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Hung Dinh Nguyen⋆, Member, IEEE

Abstract—In this paper, an optimal steady-state voltage control
framework is developed based on a novel linear Voltage-Power
dependence deducted from Gaussian Process (GP) learning.
Different from other point-based linearization techniques, this
GP-based linear relationship is valid over a subspace of operating
points and thus suitable for a system with uncertainties such
as those in power injections due to renewables. The proposed
optimal voltage control algorithms, therefore, perform well
over a wide range of operating conditions. Both centralized
and distributed optimal control schemes are introduced in
this framework. The least-squares estimation is employed to
provide analytical forms of the optimal control which offer
great computational benefits. Moreover, unlike many existing
voltage control approaches deploying fixed voltage references, the
proposed control schemes not only minimize the control efforts
but also optimize the voltage reference setpoints that lead to
the least voltage deviation errors with respect to such setpoints.
The control algorithms are also extended to handle uncertain
power injections with robust optimal solutions which guarantee
compliance with the voltage regulation standards. As for the
distributed control scheme, a new network partition problem is
cast, based on the concept of Effective Voltage Control Source
(EVCS), as an optimization problem which is further solved using
convex relaxation. Various simulations on the IEEE 33-bus and
69-bus test feeders are presented to illustrate the performance
of the proposed voltage control algorithms and EVCS-based
network partition.

Index Terms—Steady-state Voltage Control, GP Learning,
Effective Voltage Control Source (EVCS)

I. INTRODUCTION

THE modern distribution systems across the world are

experiencing an ever-increasing level of renewable pene-

tration and electric vehicle (EV) integration. The introduction

of such distributed generations (DG) and EV fleets bring a

great deal of uncertainties, typically in power injections, that

further compromise the voltage compliance. Then the voltage

regulation problem needs to be revisited in the presence of

such uncertainty sources [1], [2].

In a power system, the objective of the steady-state voltage

control problem is to maintain all nodal voltages at an ac-

ceptable level when the system is subject to disturbances such

as load changes [3], [4]. This voltage control problem can

be challenging to solve due to its large scale and complexity.

A typical power system may consist of a large number of

components, i.e., loads, generators, compensators, etc. The
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inherent nonlinear interaction among these components consti-

tutes the complexity of many steady-state problems including

the voltage control [5], [6]. Thus, designing an optimal voltage

control framework that is able to regulate the voltage profile of

the entire large-scale system effectively becomes crucial to the

system operator [7]. Various voltage control approaches have

been developed in the literature [8]. One important approach

is to incorporate the voltage control objective into an optimal

power flow (OPF) framework [9]. While recent years have

witnessed tremendous success in applying OPF, such as those

using convexification approaches, the high dimensional issue

and the inherent nonlinear property remains the major hurdles

in solving such optimization problem in practice. Thus, the

OPF-based voltage control can be computationally expensive

and time-consuming [10]. As a result, the remedy control

actions, if are designed relying on such an OPF framework,

cannot be timely implemented to control the system’s voltage

levels [4]. Another contemporary trend in voltage control

research focuses on the uncertainties such as those brought

by intermittent renewable sources and electrical vehicles [2],

[11], [12]. As such uncertainties pose additional challenges in

operation, most of the proposed voltage control algorithms,

including decentralized controls under limited communication

conditions, require certain assumptions/simplifications to per-

form well [8], [13]. Some important assumptions are negligible

line losses [14], adjustable PQ injections located at all nodes

[10], [15], or purely resistive network [16].

As dealing with the original nonlinear power systems is dif-

ficult, many existing control works rely on linearized systems.

An important linearization is linearized power flow called

LinDistFlow [17]. Authors in [10] utilizes the LinDistFlow

model to provide a distributed feedback control algorithm

for solving optimal voltage control problem and to identify

the limitations of non-incremental control. Further, two in-

cremental voltage control schemes have also been presented

based on LinDistFlow model. The accuracy of LinDistFlow

model is highly dependent upon the base-load point where

the first-order approximation is done. Once we move away

from the base-load, the error in voltage magnitude estimation

increases [18]. To elevate this, authors in [19] presented the

linear model of power flow is obtained based on a topology

estimator. The method requires repeated voltage sensitivity

computation and online parameter estimation. Recently, [20],

which is a departure from the first-order approximation based

linearization, uses Input Convex Neural Networks to obtain the

convex power flow formulation for voltage control purposes.

However, the convex formulation proposed in [20] is determin-
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istic and may not be directly suitable for voltage control under

load uncertainties. In short, the limitations of model-based

linearizations under uncertain load motivates the development

of a method which is more applicable under load variations.

In this paper, we develop an approximated linear relation-

ships between the node voltage magnitudes and loads via GP

learning. The proposed linearization is more accurate over

load subspace (subspace-wise approximation) and can handle

multiple types of uncertainties (non-parametric nature). These

features mitigate the issue of error under load variation, present

in model-based linearization like LinDistFlow [21].

Leveraging the resulting GPR-based Voltage-Power linear

relationship, we then propose optimal voltage control algo-

rithms which seek for the minimum control efforts, such as

power injection changes, that sufficiently bring the system

voltages to the acceptable level. The proposed optimal control

framework does not rely on any strong assumptions on the net-

works as the above, and thus being applicable to more general

power systems. Using GPR-based Voltage-Power linearization,

the least squares technique can be deployed to provide explicit

forms of the required optimal control efforts. These analytic

forms offer a great computational benefit in voltage control and

thus lending themselves to time-sensitive tasks, such as online

voltage regulation as well as emergency controls. Moreover,

GPR-based Voltage-Power linear relationship is valid over a

subspace of the inputs, the proposed optimal control can work

well in a wide range of power injections, instead of confining

within a small neighbourhood of the linearized point as in

other linearization-based control methods.

More importantly, unlike existing optimal voltage control

algorithms with fixed voltage references, the proposed optimal

framework can also optimize the voltage reference values

that lead to the smallest voltage error deviations, from such

reference values, with minimum control efforts. The proposed

voltage control framework is then extended to handle injection

uncertainties. Voltage variation bounds are derived to give an

estimation of the resulting system voltages under uncertainties.

Such variations bound will be used duly in the voltage control

to ensure that all nodal voltage magnitudes will lie in the

acceptable range while the power injections may vary within

some forecasted sets.

For large-scale systems that may be equipped with limited

communications, distributed voltage control alternative plays

an important role. We propose a novel network partition

technique that identifies the most effective local pilot buses as

well as their neighbourhood members. The partition technique

is developed based on the concept of Effective Voltage Control

Source (EVCS) which are the most relevant, effective nodes

for voltage control. More specifically, the nodes corresponding

to which we have non-zero entries in optimal load vector, are

considered for EVCS. These EVCS node indices are then used

to perform network partition using clustering algorithm.

The main contributions of the paper can be summarised as:

• Employing a novel linear Voltage-Power relationship for

distribution system voltage control that is built using GPR

and applicable to a wide range of operating points.

• Proposing optimal voltage control algorithms for central-

ized and distributed schemes with closed-form solution

under different controllable conditions. Both control ef-

forts and voltage references are optimized and provided

with analytical solutions.

• Proposing robust optimal control algorithm for load un-

certainties. Possible voltage variations are bounded, guar-

anteeing compliance with the voltage regulation limits.

• Formulating an optimization problem and its relaxation

for obtaining optimal Effective Voltage Control Source

node set and network partition.

II. LINEAR VOLTAGE-POWER RELATIONSHIP

In this section, we present the Gaussian process learning-

based linear approximation of Voltage-Power relationship. The

Taylor series-based linearization methods attempt to obtain

the tangent plane of the Voltage-Power manifold at a solution

point. This leads to a higher error with variation in the loading

point. However, the loading variation is not a limitation in the

proposed linearization using GP. At first, we briefly describe

the GP regression [22] as a learning tool, and then we present

the linearization of Voltage-Power relationship using GP.

A. Gaussian Process Regression (GPR)

The GPR is a Bayesian framework based modeling tech-

nique that allows us to incorporate a prior understanding of

data in the models [22]. The GPR is interpretable, meaning

that the user can explain the learning level’s causality and

effects up to a certain extent. These two features, prior

and interpretability, make GPR very useful for learning the

physical models such as power flow relationships. In the power

system applications, GPR is used for wind power forecast

[23], small-signal stability [24], demand forecast [25], and

probabilistic optimal power flow [26].

A general GPR— over training data-set {xi, ŷ(xi)|i =
1 . . .Ω} where, ŷ(xi) is observed function value at input

x
i ∈ R

d— is given as [22]:

ŷ(xi) = y(xi) + εi, i = 1 . . . N. (1)

In the present work, vector x is the bus load vector, while

ŷ is the node voltage magnitude of any node. In (1), εi is

independent and identically distributed noise variable with

zero mean and σ2
ε variance. Details of GP basics and explicit

expressions of means and variance of predicted posterior dis-

tribution can be found in [22]. Importantly, GPR approximates

the input-output relationship via numerical observations. The

noise variable can also be interpreted as combined error due

to measurement noises, system parameter uncertainties, state

estimation errors, etc. This gives the GPR some degrees of

robustness against the error in training data.

To find the mapping between input and output, GPR relies

on covariance or kernel function k(xi,xj). The covariance

function controls the accuracy and complexity of the resulting

approximation of a function. For this work, we use linear

covariance function kLN (·, ·) as our target is to obtain linear

Voltage-Power relationship for steady-state voltage control.

The linear kernel allows us to obtain the least complexity

relationship, suitable for finding optimal injections or control

rules under load uncertainty. There are multiple methods which
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use the kernel trick [22] to perform the regression in finite

dimension. Below we briefly discuss the difference between

kernel regression (KR) and GPR.

The KR generally refers to the methods that use kernel

to learn input-output relationship. One of the prominent KR

method is kernel ridge regression [27]. Both GPR and KR use

the kernel (or called covariance function generally in case of

GP [22]) to establish the relationship between different input

data-points. However, there are some fundamental differences

in the way of learning the function for regression. The GPR

learns the kernel hyperparameters via optimizing the maximum

a posteriori (MAP) estimation. The MAP is mean of the

posterior probability distribution of hyperparameters for a

given training input set [22]. Contrary to this, the KR uses grid

search on a mean-squared error loss function. Furthermore,

the GPR is based on Bayesian theory and a generative model

while KR is not. This means that GPR can generate posterior

samples providing ability to predict the output at different

input points not included in the dataset. Moreover, generalised

regularization procedure can also be compared with GPR. The

main difference is that GP provides uncertainty information.

It calculates marginal likelihood which is useful for hyperpa-

rameter calculation, and direct model comparison. Interested

readers can refer to chapter 6 of [22] for comparative analysis

between GP and other methods.

In the following subsection, we build a linear relationship

using the GPR. We first describe the required training set and

then present linear expression representing the Voltage-Power

relationship based on the predicted mean expression [22].

B. Linear Voltage-Power Relationship

In GP learning, the relationship between input and output

is learned through covariance function. The complexity and

accuracy of approximated function directly depends upon the

selection of covariance function. As discussed above, we use

linear covariance function kLN (·, ·) to obtain linear function

approximation. First, we obtain a training set {si , V̂ i
j | i =

1 . . .Ω} for an individual node j which belongs to the node

set N . Here, vector s = [p ; q] ∈ R
2n is collection of real

pj and reactive power qj load at all the nodes, with n being

equal to number of load buses. The V̂ i
j is voltage magnitude

(referred as voltage hereafter) solution obtained from ACPF

[28] at load si. The collection of all load vectors for training

is design matrix S = [s1 . . . sΩ] of size 2n×Ω. The idea is to

learn the voltage relationship in a load subspace. Formally, we

define the 2n-dimensional load subspace L =
{

[pj ; qj ]
∣

∣ pj ∈
[poj ± δpoj ]; qj ∈ [qoj ± δqoj ]; ∀j = 1 . . . n

}

, with δ being level

of uncertainty. The value δ = 0.5 means that load subspace

is constructed with ±50% uncertainty in base-load of each

node. Here, we consider that power flow Jacobian is invertible

(well-conditioned) at all the points within the considered load

variation range L. Furthermore, for this steady-state study, we

assume the network topology and line parameters are fixed.

Thus, no sudden disruption in connections is considered.

Now, we employ GP to perform a linear approximation

of the individual node voltage as a function of the bus load

vector. Using the log-marginal likelihood estimator with GP,

we obtain the mean prediction of voltage as [22]:

Vj(s) = kLN (S, s)Tαj (2)

where kLN (S, s) = τ2
(

γ1+ ST s/l2
)

,

αj = [kLN (S, S) + σ2
ǫ I]

−1V̂j .
(3)

Here τ, γ, l are hyper-parameters. The voltage linearly depends

on variable load vector s in (2), as the αj is constant

vector upon learning and depends on training set only. The

relationship (2) can be simplified as:

Vj(s) = mjs+ c′j . (4)

Here, the intercept c′j = τ2γ[αT
j 1] and voltage sensitivity

row vector mj = {τ2αT
j S

T }/l2 ∈ R
1×2n. Now, collecting

all n linear functions of voltage vector V (s) = V , the linear

system of equation relating voltage vector with load vector is

V = M s+ C. (5)

The matrix M ∈ R
n×2n can be interpreted as the slope

of voltage plane, which is valid for the learning subspace L.

Now, let so be the base load and Vo be the corresponding node

voltage vector. Then, the voltage change ∆V can be derived

as a function of load change ∆s = s− so as

∆V = V − Vo

= M∆s
(6)

The proposed GP learning method relies on learning the

Voltage-Power relationship only based on the training set

{si , V̂ i
j | i = 1 . . .Ω}. This training data set does not have

explicit information about the network graph or the parame-

ters. Thus, the proposed method can be employed to learn the

Voltage-Power relationship using real state observations of an

unknown network graph.

III. OPTIMAL VOLTAGE CONTROL ALGORITHMS

This section presents a number of optimal voltage control al-

gorithms for both centralized and distributed control schemes.

These control algorithms are extended to handle net load or

injection uncertainties due to DGs and EVs.

A. Centralized voltage control

We introduce a voltage control algorithm that helps— to

regulate the entire network’s voltages— to achieve a reference

voltage profile. We formulate the voltage control problem as:

min
V

‖V − V0‖
2

subject to s = s(θ, V )
(7)

In this optimization framework, the control objective is

to minimize the voltage deviation from the nominal voltage

V0. The constraint is the power flow relation to which the

network respects. In this work, we limit ourselves to the

voltage derivation measured using the Euclidean norm. So the

objective is to minimize ‖V − V0‖
2
2. For simplicity, we omit

the subscript 2 hereafter.

The problem (7) is widely used in literature [29]. One

challenge associated with this optimization is the nonlinear
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and non-convex power flow constraints that makes solving this

control problem inefficient. Therefore, the linear relationship

(5) is employed to approximate the nonlinear power flow

constraints in this work. Moreover, a common practice is

to implement the voltage control from a base steady-state

solution or typically the current operating point {V⋆, s⋆}. Let,

∆s = s−s⋆ as the control efforts used to regulate the network

voltage. The linearized power flow starting with the current

operating point {V⋆, s⋆} can be rewritten as follow:

V = M(s⋆ +∆s) + C

= M∆s+ V⋆.
(8)

If the matrix M is square and invertible, solving (8) for

the control effort ∆s that leads to some desired voltage V
becomes simple. However, the linearized matrix M might

not be necessarily square and invertible in general. For a

rectangular matrix M , the system can be either underdeter-

mined or overdetermined, depending on the size of the matrix

M . For the underdetermined case, there are fewer rows than

columns, so one has fewer equations than unknowns. As a

result, there are infinite solutions satisfying the system of

equations. Rouché–Capelli theorem presented in [30] formally

describes this case as the rank of the coefficient matrix is less

than the rank of its augmented matrix. On the other hand, the

system becomes overdetermined when there are more rows

than columns or one has more equations than unknowns. The

exact solution to an overdetermined system might not exist,

so the common practice is to find the best approximation,

typically using least-squares estimation.

1) Overdetermined system with minimum control efforts:

In practice, the voltage control problem may exhibit redundant

control freedom when multiple voltage control sources, such as

distributed generators, are connected to the same voltage bus

[31]. Then all such control sources will control the same nodal

voltage. Without a proper coordination, the control efforts

from such sources may cancel out each other, for example,

one source generates power and the others consume power

locally. This situation leads to a waste of using control efforts.

Moreover, the nodal voltage is determined by the effective

or net combination of all injections at the node, not by the

individual injection of each control source. For the same net

injection value, there are many combinations of the individual

injections. As a result, there exit many solutions to the voltage

control problem that leads to the same voltage control effect.

From a mathematical perspective, this multiple-solution

phenomenon happens when the system is under-determined,

which means there are fewer equations than variables that need

to find. Rouché–Capelli Theorem presented in [30] formally

describes this situation as follow. For an under-determined

system, the rank of coefficient matrix of is less than the

rank of its augmented matrix, so there exist infinite solutions.

Due to the existence of multiple solutions to the voltage

control, the optimal voltage control will need to extend to

minimize not only the voltage deviation errors ∆V but also

the control efforts ‖∆s‖. The resulting optimal control solution

corresponds to the least control effort among all multiple

solutions that have the same voltage regulation effect. Also,

it is worth noting that the linearized matrix M might not be

necessarily square and invertible in general.

Particularly, the underdetermined system, as discussed

above, will arise when matrix M is a rectangular matrix since

the number of equations is less than the number of variables

when redundant control freedom exists. In this work, the size

matrix M is n× 2n where n is the number of bus nodes,

which equals to the number of equations, and the variables

matrix containing active power and reactive power of each

node with size 2n × 1. Under this condition, matrix M is

not invertible, and infinite solutions will be there for the

optimization problem (7).

However, in under-determined system, one scenario that

may show up is that the matrix M is not full column

rank, which means the columns of matrix M is not fully

independent, so that MTM is also not invertible. Usually, in

power system, this scenario represents the condition that the

performance of some control units can be fully replaced by

the other units.

Thus, with admitting MTM may also not invertible, to

achieve minimum voltage deviation min∆V with the minimal

control effort min∆s, combining equation (8), the original

optimization problem (7) now becomes:

min
∆s

‖M∆s+ V⋆ − V0‖
2 & min ‖∆s‖2

subject to V = M∆s+ V⋆

(9)

This double-aim optimization problem can be practically

achieved by using pseudo-inverse matrix, which also overcome

the un-invertible problem of MTM . Let M+ be the pseudo-

inverse of M . Then, the optimal solution that minimizes both

voltage deviation ∆V and control effort ∆s is given below:

∆sopt = M+(V0 − V⋆). (10)

The mathematical proof is presented in reference [32]. Note

that this minimum control effort ∆sopt = M+(V0−V⋆) is the

unique vector with smallest Euclidean norm that minimizes

the voltage deviation ‖V − V0‖.

2) Underdetermined system with analytical form of optimal

control effort: One simple practical solution to the redundant

control freedom problem is removing unnecessary voltage

control sources, such as remote or expensive devices. As a

result, one can make the matrix M a full column rank matrix,

so the matrix MTM will be invertible. Thus, the well-known

least square estimation can be applied to obtain an explicit

optimal control solution:

∆sopt = (MTM)−1MT (V0 − V⋆). (11)

This close and concise form (11) of optimal solution offers a

great benefit in designing the optimal power injections, without

a need for searching for such optimal values numerically. With

less computational intensity, the proposed optimal voltage

control lends itself to time-sensitive tasks, such as online

regulation and emergency controls.

Note that the explicit form (11) is also the optimal con-

trol solution to an overdetermined system. Opposite to the

under-determined case discussed in section III-A1, an over-

determined system has more equations than unknowns. This
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scenario mostly happens to a distribution system with in-

sufficient voltage control equipment, typically reactive power

compensators and generators. This situation can be caused by

the presence of too many uncontrollable power injections from

renewable sources and EVs.

3) Optimal voltage reference: Another important factor in

optimal voltage controls is how to set the voltage reference.

In most cases, one often assumes that the voltage reference is

given so the main task is to find the optimal power injections

to minimize the voltage mismatch. However, the resulting

voltage deviations, due to the control action and the control

efforts, depend significantly on the voltage reference. More

specifically, based on the current voltage profile, a proper

voltage reference can help reduce both the control effort

and the voltage deviation. This section presents a systematic

approach to optimize such a voltage reference.

Assume matrix M is full column rank and has the size of

m × n, m > n. For this rectangular matrix M , let B be an

orthogonal matrix such that M = BR where R = [R1; 0]m×n.

R1 is a upper triangular and non-singular matrix. Since B is

an orthogonal matrix, we have that

‖M∆s−∆V⋆‖
2 = ‖BT (M∆s−∆V⋆)‖

2

= ‖R∆s−BT∆V⋆‖
2. (12)

Furthermore, we split the matrix BT = [BTu;BTl] where

BTu consists of the first n rows of BT and BTl con-

sists of the rest m − n rows of BT . Then, BT∆V⋆ =
[BTu∆V⋆;B

Tl∆V⋆] = [∆V u
⋆ ; ∆V l

⋆ ] where the upper part

∆V u
⋆ has the size n × 1 and the lower part ∆V l

⋆ has the

size (m− n)× 1. The objective function (12) becomes

‖M∆s−∆V⋆‖
2 = ‖R∆s−BT∆V⋆‖

2

= ‖R1∆s−∆V u
⋆ ‖2 + ‖∆V l

⋆‖
2. (13)

Now, (13) provides insights into the least square solution

and helps improve such an estimation. The term ‖R1∆s −
∆V u

⋆ ‖2 can be minimized easily as R1 is non-singular and

upper triangular. The corresponding solution ∆s is the least

square estimation (11). The objective function can be further

minimized by controlling the last term ‖∆V l
⋆‖

2 = ‖BTl(V0−
V⋆)‖

2 with the voltage reference V0. An optimization formula

for finding the voltage reference which minimizes last term

thus further minimizing the objective (12) is

min
V0

‖BTl(V0 − V⋆)‖
2

subject to Vm ≤ V0 ≤ VM .
(14)

where Vm and VM are the lower bound and upper bound

of the feasible voltage level. The optimization (14) can be

solved using quadratic programming. A simplification can be

made by constructing the voltage reference V0 based on the

current voltage V⋆, in particular, by keeping the acceptable

nodal voltages and only optimizing the new reference values

of the non-compliant buses.

B. Voltage Control with Uncertainties

In the presence of uncontrollable power injections, such

as those of renewable sources or electric vehicles, the above

optimal voltage optimization needs to be revised and the

explicit form of the optimal solution (11) can be used directly.

In this case, the power injection vector can be written as

∆s = [∆sc; ∆suc] where ∆sc denotes the injection variations

on the controllable nodes and ∆suc denotes the uncertain

injection variations. The linearized power flow equation (16)

can be reformulated as:

V = Mc∆sc +Muc∆suc + V⋆ (15)

where Mc = [Mcc;Muc], Muc = [Muc;Muu] are the cor-

responding linearized coefficients. The uncontrollable power

injection ∆suc, if without proper prior knowledge, may pose

additional challenge to the voltage control problem.

1) Optimal controllable values: In this work, we consider

the uncertain power injection variations ∆suc that fluctuate

around zero, which for simplicity is equal to the expectation

value, with a variation ǫ bounded by a constant α > 0. With

such assumptions on the uncontrollable injections, the optimal

voltage control problem can be formulated as:

min
V

∆V = ‖V − V0‖

subject to V = Mc∆sc +Muc∆suc + V⋆

‖∆suc‖ ≤ α

(16)

Taking expectation of the voltage deviation within the

objective function, yields:

E[Mc∆sc +Muc∆suc + V⋆ − V0]

= Mc E[∆sc] +Muc E[∆suc] + V⋆ − V0

= Mc E[∆sc] + V⋆ − V0. (17)

Assume Mc is full column rank, as discussed above, using

the least square estimation method again, the optimal control-

lable power injection can be given as:

∆sc, opt = (MT
c Mc)

−1MT
c (V0 − V⋆). (18)

However, if Mc is not full column rank, the optimal control

effort can be given as:

∆sc, opt = M+
c (V0 − V⋆). (19)

2) Bounding the voltage variation: With the calculated

optimal values of controllable inputs, in order to make sure

a certain range of uncertainties will not cause the voltages

violate the reference values, the voltages vary range need to

be considered.

Below the bound of voltage variation when uncertainties

exist is presented. The power injections with the uncertainties

can be expressed as:

suc = E[suc] + ∆suc = (1 + ǫ)E[suc] (20)

The uncontrollable power variation ∆suc = ǫE[suc] will lead

to the following voltage deviation

∆Vu = ǫMucE[suc] (21)

Note that this voltage deviation ∆Vu is compared with the

case when the uncontrollable power injection is fixed at E[suc]
and the voltage Ve. This can be bounded as follow.

‖∆Vu‖ ≤ ǫ‖Muc‖‖E[suc]‖ (22)
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Comparing equation (21) with the expected voltage, the rela-

tive variation range is:

BVeu
=

‖∆Vu‖

‖Ve‖
=

‖ǫMucE[suc]‖

‖Mcsc +MucE[suc] + C‖
(23)

With indexes (22) and (23), we can update the reference

value accordingly during the calculation of optimal inputs, so

that even there have voltage variations, no node voltage falling

below the requirement value can be promised.

The bound prediction with indexes (22) and (23) is relatively

tight and can be used directly. On one hand, for a tighter

bound, more details on the uncertainty properties can be

included. On the other hand, these indexes are also influenced

by the error bound of the linearized matrix M . In the case

that has high voltage requirement resistant to the uncertainties,

the bound prediction can be magnitude by considering M
estimation bound or bigger uncertainty range ǫ in order to

get extra control margin.

We propose the implementation procedures for the optimal

control with uncertainties are given below:

Step 1: Check for node voltage limit violations.

Step 2: Acquire information of uncertainties, including lo-

cation, type, expected values E[suc] and variation ǫ.
Calculate voltage variation bound by (22) or (23).

Step 3: Calculate the optimal voltage reference V0 from

(14) with expectation values E[suc] of uncertainties.

Step 4: Update voltage reference V0 in equation (18) or (19)

according to calculated bound in earlier step.

Step 5: Calculate optimal controllable power injections

∆sc, opt with equation (18) or (19) using E[suc].
Step 6: Plug in ∆sc, opt and uncertainties in current operat-

ing point. Run power flow.

Step 7: Check if all nodes voltage compliant with the ref-

erence value.

C. Distributed Voltage Control

The proposed method can be localized and applied on dis-

tributed network. Different criterion can be utilized to cluster

the system nodes such as dividing by area or by hierarchy.

The network partition method is presented later in section IV.

Different from the frequency, the voltages manifest them-

selves as local variables, i.e., the local change in the injection

will mostly result in the variation in the neighbourhood

voltages. This effect will attenuate quickly when propagating

through the system to further areas away from the local

change. Thus, a distributed control scheme makes a perfect

sense for the voltages. Also, the radial structure of the dis-

tribution network with low connectivity allows for clustering

the entire network into several sub-systems where the voltage

control can be done locally. If a disturbance happens in one

sub-system, most likely the voltage variation can be fixed by

just regulating the power injections within such a sub-system.

Assume disturbance happens at area i, based on the prop-

erties of the linearized matrix M , the subsystem can easily

be decoupled from the whole system. Reformulate the system

voltage control problem with block matrices as below.
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(24)

here, the Roman numerals subscripts from I to K represent

sub-areas of the distributed network. Take out all the variables

and corresponding parameters in area i and the areas that in-

fluenced by the disturbance, rearrange the matrix and calculate

the optimization problem following the solution in (10)-(11).

Different from the centralized voltage control scheme, the

distributed counterpart may involve multiple trial and error.

The injection computed using LSE within the sub-system will

be applied to the network, which will result in a new voltage

profile. This voltage profile may not be close enough to the

reference, mostly due to lack of control degree and incomplete

information of the network, so a new power injection will be

produced. This iteration will continue till the voltage profile is

accepted. Thus, the procedures in for distributed localization

optimal control are given below

Step 1: Check whether any node voltage goes below refer-

ence value.

Step 2: Get information of system clustering states. Identify

the node set Bk and make sure how many sub-

system has voltage violations.

Step 3: Take out corresponding variables and parameters

and acquire new matrix equation following (6) for

each node set Bk that contains voltage violations.

Step 4: Calculate the optimal voltage reference V0 through

equation (14) for each subsystem that contains

voltage violations.

Step 5: Calculate optimal power injections ∆sopt with

equation (18) or (19) for these node set Bk.

Step 6: Plug in optimal power injections ∆sopt and uncer-

tainties on current operating point. Run power flow

for whole system.

Start

Read Data: system

parameters and

operational conditions

Optimal voltage control

Perform power flow
Execute GP learning

for Matrix M

Voltage

violation?

Matrix M
available?

End

N

Y

N

Y

Fig. 1. Schematic flowchart of optimal control algorithm
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Step 7: Check whether any node voltage goes below refer-

ence value. Repeat the iterations if there still has

voltage violation.

To summarize, the proposed approach can be applied to

multiple scenarios with exploiting the GP-acquired sensitivity

matrix M . The schematic flowchart is shown in Fig. 1 and cor-

responding optimal control scheme under different conditions

follows the steps described in III-A, III-C, and III-B. In the

flowchart 1, the loop will stop when all the system voltages

are compliant to the voltage regulation standards. If multiple

optimal voltage control attempts are made but the voltage

violation cannot be corrected, one can consider to recompute

the matrix M to improve the approximation. A time window-

based continuous/online control can be developed where one

can set the time duration wherein the voltage check can

be carried out. Optimal voltage control will be implemented

within each time window.

IV. EVCS RANKING AND NETWORK PARTITION

In transmission systems, multiple voltage-controlled buses,

called PV buses, are present as generator buses. These PV
buses give the system operator multiple options to control

the voltage. Unlike this, a low voltage distribution network

generally has one PV or Slack bus— at point of coupling

with medium or high voltage network. As we move away

from the slack bus in radially arranged networks, the slack

bus’s ability to control system state decreases. To overcome

this, the farthest bus— from slack bus— is selected as the

voltage controlled bus as it directly shifts the voltage curve of

network up-words, and reduce violation [33]. Nevertheless,

the selection is criterion is not defined and analyzed in

detail. Further, it is not always straightforward to define the

electrically farthest bus, particularly with local DGs.

In the following, we propose an optimization framework for

finding the most relevant power injections EVCS for voltage

control purposes. Now, the linear Voltage-Power relationship

in (6) relates the change in the voltage ∆V with the change

in the power injection or load ∆s. The idea is to place the

voltage controller on a node which has maximum capacity

of control. The control capacity of a node injection means

that by how much it can shift the voltage vector. Thus, if

the injection change at a particular node set leads to a higher

value of ∆V , then those nodes have a higher capacity to keep

the node voltage vector within limits. Let’s assume we want

to install three voltage controlling sources. This means that

we need to find three nodes— as a set— which maximizes

voltage control capacity. This can be done by finding the nodes

which maximize the norm of voltage deviation vector. The

matrix M appearing the linear relationship ∆V = M∆s can

be considered as the sensitivity matrix between the voltage

change and the power injection change. Therefore, we formu-

late the problem below with the objective of maximization of

the voltage deviation while keeping the number of EVCS less

than a fixed number using cardinality constraint Card ≤ t.

max
∆s

∆V T∆V = ∆sTMTM∆s

subject to ‖∆s‖ = 1

Card(∆s) ≤ t.

(25)

As discussed above, the problem (25) searches for the

optimal power injection that leads to the maximum load

voltage changes. The length of this power injection change is

normalized to the unit. The second constraint is to bound the

maximum number of non-zero elements in the power injection

vector, denoted by Card(·), by a given integer t > 0. This

integer represents the number of considered relevant injections.

The problem (25) is non-convex. Using the lifting procedure

for semidefinite relaxation, we have

max
X

Tr(MX)

subject to Tr(X) = 1

Card(X) ≤ t

X � 0; Rank(X) = 1

(26)

Here, X = ∆s∆sT . The cardinality constraint can be

replaced by a weaker but convex 1
T |X|1 ≤ t with |X|

contains all absolute values of X’s entries. Now, by ignoring

the rank-one constraint, resultant convex formulation is

max
X

Tr(MX)

subject to Tr(X) = 1

1
T |X|1 ≤ t; X � 0

(27)

The optimal ∆s consists of at most t power injections

that are the most relevant and effective control efforts in the

network for voltage regulation purposes. This t-length set of

injections will be used for network partition.

A. Network Partition

The task of network clustering has been proposed in the

recent past using various methods [34]. Our idea here is

to introduce the network partitioning based on the slope of

voltage plane M , estimated via GP learning. In particular, we

propose to use the sensitivity of voltage with respect to the

EVCS bus for clustering. This is different than general idea of

breaking system into parts using complete system information.

The proposed partition allows us to identify the nodes where

voltage can be controlled by high priority EVCS. The main

idea of using the voltage slope or sensitivity for clustering

is to identify the node voltages having similar sensitivities,

with respect to EVCS node injection change. The similarity

is measured with respect to EVCS node’s own sensitivity of

voltage change. To perform the clustering based on sensitivity,

we have used k − means with centroids fixed at the EVCS

nodes, obtained by solving (27).

Let, we obtain optimal ∆s, having t non-zero entries, by

solving (27). Now, as described above, we will use the sub-

matrix A ∈ R
n×t, having t columns of M corresponding to the

non-zero entries in ∆s. Now our target is to divide the network

into t+1 sub-parts such that each part is effectively controlled

by t EVCS buses and one slack bus. Below we present the

step-by-step method to perform the network partition.

Step 1: Solve optimization problem (27) and obtain opti-

mal ∆s having t non-zero entries.

Step 2: Construct a sub-matrix A having t columns of M
related to non-zero entries in ∆s.
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Step 3: Run clustering algorithm to cluster A into t + 1
parts, and assign the corresponding EVCS bus to

each cluster.

Upon completion of this procedure, we obtain t + 1 index

sets as Bk where k = 1 . . . t+ 1. Here, in the t+ 1-th set are

the slack bus controlled nodes. In the next section, we present

centralized and distributed voltage control mechanisms based

on GP based linearization. It is important to note here that

we do not focus on any specific type of clustering algorithm.

Our idea is based on using EVCS bus related sensitivities of

voltage to find clusters.

In the present work, we have employed k − means as it

is a well known standardised clustering method with fixed

centroids. The idea is general and open to employ any state-

of-art clustering algorithms such as Gaussian mixture model

(GMM) [35]. The effect of different clustering algorithms on

network partitions will be analyzed in future works.

V. NUMERICAL RESULTS AND DISCUSSIONS

The simulations have been presented on the IEEE 33-Bus

radial distribution system [28] and a modified IEEE 69-Bus

system [36] with all nodes having non-zero load. For the GP

learning, we use the well established GPML Toolbox [37] with

MATLAB 2020a. The power flow calculations for learning

data-set for Voltage-Power relationship and voltage control

problem are performed using MATPOWER runpf [28]. We use

the Newton-Rapson power flow option in runpf as it is well

established method and used by various works. We first show

the accuracy of the linearization, particularly when loading

point is away from base-load. Further, we show the network

partition and associated pilot bus. At the end we present the

centralised and decentralised voltage control results.

A. Linearization Performance

The GP-based linear Voltage-Power relationship is valid

for load subspace L as discussed in II-B. The model-based

linearization methods perform relatively poorly when we move

away from the base-point [18]. The difference in performance

is captured in Fig. 2. The results show that at load 1.5 times of

base load, the proposed method outperforms other linearization

methods proposed in [18] and [21] significantly. This fact,

that linearization is loading dependent, has also been reported

and analyzed by authors in [18] . With a training set of 300

samples, N = 300, we perform learning for different size of

load uncertainty set. Further, we compare the linearization (5)

with ACPF solution [28] for 104 samples. The maximum mean

absolute error (MAE), among all node voltage magnitudes, is

recorded as 2.36 × 10−6, 5.95 × 10−6 and 5.65 × 10−5 for

uncertain spaces of δ being 10%, 20% and 50% respectively.

Fig. 3 shows the comparative results of maximum ap-

proximation error for LinDistFlow [21], method proposed in

[18] and purposed GP-Based approximation for IEEE 33-Bus

system. The histograms clearly indicate that proposed method

is approximately 100 times more accurate than other two

methods. In case of the model-based linearization methods,

the error histograms in Fig. 3 resemble the normal distribution

because error is a function of load in these methods. The

Bus2 Bus 18 Bus 33
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Fig. 2. Voltage comparison between ACPF, LinDistFlow [21], model-based
linearization Bolognani et.al. [18] and proposed linearization at 1.5× base-
load in 33-Bus system.

Fig. 3. Maximum absolute voltage magnitude error with LinDistFlow [21],
Bolognani et.al. [18] and proposed linearization for IEEE 33-Bus system
[28] using 104 samples. Bus loads follow normal distribution with base-load
(po, qo) as mean and standard deviation of 10% of base-load. GP Training
data-set has 350 samples. The loading dependence of approximation error is
clearly visible with normal distribution of error with [21] and [18].

proposed method’s accuracy is not a function of system

loading, therefore we obtain a one sided error histogram.

To show that proposed method works for different size sys-

tems, and effect of load on performance we present maximum

error results for 69-Bus system [36], [38] in Fig.4. The error

in LinDistFlow and method in [18] is one order of magnitude

higher than that with the purposed method and load dependent

as well. Another clear observation is that error has positive

slope with loading of the system. This means that a voltage

control method, for higher loading will not be as accurate

as it will be for the lower. These results indicate that the

GP-based linearization is suitable for obtaining linear Voltage-

Power relationship, particularly under load uncertainty.

B. EVCS Ranking and Network Partition

As discussed in section IV, the controlled load variations

at EVCS bus can greatly help to control the network voltage.

In this part, we present the partitions of the 33-Bus network

obtained via the step-by-step procedure explained in section IV

along with associated EVCS bus. When we solve (27) with t =
2, we obtain optimal ∆s with nonzero entries corresponding to

node 18. Fig. 5 shows the results of partition when one EVCS

source is placed at 18-th node. Further, using the partition

procedure, we obtain one cluster where node 9 to node 18 are

clubbed together for possible distributed control. The other

bigger cluster is with the slack bus.

C. Voltage Control Performance

In this section, the proposed voltage control performance

when system voltage falls below the reference level on IEEE

33-Bus system and modified IEEE 69-Bus system [36]. The

low voltage conditions are created by increasing the base load

taken from the corresponding test case in MATPOWER [28].
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Fig. 4. Variation in the maximum absolute voltage magnitude error with
load change for LinDistFlow [21], model-based linearization Bolognani et.al.
[18] and proposed linearization for IEEE 69-Bus system [36], [38] using 104

samples. The learning and testing is performed with normal distribution having
base-load (po, qo) as mean and standard deviation of 10% of base-load, at
all the nodes. Total 450 samples are used to learn the GP based linearization.

Fig. 5. IEEE 33-Bus system [28] partition with one EVCS at 18-th bus.

Table I shows the comparison with/ without full column

rank matrix M under global centralized control. In case-I,

there are total 10 violations, which means 10 node voltages go

below 0.90 pu, and the minimum voltage is 0.879 pu in this

case. In the case-II, there are total 13 node voltage violations,

and the minimum voltage is 0.855 pu. In the table I, Min-

V -P and Min-V -S denote the minimum node voltage after

different control activities, Ratio-P gives the ratio with sum of

the absolute values of power injection changes, which indicate

the control efforts and the efficiency of the control activity.

Further, Min-Npq is the minimum number of controllable

components that system needs in order to bring the voltages

back to the reference value, which also suggests the minimum

column rank of matrix M , as discussed in III-A2.

Fig. 6 shows the voltage profiles with different voltage

reference setpoints for IEEE 69-Bus system. It is clear that

the proposed voltage control method is able to bring the

system voltage back to the required level by adjusting the

reference setpoints duly. In Fig. 6, the cyan curve (“Original

Voltage” legend) depicts the uncontrolled, low voltage profile

where several node voltages fall below 0.90 p.u. and thus

violate the voltage regulation standards. The other three blue,

orange, and red curves (“V-Ctr-Ref1”, “V-Ctr-Ref2”, “V-Ctr-

Ref3” legends) plot the resulting system voltage profiles after

implementing the optimal voltage control using three different

voltage reference setpoints. Such setpoints are chosen to bring

the system voltage levels above three lower bounds of 0.90
pu., 0.92 pu., and 0.94 pu. One can see that the proposed

optimal control is successful in regulating the system voltages

TABLE I
CENTRALIZED CONTROL IN 33-BUS SYSTEM

#Violated Min Min Min Ratio Min
Bus V V − P V − S P Npq

Case-I 9 0.879 0.909 0.906 1.225 11
Case-II 13 0.855 0.913 0.905 0.790 26
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Fig. 6. System voltage profiles with different voltage reference setpoints in
IEEE 69-Bus system
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Fig. 7. Real power load with 30% uncertainties in 33-Bus system

following desired voltage requirements. Note that the control

process of lifting the system voltages from the limit of 0.90
pu to the higher limit of 0.94 pu can be done in one single

step of control or in several successive control steps. From the

practical point of view, the latter fashion is recommended as

the system voltage can be regulated gradually to avoid large

jumps in the system operation. Another important point to

note is that there are a number of good bus voltages, such

as those around buses 26 to 55, are higher the voltage lower

limits. The voltages at such buses almost remain the same

during the voltage control process. One reason is that the

voltage reference setpoints are selected wisely to focus on the

low voltage buses and not to change the already good voltage

levels. This helps reduce the unnecessary control actions. The

localised voltage control effect is also manifested here as

remote buses’ voltages will not change much due to some

local power injection controls [31].

The simulation results of the proposed method to handle

uncertainties are shown in Fig. 7 and 8. Here, we assume

the active power on all the load nodes contains a level of

uncertainties and all the reactive power are controllable. This

resembles condition where in distributed system, all nodes

contain renewable generation or intermittent loads like EVs.

Here the variation of the uncertainty is 30% showing in figure

7. According to the proposed indexes (22) and (23) in section

III-B, the voltage reference needs to lift up 0.022 pu in order to

tolerant the uncertainties. Fig. 8 compares the voltage curves

with and without optimal control. These simulation results

show that after deploying the proposed methods, the voltage

profile has been taken back to above 0.90 pu. The vertical dots

in Fig. 8, at each node, show the voltage variation range for

30% uncertainty. The maximum voltage variation is 0.016 pu,

which stays within the calculated voltage bound index range.

Fig. 9 shows the voltage control results of distributed

areas. The performances are compared with the global control.

The 33-Bus system is partitioned following the Fig. 5 and

following the nodes numbers into three sub-system. From the

figure we can see the voltage profiles of distributed control

and centralized global control are almost overlapped, which
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Fig. 8. Voltage control profiles with 30% uncertainties in 33-Bus system

Bus 2 Bus 18 Bus 33

0.9

1.0

1.1

N
o
d
e
 V

o
lt
a
g
e
 (

p
u
)

DC with 3 Parts

Centralized Control

Without Control

DC with 2 Parts

Fig. 9. Distributed control voltage profiles in 33-Bus system

means with the proposed clustering and distributed control can

achieve almost the same performance with the global control.

The distributed control for three subsystems achieves a higher

value with the need of an extra iteration as one node fail to

recover with only one round of control.

Now, we compare the computational burden between global

control and distributed control. As the size of matrix M
decreases, the time spent with distributed control is 43% less

than the global control. And if the bad voltage nodes only exist

in one sub-area, the time for distributed control only takes 12%
of the time that global optimal voltage control needs. As the

system size grows, this will be a big benefit for calculation.

VI. CONCLUSION

In this work, we propose an optimal steady-state voltage

control framework for distribution power systems. The pro-

posed control algorithms are developed based on the novel

Gaussian process regression-based linear Voltage-Power re-

lationship that accurately approximates the voltage within a

power injection subspace. The new control algorithms opti-

mize not only the control efforts but also the voltage reference

setpoints that further minimize the voltage deviation errors.

Using the least squares estimation, analytical forms of the

optimal control solutions are derived for both centralized and

distributed control schemes. For uncertain injections, bounds

on the system voltage variations are developed and used

to design robust optimal control that guarantees the voltage

compliance. A new network partition scheme for distributed

voltage control is also presented, relying on the concept

of Effective Voltage Control Sources and convex relaxation

optimization. The simulation results on IEEE 33-Bus and

IEEE 69-Bus systems illustrate that the proposed GP learning

method and corresponding optimal voltage control algorithms

perform well over a wide range of operating conditions. The

future work will focus on an extension for handling uncertain-

ties with considering time dependent parameters, such as the

line impedances, and network topology changes.
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