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OPTIMAL STOCHASTIC SCHEDULING OF POWER GENERATION
SYSTEMS WITH SCHEDULING DELAYS AND

LARGE COST DIFFERENTIALS*

G. L. BLANKENSHIP" AND J.-L. MENALDI

Abstract. The optimal scheduling or unit commitment of power generation systems to meet a random
demand involves the solution of a class of dynamic programming inequalities for the optimal cost and
control law. We study the behavior of this optimality system in terms of two parameters: (i) a scheduling
delay, e.g., the startup time of a generation unit; and (ii) the relative magnitudes of the costs (operating
or starting) of different units. In the first case we show that under reasonable assumptions the optimality
system has a solution for all values of the "delay, and, as the delay approaches zero, that the solutions
converge uniformly to those of the corresponding system with no delays. In the second case we show that
as the cost of operating or starting a given machine increases relative to the costs of the other machines,
there is a point beyond which the expensive machine is not used, except in extreme situations. We give a
formula for the relative costs that characterize this point. Moreover, we show that as the relative cost of
the expensive machine goes to infinity the optimal cost of the system including the expensive machine
approaches the optimal cost of the systerff without the machine.

1. Introduction. Optimal scheduling of continuously evolving stochastic dynami-
cal systems admitting costly, discrete state transitions as control actions involves the
analysis of partial differential inequalities which constitute the dynamic programming
optimality conditions for the problem. These are the "quasi-variational inequalities"
(QVI’s) introduced for such problems by A. Bensoussan and J. L. Lions [1] [2]. While
there is an extensive analytical theory for the existence, uniqueness, and regularity
properties of the solutions of QVI’s, it is very difficult to describe the solutions and
the associated optim.al scheduling rules, i.e., the control laws, in any but the simplest
cases. For this reason it is useful to examine the behavior of the solutions to QVI’s
as a function of various parameters which have simple interpretations in specific
settings.

In this paper we consider the problem of scheduling a collection of power
generation machines to meet a random demand for power, that is, the "unit commit-
ment" problem. There are positive startup and operating costs associated with each
machine, and the scheduling problem is to commit the units and operate them (set
their power output levels) to meet the demand at minimum cost. The "demand" is
modeled here as a diffusion process. In 3 we study the problem including scheduling
delays in unit starting. (In power systems operations such delays correspond to the
times for boiler reheating in steam turbine generators or crew travel times in manual
start units [3].) In 4 we consider the scheduling problem when some machines are
much more expensive to start and/or operate than any of the other machines.

Under reasonable assumptions on the demand dynamics and the cost functions
we show that the optimality system (the QVI’s) has a well-defined solution, cost and
control policy, for all values of the scheduling delay, and, as the delay approaches
zero, that the optimal cost converges uniformly to that of the corresponding system
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122 G. L. BLANKENSHIP AND J.-L. MENALDI

with no delay. The results of M. Robin [4] and J.-L. Menaldi [5] [6] form the basis
for our arguments. In 4 we show that as the cost of starting and/or operating a
designated machine increases relative to the costs of the other machines there is a
point beyond which the expensive machine is not used, except in extreme situations.
We give an inequality on the relative costs that characterizes this point. Moreover,
we show that as the relative operating cost of the expensive machine goes to infinity
the optimal cost of the system including the expensive machine approaches the optimal
cost of the system excluding the machine.

Related work on the asymptotic analysis of QVI’s in general and optimal schedul-
ing problems in particular may be found in the papers [7]-[10] (among others). For
the most part these are concerned with the asymptotic behavior as the noise intensity
approaches zero, i.e., as the system dynamics reduce from stochastic to deterministic.
The QVI’s are, in such cases, singularly perturbed. The problems treated here are of
a different type, although the case of large cost differentials has an order reduction
effect in the asymptotic limit.

In [11] a result is given (Thm. 1.2, p. 192) which characterizes the optimal
switching among alternatives in terms of a simple inequality on the costs. However,
the problems considered in [11] do not include explicit costs for switching, and the
methods used are quite different.

2. Problem statement and an existence result. Let (fI, , P) be a probability
space, {t, => 0} a nondecreasing, right-continuous family of completed sub-(r-fields
of , and let w(t), >=0, be a standard R-valued Brownian motionwith respect to,, >__0.

Let m >= 1 be the number of machines. Let A {0, 1}" be the set of schedules. If
a A, and a is the ith element of a, then a 0 means machine is down, and a 1
means it is up. Let {0j,/" 1, 2, } be an increasing sequence of stopping times with
respect to t which are convergent to infinity and which satisfy 0j/1 -> 0 + h, for each
/" and some h >-0, the scheduling delay. A scheduling policy a(t), -> 0, is an A-valued
random process starting at a A and adapted tot satisfying

(2.1) a(t)= f{a’. 0__<t <01,
t a’, 0<-t<0/1, j=l,2,....

Let h.a be the set of all scheduling policies starting at a with delay h. These are
the discrete controls for our system. The components ai(t), i= 1, 2,..., m, of a(t)
are the unit commitment schedules for the individual machines. Let [/,/]c (0, ),
i=l,...,rn, be the output capacities of the machines when up, and let
P [/1,/1] x.. x [/,,,/0m] c R". Then p P is the vector of power generations
from the ensemble of machines. The system control--the power production--is

(2.2) v(t) a(t) p(t) {ai(t)pj(t), j 1,..., m}

for a(t)s h.a, p(" ): [0, ]-->P. We have used the Schur product notation in (2.2). Let
Po [0,/1]... [0,/,] be the output powers of the ensemble of machines includ-
ing the possibility of shutdowns.

Now let g(x, a), (r(x, a) be two given functions on RN A into RN and Rr (R)R u,
respectively, which are Lipschitz continuous in x for each fixed a, g (g), (r ((ri),

Ogi O(riiB(RU), i,],k l, .,N VaA(2.3)
OXk’ OXk

where B(R) is the set of R-valued, Borel measurable, bounded functions on R re.
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TThe Rr-valued diffusion y(t) yx(t, a(. )) with drift g and diffusion o-o- characterizes
the demand on the system. We permit the demand to depend on the schedule. Let
{a(t), >- 0} Mh,. and

(2.4) dy(t)=g[y(t),a(t)]dt+r[y(t),a(t)]dw(t), y(0)=xR r, t=>0.

The process y has continuous paths almost surely.
Let be a bounded subset ofRr and let lff be its closure. We denote by z ’x (a(.))

the first exit time of yx (t, a(. )) from 7. That is,

(2.5) zx (a (.)) inf {t >- 0" yx (t, a(. )) e}
for each a sA and a(. ’h,.. (Recall a sA is a(0) for a(. s h,..) Let F. be the set
of regular points ofOfrom a (cf. [12])

(2.6) F. {x 0" P(zx,.> 0) 0}

where a is a constant scheduling policy. If {05, 1, 2,...} is a sequence of stopping
times, aA a(. ) h,., and {p(t), => 0} is a P-valued process adapted to t with right
continuous trajectories (having left-hand limits), then {u(t) a(t) p(t), ->- 0} is called
an admissible control. We have

(2.7) y (z, a) Fa a.s. on {z <} Va A.

The cost functional for the problem is defined as follows: let f:R
be continuous; f is the operating cost rate. The switching cost k :A xA --> [0, o) is

(2.8) k (a, b) ki[bj aj]+, a, b A
i=1

where ki => k0> 0 for/" 1, , m. The cost is

(2.9) Jx.() Ex. f[y(t, (.)), v()]e-" dt+ Y k[(0_), (0)]lo,<,e

where a > 0 is the discount [actor, Ex.{" } is expectation over paths y(t), (t) starting
in x eRN and e A, respectively, and 0o =0.

Problem statement. We wish to characterize the optimal cost

Uh (X, a) inf {/x.(v): v admissible}

as a function of the scheduling delay h and the relative costs f(y, p a)/f(y, p b),
k (a, b)/k (a, e) for all a, b, A.

The first question of interest is the existence of the optimal cost. Since the problem
is possibly degenerate (det o’er

r (x, a)= 0 for some x, a) and irregular (F. not closed),
this is a potentially delicate issue. However, the results of [5] and [6] adapt to the
present case with minor modifications. Since we are mainly interested in the qualitative
features of the optimal scheduling problem, we shall present a minimal treatment of
the existence question.

For each a A we associate the operators

(2.11) a -1/2 tr [rrrOxx g

with the diffusion

(2.12) dy(t) g(y(t), a) dt + o-(y(t), a) dw(t).



124 G. L. BLANKENSHIP AND J.-L. MENALDI

(Here a plays the role of a parameter.) Following [5] and [6] we use the integral
formulation of .; that is,

if the process

.u (x, a) -< [(x, a) in 6 r.

0AT

(2.13) x,=Io (yx(S),a)e-ds+u(y(t^r),a)e-(^’)

is a t-submartingale for each x
Here

(2.14) /(x, a) man {f(x, p a), p s P}.

We shall also say that C,u _-</ in the martingale sense when (2.13) holds.
Define the operatorM as

h^8

Mu (x’ a) min Exb{ f f(Y (t’ b)’ b) e-t dt

(2.15)
+k(a,b)+e-’"’)u(y(h ^ r, b), b)}.

If we set IIv II- sup {Iv (x, a)l, x 6, a A} for v (., a) continuous on , then M maps
C() into itself and

(2.16) IIMu Mv

if u (x, a) 0 v (x, a) for all x s F., a A.
The problem (2.10) can be formulated as follows.
Find a real, bounded, measurable function u (x, a) on 6 xA such that

u=0 onF., /aA,

(2.17) u <=Mu in -F., asA,

.u fl in the martingale sense on- F., Wa A.

We can reformulate the problem (2.10) or (2.17) as a quasi-variational inequality
along the lines in [6, p. 724], but this takes us somewhat away from our main line of
inquiry, and so, we will omit it.

We associate with (2.10) a sequence of stopping time problems as follows. Let

AO --t(2.18) u (x, a) Ea (y (t, a), a) e dt

Given "-(x, a), define "(x, a) by
0A

a"(x, a)= inf E,.[[ /y,(t, a), a)e -’ dt + lo<,e-Ma"-a(y,(O, a), a)(2.19)
00

Note that asA is a parameter in (2.18), (2.19). In abstract terms (2.18), (2.19) takes
the following equivalent form: let a(x, a) be the bounded, continuous, nonnegative
real function on 6 xA such that

(x,a)=0 xsF., asA,
(2.2o) 0.u ff in the martingale sense on- F. a s A,
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and, given
which is the maximum solution of

un(x,a)=0 VxF, VaA,

(2.21)

.,u" -< in the martingale sense on Y- F, Va A.

The sequence of variational inequalities corresponds, in effect, to the sequence of
stopping time problemsmmake n optimal decisions, startup or shutdown, and then
stop.

LEMMA 2.1. Under the stated hypotheses on g, r, f, and k the problem (2.17)
admits a maximum solution which is upper semicontinuous and given as the optimal
cost in (2.10). Moreover,

(2.22) 0-<g"+l-<t "-<.. <1- II/ 11 Vn 1,2,

(2.23) o<a=a,<[ exp (-nah) ]1 exp (-ah) Ilt a ll,

and if the set of regular points Fa is closed, then

(2.24) a" (., a), a (., a) e C.

Proof. The first two results (2.22) and (2.23) follow from simple modifications
of the arguments in Robin [4, pp. 279-283]. The third result (2.24) follows from the
arguments in [5]. QED

THEOREM 2.1. Under the stated hypotheses on f, g, r, and k and the assumption
of regularity (Fa closed Va) there exists an optimal, admissible control policy.

Proof. First, note that t(x, a) constructed as the limit of the sequence (2.19) via
(2.23) satisfies the problem

{Io^ -,OM }.(2.25) t (x, a) inf E ](y (t, a), a) e -’t dt + lo< e (y (0, a) a)
>0

Let b (x, a) be defined by

(x’ a) arg min [k (a’ b) +Exb{ Ioh
(2.26)

+e

with b Borel measurable in 7 A.
The optimal policy fi(. is defined by

f(y (t, b), b) e dt

-h^*)u(y(h^z, b), b)}]

(2.27) fi(’ alto.,) + E a
i=1

with the values fii selected as follows. Let

(2.28) if=0,

(2.29) d(t)=g((t),a)dt+r((t),a)dw(t), 3(0) x, t_>0,
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and for 0, 1, 2,..

y inf {t>=0: 33i(t) }
(2.30)

tm if the set is empty,

(2.31)

(2.32)

(2.33)

and

(2.34)

{t [i, ?i): i(t)C:{a(o,li)<M(o,li)}}
i/1

oe if the set is empty,
ffi (i +h) ^ ", i=1,2,...,

i otherwise, 0, 1, 2,

d’(t) g(i(t), hi) dt +o’(i(t), i) dw(t),

7i(t)=;-l(t), t-<di, i=1,2,....

Using the Markov property, we have

(2.35)

where

(2.36)

>=i,

u(x, )=E ((t), (t)) e dt + k(- e
i=1

+E{e-"t ()3 (.), " )},

(t)=y(t,(.))="(t) Vt 6 [0, ,].
Since a is bounded and d-> oo (a.s.) as n oo, we obtain

(2.37) u(x,)=E ((t),(t))e-’dt+ k(- )e 1,<
i=1

V(x, a) x A.

Finally, let O(x, a) measurable be such that

(2.38) f(x, a O(x, a))= f(x, a)

Defining

(2.39) O(t) f(y (t), d), f,(t)=f(t)o(t)

completes the proof. QED
Remark. The function t"(x, a) is the optimal cost given that n switchings are

permitted.

3. Dependence of the cost on the scheduling delay. In this section we shall show
that the optimal scheduling cost depends continuously on the delay h as h --> 0, if the
hypotheses of Theorem 2.1 hold. To emphasize the dependence on h, let th (X, a) be
the optimal cost in the problem (2.10), and let t, be the costs in the sequence (2.19).
Also, let

hA’r

and

(3.2) My (x, a) min [k (a, b) + v (x, a)].
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LEMMA 3.1. Under the stated hypotheses on f, g, r and k and the assumption of
regularity we have

-ah

(3.3) IlMhv-Mvll<-(1-e )ll/ll/(1-e-)llvll
]’or all Borel measurable v such that

(3.4) v (x, a) 0 Vx e F,, Va A.

Proof. This follows immediately from (3.1) (3.2). QED
LZMMA 3.2. Under the conditions of Lemma 3.1 we have

(3,5) IlaZ all<
c

=, n=m+l, m+2,...
n--m

for some constant c independent of h and where m is the number of machines.
Proof. Let

(3.6)
N+[0, T] number of machine starts in [0, T],

N-[0, T] number of machine shutdowns in [0, T]

associated with a policy a(t), [0, T]. For each T > 0

(3.7) N+[0, T] + N-[0, T] =< 2N+[0, T] + m.

Given any policy a(. ), let a" (.) be the policy whose first n switchings coincide
with those of a(. and which is constant (at the value of the nth switching) throughout
the remainder of the interval. Using the notation t introduced earlier, we have

(3.8)

and so,

/I }0 _-< t3 th -<- sup E /(y" (t), a" (t)) e -at dt
a(. 0.

(3.9) 0 u h Uh sup E{e
a(-)

To estimate the expectation, we use (3.7) and an observation about the startup cost.
Clearly, for any T > 0

(3.10) koN+[0, T]e -at-< E k[a(t_),a(t)]e-at.
O<=t<_T

Now from (3.7) for a policy with n switching

(3.11) n <= 2N+[0, O,]+m.

Using this in (3.10) with T 0, ^ r, we have

-a(O^-r)(3.12) 1/2ko(n-m)E{e-a("^’)lo.<,}<-supE Y k[a(Oi_l),a(Oi)]e
a(. =’1

To estimate the term on the right, recall from (2.9), the form of the cost of an
admissible policy. Consider a suboptimal policy which involves no switching. The cost
of such a policy is bounded above by II/ 11/ , It follows from (2.9) that we can restrict
attention to policies in which

(3.13) E{ k[a(t-),a(t)]e
O_<t<-
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Using this on the right in (3.12), and the result in (3.9), we have the desired inequality
(3.5) with

(3.14) c 211/ll=/ko. QED

The bound (3.5) and an inequality of Robin give us the desired continuity result.
Let do(X, a) be the optimal cost in the system (2.10) with no delay, i.e., h 0.

THEOREM 3.1. Under the stated hypotheses on f, g, r, and k and the assumption
of regularity we have

(3.15) lim ah aO uniformly in Tx A.
h$0

Proof. Let tg be the optimal cost in the problem (2.10) with no delay over
admissible policies having at most n switchings. Then

(3.16) Ila aoll Ila aZII + IlaZ a;ll + Ila;

The first and third terms on the right may be bounded using Lemma 3.1. A bound
for the second term is given in Robin’s thesis [4], p. 235,

(3.17) IlaT a"ll 2nh IIll.
It follows that for any n >_-m + 1

Ila aoll-< (411flllko)l(n m + llfllnh.
Thus, taking h$0 and then n - oo leads to the desired result. QED

4. Scheduling with some expensive machines. Now suppose that one machine,
or more generally, a group o machines is much more expensive to operate and/or
start than the remaining machines. One would expect that the expensive machine
would be used only in extreme circumstances, or not at all when its cost is very high.
We show that the problem (2.10) has these properties.

Let aeeA be an "expensive" schedule. Recall the notation /(x,a)=
min {f(x, p a), p e P}.

LEMMA 4.1. Under the stated hypotheses on f, g, cr and k and the assumption of
regularity the inequality

(4.1) f(x, ae)>(x,b)+[k(a,b)-k(a, ae)] l_e_,h Vx eft, aeA, beA-{ae}

implies that the optimal policy d(t), O<=t<=, defined in Theorem 2.1 for the problem
(2.10) has the property

(4.2) P{(t) ae, 0 =< =< . h } 0,

Remark. In other words, the optimal policy (. switches to the expensive schedule
only near the boundary F, and in that case, it switches once and then stops.

Proof. Let a(. be the optimal policy. Over an interval [ffi, i/l) the optimal cost
increases by the amount

Ii+1
i)(4.3) Zk/i /(3(t), e -’ dt + k e-’.

0
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Suppose that i--1 #a and i =ae. Then by (4.1) for any bEA-{ae} we have

li
,r > f f(f (t), b) e -st dt

(4.4)

( 1 ) _#, _, 1, -1, ae4"
1 e-h

(e e /’)[k (i- b)- k (h )] + k (i )e

Since 0i/1 >- h+ 0i if 0 <- <= - h, it follows that

(4.5) AJ > f((t), b) e- dt +k(-, b) e

and this must have probability zero since (t) is optimal. QED
Note that either a large operating cost rate" f(x,) or a large startup cost"

k(,) will cause (4.1) to be satisfied. Now suppose that the operating cost f(x,)
becomes arbitrarily large

(4.6) [(x, ae) -> 1/e, x e Y, e > 0 small.

One would expect that in the limit as e $ 0 that the expensive state a will never be
used. We shall treat the cases h > 0 and h 0 separately. Let

(4.7) Uh (x, a) inf {J,(v)" v(t) p(t) a(t), a(t) a O <= <- -, h >0},

(4.8) Uo(X, a) inf {J.(v)" v(t) p(t) a(t), a(t) a, 0 _-< _-< -, h 0}.

Let

(4.9) t, (x, a) inf {Jx.(v)" v(. admissible, (4.6) holds, h > 0},

(4.10) t; (x, a) inf {Jx,(v)" v(. admissible, (4.6) holds, h 0}.

THEOREM 4.1. Under the stated hypotheses on f, g, r and k, the assumption of
regularity then

(4.11) lim t uniformly in x , h > O.

If, in addition,

(4.12) g g(x), o" o-(x),

independent of a A then

(4.13) uniformly in x 7, h O.lim to ao
e$0

Proofof (4.11) h >0.
Suppose e > 0 is small enough so that

( )(4.14) l>(x’b)+[k(a’b)-k(a’ae)] _e-h VXSCY, aEA, b eA-{ae}.

Using (2.32) from the proof of Theorem 2.1, we have

a (x’ a) El Io P(;(t’l(t))’l(t))e-<"dt+ i=, k (i-" /) e-<’}
(4.15) +E{e-" a ," ), )).
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Now for any admissible v(. p(. a(. with a(t) a e, >= 0, we have

(4.16) (x, a)o<-ae-a <-L,(v)-aa

By Lemma 4.1 we can consider policies fi(t) which switch to a in [?-h, ?] and
(t) ae, 0 _-< < . h. It follows that

--Uh --Uh
bCa -h

Hence,

(4.18) 0 _-< t, d, <= (sup Ill(", b)ll)(e 1)/c.
b#

But this can be improved.
Let

(4.19) /’/h inf {n -> 1" 0, _-> , h }, & 0, for n nh.

Then we can replace ?- h by ffh in (4.17). Since a switching to a is assumed to occur
in [?- h, "] and since (4.6) and (4.14) hold, we have

(4.20) O<sup (E{Ig ](33(b), b)e -’dt l lf -’ a -d"})e dt-k(b, )e
ba E

This implies

1
(4.21) E e-St dt =-< sup II;(’, b)ll.

E h
O b#a

Using this in (4.17) (4.18) with h replacing ?-h leads to

1
(4.22) 0 < d, d, < (sup Ill( b)ll)2

O b#

Note that (4.22) and (4.18) hold only if e and h satisfy (4.14); that is, they are not
uniform. In any event (4.22) implies (4.11). QED

Proof of (4.13). h 0. Let a(t) be the optimal policy associated with fi). It exists
by virtue of property (3.7). Write it as

(4.23) a(t) alto.0,) + Y’. ailtff,.0,+,)
i=1

where ffi were defined in the proof of Theorem 2.1 (with h set to zero). We define
by induction

(4.24) ii if a a,
ai-1 if a a,

and if a a

(4.25) (t) alto.&) +
i=1
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If a # a, .then

J,,.(d (")> EIf /( (t>, a> e-:’ dt + f /( (t>, di> e- dt
Jo i=1 Jiffy+

(4.26)
+(,) e-(e+ 2 (,*) e-(e*+

i=1

Since k (b, b) 0 and k (a, b) + k (b, => k (a, e) for each a, b, and c in A, we have

J:(t(" )) >-E [((t), a) e -’ dt + 2 [((t),) e dt
i=1

(4.27)
+k(a,)e + 2 k(g’, e +

i=1

Using this and the fact that h(.) is optimal leads to

(4.28) O<-Jx,((’))-Jxa((’)) <- 2 E [((t),ti+l)-[((t),ae)]e-tdt.

Since f 0, it follows that for a ae,

(4.29) O<ao=e(X, ")-; (X, ")=< (sup [(" b)ll)( E e-:’ dt
b#ae ai= t

But using (4.6) gives

(4.30)

And

1
E e-dt <-E (t),(t))e <-uo(x,).

(4.31) 0 -< ;(x, a) =< min { 1 II/(" b)l[ + k (a, b)}bA O

It follows that if a # ae, then
(4.32)

with

(X, a)- (x, a) <0<o Uo ---CE

1
(4.33) c =--(sup IIf(., b)ll)ll/(., a)ll.

ba

This implies (4.13) in case a # ae.
If a ae, the argument is much the same. Define

(4.34) ti(t) a Vt [0, dl].
Since (4.30) and (4.31) still hold, we can deduce (4.32) by adding the term.

(4.35) E{k(ae, al)(1-e-:(6’A+))}=:k(ae, al)={ I0 e -=t dt}
to (4.29). In this case the constant in (4.32) is

(4.36) c [ sup 1(", b,II +k(, b,] [man 1 ]](, b,l,+ k(, ,]
b#a bA

This completes the argument. QED
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Remark. Using similar techniques, we can consider systems with locally bounded
coefficients in an unbounded domain 7. All the results can be extended to the associated
time-dependent problem.
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