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The problem is examined of estimating the state of a linear dy -
namical system in the presence of high measurement noise. It is con-
eluded that optimal filter design maybe simplified to the extent that
it need not depend on the solution of a matrix Riccati differential
equation )butonly onthesolutionof amatrix linear differential equa-
tion. For a related problem, that of estimating a signal s(t) given
noisy measurements s(t) + w(t) where the noise is large and the co-
variance of s(t) is known, optimal filter design is immediate.

INTRODUCTION AND BACKGROUND

The problem of detecting faint messages in a Klgh noise level was raised
by Wiener (1949). More specifically, a function of time Z(•) is given
which is a measurement of a signal s(•) corrupted by noise w(•); thus
z(t) = s(t) + W(t). The noise is assumed to have a spectral density

%.(~~) = 1 and the signal to have a spectral density @,, (ju) = #(u)
where c is a small number. A procedure is given for generating an optimal
(minimum-variance, unbiased) estimate of s(t) from the measurement
z(7), for —W s 7 S t.

Subject to certain constraints it turns out that S( ● ) maybe generated
by subjecting Z( ● ) to a delay followed by passage through a filter with a
transfer function #(O), or for more accuracy, through a filter with trans-
fer function d’(a)[l + Cl’(u)]-l.

The design procedure for the optimal filter is evidently far simpler as
a result of the high noise assumption than the usual design procedure
encountered.

In this paper we are concerned with expanding Wiener’s results to cope
with time-varying systems, nonstationary stochastic processes, and an
initial time which need not be — m. The principle conclusion drawn is
that the design of an optimal filter need not depend on the solving of a
Riccati differential equation (Kalman and 13ucy, 1961), but rather a
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linear differential equation. This represents a substantial potential stiving
in the computation time for the design procedure.

In Section 2, a problem formulation is given, \vhileSection 3 deduces

the design of the simplified optimal filter. Section 4 shows how wheu the
covariance of s(t) is specified, estimation of s(t) need not even require
the solution of a linear differential equation.

One feature of the new results is the elimination of the requirenwnt
to use a delay in the approximately optimum filter. Actually, Wiener
( 1945) suggests elsewhere than in the treatment of hi~h noise level filter-
ing that filtering problems may be approached either by allo~ving :Lde-

lay, or by performing a spectral factorization. The material present ecl
herein in effect corresponds to taking the latter course, i.e., ~Jerformiug a
spectral factoriz~tion, insofar as this term may be applied to time-vary-
ing problems.

2, PROBLEM FOIUYIUL.4TIOhT

The situ: ~tiondepicted in Fig. 1 will be considered. The variables v and
~cdenote independent ~vhite noise with cov [v(L), v(r)] = Q(t)6(t — T)
and cov [~u(t), w(7)] = R(t)6(t — ~) [\vhereR(f) is a positive definite

matrix for all t]. The full equations of the system depicted are

The standard problem is to estimate Z(t) from a kno~yledge of 2(r) for
tO~ T S t and auy data concerning Z( fo), which will be assumed here to—
be a random variable of zero mean and linown covariallce. The estimate
of z(t), ~~ritten 2(t), is required to be linear, of minimum variance, and
to be uubi:wcd. The estimate f(t)maybe found from the linear system of

w
~IG. 1. Prescribed system.
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FIG. 2. Kalman filter.

Fig.2 (Kalmanand Bucy, 1961) where thegainmatrix K(t) is deter-
mined as follows:

K(t) =P(t)H(t)R-’(t), (2)

where P(t) satisfies the nonlinear equations

P = PF’ + FP – PHR-’H’P + GQG’ (3)

with boundary condition P (to) = cov [z( tO), Z( to)]. If either F is uni-
formly asymptotically stable or [F, H] is completely observable, to = – co
is allowed; if [F’, If] is uniformly completely observable, [F, G] is uni-
formly completely controllable, and F, Q and R are bounded, then the
optimal filter is uniformly asymptotically stable.

The evaluation of solutions of (3) clearly presents some computational
difficulties; we shall show how many of the difficulties are eliminated in
the high noise case.

With y* = H’x, the high noise case becomes one where the covariance
of w is always much greater than that of y, in the sense that for all tl , k
within the filtering time interval and all U(.),

tz fa
>. //

‘u’(t)E[y(t)LJ’(T)lu(7)dtclr.
tl tl
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N’ow it is readily checked that

J?[?J(t)tJ’(T)]= ~’(t)~(t, T)~,(’T)~(T)l(t – 7)
(5)

+ H’(t) P8(t)@’(T, t) H(’7’)l(T – t)

where @(•, ● ) is the transition matrix of i = Fz, and P.( ● ) is the state
covariance matrix, given by

P, = P,F’ + FP, + GQG’, (6)

We distinguish the case of filtering over a finite interval [k, !!’] aud
over a semi-infinite or infinite interval. In the former case, suppose F, G,
H, and Q are bounded. Then one can readily find a number q such that

for all t, T C [to , 7’] where IIA(t)// denotes a pointwise norm, e.g.,
{trace A ‘A ] “2. The high noise constraint (4) becomes

~n,in[ll(t)] >> ~ (7)

~~hereXl:li. is the minimum value for t < [t. , T] of the minimum eigen -
value of R(t).

For semi-infinite or infinite interval filtering, we require F, G, H, and
Q to be bounded, and F to be exponentially asymptotically stable. Then
one can readily find positive constants Cl and Ct so that

(where the second step above follows as in [Anderson, 1968]). Thus the
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high noise constraint (,4) becomes

~min[~(~)] >> Cl(z/C2)1’2. (9)

hTotice that in the absence of the constraints on F, G, H and Q the co-

variance of y ( t) may not be bounded over the filtering interval; the con-
straints imposed are reasonable on physical grounds.

3. APPROXIMATE STATE ESTIMATION

A heuristic approach to the development of a state estimator will first
be given which is based on the solution of the Wiener-Hopf equation, The
impulse response A (t, T) of an optimal estimator is given by the integral
equation, valid for t > T 2 tO

t
COV [Z(t)) z(T)] = / A(L a) COV [2(u), z(T)] (?u. (lo)

to

W7e make the heuristic assumption that in a high noise situation,
cov [z(u), z(7)] in the above equation may be replaced by
cov [w(u), w(r)], i.e. R(a)b(a – r). With this replacement (10) yields
cov [z(t), z(~)] = A(t, r) R(r), Now

E[z(t)2’(7)]= E[x(t)2’(T)H(T)]+ E[.u(t)w(T’)]
(11)

= @(f, T)P5(T)H(T)

as may easily be shown. Thus

A(t, T) = @(t, 7-)P,(T)H(T)R-’(T), (12)

This suggests that a suitable state estimator is provided by the :wrange-
ment of Fig. 3. Although the above argument is not rigorous, a more
rigorous approach to follow will confirm the plausibility of (12). There is
also a parallel beim-een ( 12) and the Wiener result, in the seine that ( 12)
indicates that the optimum filter is almost derivable from the ant,ecedal
part of the covariance (5). This covariance corresponds to @(u) in the
Wiener theory; whereas the Wiener theory does not select the antecedal
part of the inverse Fourier transform of # (u), the use of a delay element
is a specific technique for avoid~ng the extraction of the antececlal part.

The importance of (12) is that the calculation of the P matrix required
for the scheme of Fig. 2 via the nonlinear clifferential ecluation (:3) is re-
placed by the calculation of the P, matrix, using the Zi7Mm differential
equation (6).
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FIG. 3. Approximate optimum filter derived from heuristic argument.

Let us now proceed with a more accurate justification of the results;
at the same time the approximate filter will turn out to be slightly
dtierent to that of Fig. 3, in fact paralleling the Wiener theory transfer
function cF(cJ)[l + d’(ti)]-lj rather than @(a).

It is pointed out by Kalman and Bucy ( 1961) and by Kalman ( 1961)
that P in (3) is a nonnegative-definite matrix, and that P. of (6) is an
upper bound for P in the sense that P, — P is nonnegative-definite. Ac-
cordingly, because P, is bounded independently of R, P is bounded, ir-
respective of w-hat R is.

Now define

W = PHR-lH’P (13)

and form, from (3) and (5),

(F’s– P) = F’(I’. – P) + (F’. – P)F’ + w, (14)

with P, — P j~0= O.The solution of ( 14), regarded as an equation for the
unknown P. — P, \vithknov-n F and W, is easily found as

P,(t) – P(t) = f’ @(t, A)w(A)@’(t,x) dA. (1!5)
to

It follows that

Because F is bounded, and exponentially asymptotically stable in semi-
infinite interval problems, the integral in (16) is bounded independently
of t,and whether or not to= — cc.Also, because P and H are bounded,
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irrespective of R, it follows that

Ilps(t) ‘p(~)l] S~{~rni.[R(t)]}-l (17)

for some positive constant M, determinable from the known bounds on
F, G, H and Q and the exponential bound on @(., .).

Consequently, for the high noise case, P.(t) – P(t) ~ o or
P,(t) ~ P(t) and P,(t) H(t) R–l(t) ~ P(t) H(t) R-l(t). This equation
moreover holds uniformly in t, i.e. for sufficiently high noise, the approxi-
mation may be made arbitrarily good; the equation also suggests that the
optimum estimator of Fig. 2 may be replaced by the approximate esti-
mator of Fig. 4.

To see that close approximation of the gain K(t) means close approxi-
mation of Z(t), observe first that, for a finite interval [to,T’],the result is
trivial; for a nonfinite interval, it follows given uniform asymptotic
stability of the optimal filter and the boundedness of all the filter pmam-
eters ( conditiom guaranteeing these filter properties appear earlier).
Under such constraints, the filter is structurally stable, i.e., small vari-
ations in the filter elements preserve approximately the desired behavior
of the filter from the input–output point of view.

For the same sort of reason, we can see why the unity negative feed-
back loop in l?ig. 4 might be eliminatable, to yield Fig. 3 again.

This loop subtracts a signal H’(t)i(t) from z(t). ATOWH’(t)i(t) is
roughly like H’ (t)z(t),which is known to be much “smaller” than Z(t).
Thus it could be argued that the feedback of this signal could be dis-

+

FIG. 4. .kpproximate optimum filter derived from exact arguments.
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pensed with. Note the fallacy in this argument though: it is the small part
of z(t), viz. H’(t) z(t), as distinct from the “large” part, viz. w(t), which
makes any filtering possible.

4. ESTIMATION GIVEN THE SIGNAL COVARIANCE

To achieve a slightly closer parallel with Wiener’s result, and to show
how under some condition filter calculation can be simplified even
further than has been hitherto considered, we can pose and solve the
following related problem.

Suppose noisy measurements z(t) of a signal s(t) are available, with
z(t) = s(t) + w(t) where to(t) is as before, and the covariance of s(t) is
given as

R,$(t, T) = H’(t)@(t, T)L(T)l(t – 7)
(18)

+ L’(t) @’(T, t) H(7)l(T – t),

where @ is the transition matrix of the exponentially asymptotically
stable system x = I’x, and P, H and L are bounded with appropriate con-
trollability and observability conditions holding. How, from z, might s(t)
be best estimated?

Suppose, for the moment, that S(t) is the output of some linear
dynamical system excited by white noise. The “G matrix” of such a
system is hard to determine, but the form of R,, ( t, T) determines the “F”
and “H matrices” immediately, as [(d/dt) @(t,T)]@–l(t,T) and H(t), re-
spectively. To estimate s(t), which is a variable obtained by transform-
ing the system states by H’(t), one simply also transforms an estimate of
the system states by H’( t); thus the filter of Fig. 4, with 8 as the output,
constitutes the estimate ofs.

The important point to observe is that design of this filter is immediate.
This is because the gain P.HR-’ is defined immediately on comparing
(5) and (18) as LR-’. In other \vords, the construction of a system
generating S(t) is not required, either physically or in order to cornput e
P, , because the quantity of interest, viz. P,H, is ah’eady knoum from
specification of R,, .

Thus to design the optimal filter, not even a linear differeutizl equa-
tion has to be solved. Note also that \vithout the unity negative feed-
back, the optimum filter is simply a cascade of a scaling element R-’ and

a filter with impulse response equal to the antecedal portion of R,, ( f, 7).
The extent to which an arbitrrrry It.,( t, T) can be written in the form
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of (18) with all desired conditions holding on F, L, etc., may be gleaned
from Silverman (unpublished) and Silverman and Anderson (1968). The
latter can be decomposed as H’(t)@ (t, T)~(T), with @( ●, ● ) a transition
matrix of k = Fz, al} of F, L and H bounded, [F, L] uniformly com-
pletely controllable and [F, H] uniformly completely observable. Silver-
man and Anderson ( 1968) show that if A’(t)B(T) 1(L—T)isa bounded-
input, bounded-output impulse response matrix, then the procedures of
Silverman (unpublished) lend to an asymptotically stable F matrix.

Similar simplification will be observed for high l~oisefiltering in discrete ‘
time systems; thus the recursive formulas used for computing the optimal
filter gain will drastically simplify.

l{ ECEIVED: December 26, 1967; revised August 29, 1968.
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