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Optimal Stochastic Approximation Algorithms for

Strongly Convex Stochastic Composite Optimization

I: a Generic Algorithmic Framework ∗†

Saeed Ghadimi ‡ Guanghui Lan §

July 1, 2010 (Revised: September 20, 2011, June 15, 2012)

Abstract

In this paper we present a generic algorithmic framework, namely, the accelerated stochastic
approximation (AC-SA) algorithm, for solving strongly convex stochastic composite optimization
(SCO) problems. While the classical stochastic approximation (SA) algorithms are asymptotically
optimal for solving differentiable and strongly convex problems, the AC-SA algorithm, when
employed with proper stepsize policies, can achieve optimal or nearly optimal rates of convergence
for solving different classes of SCO problems during a given number of iterations. Moreover, we
investigate these AC-SA algorithms in more detail, such as, establishing the large-deviation results
associated with the convergence rates and introducing efficient validation procedure to check the
accuracy of the generated solutions.

Keywords: stochastic approximation, convex optimization, stochastic programming, complexity,
large deviation

1 Introduction

Convex programming (CP) under noisy first-order information has attracted considerable interest
during the past decades for its applications in a broad spectrum of disciplines including statistical
estimation, signal processing and operations research, etc. In the classical setting, we consider the
problem of minx∈X Ψ(x), where X is a closed convex set and Ψ : X → R is a strongly convex
and differentiable function for which only noisy gradient information is available. In 1951, Robbins
and Monro in their pioneering paper [34] proposed the stochastic approximation (SA) algorithm for
solving this type of problems. This approach, referred to as the classical SA, mimics the simplest
gradient descent method by using noisy gradient information in place of the exact gradients. Since
then SA algorithms became widely used in stochastic optimization (see, e.g., [6, 10, 11, 21, 31, 35, 40]
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and references therein) and, due to especially low demand for computer memory, in signal processing
(cf., [6] and references therein). An important improvement of the SA method was developed by
Polyak [32] and Polyak and Juditsky [33], where longer stepsizes were suggested together with the
averaging of the obtained iterates. The analysis of these SA methods (goes back to the works [8]
and [36]) focused on obtaining the asymptotically optimal rate of convergence E[Ψ(xt) − Ψ∗] =
O(t−1) (here xt is t-th iterate and Ψ∗ is the minimal value of Ψ(x) over x ∈ X). However, it is
difficult to implement “asymptotically optimal” stepsize policy, especially in the beginning, so that
the algorithms often perform poorly in practice (e.g., [40, Section 4.5.3.]).

In last few years, there has been a revival of interest in SA methods for stochastic convex opti-
mization and their applications (e.g. [15, 18, 23, 25, 29, 37, 39]). These developments, motivated by
complexity theory in continuous optimization [26], concerned the convergence properties of SA-type
methods during a finite number of iterations. For example, Nemirovski et al. [25] presented a prop-
erly modified SA approach, namely, mirror descent SA, for minimizing general non-smooth convex
functions. They demonstrated that the mirror descent SA exhibits an optimal O(1/ǫ2) expected
iteration-complexity for solving these problems and that the constant factor associated with this
iteration-complexity bound is also essentially unimprovable. The mirror descent SA was shown in
[23, 25] to be competitive to the widely-accepted sample average approximation approach (see, e.g.,
[20, 38]) and even significantly outperform it for solving a class of stochastic programming problems.
For example, when X in (1.1) is a simplex of large dimension, the mirror descent SA builds approx-
imate solutions 10 − 40 times faster than an SAA based algorithm while keeping similar solution
quality. Similar techniques, based on subgradient averaging, have been proposed in [15, 18, 29].
While these techniques dealt with general non-smooth CP problems, Lan [22] presented the first
unified optimal method for smooth, nonsmooth and stochastic optimization, which explicitly takes
into account the smoothness of the objective function. However, note that none of these techniques
could achieve the optimal expected iteration-complexity for minimizing differentiable and strongly
convex functions (a.k.a. the classical setting of SA).

In this paper, we study a class of strongly convex stochastic composite optimization (SCO)
problems given by

Ψ∗ := min
x∈X
{Ψ(x) := f(x) + X (x)}, (1.1)

where X is a closed convex set in Euclidean space E , X (x) is a simple convex function with known
structure (e.g., X (x) = 0 or X (x) = ‖x‖1), and f : X → R is a general convex function such that for
some L ≥ 0, M ≥ 0 and µ ≥ 0,

µ

2
‖y − x‖2 ≤ f(y)− f(x)− 〈f ′(x), y − x〉 ≤ L

2
‖y − x‖2 +M‖y − x‖, ∀x, y ∈ X, (1.2)

where f ′(x) ∈ ∂f(x) and ∂f(x) denotes the subdifferential of f at x. Moreover, we assume that
the first-order information of f is available via subsequent calls to a stochastic oracle (SO). More
specifically, at the t-th call, xt ∈ X being the input, the SO outputs the quantity F (xt, ξt) and
a vector G(xt, ξt), where {ξt}t≥1 is a sequence of independently and identically distributed (i.i.d)
random variables such that E[F (x, ξt)] = f(x) and E[G(x, ξt)] ≡ g(x) ∈ ∂f(x) for any x ∈ X. The
following assumption is made throughout the paper.

A1: For any x ∈ X and t ≥ 1, we have E
[
‖G(x, ξt)− g(x)‖2∗

]
≤ σ2.

Since the parameters L,M, µ, σ can be zero, problem (1.1) described above covers a wide range
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of CP problems. In particular, if f is a general Lipschitz continuous function with constant Mf ,
then relation (1.2) holds with L = 0, µ = 0 and M = 2Mf . If f is a strongly convex smooth

function in C1,1L/µ (e.g., [28]), then (1.2) is satisfied with M = 0. Clearly, relation (1.2) also holds if

f is given as the summation of smooth and nonsmooth convex functions. Moreover, problem (1.1)
covers different classes of deterministic CP problems if σ = 0 (in particular, letting σ = 0, M = 0,
µ = 0, problem (1.1) becomes a class of composite CP problems studied by Nesterov [30] and later
Tseng [43], Lewis and Wright [24]). To subsume all these different possible combinations, we refer
to the aforementioned class of CP problems as FX,X (L,M, σ, µ).

Since strong convexity has been extensively studied, we can have a long list of application prob-
lems of the form FX,X (L,M, σ, µ). In particular, most applications of the classical SA fall as one of
its special cases, namely, FX,0(L, 0, σ, µ). To motivate our discussion, let us mention a few concrete
examples in statistical learning which help to represent massive data in a compact way [13]. Consider
a set of observed data S = {(ui, vi)}mi=1, drawn at random from an unknown distribution D on U×V .
We would like to find a linear form V(u) = 〈x, u〉 to describe the relation between ui and vi. To this
end, we can solve different problems of the form (1.1). In particular, let ρ, υ > 0 be user-defined
parameters, we can use the following different types of learning models

• Ridge regression: f(x) = E[(〈x, u〉 − v)2] + ρ‖x‖22, X (x) = 0 and X = R
d;

• support vector machine [5]: f(x) = E[max{0, v〈x, u〉] + ρ‖x‖22, X (x) = 0 and X = R
d;

• elastic net regression [46]: f(x) = E[(〈x, u〉 − v)2] + ρ‖x‖22, X (x) = υ‖x‖1 and X = R
d,

where the expectations are taken w.r.t. u and v. Observe that the above problems are unconstrained
problems. It is well-known (see Section 1.1.1 of Judistky and Nemirovski [16]) that the convergence
rate of first-order methods heavily depends on the starting point or the size of feasible set. For this
reason, one may prefer to reformulating the above unconstrained problems into constrained ones.
For example, in the ridge regression problem, the l2 norm regularization term can be stated as a
constraint, i.e., ‖x‖2 ≤ b for some b > 0. Some other constrained problems fitting in our setting are
as follows.

• Lasso regression [42]: f(x) = E[(〈x, u〉 − v)2], X (x) = 0 and X = {x ∈ R
d : ‖x‖1 ≤ b} for some

b > 0;

• Metric learning [44]: f(x) = E[|tr(xuuT )−v|], X (x) = 0 andX = {x ∈ R
d×d : x � 0, tr(x) ≤ b},

for some b > 0.

Note that, although the latter set of examples have bounded feasible sets, their objective funtions
are not necessarily strongly convex.

If µ > 0 in (1.2), then, by the classic complexity theory for convex programming (see, e.g.,
Theorems 5.3.1 and 7.2.6 of [26], Theorem 2.1.13 of [28], [45] and [17]), to find an ǫ-solution of (1.1),
i.e., a point x̄ ∈ X s.t. E[Ψ(x̄)−Ψ∗] ≤ ǫ, the number of calls (or iterations) to SO cannot be smaller
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than 1

O(1)
(√

L

µ
log

L‖x0 − x∗‖2
ǫ

+
(M + σ)2

µǫ

)

, (1.3)

where x0 denotes an initial point, x∗ is the optimal solution of problem (1.1) and O(1) represents an
absolute constant. However, it is not clear if such a lower complexity bound is achievable or not. As
shown in [25], the iteration complexity for the classical SA for solving FX,0(L, 0, σ, µ) is given by

O(1)
(
L

ǫ
max

{
Ḡ2

µ2
, ‖x0 − x∗‖2

})

, (1.4)

where Ḡ2 := supx∈X E[G(x, ξ)]2. Note that, in our setting, M = 0 and Ḡ2 is in the order of
σ2 + L2maxx∈X ‖x − x∗‖2 (see Remark 1 of [22]). Clearly, bound (1.4) is substantially worse than
(1.3) in terms of the dependence on L, µ and ‖x0 − x∗‖, although both of them are of O(1/ǫ). As
a result, the classical SA method of this type is very sensitive to these problem parameters and the
selection of initial points.

Our contribution in this paper mainly consists of the following aspects. Firstly, by properly mod-
ifying the well-known Nesterov’s optimal smooth method [27, 28], we develop a generic accelerated
stochastic approximation (AC-SA) algorithmic framework, which can be specialized to yield optimal
or nearly optimal methods for different classes of SCO problems in FX,X (L,M, σ, µ). In particular,
we study and compare two different variants of optimal AC-SA algorithms for solving SCO problems
without assuming strong convexity, i.e., FX,X (L,M, σ, 0). Moreover, we present one AC-SA algorithm
for solving strongly convex SCO problems, which exhibits a nearly optimal iteration-complexity

O(1)
(√

L‖x0 − x∗‖2
ǫ

+
(M + σ)2

µǫ

)

. (1.5)

Note that the above complexity bound is significantly better than (1.4) in terms of the dependence
on L, µ, σ and ‖x0−x∗‖ (note M = 0 for this comparison). In particular, it is worth mentioning that
the dependence on the selection of the initial point, i.e., ‖x0 − x∗‖, has been considerably reduced.
In fact, if the second term in (1.5) majorizes the first one, then the quantity ‖x0−x∗‖ does not affect
the complexity bound (up to a factor of 2). It is also worth noting that this algorithm employs a
very simple stepsize policy without requiring any information about σ and the initial point x0 or the
size of the feasible set.

Secondly, while the aforementioned complexity results evaluate, on average, the performance of
the AC-SA algorithms over many different runs, we also study the large-deviations of these complexity
results, in order to estimate the performance of a single run of these algorithms. More specifically,
under certain “light-tail” assumptions on the SO, we investigate the iteration-complexity of finding
an (ǫ,Λ)-solution of (1.1), i.e., a point x̄ ∈ X s.t. Prob{Ψ(x̄)−Ψ∗ > ǫ} ≤ Λ, for a given confidence
level Λ ∈ (0, 1).

1While the other terms in (1.3) come from deterministic CP, we briefly discuss how the critical term σ2/(µǫ) in
(1.3) is derived. Consider the problem of minx

{

Ψ(x) = µ(x− α)2
}

with unknown α. Also suppose that the stochastic
gradient is given by 2µ(x− α− ξ/µ) with ξ ∼ N(0, σ2). Under this setting, our optimization problem is equivalent to
the estimation of the unknown mean α from the observations of ζ = α+ ξ/µ ∼ N(α, σ2/µ2), and the residual is µ times
the expected squared error of recovery of the mean α. By standard statistical reasons, when the initial range for α is
larger than σ/µ, to make this expected squared error smaller than δ2 ≡ ǫ/µ, or equivalently, E[Ψ(x̄) − Ψ∗] ≤ ǫ, the
number of observations we need is at least N = O(1)

(

(σ2/µ2)/δ2
)

= O(1)
(

σ2/(µǫ)
)

.
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Finally, one crucial problem in most SA-type methods is how to check the accuracy of the
generated solutions. For this purpose, we show that, with little additional computational effort,
the developed AC-SA algorithms can also output a sequence of lower bounds on Ψ∗. These lower
bounds, when coupled with certain stochastic upper bounds, can provide online accuracy certificates
for the generated solutions. In particular, we demonstrate that the gap between these upper and
lower bounds converges to 0 as rapidly as the sequence of objective values of the generated solutions
converges to Ψ∗.

The paper is organized as follows. We start by reviewing some basic concepts, namely, the
distance-generating functions and prox-functions in Section 2. In Section 3, we present a generic
AC-SA algorithmic framework for solving FX,X (L,M, σ, µ) and establish its convergence properties.
We then demonstrate in Section 4 that the generic AC-SA algorithm, if employed with suitable
stepsize policies, can achieve optimal or nearly optimal expected rates of convergence for solving
different classes of problems in FX,X (L,M, σ, µ). In Section 5, we discuss the computation of certain
stochastic lower and upper bounds of Ψ∗ during the execution of the AC-SA algorithms. Some
concluding remarks are given in Section 6.

In the companion paper [12], we show that the lower complexity bound (1.3) is actually achievable
provided that the value of σ and a bound on Ψ(x0) − Ψ∗ are given. Also, observing that a single-
run of aforementioned nearly optimal algorithms for strongly convex SCO has significantly worse
theoretical convergence performance than the average one over many runs, we develop ways to
improve the former iteration-complexity results so that they become comparable to the latter ones.
Some numerical results demonstrating the effectiveness of different variants of the AC-SA algorithm
are also presented in [12].

1.1 Notation and terminology

• E is endowed with inner product 〈·, ·〉 and an arbitrary norm ‖ · ‖ (not necessarily the one
induced by the inner product 〈·, ·〉).

• For a convex lower semicontinuous function φ : X → R, its subdifferential ∂φ(·) is defined as
follows: at a point x from the relative interior of X, ∂φ is comprised of all subgradients g of φ
at x which are in the linear span of X −X. For a point x ∈ X\rintX, the set ∂φ(x) consists
of all vectors g, if any, such that there exists xi ∈ rintX and gi ∈ ∂φ(xi), i = 1, 2, · · · , with
x = lim

i→∞
xi, g = lim

i→∞
gi. Finally, ∂φ(x) = ∅ for x /∈ X. With this definition, it is well-known

(see, for example, Ben-Tal and Nemirovksi [3]) that, if a convex function φ : X → R is Lipschitz
continuous, with constant M , with respect to a norm ‖ · ‖, then the set ∂φ(x) is nonempty for
any x ∈ X and

g ∈ ∂φ(x)⇒ |〈g, d〉| ≤M‖d‖, ∀ d ∈ lin (X −X), (1.6)

in other words,
g ∈ ∂φ(x)⇒ ‖g‖∗ ≤M, (1.7)

where ‖ · ‖∗ denotes the conjugate norm given by ‖g‖∗ := max‖d‖≤1〈g, d〉.

• For the random process ξ1, ξ2, ..., we set ξ[t] := (ξ1, ..., ξt), and denote by E|ξ[t] the conditional
expectation with ξ[t] being given.
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2 Preliminary: distance generating function and prox-function

In this section, we review the concept of prox-function (i.e., proximity control function). By using the
generalized prox-function in place of the usual Euclidean distance function, the developed algorithms
will be capable of adjusting to the different geometry of the feasible set.

We say that a function ω : X → R is a distance generating function with modulus ν > 0 with
respect to ‖ · ‖, if ω is continuously differentiable and strongly convex with parameter ν with respect
to ‖ · ‖, i.e.,

〈x− z,∇ω(x)−∇ω(z)〉 ≥ ν‖x− z‖2, ∀x, z ∈ X. (2.1)

The prox-function associated with ω is given by

V (x, z) ≡ Vω(x, z) = ω(z)− [ω(x) + 〈∇ω(x), z − x〉]. (2.2)

The prox-function V (·, ·) is also called the Bregman’s distance, which was initially studied by Breg-
man [7] and later by many others (see [1, 2, 19, 41] and references therein). In this paper, we assume
that the prox-function V (x, z) is chosen such that the solution of

Pω(g, x) := argmin
z∈X
{〈g, z〉+ V (x, z) + X (z)} (2.3)

is easily computable for any g ∈ E∗ and x ∈ X. We point out below a few examples where such an
assumption is satisfied.

• If X is relatively simple, e.g., Euclidean ball, simplex or l1 ball, and X (x) = 0, then by
properly choosing the distance generating function ω(·), we can obtain closed form solutions
of problem (2.3). This is the standard setting used in the regular SA methods [25, 16].

• If the problem is unconstrained, i.e., X = E , and X (x) is relatively simple, we can derive
closed form solutions of (2.3) for some interesting cases. For example, if X (x) = ‖x‖1 and
ω(x) = ‖x‖22/2, then an explicit solution of (2.3) is readily given by its first-order optimality
condition. A similar example is given by X (x) =

∑d
i=1 σi(x) and ω(x) = tr(xTx)/2, where

σi(x), i = 1, . . . , d, denote the singular values of x ∈ R
d×d.

• If X is relatively simple and X (x) is nontrivial, we can still compute closed form solutions
of (2.3) for some interesting special cases, e.g., when X is the standard simplex, ω(x) =
∑d

i=1 xi log xi and X (x) =
∑d

i=1 xi. However, in general, slightly more computational effort
than regular SA methods is needed to solve problem (2.3). For example, we can apply a simple
bisection procedure to solve the Lagrangian dual of (2.3) if the Lagrangian relaxation of (2.3)
has an explicit solution.

If there exists a constant Q such that V (x, z) ≤ Q
2 ‖x − z‖2 for any x, z ∈ X, then we say that

the prox-function V (·, ·) is growing quadratically. Moreover, the smallest constant Q satisfying the
previous relation is called the quadratic growth constant of V (·, ·). For example, if X = R

n and
ω(x) = ‖x‖22/2, then we have V (x, z) = ‖x− z‖22/2 and Q = 1. Another example is given by

Example 1 Let X = {x ∈ R
n : ‖x‖1 ≤ 1}, where ‖x‖1 =

∑n
i=1 |xi|. We can take

ω(x) =
1

2
‖x‖2p =

1

2

(
n∑

i=1

|xi|p
) 2

p
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for some p > 1. In particular, if p = 1 + 1/ lnn, then ω(x) is strongly convex with modulus µ =
1/(e2 lnn) and the quadratic growth constant Q equals 1 for the prox-function V (x, z) (see, e.g.
[4, 9, 16, 26]).

Without loss of generality, we assume that Q = 1 for the prox-function V (x, z) if it grows
quadratically, i.e.,

V (x, z) ≤ 1

2
‖x− z‖2, ∀x, z ∈ X. (2.4)

Indeed, if Q 6= 1, we can multiply the corresponding distance generating function ω by 1/Q and the
resulting prox-function will satisfy (2.4).

3 A generic accelerated stochastic approximation algorithm

This section contains two subsections. In Subsection 3.1, we present a generic accelerated stochastic
approximation (AC-SA) algorithm and discuss its convergence properties. Subsection 3.2 is dedicated
to the convergence analysis of this algorithm.

3.1 The algorithm and its convergence properties

In this subsection, we present the generic AC-SA algorithm for solving FX,X (L,M, σ, µ) and establish
its convergence properties. This algorithm maintains the updating of three intertwined sequences,
namely, {xt}, {xagt } and {xmd

t }. The AC-SA algorithm is obtained by replacing the gradients with
stochastic (sub)gradients in Nesterov’s method for smooth CP [27, 28]. This is in spirit similar to
the relation of SA and gradient descent method. However, the generalization of Nesterov’s smooth
method to nonsmooth and stochastic CP seems to be more involved, partly because of the intercor-
relation of the aforementioned three sequences.

A generic AC-SA algorithm

Input: x0 ∈ X, prox-function V (x, z), stepsize parameters {αt}t≥1 and {γt}t≥1 s.t. α1 = 1,
αt ∈ (0, 1) for any t ≥ 2, and γt > 0 for any t ≥ 1.

0) Set the initial points xag0 = x0 and t = 1;

1) Set

xmd
t =

(1− αt)(µ+ γt)

γt + (1− α2
t )µ

xagt−1 +
αt[(1− αt)µ+ γt]

γt + (1− α2
t )µ

xt−1; (3.1)

2) Call the SO for computing Gt ≡ G(xmd
t , ξt). Set

xt = argmin
x∈X

{

αt[〈Gt, x〉+ X (x) + µV (xmd
t , x)] + [(1− αt)µ+ γt]V (xt−1, x)

}

, (3.2)

xagt = αtxt + (1− αt)x
ag
t−1; (3.3)

3) Set t← t+ 1 and go to step 1.

7



We now make a few comments about the above algorithmic framework. Firstly, note that, in
view of the definition of V (x, z) in (2.2), problems (2.3) and (3.2) are given in the same form. In
particular, their objective functions are composed of three terms: a linear function of x, the simple
convex function X (x) and the strongly convex function ω(x) multiplied by a positive scalar. Hence,
the assumption that the solution of (2.3) is easily computable guarantees that the solution of (3.2)
is also easily computable.

Secondly, observe that the points xmd
t , t ≥ 1, are used to construct certain model functions of

Ψ(·) in (1.1), namely,

lΨ(x
md
t , x) := f(xmd

t ) + 〈f ′(xmd
t ), x− xmd

t 〉+ µV (xmd
t , x) + X (x). (3.4)

If µ = 0 or V (z, x) grows quadratically (c.f., (2.4)), then by (1.1), (1.2) and (3.4), we have

lΨ(z, x) ≤ f(x) + X (x) = Ψ(x), ∀ z, x ∈ X. (3.5)

The search points xt, t ≥ 1, are used as prox-centers to control the proximity and the stepsizes γt,
t ≥ 1, control the instability of the model, so that we will not move too far away from the current
prox-center when taking step (3.2). The search points xagt , t ≥ 1, are used to evaluate the objective
values. Since

f(xagt ) ≤ αtf(xt) + (1− αt)f(x
ag
t−1),

the function value of xagt might be smaller than that of xt. An immediate improvement of the
algorithm would be to take xagt as the one with the smallest objective value among the following
three points, xagt−1, xt and αtxt + (1 − αt)x

ag
t−1, provided that these function values can be easily

computed. The essence of Nesterov’s methods, as well as the AC-SA algorithm, is to coordinate the
building of the model function lΨ(z, x), the selection of the prox-center xt and the evaluation of the
objective value through a careful selection of the stepsize parameters αt and γt, t ≥ 1.

In some cases, Assumption A1 for the SO is augmented by the following “light-tail” assumption.

A2: For any x ∈ X and t ≥ 1, we have E
[
exp{‖G(x, ξt)− g(x)‖2∗/σ2}

]
≤ exp{1}.

It can be easily seen that Assumption A2 implies Assumption A1, since by Jensen’s inequality,

exp
(
E[‖G(x, ξt)− g(x)‖2∗/σ2]

)
≤ E

[
exp{‖G(x, ξt)− g(x)‖2∗/σ2}

]
≤ exp{1}.

Theorem 1 below summarizes the main convergence properties of the generic AC-SA algorithm.
The proof of this result is given in Section 3.2.

Theorem 1 Consider the generic AC-SA algorithm for FX,X (L,M, σ, µ) and suppose that condition
(2.4) holds whenever µ > 0. Also assume that {αt}t≥1 and {γt}t≥1 are chosen such that

ν(µ+ γt) > Lα2
t , (3.6)

γ1/Γ1 = γ2/Γ2 = . . . , (3.7)

where

Γt :=

{
1, t = 1,
(1− αt)Γt−1, t ≥ 2.

(3.8)

Then,
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a) under Assumption A1, we have

E[Ψ(xagt )−Ψ∗] ≤ Be(t) := Γtγ1V (x0, x
∗) + Γt

t∑

τ=1

2α2
τ (M

2 + σ2)

Γτ [ν(µ+ γτ )− Lα2
τ ]
, (3.9)

for any t ≥ 1, where x∗ is an arbitrary optimal solution of (1.1).

b) under Assumption A2, we have

Prob {Ψ(xagt )−Ψ∗ ≥ Be(t) + λBp(t)} ≤ exp{−λ2/3}+ exp{−λ}, (3.10)

for any λ > 0 and t ≥ 1, where

Bp(t) := σΓtRX(x∗)

(
t∑

τ=1

α2
τ

Γ2
τ

) 1
2

+ Γt

t∑

τ=1

2α2
τσ

2

Γτ [ν(µ+ γτ )− Lα2
τ ]
, (3.11)

RX(x∗) := max
x∈X
‖x− x∗‖. (3.12)

c) If X is compact and {αt}t≥1 and {γt}t≥1 are chosen such that relation (3.6) and

γ1/Γ1 ≤ γ2/Γ2 ≤ . . . , (3.13)

then Parts a) and b) still hold by simply replacing the first term in the definition of Be(t) with
γtV̄ (x∗), where V̄ (x) := maxu∈X V (u, x).

A few remarks about the results obtained in Theorem 1 are in place. First, Theorem 1.a) states
a general error bound on E[Ψ(xagt ) − Ψ∗], which can be applied to any subclasses of CP problems
in FX,X (L,M, σ, µ). However, we cannot assess the quality of these bounds, since the stepsize
parameters {αt} and {γt} are not specified yet. We will show how these parameters are specified for
solving some special classes of SCO problems in Section 4. Second, while Theorem 1.a) evaluates the
efficiency of the generic AC-SA algorithm on average over many runs of the algorithm, Theorem 1.b)
estimates the quality of the solutions obtained by a single run of the generic AC-SA algorithm. It
should be noted, however, that the bound Bp(t) defined in (3.11) can be significantly larger than the
bound Be(t) defined in (3.9) (See Subsection 4.2). Finally, observe that one can rarely compute the
error measure of Ψ(xagt )−Ψ∗, since Ψ∗ is usually unknown in practice. As a consequence, to check
the solution accuracy seems to be a difficult problem for the AC-SA algorithm. In Section 5, we
will show that, with little additional computational effort, one can compute online lower and upper
bounds of Ψ∗ to check the accuracy of the solutions generated by the generic AC-SA algorithm.

3.2 Convergence analysis

Our main goal in this subsection is to prove the convergence results of the AC-SA algorithm described
in Theorem 1. We first establish two technical results. Lemma 2 states some properties of the
projection step (3.2) and Lemma 3 describes some properties about the composite function Ψ. This
is followed by two intermediate results, i.e., Propositions 4 and 5, which summarize some important
recursions of the AC-SA algorithm. Theorem 1 then follows directly from Proposition 5.

The first technical result below characterizes the solution of the projection step (3.2). It is worth
noting that the function ω is not necessarily strongly convex.
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Lemma 2 Let the convex function p : X → R, the points x̃, ỹ ∈ X and the scalars µ1, µ2 ≥ 0 be
given. Let ω : X → R be a differentiable convex function and V (x, z) be defined in (2.2). If

u∗ ∈ Argmin{p(u) + µ1V (x̃, u) + µ2V (ỹ, u) : u ∈ X},
then for any u ∈ X, we have

p(u∗) + µ1V (x̃, u∗) + µ2V (ỹ, u∗) ≤ p(u) + µ1V (x̃, u) + µ2V (ỹ, u)− (µ1 + µ2)V (u∗, u).

Proof. The definition of u∗ and the fact V (x̃, ·) is a differentiable convex function imply that, for
some p′(u∗) ∈ ∂p(u∗), we have

〈p′(u∗) + µ1∇V (x̃, u∗) + µ2∇V (ỹ, u∗), u− u∗〉 ≥ 0, ∀u ∈ X,

where ∇V (x̃, u∗) denotes the gradient of V (x̃, ·) at u∗. Using the definition of V (x, z) in (2.2), it is
easy to verify that

V (x̃, u) = V (x̃, u∗) + 〈∇V (x̃, u∗), u− u∗〉+ V (u∗, u), ∀u ∈ X.

Using the above two relations and the assumption that p is convex, we then conclude that

p(u) + µ1V (x̃, u) + µ2V (ỹ, u) = p(u) + µ1[V (x̃, u∗) + 〈∇V (x̃, u∗), u− u∗〉+ V (u∗, u)]

+µ2[V (ỹ, u∗) + 〈∇V (ỹ, u∗), u− u∗〉+ V (u∗, u)]

≥ p(u∗) + µ1V (x̃, u∗) + µ2V (ỹ, u∗)

+ 〈p′(u∗) + µ1∇V (x̃, u∗) + µ2∇V (ỹ, u∗), u− u∗〉
+(µ1 + µ2)V (u∗, u)

≥ [p(u∗) + µ1V (x̃, u∗) + µ2V (ỹ, u∗)] + (µ1 + µ2)V (u∗, u).

The following result describes some important properties of the composite function Ψ.

Lemma 3 Let xagt := (1− αt)x
ag
t−1 + αtxt for some αt ∈ [0, 1] and (xagt−1, xt) ∈ X ×X. We have

Ψ(xagt ) ≤ (1− αt)Ψ(xagt−1) + αt[f(z) + 〈f ′(z), xt − z〉+ X (xt)] +
L

2
‖xagt − z‖2 +M‖xagt − z‖,

for any z ∈ X.

Proof. First observe that by the definition of xagt and the convexity of f , we have

f(z) + 〈f ′(z), xagt − z〉 = f(z) + 〈f ′(z), αtxt + (1− αt)x
ag
t−1 − z〉

= (1− αt)[f(z) + 〈f ′(z), xagt−1 − z〉] + αt[f(z) + 〈f ′(z), xt − z〉]
≤ (1− αt)f(x

ag
t−1) + αt[f(z) + 〈f ′(z), xt − z〉].

Using this observation, (1.1), (1.2), (3.3), the definition of xagt and the convexity of X (x), we have

Ψ(xagt ) = f(xagt ) + X (xagt ) ≤ f(z) + 〈f ′(z), xagt − z〉+ L

2
‖xagt − z‖2 +M‖xagt − z‖+ X (xagt )

≤ (1− αt)f(x
ag
t−1) + αt[f(z) + 〈f ′(z), xt − z〉] + L

2
‖xagt − z‖2 +M‖xagt − z‖

+(1− αt)X (xagt−1) + αtX (xt)

= (1− αt)Ψ(xagt−1) + αt[f(z) + 〈f ′(z), xt − z〉+ X (xt)] +
L

2
‖xagt − z‖2 +M‖xagt − z‖.
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In the sequel, we use δt, t ≥ 1, to denote the error for the computation of the subgradient of f ,
i.e.,

δt ≡ G(xmd
t , ξt)− f ′(xmd

t ), ∀ t ≥ 1, (3.14)

where f ′(xmd
t ) represents an arbitrary element of ∂f(xmd

t ) wherever it appears.
The following proposition establishes a basic recursion for the generic AC-SA algorithm.

Proposition 4 Let (xt−1, x
ag
t−1) ∈ X×X be given. Also let (xmd

t , xt, x
ag
t ) ∈ X×X×X be computed

according to (3.1), (3.2) and (3.3). If condition (3.6) holds, then for any x ∈ X, we have

Ψ(xagt ) + µV (xt, x) ≤ (1− αt)[Ψ(xagt−1) + µV (xt−1, x)] + αtlΨ(x
md
t , x)

+ γt[V (xt−1, x)− V (xt, x)] + ∆t(x),
(3.15)

where lΨ(z, x) is defined in (3.4),

∆t(x) := αt〈δt, x− x+t−1〉+
α2
t (M + ‖δt‖∗)2

ν(µ+ γt)− Lα2
t

, (3.16)

x+t−1 :=
αtµ

µ+ γt
xmd
t +

(1− αt)µ+ γt
µ+ γt

xt−1. (3.17)

Proof. We first establish some basic relations among the search points xagt , xmd
t and xt. Denote

dt := xagt − xmd
t . It follows from (3.1) and (3.3) that

dt = αtxt + (1− αt)x
ag
t−1 − xmd

t

= αt

(

xt −
αtµ

µ+ γt
xmd
t − (1− αt)µ+ γt

µ+ γt
xt−1

)

= αt(xt − x+t−1), (3.18)

which, in view of the convexity of ‖ · ‖2 and the strong-convexity of ω, implies that

ν(µ+ γt)

2α2
t

‖dt‖2 ≤ ν(µ+ γt)

2(µ+ γt)

[

αtµ‖xt − xmd
t ‖2 + [(1− αt)µ+ γt] ‖xt − xt−1‖2

]

≤ αtµV (xmd
t , xt) + [(1− αt)µ+ γt]V (xt−1, xt). (3.19)

Using the above result and Lemma 3 (with z = xmd
t ), we have

Ψ(xagt ) ≤ (1− αt)Ψ(xagt−1) + αt[f(x
md
t ) + 〈f ′(xmd

t ), xt − xmd
t 〉+ X (xt)] +

L

2
‖dt‖2 +M‖dt‖

= (1− αt)Ψ(xagt−1) + αt[f(x
md
t ) + 〈f ′(xmd

t ), xt − xmd
t 〉+ X (xt)] +

ν(µ+ γt)

2α2
t

‖dt‖2 −
ν(µ+ γt)− Lα2

t

2α2
t

‖dt‖2 +M‖dt‖

≤ (1− αt)Ψ(xagt−1) + αt

[

f(xmd
t ) + 〈f ′(xmd

t ), xt − xmd
t 〉+ X (xt) + µV (xmd

t , xt)
]

+

[(1− αt)µ+ γt]V (xt−1, xt)−
ν(µ+ γt)− Lα2

t

2α2
t

‖dt‖2 +M‖dt‖. (3.20)
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Now let us apply the results regarding the projection step in (3.2). Specifically, by using Lemma 2
with p(u) = αt [〈Gt, u〉+ X (u)], µ1 = αtµ, µ2 = (1− αt)µ+ γt, x̃ = xmd

t and ỹ = xt−1, we have

αt[f(x
md
t ) + 〈Gt, xt − xmd

t 〉+ X (xt) + µV (xmd
t , xt)] + [(1− αt)µ+ γt]V (xt−1, xt)

≤ αt[f(x
md
t ) + 〈Gt, x− xmd

t 〉+ X (x) + µV (xmd
t , x)] + [(1− αt)µ+ γt]V (xt−1, x)

−(µ+ γt)V (xt, x)

= αtlΨ(x
md
t , x) + αt〈δt, x− xmd

t 〉+ [(1− αt)µ+ γt]V (xt−1, x)− (µ+ γt)V (xt, x), (3.21)

for any x ∈ X, where the last equality follows from (3.4) and (3.14). Combining (3.20) and (3.21),
and using the fact that f ′(xmd

t ) = Gt − δt due to (3.14), we obtain

Ψ(xagt ) ≤ (1− αt)[Ψ(xagt−1) + µV (xt−1, x)] + αtlΨ(x
md
t , x) + γt[V (xt−1, x)− V (xt, x)]

−µV (xt, x)−
ν(µ+ γt)− Lα2

t

2α2
t

‖dt‖2 +M‖dt‖+ αt〈δt, x− xt〉
︸ ︷︷ ︸

Ut

, ∀x ∈ X.

It remains to show that the term Ut defined above is bounded by ∆t(x) in (3.16). Indeed, we have,
by the last identity in (3.18),

Ut = −ν(µ+ γt)− Lα2
t

2α2
t

‖dt‖2 +M‖dt‖ − 〈δt, dt〉+ 〈δt, dt + αt(x− xt)〉

= −ν(µ+ γt)− Lα2
t

2α2
t

‖dt‖2 +M‖dt‖ − 〈δt, dt〉+ αt〈δt, x− x+t−1〉

≤ −ν(µ+ γt)− Lα2
t

2α2
t

‖dt‖2 + (M + ‖δt‖∗)‖dt‖+ αt〈δt, x− x+t−1〉

≤ α2
t

ν(µ+ γt)− Lα2
t

(M + ‖δt‖∗)2 + αt〈δt, x− x+t−1〉 = ∆t(x), (3.22)

where the last inequality follows from the maximization of a simple concave quadratic function w.r.t.
‖dt‖.

Proposition 5 below follows from Proposition 4 by taking summation of the relations in (3.15).
This result will also be used later in Section 5 for validation analysis.

Proposition 5 Let {xagt }t≥1 be computed by the generic AC-SA algorithm for solving FX,X (L,M, σ, µ).
Also assume that {αt}t≥1 and {γt}t≥1 are chosen such that relation (3.6) holds. We have

Ψ(xagt ) + µV (xt, x)− Γt

t∑

τ=1

[
ατ

Γτ
lΨ(x

md
τ , x)

]

≤ Γt

t∑

τ=1

γτ
Γτ

[V (xτ−1, x)− V (xτ , x)] + Γt

t∑

τ=1

∆τ (x)

Γτ
,

(3.23)
for any x ∈ X and any t ≥ 1, where lΨ(z, x) and ∆τ (x) are defined in (3.4) and (3.16), respectively.

Proof. Dividing both sides of relation (3.15) by Γt, and using the definition of Γt in (3.8) and the
fact that α1 = 1, we have

1

Γt
[Ψ(xagt ) + µV (xt, x)] ≤

1

Γt−1
[Ψ(xagt−1) + µV (xt−1, x)] +

αt

Γt
lΨ(x

md
t , x)

+
γt
Γt

[V (xt−1, x)− V (xt, x)] +
∆t(x)

Γt
, ∀t ≥ 2,
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and

1

Γ1
[Ψ(xag1 ) + µV (x1, x)] ≤

α1

Γ1
lΨ(x

md
1 , x) +

γ1
Γ1

[V (x0, x)− V (x1, x)] +
∆1(x)

Γ1
.

Summing up the above inequalities, we have

1

Γt
[Ψ(xagt ) + µV (xt, x)] ≤

t∑

τ=1

ατ

Γτ
lΨ(x

md
t , x) +

t∑

τ=1

γτ
Γτ

[V (xτ−1, x)− V (xτ , x)] +

t∑

τ=1

∆τ (x)

Γτ
,

which clearly implies (3.23).

To prove Theorem 1, we also need the following well-known result for the martingale-difference.
A proof of this result can be found, for example, in [23].

Lemma 6 Let ξ1, ξ2, ... be a sequence of i.i.d random variables, and ζt = ζt(ξ[t]) be deterministic
Borel functions of ξ[t] such that E|ξ[t−1]

[ζt] = 0 a.s. and E|ξ[t−1]
[exp{ζ2t /σ2

t }] ≤ exp{1} a.s., where

σt > 0 are deterministic. Then for any Λ ≥ 0, Prob

{
∑N

t=1 ζt > Λ
(
∑N

t=1 σ
2
t

) 1
2

}

≤ exp{−Λ2/3}.

We are now ready to prove Theorem 1.
Proof of Theorem 1: We first show Part a). Observe that by the definition of Γt in (3.8) and the
fact that α1 = 1, we have

t∑

τ=1

ατ

Γτ
=

α1

Γ1
+

t∑

τ=2

1

Γτ

(

1− Γτ

Γτ−1

)

=
1

Γ1
+

t∑

τ=2

(
1

Γτ
− 1

Γτ−1

)

=
1

Γt
. (3.24)

Using the previous observation and (3.5), we obtain

Γt

t∑

τ=1

[
ατ

Γτ
lΨ(x

md
τ , x)

]

≤ Γt

t∑

τ=1

[
ατ

Γτ
Ψ(x)

]

= Ψ(x), ∀x ∈ X. (3.25)

Moreover, it follows from the condition (3.7) that

Γt

t∑

τ=1

γτ
Γτ

[V (xτ−1, x)− V (xτ , x)] = Γt
γ1
Γ1

[V (x0, x)− V (xt, x)] ≤ Γtγ1V (x0, x), (3.26)

where the last inequality follows from the facts that Γ1 = 1 and that V (xt, x) ≥ 0. Using the fact
that V (xt, x) ≥ 0 due to (2.2) and replacing the above two bounds into (3.23), we have

Ψ(xagt )−Ψ(x) ≤ Ψ(xagt ) + µV (xt, x)−Ψ(x) ≤ Γtγ1V (x0, x) + Γt

t∑

τ=1

∆τ (x)

Γτ
, ∀x ∈ X, (3.27)

where ∆τ (x) is defined in (3.16). Observe that the triple (xmd
t , xt−1, x

ag
t−1) is a function of the history

ξ[t−1] := (ξ1, ..., ξt−1) of the generated random process and hence is random. Taking expectations of
both sides of (3.27) and noting that under Assumption A1, E[‖δτ‖2∗] ≤ σ2, and

E|ξ[τ−1]
[〈δτ , x∗ − x+t−1〉] = 0, (3.28)
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we have

E [Ψ(xagt )−Ψ∗] ≤ Γtγ1V (x0, x
∗) + Γt

t∑

τ=1

α2
τE
[
(M + ‖δτ‖∗)2

]

Γτ [ν(µ+ γτ )− Lα2
τ ]

≤ Γtγ1V (x0, x
∗) + Γt

t∑

τ=1

2α2
τ (M

2 + σ2)

Γτ [ν(µ+ γτ )− Lα2
τ ]
.

To show part b), let us denote ζτ := Γ−1
τ ατ 〈δτ , x∗−x+τ−1〉. Clearly, from the definition of RX(x∗)

given by (3.12), we have ‖x∗ − x+τ−1‖ ≤ RX(x∗), which together with Assumption A2 imply that

E|ξ[τ−1]

[
exp{ζ2τ /[Γ−1

τ ατσRX(x∗)]2}
]
≤ E|ξ[τ−1]

[
exp{(‖δτ‖∗‖x∗ − x+τ−1‖)2/[σRX(x∗)]2}

]

≤ E|ξ[τ−1]

[
exp{(‖δτ‖∗)2/σ2}

]
≤ exp(1).

Moreover, it follows from (3.28) that {ζτ}τ≥1 is a martingale-difference. Using the previous two
observations and Lemma 6, we have

∀λ ≥ 0 : Prob







t∑

τ=1

ζτ > λσRX(x∗)

[
t∑

τ=1

(Γ−1
τ ατ )

2

] 1
2






≤ exp{−λ2/3}. (3.29)

Also observe that under Assumption A2, E|ξ[τ−1]

[
exp{‖δτ‖2∗/σ2}

]
≤ exp{1}. Setting

π2
τ =

α2
τ

Γτ [ν(µ+ γτ )− Lα2
τ ]

and θτ =
π2
τ

∑t
τ=1 π

2
τ

,

we have

exp

{
t∑

τ=1

θτ (‖δτ‖2∗/σ2)

}

≤
t∑

τ=1

θτexp{‖δτ‖2∗/σ2},

whence, taking expectations,

E

[

exp

{
t∑

τ=1

π2
τ‖δτ‖2∗/

(

σ2
t∑

τ=1

π2
τ

)}]

≤ exp{1}.

It then follows from Markov’s inequality that

∀λ ≥ 0 : Prob

{
t∑

τ=1

π2
τ‖δτ‖2∗ > (1 + λ)σ2

t∑

τ=1

π2
τ

}

≤ exp{−λ}. (3.30)

Combining (3.27), (3.29), and (3.30), and rearranging the terms, we obtain (3.10).
Finally, observing that by the condition (3.13), the fact that V (u, x) ≥ 0 and the definition of

V̄ (x),

Γt

t∑

τ=1

γτ
Γτ

[V (xτ−1, x)− V (xτ , x)] ≤ Γt

[

γ1
Γ1

V̄ (x) +
t∑

τ=2

(
γτ
Γτ
− γτ−1

Γτ−1

)

V̄ (x)− γt
Γt

V (xt, x)

]

≤ γtV̄ (x)− γtV (xt, x) ≤ γtV̄ (x), (3.31)

we can show part c) similarly to part a) and part b) by replacing the bound in (3.26) with the one
given above.
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4 Optimal and nearly optimal algorithms for SCO

Our goal in this section is to specialize the generic AC-SA algorithm to obtain optimal or nearly
optimal algorithms for solving different types of SCO problems.

4.1 Optimal AC-SA algorithms for problems without strong convexity

In this subsection, we consider problem (1.1), but now the objective function f is not necessarily
strongly convex. We present the AC-SA algorithms for solving these problems by setting µ = 0 and
properly choosing the stepsize parameters {αt}t≥1 and {γt}t≥1 in the generic AC-SA algorithmic
framework.

Observe that, if µ is set to 0 in the generic AC-SA algorithm, then the identities (3.1) and (3.2),
respectively, reduce to

xmd
t = (1− αt)x

ag
t−1 + αtxt−1, (4.1)

xt = argmin
x∈X
{αt [〈Gt, x〉+ X (x)] + γtV (xt−1, x)} . (4.2)

We will study and compare two AC-SA algorithms for FX,X (L,M, σ, 0), each of them employed with
a different stepsize policy to choose {αt}t≥1 and {γt}t≥1.

The first stepsize policy and its associated convergence results stated below are similar to those
introduced in [22]. This result follows as an immediate consequence of Theorem 1.

Proposition 7 Let {xagt }t≥1 be computed by the AC-SA algorithm for FX,X (L,M, σ, 0) with

αt =
2

t+ 1
and γt =

4γ

νt(t+ 1)
, ∀ t ≥ 1, (4.3)

for some γ ≥ 2L. Then, under Assumption A1, we have E[Ψ(xagt )−Ψ∗] ≤ Ce,1(t), ∀t ≥ 1, where

Ce,1(t) ≡ Ce,1(x0, γ, t) :=
4γV (x0, x

∗)

νt(t+ 1)
+

4(M2 + σ2)(t+ 2)

3γ
. (4.4)

If in addition, Assumption A2 holds, then, ∀λ > 0, ∀t ≥ 1,

Prob {Ψ(xagt )−Ψ∗ > Ce,1(t) + λ Cp,1(t)} ≤ exp{−λ2/3}+ exp{−λ}, (4.5)

where

Cp,1(t) ≡ Cp,1(γ, t) :=
2σRX(x∗)√

3t
+

4σ2(t+ 2)

3γ
. (4.6)

Proof. Clearly, by the definition of Γt in (3.8), the stepsize policy (4.3), and the facts that γ ≥ 2L
and µ = 0, we have

Γt =
2

t(t+ 1)
,

γt
Γt

= γ1 =
2γ

ν
, ν(µ+ γt)− Lα2

t ≥ νγt −
γα2

t

2
≥ 2γ

(t+ 1)2
, ∀t ≥ 1, (4.7)
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and hence the specification of αt and γt in (4.3) satisfies conditions (3.6) and (3.7). It can also be
easily seen from the previous result and (4.3) that

t∑

τ=1

α2
τ

Γτ (νγτ − Lα2
τ )
≤

t∑

τ=1

τ(τ + 1)

γ
=

1

3γ
t(t+ 1)(t+ 2), (4.8)

t∑

τ=1

(Γ−1
τ ατ )

2 =
t∑

τ=1

τ2 =
t(t+ 1)(2t+ 1)

6
≤ t(t+ 1)2

3
, (4.9)

Now let Be(t) and Bp(t) be defined in (3.9) and (3.11) respectively. By (4.7), (4.8) and (4.9), we have

Be(t) ≤ Γt

[

γ1V (x0, x
∗) +

2(M2 + σ2)

3γ
t(t+ 1)(t+ 2)

]

= Ce,1(t),

Bp(t) ≤ Γt

[

σRX(x∗)

(
t(t+ 1)2

3

) 1
2

+
2σ2

3γ
t(t+ 1)(t+ 2)

]

= Cp,1(t),

which, in view of Theorem 1, clearly imply our results.

We now briefly discuss how to derive the optimal rate of convergence for solving FX,X (L,M, σ, 0).
Given a fixed in advance number of iterations N , let us suppose that the stepsize parameters {αt}Nt=1

and {γt}Nt=1 are set to (4.3) with

γ = γ∗N = max

{

2L,

[
ν(M2 + σ2)N(N + 1)(N + 2)

3V (x0, x∗)

] 1
2

}

. (4.10)

Note that γ∗N in (4.10) is obtained by minimizing Ce,1(N) (c.f. (4.4)) with respect to γ over the
interval [2L,+∞). Then, it can be shown from (4.4) and (4.6) that

Ce,1(x0, γ∗N , N) ≤ 8LV (x0, x
∗)

νN(N + 1)
+

8
√

(M2 + σ2)V (x0, x∗)
√

ν(N + 1)
=: C∗e,1(N), (4.11)

Cp,1(γ∗N , N) ≤ 2σRX(x∗)√
3N

+
4σ
√

V (x0, x∗)
√

ν(N + 1)
=: C∗p,1(N). (4.12)

Indeed, let

γ̄ :=

[
ν(M2 + σ2)N(N + 1)(N + 2)

3V (x0, x∗)

] 1
2

.

According to the relation (4.10), we have γ̄ ≤ γ∗N ≤ 2L+ γ̄. Using these facts and (4.4) we obtain

Ce,1(x0, γ∗N , N) ≤ 4(2L+ γ̄)V (x0, x
∗)

νN(N + 1)
+

4(M2 + σ2)(N + 2)

3γ̄

=
8LV (x0, x

∗)

νN(N + 1)
+ 4

[
γ̄V (x0, x

∗)

νN(N + 1)
+

(M2 + σ2)(N + 2)

3γ̄

]

=
8LV (x0, x

∗)

νN(N + 1)
+

8
√

(M2 + σ2)(N + 2)V (x0, x∗)
√

3νN(N + 1)
.
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Noting that N + 2 ≤ 3N in the second term of the above equation, we obtain (4.11). Also by (4.6),
we have

Cp,1(N) ≤ 2σRX(x∗)√
3N

+
4σ2(N + 2)

3γ̄
,

which leads to (4.12).
Hence, by Proposition 7, we have, under Assumption A1, E[Ψ(xagN )−Ψ∗] ≤ C∗e,1(N), which gives

us an optimal expected rate of convergence for solving FX,X (L,M, σ, 0). Moreover, if Assumption
A2 holds, then Prob{Ψ(xagN )−Ψ∗ ≥ C∗e,1(N)+λC∗p,1(N)} ≤ exp(−λ2/3)+exp(−λ). It is worth noting

that both C∗p,1 and C∗e,1 are in the same order of magnitude, i.e., O(1/
√
N ). Observe that we need to

estimate a bound on V (x0, x
∗) to implement this stepsize policy since V (x0, x

∗) is usually unknown.

One possible drawback of the stepsize policy (4.3) with γ = γ∗N is the need of fixing N in advance.
In Proposition 8, we propose an alternative stepsize policy which does not require to fix the number
of iterations N . Note that, to apply this stepsize policy properly, we need to assume that all the
iterates {xt}t≥1 stay in a bounded set. A similar stepsize policy was recently developed by Hu et
al. [14]. However, their work focused on unconstrained CP problems, for which the boundedness of
{xt}t≥1 and hence the convergence of their algorithm cannot be guaranteed, theoretically speaking.

Proposition 8 Assume that X is compact. Let {xagt }t≥1 be computed by the AC-SA algorithm for
FX,X (L,M, σ, 0) with

αt =
2

t+ 1
and γt =

4L

νt(t+ 1)
+

2γ

ν
√
t
, ∀ t ≥ 1, (4.13)

for some γ > 0. Then, under Assumption A1, we have E[Ψ(xagN )−Ψ∗] ≤ Ce,2(t), ∀t ≥ 1, where

Ce,2(t) ≡ Ce,2(γ, t) :=
4LV̄ (x∗)

νt(t+ 1)
+

2γV̄ (x∗)

ν
√
t

+
8
√
2

3γ
√
t
(M2 + σ2), (4.14)

and V̄ (·) is defined in Theorem 1.c). If in addition, Assumption A2 holds, then, ∀λ > 0, ∀t ≥ 1,

Prob {Ψ(xagt )−Ψ∗ > Ce,2(t) + λ Cp,2(t)} ≤ exp{−λ2/3}+ exp{−λ}, (4.15)

where

Cp,2(t) ≡ Cp,2(γ, t) :=
2σRX(x∗)√

3t
+

8
√
2σ2

3γ
√
t
. (4.16)

Proof. Clearly, by the definition of Γt in (3.8), the stepsize policy (4.13) and the fact that µ = 0,
we have

Γt =
2

t(t+ 1)
,

γt
Γt

=
2L

ν
+

γ

ν
(t+ 1)

√
t, ν(µ+ γt)− Lα2

t = νγt − Lα2
t ≥

2γ√
t
, (4.17)

and hence the specification of αt and γt in (4.13) satisfies conditions (3.6) and (3.13). It can also be
easily seen from the previous observations and (4.13) that

t∑

τ=1

(Γ−1
τ ατ )

2 =

t∑

τ=1

τ2 =
t(t+ 1)(2t+ 1)

6
≤ t(t+ 1)2

3
, (4.18)
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t∑

τ=1

α2
τ

Γτ (νγτ − Lα2
τ )
≤

t∑

τ=1

√
τ

γ
≤ 1

γ

∫ t+1

1

√
xdx ≤ 2

3γ
(t+ 1)

3
2 ≤ 2

√
2

3γ
(t+ 1)

√
t. (4.19)

Now let B′e(t) be obtained by replacing the first term in the definition of Be(t) in (3.9) with γtV̄ (x∗)
and Bp(t) be defined in (3.11). By (4.13), (4.17), (4.18) and (4.19), we have

B′e(t) ≤ γtV̄ (x∗) + Γt
4
√
2(M2 + σ2)

3γ
(t+ 1)

√
t = Ce,2(t),

Bp(t) ≤ Γt

[

σRX(x∗)

(
t(t+ 1)2

3

) 1
2

+
4
√
2σ2

3γ
(t+ 1)

√
t

]

= Cp,2(t),

which, in view of Theorem 1.c), then clearly imply our results.

Clearly, if we set γ in the stepsize policy (4.13) as

γ = γ̃∗ :=

[

4
√
2(M2 + σ2)ν

3V̄ (x∗)

] 1
2

,

then by (4.14), we have

E[Ψ(xagN )−Ψ∗] ≤ 4LV̄ (x∗)

νN(N + 1)
+

8√
νN

[√
2V̄ (x∗)

3
(M2 + σ2)

] 1
2

=: C∗e,2,

which also gives an optimal expected rate of convergence for FX,X (L,M, σ, 0). As discussed before,
one obvious advantage of the stepsize policy (4.13) with γ = γ̃∗ over the one in (4.3) with γ = γ∗N is
that the former one does not require the knowledge of N . Hence, it allows possibly earlier termination
of the AC-SA algorithm, especially when coupled with the validation procedure in Subsection 5. Note
however, that the convergence rate C∗e,1 depends on V (x0, x

∗), which can be significantly smaller than
V̄ (x∗) in C∗e,2 given a good starting point x0 ∈ X.

4.2 Nearly optimal AC-SA algorithms for strongly convex problems

The objective of this subsection is to present an AC-SA algorithm for solving FX,X (L,M, σ, µ) with
µ > 0. We demonstrate the generic AC-SA algorithm in Subsection 3, if employed with a suitable
stepsize policy, can achieve a nearly optimal expected rate of convergence for FX,X (L,M, σ, µ) and
the optimal expected rate of convergence for FX,X (0,M, σ, µ). Also, throughout this subsection we
assume that the prox-function V (x, z) grows quadratically with constant 1.

We start by presenting the AC-SA algorithm for FX,X (L,M, σ, µ) with a simple stepsize policy
and discussing its convergence properties. It is worth noting that this stepsize policy does not depend
on µ, σ, M and V (x0, x

∗), and hence it is quite convenient for implementation.

Proposition 9 Let {xagt }t≥1 be computed by the AC-SA algorithm for FX,X (L,M, σ, µ) with

αt =
2

t+ 1
and γt =

4L

νt(t+ 1)
, ∀ t ≥ 1. (4.20)
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If µ > 0 and condition (2.4) holds, then under Assumption A1, we have

E[Ψ(xagt )−Ψ∗] ≤ De(t) :=
4LV (x0, x

∗)

νt(t+ 1)
+

8(M2 + σ2)

νµ(t+ 1)
, ∀ t ≥ 1. (4.21)

If in addition, Assumption A2 holds, then, ∀λ > 0, ∀t ≥ 1,

Prob {Ψ(xagt )−Ψ∗ ≥ De(t) + λDp(t)} ≤ exp{−λ2/3}+ exp{−λ}, (4.22)

where

Dp(t) :=
2σRX(x∗)√

3t
+

8σ2

νµ(t+ 1)
. (4.23)

Proof. Clearly, by the definition of Γt in (3.8) and the stepsize policy (4.20), we have

Γt =
2

t(t+ 1)
,

γt
Γt

=
2L

ν
, ν(µ+ γt)− Lα2

t ≥ νµ, (4.24)

and hence that the specification of αt and γt in (4.20) satisfies conditions (3.6) and (3.7). It can also
be easily seen from the previous results and (4.20) that (4.9) holds and that

t∑

τ=1

α2
τ

Γτ [ν(µ+ γτ )− Lα2
τ ]
≤

t∑

τ=1

α2
τ

νµΓτ
≤ 2t

νµ
, (4.25)

where the last inequality is due to the fact that α2
τ/Γτ ≤ 2 by (4.20) and (4.24). Let Be(t) and Bp(t)

be defined in (3.9) and (3.11), respectively. By (4.9), (4.24) and (4.25), we have

Be(t) ≤ Γt

[

γ1V (x0, x
∗) +

4t(M2 + σ2)

νµ

]

= De(t),

Bp(t) ≤ Γt

[

σRX(x∗)

(
t(t+ 1)2

3

) 1
2

+
4tσ2

νµ

]

= Dp(t),

which, in view of Theorem 1, clearly imply our results.

We now make a few remarks about the results obtained in Proposition 9. First, in view of (1.3),
the AC-SA algorithm with the stepsize policy (4.20) achieves the optimal rate of convergence for
solving FX,X (0,M, σ, µ), i.e., for those problems without a smooth component. It is also nearly
optimal for solving FX,X (L,M, σ, µ), in the sense that the second term 8(M2 + σ2)/[νµ(t + 1)] of
De(t) in (4.21) is unimprovable. The first term of De(t) (for abbreviation, L-component) depends on
the product of L and V (x0, x

∗), which can be as big as LV (x0, x
∗) ≤ 2(t + 1)(M2 + σ2)/µ without

affecting the rate of convergence (up to a constant factor 2). Note that in comparison with (1.3), it
seems that it is possible to improve the L-component of De(t). However, unless both M and σ are
zero, such an improvement can be hardly achievable, without increasing the second term of De(t),
within the generic AC-SA algorithmic framework.

Second, observe that the bounds De(t) and Dp(t), defined in (4.21) and (4.23) respectively, are
not in the same order of magnitude, that is, De(t) = O(1/t) and Dp(t) = O(1/

√
t ). We now discuss

some consequences of this fact. By (4.21) and Markov’s inequality, under Assumption A1, we have
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Prob {Ψ(xagt )−Ψ∗ ≥ λDe(t)} ≤ 1/λ for any λ > 0 and t ≥ 1. Hence, for a given confidence level
Λ ∈ (0, 1), one can easily see that the number of iterations for finding an (ǫ,Λ)-solution x̄ ∈ X such
that Prob {Ψ(x̄)−Ψ∗ < ǫ} ≥ 1− Λ can be bounded by

O
{

1

Λ

(√

LV (x0, x∗)

νǫ
+

M2 + σ2

νµǫ

)}

. (4.26)

Moreover, if Assumption A2 holds, then by setting the value of λ in (4.22) such that exp(−λ2/3) +
exp(−λ) ≤ Λ and using definitions of De and Dp in (4.21) and (4.23), we conclude that the number
of iterations for finding an (ǫ,Λ)-solution of (1.1) can be bounded by

O
{√

LV (x0, x∗)

νǫ
+

M2 + σ2

νµǫ
+

σ2

νµǫ
log

1

Λ
+

(
σRX(x∗)

ǫ
log

1

Λ

)2
}

. (4.27)

Note that the above iteration-complexity bound has a significantly worse dependence on ǫ than the
one in (4.26), although it depends only logarithmically on 1/Λ.

5 Validation analysis for the AC-SA algorithms

One critical problem associated with SA-type methods is that it is difficult to check the accuracy of
the generated solutions. In this subsection, we show that one can compute, with little additional com-
putational effort, certain stochastic lower bounds of the optimal value of (1.1) during the execution of
the AC-SA algorithms. These stochastic lower bounds, when grouped with certain stochastic upper
bounds on the optimal value, can provide online accuracy certificates for the generated solutions.

We start by discussing the accuracy certificates for the generic AC-SA algorithm in Subsection 3.
Let lΨ(z, x) be defined in (3.4) and denote

lbt := min
x∈X

{

Ψt(x) := Γt

t∑

τ=1

[
ατ

Γτ
lΨ(x

md
τ , x)

]}

. (5.1)

By (3.25), the function Ψt(·) underestimates Ψ(·) everywhere on X. Note however that lbt is unob-
servable since Ψt(·) is not known exactly. Along with lbt, let us define

l̃bt = min
x∈X

{

Ψ̃t(x) := Γt

t∑

τ=1

ατ

Γτ
l̃Ψ(x

md
τ , ξτ , x)

}

, (5.2)

where
l̃Ψ(z, ξ, x) := F (z, ξ) + 〈G(z, ξ), x− z〉+ µV (z, x) + X (x).

In view of the assumption that problem (2.3) is easy to solve, the bound l̃bt is easily computable.
Moreover, since xmd

t is a function of ξ[t−1], and ξt is independent of ξ[t−1], we have that

E
[
l̃bt
]

= E

[

Eξ[t−1]

[

min
x∈X

(

Γt

t∑

τ=1

l̃Ψ(x
md
τ , ξτ , x)

)]]

≤ E

[

min
x∈X

Eξ[t−1]

[(

Γt

t∑

τ=1

l̃Ψ(x
md
τ , ξτ , x)

)]]

= E

[

min
x∈X

Ψt(x)

]

= E
[
lbt
]
≤ Ψ∗. (5.3)

20



That is, on average, l̃bt gives a lower bound for the optimal value of (1.1). In order to see how good
the lower bound l̃bt is, we estimate the expectations and probabilities of the corresponding errors in
Theorem 10. To establish the large-deviation results for l̃bt, we also need the following assumption
for the SO.

A3: For any x ∈ X and t ≥ 1, we have E
[
exp{‖F (x, ξt)− f(x)‖2∗/Q2}

]
≤ exp{1} for some

Q > 0.
Note that while Assumption A2 describes certain “light-tail” assumption about the stochastic

gradients G(x, ξ), Assumption A3 imposes a similar restriction on the function values F (x, ξ). Such
an additional assumption is needed to establish the large deviation properties for the derived stochas-
tic online lower and upper bounds on Ψ∗, both of which involve the estimation of function values, i.e.,
F (xmd

t , ξt) in (5.2) and F (xagt , ξt) in (5.12). On the other hand, we do not need to use the estimation
of function values in the AC-SA algorithms discussed in Sections 3 and 4.

Theorem 10 Consider the generic AC-SA algorithm for solving FX,X (L,M, σ, µ) and suppose that
condition (2.4) holds whenever µ > 0. Also assume that {αt}t≥1 and {γt}t≥1 are chosen such that
relations (3.6) and (3.7) hold. Let l̃bt be defined in (5.2). Then,

a) under Assumption A1, we have, for any t ≥ 2,

E[Ψ(xagt )− l̃bt] ≤ B̃e(t) := Γtγ1max
x∈X

V (x0, x) + Γt

t∑

τ=1

2α2
τ (M

2 + σ2)

Γτ [ν(µ+ γτ )− Lα2
τ ]
; (5.4)

b) if Assumptions A2 and A3 hold, then for any t ≥ 1 and λ > 0,

Prob
{

Ψ(xagt )− l̃bt > B̃e(t) + λB̃p(t)
}

≤ 2exp(−λ2/3) + exp(−λ), (5.5)

where

B̃p(t) := QΓt

(
t∑

τ=1

α2
τ

Γ2
τ

) 1
2

+ 2σΓtRX(x∗)

(
t∑

τ=1

α2
τ

Γ2
τ

) 1
2

+ σ2Γt

t∑

τ=1

2α2
τ

Γτ [ν(µ+ γτ )− Lα2
τ ]
, (5.6)

and RX(x∗) is defined in (3.12);

c) If {αt}t≥1 and {γt}t≥1 are chosen such that (3.6) and (3.13) (rather than (3.7)) hold, then
Parts a) and b) still hold by simply replacing the first term in the definition of B̃e(t) with
γtmaxx∈X V̄ (x), where V̄ (x) is defined in Theorem 1.c).

Proof. Let ζt := F (xmd
t , ξt) − f(xmd

t ), t ≥ 1, and δt be defined in (3.14). Noting that by the
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definitions (3.23) and (3.26), relation (5.2), and the fact that V (xt, x) ≥ 0 due to (2.2), we have

Ψ(xagt )− Ψ̃t(x) = Ψ(xagt )− Γt

t∑

τ=1

ατ

Γτ

[

lΨ(x
md
τ , x) + ζτ + 〈δτ , x− xmd

τ 〉
]

≤ Γt

t∑

τ=1

γτ
Γτ

[V (xτ−1, x)− V (xτ , x)] + Γt

t∑

τ=1

1

Γτ

[

∆τ (x)− ατ

(

ζτ + 〈δτ , x− xmd
τ 〉
)]

≤ Γtγ1V (x0, x) + Γt

t∑

τ=1

1

Γτ

[

∆τ (x)− ατ

(

ζτ + 〈δτ , x− xmd
τ 〉
)]

= Γtγ1V (x0, x) + Γt

t∑

τ=1

1

Γτ

[

ατ 〈δτ , xmd
τ − x+τ−1〉+

α2
τ (M + ‖δτ‖∗)2

ν(µ+ γτ )− Lα2
τ

− ατζτ

]

, (5.7)

where the last identity follows from (3.16). Note that xmd
t and x+t−1 are functions of ξ[t−1] =

(ξ1, ..., ξt−1) and that ξt is independent of ξ[t−1]. Using arguments similar to the ones in the proof of
(3.9) and (3.10), we can show (5.4) and (5.5).

We now show part c). If (3.13) holds, in view of Proposition 5 and relation (3.31), the inequality
(5.7) holds with the first term Γtγ1V (x0, x) in the right-hand-side replaced by γtV̄ (x). The rest of
the proof is exactly the same as Parts a) and b).

We now add a few comments about the results obtained in Theorem 10. First, note that relations
(5.4) and (5.5) tells us how the gap between Ψ(xagt ) and l̃bt converges to zero. By comparing these
two relations with (3.9) and (3.10), we can easily see that both Ψ(xagt )− l̃bt and Ψ(xagt )−Ψ∗ converge
to zero in the same order of magnitude.

Second, it is possible to develop validation analysis results for the specialized AC-SA algorithms
in Subsection 4. In particular, Proposition 11 below discusses the lower bounds l̃b

∗
t for the nearly op-

timal AC-SA algorithm for FX,X (L,M, σ, µ). The proof of this result is similar to that of Proposition
9 and hence the details are skipped.

Proposition 11 Let xagt be computed by the AC-SA algorithm for FX,X (L,M, σ, µ) with stepsize
policy (4.20). Also let l̃bt be defined as in (5.2). If µ > 0 and condition (2.4) holds, then under
Assumption A1, we have, ∀t ≥ 1,

E[Ψ(xagt )− l̃bt] ≤ D̃e(t) :=
4Lmaxx∈X V (x0, x)

νt(t+ 1)
+

8(M2 + σ2)

νµ(t+ 1)
. (5.8)

If Assumptions A2 and A3 hold, then, ∀λ > 0, ∀t ≥ 1,

Prob
{

Ψ(xagt )− l̃bt > D̃e(t) + λD̃p(t)
}

≤ 2exp(−λ2/3) + exp(−λ), (5.9)

where

D̃p(t) :=
2Q

(t+ 1)
1
2

+
4σRX(x∗)

(t+ 1)
1
2

+
8σ2

νµ(t+ 1)
, (5.10)

RX(x∗) is defined in (3.12), and Q is from Assumption A3.
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Theorem 10 presents a way to assess the quality of the solutions xagt , t ≥ 1, by computing the gap
between Ψ(xagt ) and l̃bt (c.f. (5.2)). While l̃bt can be computed easily, the estimation of of Ψ(xagt )
can be time consuming, requiring a large number of samples for ξ. In the remaining part of this
section, we will briefly discuss how to enhance these lower bounds with efficiently computable upper
bounds on the optimal value Ψ∗ so that one can assess the quality of the generated solutions in an
online manner. More specifically, for any t ≥ 1, let us denote

βt :=

t∑

τ=⌈t/2⌉

τ,

ubt := β−1
t

t∑

τ=⌈t/2⌉

τΨ(xagτ ) and x̄agt := β−1
t

t∑

τ=⌈t/2⌉

τxagτ . (5.11)

Clearly, we have ubt ≥ Ψ(x̄agt ) ≥ Ψ∗ due to the convexity of Ψ. Also let us define

ūbt = β−1
t

t∑

τ=⌈t/2⌉

τ{F (xagτ , ξτ ) + X (xagτ )}, ∀ t ≥ 1. (5.12)

Since Eξτ [F (xagτ , ξτ )] = f(xagτ ), we have E[ūbt] = ubt ≥ Ψ∗. That is, ūbt, t ≥ 1, on average, provide
online upper bounds on Ψ∗. Accordingly, we define the new online lower bounds as

l̄bt = β−1
t

t∑

τ=⌈t/2⌉

τ l̃bτ , ∀ t ≥ 1, (5.13)

where l̃bτ is defined in (5.2).
To bound the gap between these lower and upper bounds, let B̃e(τ) be defined in (5.4) and

suppose that B̃e(t) = O(t−q) for some q ∈ [1/2, 1]. In view of Theorem 10.a), (5.11) and (5.13), we
have

E[ūbt − l̄bt] = β−1
t

t∑

τ=⌈t/2⌉

τ [Ψ(xagτ )− l̃bτ ] ≤ β−1
t

t∑

τ=⌈t/2⌉

[τ B̃e(τ)]

= O



β−1
t

t∑

τ=⌈t/2⌉

τ1−q



 = O(t−q), t ≥ 3,

where the last identity follows from the facts that
∑t

τ=⌈t/2⌉ τ
1−q = O(t2−q) and that

βt ≥
1

2

[

t(t+ 1)−
(
t

2
+ 1

)(
t

2
+ 2

)]

≥ 1

8

(
3t2 − 2t− 8

)
.

Therefore, the gap between the online upper bound ūbt and lower bound l̄bt converges to 0 in the
same order of magnitude as the one between Ψ(xagt ) and l̃bt. It should be mentioned that the
stochastic upper bound ūbt, on average, overestimates the value of Ψ(x̄agt ) (c.f. (5.11)), indicating
that one can also use x̄agt , t ≥ 1, as the output of the AC-SA algorithm.
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6 Concluding remarks

In this paper, we presented a generic AC-SA algorithmic framework for solving strongly convex
SCO problems. We showed that it can yield optimal algorithms for solving SCO problems without
possessing strong convexity and a nearly optimal algorithm for solving strongly convex SCO problems.
It is worth noting that the latter algorithm is also optimal for nonsmooth strongly convex problems.
Moreover, large-deviation results associated with the convergence rates for these AC-SA algorithms
are studied and certain stochastic lower and upper bounds of the optimal value are presented to
provide accuracy certificates for the generated solutions.

However, there remain a few interesting questions that have not been answered, e.g., “Whether
the lower complexity bound stated in (1.3) for minimizing strongly convex SCO problems can be
achievable?” and “Whether the large-deviation results associated with the convergence results for
the nearly optimal AC-SA algorithm in Subsection 4.2 can be improvable?” We will study these
problems in [12], a companion work of the current paper.

Acknowledgement: The authors are very grateful to the associate editor and two anonymous
referees for their very useful suggestions for improving the quality and exposition of the paper.
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