESGFD operator for the

given interval and the expected error.

2.2 Accuracy analysis

I compare the ESGFD accuracy of the TEM with that of the

LS-based method (LSM). TE-based ESGFD coefficients for first-

order derivatives can be obtained from the following formulae
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Optimal staggered-grid finite-difference 1037

Figure 4. ε(β) of ESGFD for different M by the TEM and the LSM of

minimizing the absolute error of dispersion relation, respectively. (a) is by

the TEM and (b) by the LSM. (c) is zoom of (a) and (d) is zoom of (b).

FD coefficients of the LSM with the maximum error η = 10−4 used in the

figure (M = 2, 3, 5, 8, 10) are listed in Table 3.

Figure 5. ε(β) of ESGFD for different M by the LSM of minimizing the

relative error of dispersion relation. (b) is zoom of (a). FD coefficients of

the LSM with the maximum error η = 10−4 used in the figure (M = 2, 3, 5,

8, 10) are listed in Table 6.

(e.g. Liu & Sen 2009a; Pei et al. 2012):

cm =
(−1)m+1

2m − 1

∏

1≤n≤M,n �=m

∣

∣

∣

∣

∣

(2n − 1)2

(2m − 1)2 − (2n − 1)2

∣

∣

∣

∣

∣

,

(m = 1, 2, . . . , M). (13)

To examine the accuracy, I calculate the variation of the rms error

εr and the maximum error εmax with b and M using

εrms =

√

1

b

∫ b

0

ε2(β)dβ, (14)

εmax = max
β∈[0,b]

|ε(β)| , (15)

where

ε(β) = 2β−1

M
∑

m=1

cm sin [(m − 0.5)β] − 1. (16)

Fig. 1 shows variations of log10(εrms) and log10(εmax) with b for

different M by the TEM and the LSM, respectively. From top to

bottom of the figure, lines represent M = 2, 3, . . . , 20, respectively.

This figure suggests that

(1) When M is fixed, the error increases with an increase of b.

(2) When b is fixed, the error decreases with an increase of M.
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1038 Y. Liu

Table 4. The B values of ESGFD for differ-

ent M and maximum relative errors η from

the TEM and the LSM of minimizing the

relative error of dispersion relation, respec-

tively. εmax < η is satisfied in the interval

[0, B].

M B

η = 10−3 η = 10−4 η = 10−5

2 1.04 0.58 0.32

3 1.74 1.20 0.82

4 2.15 1.65 1.26

5 2.40 1.97 1.59

6 2.57 2.18 1.84

7 2.67 2.35 2.03

8 2.76 2.46 2.19

9 2.81 2.55 2.30

10 2.86 2.62 2.39

11 2.90 2.68 2.47

12 2.93 2.73 2.53

13 2.95 2.77 2.58

14 2.97 2.80 2.63

15 2.98 2.83 2.67

16 3.00 2.85 2.70

17 3.01 2.87 2.74

18 3.03 2.89 2.77

19 3.03 2.90 2.79

20 3.04 2.92 2.81

30 3.08 3.01 2.93

40 3.10 3.05 2.99

50 3.12 3.07 3.02

(3) For the same error, the LSM has a wider wavenumber range

than the TEM.

Therefore, one can find the unique b for any given M which provides

the chosen maximum error η. Thus, ESGFD coefficients can be

obtained using eq. (12) together with (11). This solution is globally

optimal.

2.3 A globally optimal ESGFD scheme based on

minimizing the absolute error of dispersion relation

To obtain optimal ESGFD coefficients, I first study characteristics

of ε(β). As an example, ε(β) is obtained through the TEM and

the LSM, respectively, shown in Fig. 2, where M = 6. b = 2.17 is

used in eq. (12) together with (11) to compute ESGFD coefficients

cm . In the interval [0, b], ε fluctuates around zero. In the interval

[b, π ], absolute values of ε increase with an increase of β. The

curve of |ε(β)| from the LSM has several peaks, whose maximum

value is εP, ε at the point P shown in Fig. 2. At the point R, β = b,

εR = |ε(b)|. I find that εP < εR. Therefore, there exists a point Q

at β = B close to R, and εQ = εR. Because the maximum absolute

error in the given interval [0, B] when using B to calculate cm is

greater than that using b, I adopt b instead of B to calculate cm but

find εmax in the interval [0, B].

For the given maximum error η = 10−3, 10−4, 10−5, I obtain B

values for different M from the TEM and the LSM shown in Table 1

and Fig. 3, where, εmax < η is satisfied in the interval [0, B] and b,

used to calculate cm , is shown in Table 2. Table 1 and Fig. 3 suggest

that the LSM provides a much wider zone than the TEM for the

same η and M. For example, when M = 7 and η = 10−5, the zone

with this accuracy from the TEM is [0, 1.24], but the zone from the

LSM broadens about two-thirds, reaching [0, 2.00].

Table 5. The b values of ESGFD used to

calculate LS-based ESGFD coefficients by

minimizing the relative error of dispersion

relation for different M and maximum rel-

ative errors η. εmax < η is satisfied in the

interval [0, B], B is shown in Table 4.

M b

η = 10−3 η = 10−4 η = 10−5

2 1.13 0.63 0.35

3 1.82 1.25 0.86

4 2.22 1.70 1.29

5 2.46 2.01 1.62

6 2.62 2.22 1.87

7 2.72 2.38 2.06

8 2.80 2.49 2.21

9 2.85 2.58 2.32

10 2.90 2.65 2.41

11 2.93 2.70 2.49

12 2.96 2.75 2.55

13 2.98 2.79 2.60

14 3.00 2.82 2.65

15 3.01 2.85 2.69

16 3.03 2.87 2.72

17 3.04 2.89 2.75

18 3.05 2.91 2.78

19 3.05 2.92 2.80

20 3.06 2.94 2.82

30 3.10 3.02 2.94

40 3.12 3.06 3.00

50 3.13 3.08 3.03

Table 3 lists ESGFD coefficients from the LSM when η = 10−4.

Fig. 4 shows ε(β) for different M from the TEM and the LSM,

respectively. One can see that the LSM significantly widens the

range with the given maximum error η = 10−4 for the same M,

compared with the TEM.

2.4 A globally optimal ESGFD scheme based on

minimizing the relative error of dispersion relation

Note that minimizing the absolute error leads to large relative errors

near zero wavenumber (Fig. 4), which will decrease the accuracy

of wave equation modelling for wavefields with small wavenum-

bers. To reduce the relative error near zero wavenumber, one can

minimize the relative error of dispersion relation, that is, minimize

formula (10) using

ψm(β) = 2β−1 {sin [(m − 0.5)β] − 2(m − 0.5) sin (0.5β)} ,

g(β) = 1 − 2β−1 sin (0.5β) . (17)

Then, cm can be obtained by using eq. (12) together with (17)

and (9).

Fig. 5 shows ε(β) for different M by the LSM of minimizing

the relative error of ESGFD dispersion relation. It can be observed

that the relative errors near zero wavenumber are generally smaller

than those obtained by the LSM of minimizing the absolute error

in Fig. 4. Table 4 shows B values for different M from the LSM

of minimizing the relative error for the given maximum error η =
10−3, 10−4, 10−5. Table 5 displays b values used to calculate cm .

Table 6 lists ESGFD coefficients from the LSM of minimizing the

relative error when η = 10−4.
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Optimal staggered-grid finite-difference 1039

Table 6. Optimized ESGFD coefficients by the LSM of minimizing the relative error of dispersion relation for the

maximum relative error η = 10−4.

Coefficient M = 2 M = 3 M = 4 M = 5

c1 0.1129042E+1 0.1185991E+1 0.1217990E+1 0.1236607E+1

c2 −0.4301412E-1 −0.7249965E-1 −0.9382142E-1 −0.1082265E+0

c3 0.6301572E-2 0.1507536E-1 0.2343440E-1

c4 −0.1700324E-2 −0.5033546E-2

c5 0.6817483E-3

Coefficient M = 6 M = 7 M = 8 M = 9 M = 10

c1 0.1247662E+1 0.1254799E+1 0.1259312E+1 0.1262502E+1 0.1264748E+1

c2 −0.1175538E+0 −0.1238928E+0 −0.1280347E+0 −0.1310244E+0 −0.1331606E+0

c3 0.2997970E-1 0.3494371E-1 0.3841945E-1 0.4103928E-1 0.4296909E-1

c4 −0.8719078E-2 −0.1208897E-1 −0.1473229E-1 −0.1686807E-1 −0.1851897E-1

c5 0.2215897E-2 0.4132531E-2 0.5924913E-2 0.7530520E-2 0.8861071E-2

c6 −0.3462075E-3 −0.1197110E-2 −0.2248618E-2 −0.3345071E-2 −0.4347073E-2

c7 0.2122227E-3 0.7179226E-3 0.1380367E-2 0.2076101E-2

c8 −0.1400855E-3 −0.4808410E-3 −0.9164925E-3

c9 0.1023759E-3 0.3437446E-3

c10 −0.7874250E-4

Figure 6. Variations of log10(εmax) of ISGFD with b for different M by

the TEM (a) and the LSM (b), respectively. From top to bottom, lines are

from M = 2, 3, . . . , 20, respectively. Maximum values are calculated in the

interval [0, B].

Figure 7. ε(β) of ISGFD (a) and its zoom (b) by the TEM and the LSM,

respectively. M = 6. For the LSM, b = 2.72 is used in eq. (7) together with

(23) and (21) to calculate cm and a, and their values are shown in Table 9.

At the points R and Q, β = b and β = B. At the points P and Q, |ε| have

the same value.
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1040 Y. Liu

Table 7. The B values of ISGFD for different M and

maximum relative errors η from the TEM and the LSM,

respectively. εmax < η is satisfied in the interval [0, B].

M B

η = 10−3 η = 10−4 η = 10−5

TEM LSM TEM LSM TEM LSM

2 1.32 2.12 0.90 1.49 0.62 1.03

3 1.66 2.57 1.25 2.08 0.94 1.59

4 1.88 2.77 1.49 2.39 1.19 2.01

5 2.03 2.88 1.67 2.57 1.38 2.25

6 2.14 2.94 1.80 2.69 1.52 2.41

7 2.23 2.99 1.91 2.77 1.64 2.54

8 2.30 3.01 2.00 2.82 1.74 2.62

9 2.35 3.03 2.07 2.88 1.82 2.69

10 2.40 3.05 2.13 2.91 1.89 2.74

11 2.44 3.07 2.18 2.93 1.95 2.78

12 2.48 3.08 2.23 2.96 2.00 2.81

13 2.51 3.08 2.27 2.97 2.05 2.84

14 2.54 3.09 2.30 2.99 2.09 2.87

15 2.56 3.09 2.33 3.00 2.13 2.89

16 2.58 3.10 2.36 3.01 2.17 2.91

17 2.60 3.10 2.39 3.02 2.20 2.93

18 2.62 3.10 2.41 3.02 2.23 2.94

19 2.64 3.11 2.43 3.04 2.25 2.96

20 2.65 3.11 2.45 3.05 2.28 2.97

30 2.76 3.13 2.59 3.08 2.44 3.03

40 2.78 3.13 2.61 3.10 2.47 3.09

50 2.94 3.13 2.62 3.11 2.44 3.09

Figure 8. Variations of B of ISGFD with M for different maximum errors

η by the TEM and the LSM, respectively. εmax < η in the interval [0, B].

3 O P T I M A L I S G F D S C H E M E

Implicit finite differences are usually considered expensive due to

necessitating solving more equations and thus are not popular.Liu

& Sen (2009a) derived an implicit SGFD scheme with an arbitrary-

order accuracy, which only involves solving tridiagonal matrix equa-

tions. Their efficiency analysis and numerical modelling results for

elastic wave propagation demonstrate that a high-order ESGFD can

be replaced by an ISGFD of some order, which will improve the

accuracy without increasing the computational cost. Next, I will

develop an optimal scheme for this ISGFD.

Table 8. The b values of ISGFD used to calculate

ISGFD coefficients by the LSM for different M and

maximum relative errors η. εmax < η is satisfied in

the interval [0, B], B is shown in Table 7.

M b

η = 10−3 η = 10−4 η = 10−5

2 2.18 1.52 1.05

3 2.63 2.13 1.62

4 2.82 2.43 2.04

5 2.92 2.61 2.28

6 2.98 2.72 2.44

7 3.02 2.80 2.56

8 3.04 2.85 2.64

9 3.06 2.90 2.71

10 3.08 2.93 2.76

11 3.09 2.95 2.80

12 3.10 2.98 2.83

13 3.10 2.99 2.86

14 3.11 3.01 2.89

15 3.11 3.02 2.91

16 3.12 3.03 2.92

17 3.12 3.04 2.94

18 3.12 3.04 2.95

19 3.13 3.05 2.97

20 3.13 3.06 2.98

30 3.14 3.09 3.04

40 3.14 3.11 3.10

50 3.14 3.12 3.10

3.1 ISGFD coefficients calculated with the LS method

I use the following ISGFD formula

q(x − h) + aq(x) + q(x + h)

≈
1

h

M
∑

m=1

cm [p(x + mh − 0.5h) − p(x − mh + 0.5h)] , (18)

where q(x) = dp(x)/dx . It should be noted that ISGFD coefficients

cm and a here are a little different from those used by Liu & Sen

(2009a, eq. 22).

Substitute eq. (2) into (18) and obtain

(a + 2 cos β) β ≈ 2

M
∑

m=1

cm sin [(m − 0.5) β]. (19)

Similarly, I introduce the following constraint condition:

2
M
∑

m=1

cm sin [(m − 0.5)β]

a + 2 cos β
→ β while β → 0. (20)

Then, I have

a =
M

∑

m=1

(2m − 1) cm − 2. (21)

Substitute eq. (21) into (19) and obtain

M
∑

m=1

{sin [(m − 0.5) β] − (m − 0.5) β} cm ≈ (cos β − 1) β. (22)

Therefore, ISGFD coefficients can be obtained by minimizing for-

mula (6) in which ϕm(β) and f (β) are replaced by

ϕm(β) = sin [(m − 0.5) β] − (m − 0.5) β, f (β) = (cos β − 1) β.

(23)
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Table 9. Optimized ISGFD coefficients by the LSM for the maximum relative error η = 10−4.

Coefficient M = 2 M = 3 M = 4 M = 5

c1 0.5881035E+1 0.3088697E+1 0.2161954E+1 0.1751338E+1

c2 0.6742072E+0 0.8577444E+0 0.9368543E+0 0.9761374E+0

c3 −0.1841475E-1 −0.3440668E-1 −0.4463936E-1

c4 0.2573790E-2 0.5668994E-2

c5 −0.6911326E-3

a 0.5903656E+1 0.3569856E+1 0.2818500E+1 0.2490016E+1

Coefficient M = 6 M = 7 M = 8 M = 9 M = 10

c1 0.1543395E+1 0.1420907E+1 0.1348385E+1 0.1294668E+1 0.1261059E+1

c2 0.9971551E+0 0.1009922E+1 0.1017619E+1 0.1023384E+1 0.1027022E+1

c3 −0.5087534E-1 −0.5489364E-1 −0.5742193E-1 −0.5935320E-1 −0.6059709E-1

c4 0.7957645E-2 0.9634017E-2 0.1074320E-1 0.1162992E-1 0.1221332E-1

c5 −0.1582171E-2 −0.2314457E-2 −0.2869939E-2 −0.3325840E-2 −0.3644468E-2

c6 0.2587313E-3 0.5988390E-3 0.8694339E-3 0.1124697E-2 0.1305584E-2

c7 −0.1213737E-3 −0.2672211E-3 −0.4003994E-3 −0.5123380E-3

c8 0.6316408E-4 0.1420346E-3 0.2035563E-3

c9 −0.3874797E-4 −0.7994814E-4

c10 0.2420280E-4

a 0.2324794E+1 0.2227823E+1 0.2170542E+1 0.2128169E+1 0.2101687E+1

Then, cm of the LS-based ISGFD can be obtained by solving eq. (7)

together with (23). a can be obtained by eq. (21).

3.2 Accuracy analysis

I compare the LS-based ISGFD with the TE-based ISGFD, whose

coefficients cm can be obtained by solving

M
∑

m=1

(2m − 1)2n+1 cm = (2n + 1)22n+1, (n = 1, 2, . . . , M). (24)

a can be obtained by eq. (21).

To check the accuracy, I compute the rms error εr and the maxi-

mum error εmax using eqs (14), (15) and

ε(β) =
2

M
∑

m=1

cm sin [(m − 0.5)β]

(a + 2 cos β) β
− 1. (25)

Fig. 6 displays variations of log10(εmax) with b for different M by

the TEM and the LSM of minimizing the error of ISGFD dispersion

relation, respectively. It also demonstrates that the error increases

with increasing b and decreasing M, and the LSM has a wider

wavenumber range than the TEM for the same maximum error.

Fig. 7 shows ε(β) by the TEM and the LSM of minimizing the error

of ISGFD dispersion relation, respectively, where M = 6. b = 2.72

is adopted in eq. (7) together with (23) to calculate FD coefficients

cm . Figs 7 and 2 have similar characteristics.

3.3 An optimal ISGFD scheme

Similarly, for the given maximum error η = 10−3, 10−4, 10−5, I

obtain B values for different M from the TEM and the LSM shown

in Table 7 and Fig. 8, where εmax < η is satisfied in the interval

[0, B] and b, used to calculate cm , is shown in Table 8. Table 7

and Fig. 8 show that the LSM gives a much wider zone than the

TEM for the same η and M. Table 9 gives FD coefficients from

the LSM when η = 10−4. Fig. 9 displays ε(β) for different M from

the TEM and the LSM. The figure shows that the LSM greatly

enlarges the range with the given maximum error η = 10−4 for the

same M, compared to the TEM.

4 N U M E R I C A L E X A M P L E S

I give two examples of 2-D elastic SGFD modelling for a homo-

geneous model and a heterogeneous model, respectively, to fur-

ther demonstrate the advantages of the LS-based ESGFD method

(ESGFDM) and the ISGFD method (ISGFDM). The displacement-

stress relations of elastodynamic equations (e.g. Virieux 1986; Liu

& Sen 2012) in isotropic elastic medium are adopted for modelling.

First, I give SGFD coefficients used in the following modelling

examples. They are computed using b = 2.9 and η = 10−4, which

suggests that the absolute value of the relative dispersion error is

less than 10−4 in the interval [0, 2.9] of β. M = 228 for the TE-

based ESGFDM, M = 19 for the LS-based ESGFDM and M = 10

for the LS-based ISGFDM should be adopted to satisfy the accuracy

requirement. Obtained ESGFD and ISGFD coefficients with M = 19

and M = 10 are shown in Tables 10 and 11, respectively.

Fig. 10 shows the dispersion error ε(β) of the ESGFD and the

ISGFD. One can see that the LS-based ESGFDM and ISGFDM

significantly broaden the wavenumber range compared to the TEMs

for the same operator length. In the following examples, these SGFD

coefficients are used, and the mirror–image symmetry boundary

condition (Chang & Liu 2013) is adopted to increase the accuracy

and the stability of the implicit finite-difference method as well as

the hybrid absorbing boundary condition (ABC; Liu & Sen 2012) to

reduce unwanted reflections from model boundaries. The reference

solution is calculated by the pseudospectral method.

The first example applies for a homogeneous model. Fig. 11

displays snapshots by the pseudospectral method, TE- and LS-based

ESGFDM and ISGFDM. Differences of these snapshots are also

shown. In this example, vp = 2000 m s−1, vs = 1000 m s−1, h = 10 m,

τ = 1 ms. Ricker wavelet with main frequency of 30 Hz, located in

the centre of the model, is added into x-component displacement to

generate vibrations. The hybrid ABC is adopted for four boundaries

and the absorbing boundary layer has a thickness of 10 grids. Fig. 11

suggests that
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1042 Y. Liu

Figure 9. ε(β) of ISGFD for different M by the TEM and the LSM, respec-

tively. (a) is by the TEM and (b) by the LSM. (c) is zoom of (a) and (d) is

zoom of (b). FD coefficients of the LSM with the maximum error η = 10−4

used in the figure (M = 2, 3, 5, 8, 10) are listed in Table 9.

Table 10. Optimized ESGFD coefficients by the TEM

and the LSM for the maximum relative error η = 10−4

in the interval [0, 2.9] of β.

Coefficient TE-based ESGFD LS-based ESGFD

c1 0.1256598E+1 0.1271216E+1

c2 −0.1256598E+0 −0.1394578E+0

c3 0.3662086E-1 0.4893614E-1

c4 −0.1358844E-1 −0.2402039E-1

c5 0.5360981E-2 0.1379334E-1

c6 −0.2093441E-2 −0.8643880E-2

c7 0.7794041E-3 0.5709894E-2

c8 −0.2701934E-3 −0.3896436E-2

c9 0.8570149E-4 0.2711002E-2

c10 −0.2450310E-4 −0.1905154E-2

c11 0.6224925E-5 0.1342289E-2

c12 −0.1383840E-5 −0.9420260E-3

c13 0.2644830E-6 0.6543898E-3

c14 −0.4251591E-7 −0.4468455E-3

c15 0.5583919E-8 0.2973663E-3

c16 −0.5749006E-9 −0.1905168E-3

c17 0.4348520E-10 0.1150882E-3

c18 −0.2147636E-11 −0.6229052E-4

c19 0.5193877E-13 0.1996929E-4

Table 11. Optimized ISGFD coefficients by the TEM

and the LSM for the maximum relative error η = 10−4

in the interval [0, 2.9] of β.

Coefficient TE-based ISGFD LS-based ISGFD

c1 0.1953882E+1 0.1264929E+1

c2 0.9583780E+0 0.1026604E+1

c3 −0.4085748E-1 −0.6045529E-1

c4 0.4940980E-2 0.1214732E-1

c5 −0.7322610E-3 −0.3609181E-2

c6 0.1063789E-3 0.1285709E-2

c7 −0.1341978E-4 −0.5007292E-3

c8 0.1323025E-5 0.1971319E-3

c9 −0.8852494E-7 −0.7631558E-4

c10 0.2972468E-8 0.2268750E-4

a 0.2653739E+1 0.2104738E+1

(1) The modelling accuracy of the LS-based ESGFDM with

M = 19 (Fig. 11c) is much higher than the TE-based ESGFDM

with M = 19 (Fig. 11b);

(2) The modelling accuracy of the LS-based ISGFDM with

M = 10 (Fig. 11e) is much higher than the TE-based ISGFDM

with M = 10 (Fig. 11d);

(3) The differences between modelling traces from the LSM and

TEM and the reference solution from the pseudospectral method

show that the LSMs are more accurate than the TEMs (Fig. 11f).

The other example applies for a heterogeneous model. Fig. 12

shows seismograms by the pseudospectral method, TE- and LS-

based ESGFDM and ISGFDM, for the SEG/EAGE salt model, and

their differences are also displayed in the figure. The model size is

6980 m × 3980 m. The grid size is 20 m × 20 m. The time step is 1

ms. The first layer of the model is ocean water. The source is located

in the first layer and its coordinate is (3500 m, 20 m). Ricker wavelet

with main frequency of 20 Hz is used to generate P wave. Receivers

are located on the ocean bottom. The hybrid ABC is used for four

boundaries and the absorbing boundary layer has a thickness of 10

grids. Comparing Figs 12(c) with (d), (h) with (i), one can observe

that the LSM provides less modelling dispersion than the TEM for
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Optimal staggered-grid finite-difference 1043

Figure 10. ε(β) of ESGFD and ISGFD for different M by the TEM and the

LSM, respectively. (a) and (b) show ε(β) of ESGFD and ISGFD, respectively.

(c) and (d) are zoom of (a) and (b), respectively. FD coefficients of the LSM

are obtained using b = 2.9 and the maximum error η = 10−4.

Figure 11. Snapshots at t = 0.6 s of elastic SGFD modelling for a homoge-

neous model using the pseudospectral method (a), the TE-based ESGFDM

(b), the LS-based ESGFDM (c), the TE-based ISGFDM (d) and the LS-based

ISGFDM (e), respectively, and their differences (f). (f) shows comparisons

of x-component traces from (a) to (e); Traces 1, 2, 3, 4 and 5 with x coordi-

nate of 1000 m are from (a), (b), (c), (d) and (e), respectively; Traces 6, 7, 8

and 9 are the differences between 2, 3, 4, 5 and 1, respectively.

the same FD operator length. The similar conclusion can be drawn

by comparing Figs 12 (e) with (f), (j) with (k). Fig. 12(l) displays

some traces from the pseudospectral method, TE- and LS-based

ESGFDM and ISGFDM and their differences. One can also see that

the LSM has a higher accuracy than the TEM.

To highlight the differences between the reference solution and

the numerical solutions, I adopt the time-frequency misfit criteria

(Kristeková et al. 2006, 2009) to evaluate them. Fig. 13 shows the

globally normalized time-frequency envelope misfit between the

reference solution from the pseudospectral method and numerical

solutions from the SGFDM shown in Fig. 12(l). The expression for

misfit calculating is taken from Kristeková et al. (2009; Table 1).

Fig. 13 suggests that the LS-based SGFDM has a much smaller

misfit than the TE-based SGFDM.
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1044 Y. Liu

Figure 11. (Continued.)

For the same accuracy requirement, the LSM can adopt a shorter

FD operator and thus cost less computational time than the TEM.

In the second example, for 4000 time step modelling of 351 × 200

grids, CPU time on the same laptop computer is 402, 354, 361, 284

and 290 s, respectively, for the pseudospectral method, the TE-based

ESGFDM with M = 19, the LS-based ESGFDM with M = 19, the

TE-based ISGFDM with M = 10 and the LS-based ISGFDM with

M = 10.

These two modelling examples further demonstrate the cor-

rectness and advantage of the proposed LS-based ESGFDM and

ISGFDM.

5 D I S C U S S I O N

First, I compare the stability of the TEM and the LSM. The stability

condition for 2-D wave equation modelling by the (2M)th-order

ESGFDM is

r ≤ s, (26)

where r is the Courant number and s is the stability factor expressed

by (Liu & Sen 2011):

s =
1

√
2

(

M
∑

m=1

|cm |
)−1

. (27)

Figure 12. Seismograms of elastic SGFD modelling for a heterogeneous

model using the pseudospectral method, the TE-based ESGFDM, the LS-

based ESGFDM, the TE-based ISGFDM and the LS-based ISGFDM, re-

spectively, and their differences. (a) The SEG/EAGE salt model (S-wave

velocity and density, having the similar characteristics to P-wave velocity,

are not shown). (b) Seismograms by the pseudospectral method. (c) Seis-

mograms by the TE-based ESGFDM, M = 19. (d) Seismograms by the

LS-based ESGFDM, M = 19. (e) Seismograms by the TE-based ISGFDM,

M = 10. (f) Seismograms by the LS-based ISGFDM, M = 10. (g) Zoom of

(b). (h) Zoom of (c). (i) Zoom of (d). (j) Zoom of (e). (k) Zoom of (f). (l)

Some traces from (g), (h), (i), (j), (k) and their differences; Traces 1, 2, 3,

4, 5 with x coordinate of 5400 m are from (g), (h), (i), (j), (k), respectively;

Traces 6, 7, 8, 9 are the differences between 2, 3, 4, 5 and 1, respectively.

Fig. 14 shows the variation of the stability factor s by the TEM

and the LSM for the given error η = 10−4. It can be seen that the

area of r for stable recursion reduces with the increase of M, and

the stability condition of the LSM is slightly stricter than that of the

TEM.

Finally, I briefly compare my method with that of Tam & Webb

(1993) who studied optimal spatial FD coefficients for the first-

order derivative on standard grids. It should be noted that they
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Figure 12. (Continued.)

calculated the FD coefficients by minimizing the square error over

a fixed interval [−0.5π , 0.5π ] and thus the FD coefficients are

only dependent on the operator length. Their method is suitable

for broad-band modelling. I studied optimal explicit and implicit

spatial FD coefficients for the first-order derivative on staggered

grids. The optimal FD coefficients are dependent on the chosen

error over the given wavenumber range. My method is appropriate

for band-limited modelling. When the given wavenumber range

equals [−0.5π , 0.5π ], my method is also suitable for broad-band

modelling.

6 C O N C LU S I O N S

I have developed new LS-based schemes to obtain explicit and

implicit FD coefficients on staggered grids when the wavenumber

range [0, b] and the maximum error η are given. Compared to the

SGFD method based on Taylor-series expansion, the schemes based

Figure 12. (Continued.)

on LS can adopt the shorter operator length to achieve the same

accuracy, greatly reducing the computational cost. Dispersion anal-

yses and numerical modelling show the advantages of the proposed

schemes. They can also be used in partly rotated staggered-grid

modelling.
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Figure 12. (Continued.)

Figure 13. Globally normalized time-frequency envelope misfit between the

reference solution from the pseudospectral method and numerical solutions

from the SGFD methods shown in Fig. 12(l). (a) Between Trace 2 by the

TE-based ESGFDM and 1 by the pseudospectral method. (b) Between Trace

3 by the LS-based ESGFDM and 1. (c) Between Trace 4 by the TE-based

ISGFDM and 1. (d) Between Trace 5 by the LS-based ISGFDM and 1.

Figure 14. The variation of the stability factor s with M for 2-D wave

equation modelling by the (2M)th-order ESGFDM.
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Kristeková, M., Kristek, J., Moczo, P. & Day, S.M., 2006. Misfit criteria

for quantitative comparison of seismograms, Bull. seism. Soc. Am., 96,

1836–1850.
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Krüger, O.S., Saenger, E.H. & Shapiro, S., 2005. Scattering and diffraction

by a single crack: an accuracy analysis of the rotated staggered grid,

Geophys. J. Int., 162, 25–31.

Lan, H. & Zhang, Z., 2011. Three-dimensional wave-field simulation in

heterogeneous transversely isotropic medium with irregular free surface,

Bull. seism. Soc. Am., 101, 1354–1370.

Lele, S.K., 1992. Compact finite difference schemes with spectral-like res-

olution, J. Comput. Phys., 103, 16–42.

Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms,

Geophysics, 53, 1425–1436.

Liu, Y., 2013. Globally optimal finite-difference schemes based on least

squares, Geophysics, 78, T113–T132.

Liu, Y. & Sen, M.K., 2009a. An implicit staggered-grid finite-difference

method for seismic modeling, Geophys. J. Int., 179, 459–474.

Liu, Y. & Sen, M.K., 2009b. Numerical modeling of wave equation by

truncated high-order finite difference method, Earthq. Sci., 22, 205–

213.

Liu, Y. & Sen, M.K., 2011. Scalar wave equation modeling with time-

space domain dispersion-relation-based staggered-grid finite-difference

schemes, Bull. seism. Soc. Am., 101,141–159.

Liu, Y. & Sen, M.K., 2012. A hybrid absorbing boundary condition for

elastic staggered-grid modeling, Geophys. Prospect., 60, 1114–1132.

Liu, Y., Li, C. & Mou, Y., 1998. Finite-difference numerical modeling of

any even-order accuracy, Oil Geophys. Prospect., 33, 1–10.

Lombard, B., Piraux, J., Gélis, C. & Virieux, J., 2008. Free and smooth

boundaries in 2D FD schemes transient elastic waves, Geophys. J. Int.,

172, 252–261.

Madariaga, R., 1976. Dynamics of an expanding circular fault, Bull. seism.

Soc. Am., 66, 639–666.

Mittet, R., 2002. Free-surface boundary conditions for elastic staggered-grid

modeling schemes, Geophysics, 67, 1616–1623.

Moczo, P., Kristek, J. & Halada, L., 2000. 3D fourth-order staggered-grid

finite-difference schemes: stability and grid dispersion, Bull. seism. Soc.

Am., 90, 587–603.

Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R. & Halada, L., 2002. Het-

erogeneous staggered-grid finite-difference modeling of seismic motion

with volume harmonic and arithmetic averaging of elastic moduli and

densities, Bull. seism. Soc. Am., 92, 3042–3066.

Ohminato, T. & Chouet, B.A., 1997. A free-surface boundary condition for

including 3D topography in the finite-difference method, Bull. seism. Soc.

Am., 87, 494–515.

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J.Y., Giraud, L. &

Ali, H.B.H., 2007. 3D finite-difference frequency-domain modeling of

visco-acoustic wave propagation using a massively parallel direct solver:

a feasibility study, Geophysics, 72, SM195–SM211.

Pei, Z., Fu, L., Sun, W., Jiang, T. & Zhou, B., 2012. Anisotropic finite-

difference algorithm for modeling elastic wave propagation in fractured

coalbeds, Geophysics, 77, C13–C26.

Robertsson, J.O.A., 1996. A numerical free-surface condition for elastic/

viscoelastic finite-difference modeling in the presence of topography,

Geophysics, 61, 1921–1934.

Robertsson, J.O.A., Blanch, J.O. & Symes, W.W., 1994a. Viscoelastic finite-

difference modeling, Geophysics, 59, 1444–1456.

Robertsson, J.O.A., Blanch, J.O., Symes, W.W. & Burrus, C.S., 1994b.

Galerkin-wavelet modeling of wave propagation: optimal finite differ-

ence stencil design, Math. Comput. Model., 19, 31–38.

Saenger, E.H. & Bohlen, T., 2004. Finite-difference modeling of viscoelas-

tic and anisotropic wave propagation using the rotated staggered grid,

Geophysics, 69, 583–591.

Saenger, E.H. & Shapiro, S.A., 2002. Effective velocities in fractured me-

dia: a numerical study using the rotated staggered finite difference grid,

Geophys. Prospect., 50, 183–194.

Saenger, E.H., Gold, N. & Shapiro, S.A., 2000. Modeling the propagation

of elastic waves using a modified finite-difference grid, Wave Motion, 31,

77–92.

Shan, G., 2009. Optimized implicit finite-difference and Fourier finite-

difference migration for VTI media, Geophysics, 74, WCA189–

WCA197.

Song, X. & Fomel, S., 2011. Fourier finite-difference wave propagation,

Geophysics, 76, T123–T129.

Takeuchi, N. & Geller, R.J., 2000. Optimally accurate second order time-

domain finite difference scheme for computing synthetic seismograms in

2-D and 3-D media, Phys. Earth planet. Int., 119, 99–131.

Tam, C.K.W. & Webb, J.C., 1993. Dispersion-relation-preserving finite dif-

ference schemes for computational acoustics, J. Comput. Phys., 107, 262–

281.

Tarrass, I., Giraud, L. & Thore, P., 2011. New curvilinear scheme for elastic

wave propagation in presence of curved topography, Geophys. Prospect.,

59, 889–906.

Virieux, J., 1984. SH-wave propagation in heterogeneous media: velocity-

stress finite-difference method, Geophysics, 49, 1933–1957.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity

stress finite difference method, Geophysics, 51, 889–901.

Yan, H. & Liu, Y., 2012. Rotated staggered grid high-order finite-difference

numerical modeling for wave propagation in viscoelastic TTI media,

Chinese J. Geophys.-Chinese Ed., 55, 1354–1365.

Yang, B. & Balanis, C.A., 2006. Least square method to optimize the coef-

ficients of complex finite-difference space stencils, IEEE Antenn. Wirel.

Pr., 5, 450–453.

Zhang, J., 1997. Quadrangle-grid velocity-stress finite-difference method

for elastic-wave-propagation simulation, Geophys. J. Int., 131, 127–134.

Zhang, J. & Yao, Z., 2012. Globally optimized finite-difference extrapolator

for strongly VTI media, Geophysics, 77, T125–T135.

Zhang, J. & Yao, Z., 2013. Optimized finite-difference operator for broad-

band seismic wave modeling, Geophysics, 78, A13–A18.

Zhang, W. & Chen, X., 2006. Traction image method for irregular free

surface boundaries in finite difference seismic wave simulation, Geophys.

J. Int., 167, 337–353.

Zhang, W., Zhang, Z. & Chen, X., 2012. Three-dimensional elastic wave nu-

merical modelling in the presence of surface topography by a collocated-

grid finite-difference method on curvilinear grids, Geophys. J. Int., 190,

358–378.

Zhou, B. & Greenhalgh, S.A., 1992. Seismic scalar wave equation modeling

by a convolutional differentiator, Bull. seism. Soc. Am., 82, 289–303.

Zhou, H. & Zhang, G., 2011. Prefactored optimized compact finite-

difference schemes for second spatial derivatives, Geophysics, 76, WB87–

WB95.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
7
/2

/1
0
3
3
/6

1
7
4
9
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


