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OPTIMAL STOCHASTIC SWITCHING AND THE
DIRICHLET PROBLEM FOR THE BELLMAN EQUATION

BY
LAWRENCE C. EVANS AND AVNER FRIEDMAN1

Abstract. Let L' be a sequence of second order elliptic operators in a
bounded n-dimensional domain Q, and let/' be given functions. Consider
the problem of finding a solution u to the Bellman equation sup,(L*u — /')
— 0 a.e. in Q, subject to the Dirichlet boundary condition u = 0 on 3Q. It is
proved that, provided the leading coefficients of the V are constants, there
exists a unique solution u of this problem, belonging to W1,0°(Q) n
Wfé°(Q). The solution is obtained as a limit of solutions of certain weakly
coupled systems of nonlinear elliptic equations; each component of the
vector solution converges to u. Although the proof is entirely analytic, it is
partially motivated by models of stochastic control. We solve also certain
.systems of variational inequalities corresponding to switching with cost

1. Introduction. Consider a sequence of linear elliptic partial differential
operators

Lku m - J i «*) g^- - 2 tfO)J| + c\x)u       (A « 1,2,... )

in a bounded domain fl c R". We assume:

8ß G C2+ß       for some iß > 0, (1.1)

2  a¡<(x)Z4j > Y|||2        (x G ß, I G R",y > 0), (1.2)
ij-l

\Daak(x)\, \D«bk(x)\, \D°ck(x)\ < C

(x € 0,1 < »V < n, 0 < |a| < 2, C > 0),    (1-3)

and

ck(x) >c0       (xG Q; c0 > 0), (1.4)

where y, C, c0 are constants independent of k. (The hypothesis c0 > 0 is
convenient, but c0 > 0 is sufficient; see Remark 1, §6.)
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366 L. C. EVANS AND AVNER FRIEDMAN

Suppose further that the/*(x) are given functions for x Gii, satisfying

\Dafk(x)\ < C       (x G O; 0 < M < 2, C> 0), (1.5)
where C is a constant independent of k.

In this paper we investigate the nonlinear partial differential equation

supk(Lku(x) - fk(x)) - 0   a.e. for xGQ, (1.6)

with the boundary condition

u = 0   on 90. (1.7)
Equation (1.6) is called the Bellman equation of dynamic programming,

arising in stochastic optimal control theory (see §7). It was studied by Krylov
[13] and Nisio [14] in the case ß — R*. Krylov proved (under assumptions
similar to (1.2)—(1.5) and with the additional condition that c0 is sufficiently
large) that there exists a unique solution u in R" such that, for some
<p(x) = (1 + p\x\2)x/2, M > 0, e-*x\i(x) belongs to W^R"), Vp < oo. His
proof was somewhat simplified by Nisio [14] (see also [3]). As is pointed out
in [14], [3], the existence of a solution to the Bellman equation in a bounded
domain is an open problem, except when n = 2.

In this paper we establish the existence of a unique solution u of (1.6), (1.7)
satisfying u G Wlo°(ß) n ^°°(ß)- We assume the conditions (1.1)—(1.5)
and the additional restriction

a,* are constants. (1.8)

Unlike Krylov's approach, our proof does not use probabilistic methods; it is
however partially motivated by probabilistic considerations. In fact, we
approximate the solution of (1.6), (1.7) by the system of equations

Lkuk + ße(uk - uk+1)=fk(x)       (l<k<m,   xGQ),

uk = 0   on 9ß, (1.9)

where um + 1 = ul. Here ße represents a "penalty" term: ße(t) = 0 if t < 0,
/?c(i)-»cc if / > 0, e->0. Probabilistically, the solution component uk(x)
represents the optimal cost starting at x G ß in state k of the same cost
functional as in Krylov's work plus an additional cost for every switching
from one generator L' to the next one L'+1. We shall explain this model more
precisely in §7.

In §2 we study the system (1.9) and prove that it has a unique classical
solution. §3 comprises an a priori estimate on the Wl'°°(ß)-norm of the
solution; the estimate does not depend on m and e. In §4 we derive a priori
estimate on the W2oc(ß0)-norm of the solution of (1.9), ß0 c ß. It is only here
that the condition (1.8) is used.

In §5 we take e -» 0 in (1.9) and show that each uk = uk-' converges to the
same function vm, vm solving the Bellman problem (1.6), (1.7) (where k
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DIRICHLET PROBLEM FOR THE BELLMAN EQUATION 367

ranges over the indices 1,2,..., m). Finally, in §6 we prove that, as m —» oo,
vm converges to the solution of (1.6), (1.7). These convergence arguments use
nonlinear functional analytic methods and, in particular, certain accretive
operator techniques.

In §7 we study the system

L'ut + ße(Ui - ui+, - k,) = f       (xG ß),
u¡ = 0   on 8ß       (1 < i < m) (1.10)

where the k, are positive numbers, and also the limit case, as e -» 0, a system
of variational inequalities

L\ + ß(ut - ui+x - k¡) B /'    a.e. inß,
w, = 0   on9ß. (1.11)

(Here ß(t) is the maximal monotone graph: ß(t) = {0} if t < 0, ß(0) =
[0, oo].) We give probabilistic interpretation for these problems and prove
that each component w, of the solution of (1.11) converges to the solution vm
(of (1.6), (1.7) for L1, ... , Lm) as (A„ ..., kj -» 0.

We also show that for fixed and positive k¡, the solution of (1.10) converges
to the solution of (1.11), as e —* 0. This is proved under weaker assumptions
than (1.3), (1.5) and without the restrictive condition (1.8).

In §8 we specialize to the case m = 2. It was proved by Brezis and Evans
[5] that the corresponding Bellman equation

max(Llu(x) - f\x), L^x) - f2(x)) = 0   a.e. in ß,

k = 0   onöß (1.12)

has a solution u in C2+a(ß0) for some a > 0 and any domain ß0, ß0 c ß.
Here we show (without making the restriction (1.8)) that the solution ux,u2 of
(1.11) with m = 2 satisfies: u¡(x) -» u(x) as (kx, k^ —» 0.

Note added in proof. P. L. Lions (in work to appear) has recently
removed the restriction hypothesis (1.8). His method gives ^^(ß) estimates
for the approximating system (2.3), (2.4) and is based on a nontrivial
extension of our proof of Lemma 4.1.

2. Construction of approximate solutions. Let ßc(t) (e > 0, t real) be a C°°
function in / such that

ße(t) = 0   if f < 0,

ße(t)^><x>    if / > 0,   e^-0,

A'(0 > 0,       ß:(t) > 0, (2.1)
and

\tft(t) - ße(t)\ < C       (C constant). (2.2)
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368 L. C. EVANS AND AVNER FRIEDMAN

We can take, for example,

Ä(0-—*    if2e<í<oo,

= 0   if t < 0,
and

0 < ße(t) < 1,    0 < #(/) < -    if 0 < / < 2e.

Consider now the semilinear elliptic system

Lkuk + ßc(uk - uk+l)=fk   in Q       (1 < k < m), (2.3)

m* = 0   on9ß (2.4)
where um+1 = u1.

This system can be solved by several standard methods. It is most con-
venient for our purposes to invoke certain facts of nonlinear functional
analysis, as these considerations are crucial for the convergence results of §5.
We begin by recalling some definitions; for more details, see [1].

In any real Banach space X one defines the pairing

[x,,i    sinfJliLtMzJI¿!       txjGX).
L J+        \>0 A

It can be shown that

,.      II* + Av||-llxll ,   r        ilim ■"-^—"—"- exists and equals | x, y I    .
A|0 A L J +

Note that
[,]:JSfXJ!f-»Jîis upper semicontinuous. (2.5)

A nonlinear operator A with domain D(A) in X and range in X is called
accretive if

\\x-y\\<\\x-y+X(Ax-Ay)\\    VxjmD(A),   X > 0,
and m-accretive if, in addition, R(I + XA) = X for all À > 0 (or, equivalently,
for some X > 0). A is accretive if and only if

[x - y,Ax - Ay]+> 0   Vx,yinD(A). (2.6)

If X = C(ß), the brackets [, ]+ admit the representation

[f,g]+=     max     gO0-sgn/(y)       (/ * 0), (2.7)
.yen

see, for example, Sato [16, p. 431] or Sinestrari [17, p. 22]. As we shall see, this
characterization is useful for studying partial differential equations satisfying
a maximum principle.

The following lemma is due to Frank Massey (unpublished).

Lemma 2.1. Let X = X ' X • • • X X" be the product of real Banach spaces
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DIRICHLET PROBLEM FOR THE BELLMAN EQUATION 369

X' with norm

||*||= max ||x'||       (x = (x\...,x")).
i </<«

Denote by [, ]'+ and [,]+ the brackets in X' and X, respectively. Then

[*.*]♦-~J[*^7+i 1*1-1*1}-
Proof. If ||x''|| = ||x||, then

l* + V|-w>|*, + vi-M.
Dividing by X and taking the infimum over X, we get

[x,y]+>[x\y']'+.

This proves the inequality

[x,y]+ > max{[*',y']'+; ||*'|| =||x||). (2.8)

To prove the reverse, we take a sequence X„, > 0 such that \„J,0 and

II* + \ny\\ = 11*'+ hny'W  for some fixed t-
Then ||x|| = ||x'|| and

ll* + M|-W = ll*' + ̂ i|-K'll-
Dividing by X„ and taking A^O, we obtain the opposite inequality to (2.8).
D

We now take A" = C(ß), X = X1 X ■ ■ ■ xXm and introduce the vector
notation

u = Lu =

Llul

LV

Lmu'

B.u =
ße(u2 - t/3)

ßt(um - u1)

Each operator V is defined on the set

D(V) - {v G W¿¿(Q) n W2*(Q); L'v G C(ß)}
for any fixed p > n, and L is defined on D(L) = ¿>(L!) X • • • xD(Lm).
The operator 2?c is defined everywhere on X.

Lemma 2.2. The operator At = L — CqI + Be with domain D(L) is m-accre-
tive in X.

Proof. According to a standard perturbation theory [1] it suffices to prove
that

Be is Lipschitz and accretive (2.9)
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370 L. C. EVANS AND AVNER FRIEDMAN

and
L — CqI is /w-accretive. (2.10)

Since 0 < /?/ < 1/e, Bc is clearly Lipschitz. Furthermore, by Lemma 2.1,

[u - ü, Beu - Beu] +

= max{[«' - *',£(«' - m'+1) - &(«"' - t7i+,)]+ ,

II«'' -«'|| = ||« "«II}- (2-11)
Take /' such that ||h' — ¿7'|| = \\u — t7|| and, without loss of generality, assume
that

II«' - w'll = m'(x°) - ü¡(x0)   for some x° G ß.
Then

u'(x°) - t7'(x°) > ui+l(x°) - ¿7'+,(x°),

and so

«'(**) - h' + 1(x°) > 27'(x°) - i7'+1(x°).

Because of the monotonicity of ße, it follows that

ße(u> - ui+l) > ßc(W - t7'+1)   at x°.

Recalling (2.7), we conclude that the right-hand side of (2.11) is nonnegative.
This proves (2.9).

The proof that V — CqI is accretive follows by the maximum principle,
making use of (2.7). In fact, if o G C(ß) n W2£(Q) and v takes a positive
maximum at a point x° G ß, then by Bony [4] (see also [8])

ess lim inf (Vv(x) - c0v(x)) > 0. (2.12)
X—*x°

Since, in particular, L'v — c0v is continuous, then v(x°)(L'v(x°) — c0v(x°)) >
0. Using this and (2.7), it is clear that L' — c07 is accretive. Employing
Lemma 2.1 we find that also L — CqI is accretive.

By the general theory of elliptic equations, each L' — c0I is /w-accretive;
consequently L — c0I is also m-accretive.   □

Theorem 2.3. Let (1.1)—(1.5) hold. Then there exists a unique solution of
(2.3), (2.4) with components uk in D(Lk); further, uk belongs to Ciß(Q) n
CX9(ti0)for any 0 < 8 < 1, So C ß.

The first part follows from the /n-accretiveness of Ae. The second part is a
consequence of standard regularity results for elliptic equations.   □

3. Wl'°° estimates. In this section we derive uniform estimates on the
solution u = (ul, . . ., um) of (2.3), (2.4) and on its first derivatives; these
bounds will not depend on the parameters e,m. The condition (1.8) will not be
needed here.
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DIRICHLET PROBLEM FOR THE BELLMAN EQUATION 371

Lemma 3.1.

max ||«*|U~(Q) < — max ||/*|U»(D). (3.1)
k C0     k

Proof. We first prove that

uk(x) > - — max \\fk\\L~(Q)       (x G ß). (3.2)
c0    *

Denote by Nk the minimum of m* in ß and choosey such that Nj = min A^.
Without loss of generality we may suppose that Nj < 0. Let x° be a point in ß
such that uJ(x°) = Nj. Then

¿V(x°) < c'Xjc'V'í*0) = ¿(x^Nj < CfyNj,

ße(u^(x°)-uJ+l(x°)) = 0

(since u^x0) < uJ+l(xù)). Consequently,

c0Nj > LV(x°) + ße(u'(x°) - ¿+l(x(t))=f(x0),

so that

co

this proves (3.2). Similarly one estimates the uk from above.   □
In what follows we shall denote by C a generic positive constant which is

independent of m,e.

Lemma 3.2.

||¿>«*lk-<80> < C       (Kk<m). (3.3)

Proof. Let vk be the solution of
Lkvk = f*   in ß,

vk = 0   on 9ß.
Since Lkuk < /*, the maximum principle implies that uk < vk. It follows that

^<¿P<C   on9ß, (3.4)
OP ov

where v is the inner normal.
Next, let x° be a point on 9ß and let y° be the center of a ball B of radius R

such that B n ß = {x0}; R can be taken to be independent of x°. For
sufficiently large positive constants p and D, the function

w{x) = D{-h - ■?)   ('-I*-'°I)
is a barrier at x° for each V; that is, w = 0 at x°, w > 0 in ß\{x0}, and
L'w > 1 (the constantsp, D are independent of i).
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372 L. C. EVANS AND AVNER FRIEDMAN

Let vk = - Cw for 1 < k < m, for C > maxL\\fk\\L„(py Then
Lkvk + ßt(vk - vk+l) = gk   in ß,

vk < 0   on 9ß, (3.5)

and g* = - CLSv </*. We claim that

o* < «*   for all k, x G ß. (3.6)
Indeed, otherwise choosey such that

max(u*(x) — uk(x)) = Mk

is the largest when k = j, and let x* G ß be such that

0 < Mj = ^(x*) - !¿(x*).

At x = x*, Ly(ty - uJ) > cJ(vJ - uJ) > 0, g>' - f < 0, and consequently

ß.(v> - ü>+1) < ¿8e(t¿ - t¿+1).

Noting that v> m t/+1, we deduce that i^(x*) - uJ+i(x*) > 0. Hence

max(t/ + 1 - 2^+1) > t/+1(x») - m' + 1(x*) >t^(x*) - «■'(x*)
n

= max^ — k/'),
0

thus contradicting the definition of j.
Having proved (3.6), we now notice that vk = uk = 0 at x°. Hence

duk      dvk dw 0
dp  '    dp dp

This, together with (3.4), complete the proof of (3.3).   □

Lemma 3.3.
P«*IU-W < C       (\<k<m). (3.7)

Proof. Let X be a positive number to be determined later on (indepen-
dently of m,e), and choosey" such that

max[|V^'|2 + X(^)2] > max[\Vuk\2 + X(uk)2] (3.8)

for all k. We take y = 1 for simplicity and write u = ul, L = Ll, ay = a0,
b¿ = cj, c = cl,f = /' and ß = ße. We also set v = u2.

We shall denote partial derivatives by subscripts and use the summation
convention.

We shall estimate the function

w = | Vw|2 + Xu2 - UiU¡ + Xu2

by applying to it the maximum principle. First we compute

% = 2t/,wi/t + 2Xuufl,

"W = 2m,>m,> + 2u;Uilu, + 2X1*,!/^ + 2XuufUt. (3.9)
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DIRICHLET PROBLEM FOR THE BELLMAN EQUATION 373

Differentiating the equation

Lu + ß(u-v)=f (3.10)
we obtain

Lw, + ß'(u - v)(u¡ - v¡) =fi + D2u       (1 < i < n) (3.11)
where

Dhi =   2   °aDau,       oa bounded.
|a|<2

We now compute Lw, by substituting from (3.9)
Lw — —2a  u- u   — 2ua  u-    — 2Xa  u u

-2A.«a^a(B, - 2u¡b¡1uilí — IXub^ + cu,w, + Ac«2

< —2yuifluilL — 2-yXu^Up + 2uiLui + 2XuLu.

Recalling (3.10), (3.11), we get

Lw < —2yu¡jU¡j — 2yAu,M, + 2uJ¡ + 2uiD2u + 2Xuf

-2Uiß'(u - v)(u¡ - v¡) - 2Xuß(u - v).

Since

pu,-!)2«! < yuyUy + Cum,

and since |u| < C, we obtain, upon choosing X to be sufficiently large
(depending only on C)

Lw <C- J, (3.12)
where

/ = 2Xuß(u - v) + 2ß'(u - o)u,(«,. - v¡). (3.13)
Suppose the maximum of w in ß is attained at a point x° G ß. Then

UfU, + Xu2 > v¡v¡ + Xv2   at x = x° (3.14)

(since (3.8) holds withy = 1). Next, because of (2.2),
J > 2ß'(u - o)m,(«, - v¡) + 2Xuß'(u - v)(u - v) - C.       (3.15)

Noting that
2",(«, - »<) > ",", - »i»i.

2u(u — v) > u2 — v2,

we obtain

J > ß'(u - o)(w,«/ - ü,ü,. + X«2 - Xw2) - C.

Hence, by (3.14), J > - C at x = x°. Thus, by (3.12), Lw(x°) < C. But since
w attains it maximum in ß at x°, we must have

L>v(x°) > c(x°)w(x°) > c0w(x°).

Therefore w(x°) < C/c0.
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374 L. C. EVANS AND AVNER FRIEDMAN

If w attains its maximum only at boundary points, then the assertion
maxg w < C follows from Lemma 3.2. This completes the proof of (3.7).   □

4. rV2,co estimates. In this section we require also, in addition to (1.1)—(1.5),
the condition (1.8). As before, C will denote a generic constant independent
of e,m.

Lemma 4.1. For any compact subdomain ß0 of ß

II«*I|h*-(«W<C        (\<k<m) (4.1)
where C depends on ß0.

Proof. Without loss of generality we may assume that the w* belong to
C4(ß). Indeed, otherwise we approximate L' by L''* with C3 coefficients
(say); the derivation of (4.1) for the corresponding solution uk'q (given below)
shows that C depends only on the constants occurring in (1.2)—(1.5) and thus
can be taken to be independent of q. Taking q —» oo, the assertion (4.1) then
follows.

Let £ denote any direction and let f be a function in C0°°(ß) such that f = 1
in ß0, f > 0 elsewhere. Consider the numbers

M,. = max {^((u^yf + X|V«,|2)        (X > 0)

and suppose for definiteness that

Mx > M¡   for all 1 < i < k; (4.2)
here X is a positive number (independent of e,m) to be determined later on.
As in the proof of Lemma 3.3, we set u = u1, v = u2, L = L1, / = /' and

ß= ßr
Differentiating (3.10) twice with respect to £, we get, using (1.8),

Lu(( + ß'(u - v)(uu - véi) + ß"(u - ©)(w4 - o{)2 = fu + Dht

where
Dht =   2   "aDau,       oa bounded. (4.3)

l«l<2
Since ß " > 0, we conclude that

Lu(( + ß'(u - v)(u(i - v(() < /i£ + Dht. (4.4)

Consider now the function

w = f 2((«íí)+)2 + *IV"|2>

and suppose that it attains its maximum in ß at a point x°. If x° G 9ß then

w(x°) = X|Vm(x°)|2 < C, (4.5)

by Lemma 3.2. Suppose next that x° E ß. If wíí(x°) < 0, then again (4.5)
holds, by Lemma 3.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We shall now consider the case where w££(x°) > 0. Then u££ > 0 in a
neighborhood G of x°, and thus

* = S2("if f + A|V«|2,       «it > 0 in G.
We now compute

w¡ = 2M{í«í£(f2 + 2?f,H2í + 2Xukuk¡,

W¡j = 2uu¡Ui(jÍ2 + 2M£{M££í,.f2 + 4(M££M££/ft} + M££M££,^,)

+ 2«2í(^ + S,$j) + 2XukjUki + 2Xukukij.

It follows easily that

- ayWy < -2C2aijU((¡u((/ - 2Ç2u((a0uii0

+ C?2 I «{©««I + C«« - 2Kaoukiukj - ^"k^kij'i
- b,w, < 2f2M££6,M££/ + Cfw£2£ + 2XukbiUki.

Hence

Lw < -2yf2M££,M££l + 2Í2m££Lu££

We now specialize to x = x°. Since w££(x°) > 0, we can substitute Lm££ from
(4.4) and still preserve the last inequality. Substituting afso Luk from (3.11),
we get

Lw < -yS\&ui& + 2S\((f(( + 0^- ß'(u - v)(u(( - ©«))

+ Cu2( - 2Xyukiuki + 2Xuk(fk + Dh* - ß'(u - v)(uk - vk)).

Choosing X sufficiently large and using also Lemma 3.3, we are led to the
inequality

Lw < C - J   at x = x°, (4.6)
where

J = 2ß'(u - ^[^«(«íí - v(() + Xuk(uk - vk)].

Noting that «££t>££ < "«ü« at x°, we find that

J > ß'(u - ü)[í2«£2£ - ?2(Ü££)2 + Xukuk - Xvkvk] > 0

where the last inequality is a consequence of (4.2).
Since w attains its maximum at x°,

Lw(x°) > c(x°)w(x°) > c0w(x°).

But since Lw < C — J < C at x°, we deduce that w(x°) < C. This completes
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376 L. C. EVANS AND AVNER FRIEDMAN

2uk<C,        I <k <m,xGQ0, (4.7)

the proof that ||w||¿»(Q) < C. It follows that

_92
H

for any direction £.
For a particular Lk, choose the coordinate system so that a¡k = S«. Then

- A«* - L\ + 2**^ - ckuk
K 9x,

duk<fk + 2¿,*^F- - ckuk < C.
OX;

By (4.7) we also have

9x2
It follows that

9 V

< C   for each i, x G ß0.

9x2
> - (n - 1)C,       x G ß.

Since x, can be any direction, the second mixed derivatives are also bounded.
The proof of the lemma is complete.   □

5. Passage to the limit as e —» 0. In this section we study the "truncated"
Bellman equation

max  (Lku(x) - fk(x)) = 0   a.e. in ß, (5.1)
1 <k<m

with the boundary condition

u = 0   on 9ß. (5.2)

Theorem 5.1. Let (1.1)—(1.5) and (1.8) hold. Then there exists a unique
solution u of(5.\), (5.2) such that

u G W'-»(O) n W¿e"(0). (5.3)

Proof. Denote the solution of (2.3), (2.4) by ut = (u\,u\,. . ., m").
From Lemmas 3.3, 4.1 we have the uniform estimates

\Duck(x)\ <C       (xg ß), (5.4)

\D\k(x)\ <C       (xG ß0) (5.5)
for any compact domain ß0 in ß. Take a sequence of e's (which we denote for
simplicity again by e) such that

uk -> ü*(x)   uniformly in ß, (5.6)

uk-^vk(x)   weakly in ^^(ßo) (5.7)

for anyp < oo and for any compact subdomain ß0 c ß.
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From the relation

ßt(uk-uri)=f-Lkuk
and (5.4), (5.5) it follows that

ße(uk - uk+1) < C   inß0.

Noting that ßc(t) -» oo if t > 0, e -» 0, we deduce that

««*(*) - ".*+ l(x) -> 0  if e -* Q, x e &
It follows that the vk defined in (5.6) satisfy v1 = v2 = • • • = vm = u. We
shall prove that

max  (Lku(x) - f(x)) = 0   a.e. in ß. (5.8)
1 <k<m

We begin by noticing that Lkuk < fk and that the weak convergence (in
(5.7)) preserves this inequality. Hence

Lku(x) - fk(x) < 0   a.e. in ß,

so that also

max (Lku(x) - /*(x)) < 0   a.e. in ß. (5.9)
\<k<m

To prove the reverse inequality we employ an argument of Evans [9] which
generalizes the Minty lemma to the space C(ß). Using the notation of §2 we
have, by the accretiveness of L + Be,

0 < [ut - <p, (L + Be)ut -(L + 5e)<p]+ -[*, - <p,/- (L + Be)$] +

= [«£-<p,/-Zxp]+, (5.10)

the last relation obtained by choosing <p with components <p' such that
<pl = <p2 = ■ ■ • = (¡pm =<p.

We take tp in C0°°(ß). Since uk -» u uniformly in ß, taking e -» 0 in the last
expression in (5.10) gives, according to (2.5) and Lemma 2.1,

0<[w-<p,/-Zxp]+=   max  [u - <p,/* - Lk<p}+ (5.11)

where ü is the vector with m equal components «.
By Lemma 2.2 of [9], for a.e. x° E ß there exists a sequence of functions

tpj G C0°°(ß) such that

D"<pj(x°) -> Dau(x°)       (0 < |a| < 2), (5.12)

9y(x°) - u(x°) = ||9y - «||c(2) > <pj(x) - u(x)

VxEß,   x^x°.      (5.13)
Taking <p = <p,. in (5.11) and using (2.7), (5.13), we get

0 <   max (Lk<p:(x°) - /*(x°)).
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Taking y -» oo and using (5.12), we find that

max  (Lku(x°) - fk(x0)) > 0   a.e.
1 <k<m

This completes the proof of (5.8).
The proof of uniqueness will be given in §7.    □
Remark. The applicability of the accretive operator methods to the Bell-

man equation was first noted by Pliska [15].

6. Existence for the Bellman equation. We shall now consider the "full"
Bellman equation

sup   (Lku(x) -fk(x)) = 0   a.e.inß (6.1)
1 <k<oo

with the boundary condition
u = 0   on 9ß. (6.2)

Theorem 6.1. Let (1.1)—(1.5) ana (1.8) hold. Then there exists a unique
solution u o/(6.1), (6.2) such that

u G W'--(Q) n W^(Q). (6.3)

Proof. Denote the solution of (5.1), (5.2) by um. Then

\Dum(x)\ < C       (x E 0) (6.4)
and, for any compact subdomain ß0 c ß,

\D\,{x)\ <C       (x E fi0); (6.5)
here C is a generic constant independent of m.

Let

Amv(x) a   max  (Lkv(x) - fk(x)),
1 <k<m

Av(x) a    sup    (Lkv(x) - fk(x)).
1 <&<oo

If <p E C0°°(ß) then the Lkq> are uniformly bounded and equicontinuous, so
that as m —» oo,

Am<p(x) —> Atp(x)    uniformly in ß. (6.6)

Consider Am as an operator in X = L°°(ß) with the domain

D(Am) = {vG Wo'--(a) n Wfr(Q);Amv(x) G ¿"(0)}.

Lemma 6.2. Am is accretive.

Proof. We recall (see Sato [16, p. 433]) that the bracket [ , ]+  in
X — L°°(ß) can be computed by

[f>g]+ " lim ess SUP 8(x) ■ sgn/(x)       (/ ^ 0) (6.7)
«1°       Q(/,e)
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where

ß(/, e) = {x E ß; |/(x)| > \\f]\L~m - e).
Now, if v,v G D(Am) then v — v is continuous in ß; and without loss of
generality we may assume that v — « takes a positive maximum ||t> — o||¿-.(a)
in ß. We have proven that [v — v, Amv — Amv\+ > 0, or, in view of (6.7),
that

lim ess sup(v4mo(x) — Amv(x)) > 0 (6.8)

where

Ge = ! x; v(x) — v(x) > max|t> — tJ| — e  .

The maximum principle of Bony [4] (see (2.12)) implies that (6.8) holds if Am
is replaced by each Lk; hence obviously (6.8) holds.    □

Using Lemma 6.2 we can now pass to the limit with m —» oo by an
argument similar to that used in Theorem 5.1. Indeed, for any <p G C£°(&),

0<[«m - <pMmwm - Am<p}+ =["m - <P> -AmV}+- (6-9)

In view of (6.4), (6.5), there exists a subsequence of um, which we again denote
by um, such that um -» u uniformly in ß, Dum -» Du in the weak star topology
of L°°(ß), Z)2^ -» Z)2k in the weak star topology of L°°(ü¿) (for any ß0,
ß0 C ß).

Taking m —* oo in (6.9) we obtain, using (6.6) and (2.5), [u — <p, — Aq>]+ >
0. Choosing œ = tf} as in the proof of Theorem 5.1, we get -4ax(x°) > 0.

Now, since
Da<pj(x°) - £>««(*0) ^0       (0 < |a| < 2)

and the coefficients of Lk are uniformly bounded, we conclude that

A<pj(x°)- Au(x°)^0.

It follows that Au(x°) > 0.
Conversely, since Lkum — fk < 0 a.e. in ß, k < m, we obtain

Lku - fk < 0   a.e. in ß.

Hence Au < 0 a.e. in ß. We have thus proved that u is a solution of (6.1),
(6.2) satisfying (6.3).

The uniqueness of the solution will be proved in §7.   □
Remark 1. The assumption c0 > 0 made in §§2-6 may be replaced by

c0 > 0. Indeed, if c0 = 0, we observe that the maximum principle still applies
to L — 81 provided 8 is positive and sufficiently small. Hence Theorem 2.3
remains valid (with L — 81 + Be w-accretive). Next, (3.1) holds with l/c0
replaced by some positive constant C. The remaining arguments now proceed
as before. Thus, Theorem 6.1 remains true also when c0 = 0.
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Remark 2. As a special case of Theorem 6.1 one can immediately establish
the existence and uniqueness of a solution for the problem

ht-FCt^-Kx)   in 0, (6.10)
w = 0   on9ß (6.11)

provided X > 0 and F(xy) satisfies the following conditions:
(a) F: R"2 ^ R is convex and C2,
(b) ZFxMj > Ylll2, y > 0 (elhpticity),
(c) \F(x) - 21^(*)^| < C Vx = (x^).

Indeed, writing

F(x) = max [ F\& + ^(€ ' (xo ~ &]>       * " &>>

we may rewrite (6.10) as a Bellman equation with

/í(x)=/(x) + /-(|)-2F;tj/(|)Íy;
it suffices to let £ range over a dense countable set in Ä" .

7. Probabilistic interpretation and methods. Let kx, .. ., km be positive
numbers. Consider the system of m variational inequalities

Z-'w, < /'   a.e. in ß,
u, <k¡ + ui+x   in a,

(Z/k, - /')(«, - k¡ - ui+x) - 0   a.e. in ß,        1 < i < m.       (7.1)
This system is the (formal) limit of the penalized problem

L\ + £(«, -k, -ui+x)=f   in a,
w,. = 0    on 9ß,        1 < / < m, (7.2)

where ßt(t) is the function constructed in §2.
We shall need the conditions

KV\bk\,\c%\fk\<C,
\Dak\, \Dbk\, \Dck\ < C. (7.3)

Under these assumptions and (1.1), (1.2), (1.4) and the additional condition
that |Z>/*| < C one can establish the estimates of §3 for the solution «, = «Ir
of (7.2) (cf. the proof of Theorem 7.2 below). These estimates will provide a
uniform modulus of continuity for solutions of (7.2) and these, in turn, imply
as we shall see below uniform W^ß) estimates (without using condition
(1.8)).

Let us now interpret (7.1) probabilistically (cf. Bensoussan and Lions [2] for
the case m = 2). This approach gives heuristic insight into the stochastic
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control situation modeled by (7.1) (and (1.6), (1.7)). As a bonus we shall
derive the W2,p(ß) estimate for. solutions of (7.2) under somewhat weaker
assumptions than those for the plan outlined above.

Consider the stochastic differential system

diXt) = a'(|(/)) dw(t) + b'ifit)) dt
where o'(x) is a symmetric matrix such that ¿(o'(x))2 is the matrix (aJk(x))
and b'(x) is the vector with components bj(x). Here w(t) is an n-dimensional
Brownian motion. Denote by ^t the a-field o(w(s), 0 < s < t).

For any sequence 9 = (9X,92, ... ) of % stopping times 9X < 92 < • • • <9,
< • • •  (9,Xoo if /t°o) we define the following process £(/):

1(0 = $>(/) if 9lm+J_ x<t< 9lm+J       (90 = 0)
where / is a nonnegative integer, and £(/) is continuous at t = 9¡ for all i.
Thus, |(0 switches cyclically from the stochastic system with generator V to
the stochastic system with generator Li+l (Lm+1 = L1), and it starts with
£(') = £*(') ii 0 < t <9X, |(0) = x. We shall assume for simplicity that
c'(x) a const = a > 0.

Introduce the cost function

JXx(0)^Ex

where T is the exit time from ß and

M(t)) ■/<*'(<))   iff«)-«'«. (7-4)
This cost functional represents a running cost (per unit time) of f'(x) when
the system is in state /, and a switching cost k¡ for any transition from state /'
to state 2 + 1, the entire cost discounted with a factor a.

Set w,(x) 5 infff Jx(9). More generally we can define £(/) which starts with
i(t) = i'(t) for 0 < t < 0„ and then proceed cyclically as before to change
from any state y to state y + 1. We denote the corresponding cost function by
Jx(9), and set

«,(x) = inîJx(9). (7.5)
B

Theorem 7.1. Assume that (1.1), (1.2), (1.4), (1.5), and (7.3) hold. Then
(«i, .. ., um) forms a solution of (7.1), belonging to C(ß) n ^^(ß) for any
p < oo. Conversely, every solution of (7.1) wA/cA belongs to C(Q) n fP^ßJ/or
some p > n/2 is given by (7.5) (an</ is therefore unique).

Proof. The second part of the theorem follows by a standard apphcation
of Ito's formula to functions in C(ß) n W^ß) (cf. [3] [11]). Thus it remains
to prove the existence of a solution of (7.1) which belongs to W^ß) for all
p < oo.

iTe-a'M(t))dt
•'n 2

/=0
2 kje-a»;*

*'/*
,<*•
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We truncate the cost function J'x(9) by restricting the number of 0,'s to be
at most N. Denote the corresponding cost function by JXN(9) and set
u¡N(x) = infs JXN(9). Thus, if N = 1 then u¡ is simply a solution of the
variational inequality

Vu] < /',       u] < kt,       {Vu} - /')(«/ - *») = 0,
that is, when N = 1 the obstacle for u,N is k¡.

Similarly, for any TV, the obstacle for u¡N is k¡ + h,+7 '• This in fact can be
proved in a standard way by the principle of dynamic programming, using
the strong Markov property.

It is well known (see, for instance, [3]) that if the obstacle is continuous
then the solution of the variational inequality is also continuous. Hence by
induction it follows that the u? are all continuous functions in ß.

We claim that

\uiN(x)-ui(x)\<C/N       (xGQ) (7.6)
where u¡(x) is defined by (7.5).

Notice first that
u,.(x) < u»(x) (7.7)

since any cost J'X'N(9) is also a cost Jx(9) (with 0, = 00 if y > N).
Next, in estimating u¡(x) from below we may restrict ourselves only to

"good" choices of stopping times 9¡. More specifically, since we may always
choose not to switch, it is clear that we may restrict the 9¡ to be such that

■T

lmfj>i   J "^J<T
<E, f  e-°>M(t))dt

Ja

Recalling that/is bounded, we conclude that in computing m,(x) it suffices to
take the infimum on 9 with 9k satisfying:

2 ¿de-«%<r] < C£j«-%<r] (7.8)i>j
for some C.

We may also restrict the 9k to be such that Jx(9) < C for some C
sufficiently large. In view of (7.8) and the boundedness of/, this implies that

I

Since the fth term is nonnegative and decreasing, it follows that

jEx[e-°»<Iej<T] <C. (7.9)

Using (7.8), (7.9) it follows that \JX(9) - 1^(9)1 < C/N for any 9 =
(9X,92,. . .), where 9 is obtained from 9 by dropping all the 9j withy > N. It
follows that u¡N(x) — u¡(x) < C/N, and recalling (7.7), the assertion (7.6)
follows.
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Since k/^x) are continuous in ß, (7.6) implies equicontinuity of the uf(x)
and the continuity of u¡(x) in ß.

At each point x° E ß we cannot have u¡(x°) = k¡ + ui+x(x°) for all 1 < /
< m. Hence there exist e0 > 0, 8 > 0 and some i such that

U¡(x) - kt - ui+x(x) <-e0   if |x - x°| < 5.

It follows that u¡N(x) < k, + ufo1 - e0/2 if |x - x°| < 5 if 7Y is sufficiently
large, say N > N0. Hence

L'u? = /'    if |x - x°| < 8,       N > N0.

Since   utN   is   uniformly   bounded,   the   standard   elliptic   estimates   give
|]ttf || w**(Gs) < £• f°r any P < oo, N > Nq, where Gs = (x; x E ß, |x — x°|
< 8/2} and C is a constant independent of N.

Considering ki_l + u¡N as an obstacle in the variational inequality for
u¡í\x, we then deduce that Bi$**'fl w^o ** C with a smaller 8. Proceeding in
this manner step by step m — 1 times, we find that \\ufiV\\ w**(gs) ̂  C
(\ < j < m - \, N > N0). Recalling (7.6) we deduce that ||w,||^v(Gj) < C.
Hence Uj G W2^).

Finally, taking #-» oo in the variational inequalities for 1^(1 < j < m)
we find that («„..., um) is a solution of the system (7.1).   □

Remark. Using the C1*1 regularity of solutions of variational inequalities
[6], the above proof establishes that «, E C M(ß) provided the /' are Holder
continuous and a,k, bk are in C2(ß).

The probabilistic idea underlying the penalized problem (2.3), (2.4) is that
ßt(uk — uk+l) represents (in some heuristic sense) a penalty for switching
from the stochastic system for |* to the stochastic system for £*+1. In the
limit case of the Bellman equation, there is no cost for switching. In fact,
Krylov [12] writes the solution u(x) of the Bellman equation (in R") as the
infimum of the cost functions

Jn
<^{r(,){a*'\t))i^_)dti=i (7.10)

where v(t) is any nonanticipative function with range 1, 2, .... If we restrict
v(t) to have the range 1, 2,. . . , m and to have only a countable number of
discontinuities at times 9X < 92 < . . ., 9,î<x>, and if further v(9¡ + 0) = v(9¡
- 0) + 1 (if v(9¡ - 0) < m; v(9¡ + 0) = 1 if v(9¡ - 0) = m), then this cost
coincides with the cost Jx(9) introduced above when T = oo and with no
penalty for switching (i.e., kj = 0 for ally).

It thus seems natural to try to obtain the solution u of the Bellman
equation (5.1), (5.2) as the limit of the solution of (7.1) as k = (kx, .. ., km) —*
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0. In fact we have:

Theorem 7.2. Let (1.1)—(1.5) and (1.8) hold. Then there exists a unique
solution uk = (uxk,_uk) of (7.1) with uk in Wl-°°(Q) n ^¿f(ß), and

m,*(x)-» k(x)    uniformly in ß   ask-rO, (7.11)
where u is the solution of (5.1), (5.2).

The proof is similar to the proof of Theorem 5.1. We first consider the
system (7.2) and prove that it has a unique solution (uxk,e, . . ., uk,t). Next we
derive estimates on w*,e analogous to those derived in §§3 and 4. In deriving
the estimate on Duk,e we get an inequality analogous to (3.15), with ß' = ß'(u
— v — kx) and with an extra term J = 2Xukxß'(u — v — kx) on the right-
hand side. Without loss of generality we may assume that u > 0 (otherwise
we derive the gradient estimates for uk'c + C instead of uk,e); consequently
J > 0, and we then continue as in §3. We can now take e —> 0 to obtain the
solution,(«*, . . . , uk) of (7.1). Finally, passing to the limit with k-*0 and
arguing as in §5, we find that (7.11) is valid where « solves (5.1), (5.2).   □

We can actually prove in a similar way that uk'e-» « if A: —»0, e -» 0. The
proof of Theorem 5.1 is in fact the case where k = 0, e -» 0.

Uniqueness for the Bellman equation. The proof of the uniqueness asserted
in Theorem 6.1 is similar to the proof of uniqueness for R" given by Krylov
[13] (see also [3, Chapter 4, §5]. One constructs a nearly optimal "feedback
control" on a subset of ß whose complement in ß has a small measure. The
crucial step is in being able to apply Ito's formula for a function in W¿£(B) n
C(ß) (p > n) for a process d£(t) = o(t) dw(t) + b(t) dt where o(t), b(t) are
bounded and nonanticipative. This, in turn, is established by using Krylov's
inequality [12]

< civil¿'(So)f\(t(t))dt
0

where ß0 is any domain with ß0 c ß and T0 is the exit time from ß0; C is a
constant depending only on a bound on a, b, o ~ ' and the diameter of a.

One can represent the solution of (5.1), (5.2) in the form (we take for
simplicity c'(x) = a)

(Te-«f(i(t))dt
J(\

u(x) — inf E-
e Ja

(7.12)

where /(£(/)) is defined by (7.4), 9 is any sequence of stopping times 9¡
increasing to oo and £(f) switches from each g to £k according to the rule: | ',
i2, i\ t2, I3, t\ I2, I3, i*A\_This fact follows from the probabilistic
interpretation of the solution of the "truncated" Bellman equation.

In the uniqueness proof for the Bellman equation one can choose a nearly
optimal "feedback control" v(t) on a subset of a whose complement has a
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small measure as follows: v(t) assigns the state |'(0 where £(/) is in closed set
A¡ c a, and the A¡ are disjoint sets. Using such controls, we can easily give
another proof of the assertion (7.12).   □

Remark. Uniqueness for a solution of the truncated Bellman equation (5.1)
is also immediate from the maximum principle of Bony [4].

We conclude this section with a generalization of Theorem 7.1 to the
system of variational inequalities

m
L% + 2 ß("i - «, - Kj) 3 /'   a.e. in a,

y=i

w, = 0   on 9a       (1 < 2 < m) (7.13)

where ktJ > 0 if i ¥*j, ku = 0.
We can again give a probabilistic interpretation of the solution (the

switchings cost k„ and need not be cyclic) and prove existence and unique-
ness as for Theorem 7.1. Another way to prove existence is to derive estimates
on the first derivatives of the solution of the penalized system

m

l%+ 2 &(«,-«,-**)=/'  in a,
y-i

u¡ = 0   on 9a       (1 < i < m) (7.14)

by the method of §3 and then proceed as in the proof of Theorem 7.1 to
derive W2* estimates. [The method of §3 requires the additional assumption
that \Df\ < C.)

In establishing the W2* estimates let us notice that for any x° E a we may
assume that ux < u2 < • • • < um at x°, and therefore

&(«,. - Uj - k0) = 0   if y > i

in Gs = {|x — x°| < 8) n a for some 8 > 0 and all e sufficiently small.
Therefore

L\=f\

L%+ 2 &(«,"«!-**)«/
7-1

for 2 < i < m.
Clearly ux G W^G^). We can now prove by induction that w, E W^Gg).

Indeed, to pass from / — 1 to i, we set y = u. + ki} (1 < j < i — 1) and
multiply (7.16) by t'fë~\u. - <pk) (1 < k < i), where fis a cutoff function

(7.15)

(7.16)
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with support in Gs. By integration by parts,

/¿wr't»; - 9k)

= fv(ui - %)*'#"'(«, - %) +/iV-MTi(i* - <P*)
> -c/V-'ivfitf-'te-ft)

-nfS'R{»i - %) - C(i»)/r'|¿'(ft)|'
> - C(ij) - 2r,jWp(Ui - <pk)        (Vt, > 0).

Since

&(«/- ^)#~'(«, ~ ft) > 0,
we easily get

]>#(«/ - Vk) < c.

It follows that L\ G L^Gg), so that u¡ G W^(Gg).
We have proved:

Theorem 7.3. Assume that (1.1), (1.2), (1.5) and (7.3) hold. Then there exists
a unique solution of (7.13) whose components belong to W2*^) for any p < oo.

8. The case of two operators. Consider now the system of two variational
inequalities

LW + ß(ul - u2 - kx) 3 fl   inß,

L2u2 + ß(u2 - ul - k2) 3 f2   in ß,

„' = „2 = 0   on 9a (8.1)
where kx > 0, k2 > 0, ß(t) = {0} if t < 0, ß(0) = [0, oo]. Consider also the
Bellman equation

max{L'u(x) - /'(x), L^x) - /2(x)} =0   in a,
u = 0   on 9a. (8.2)

We assume, in addition to (1.1)—(1.3) that

/' E H/'^(a)   for some p > n, (8.3)

c'(x) > oo,       c2(x) > a0, (8.4)

where Oq is sufficiently large depending on the coefficients of L' and on a.
Then [5] there exists a unique solution u of (8.2) in H3(Q) n H¿(£1), and it
belongs to C2'a(ao) for some a > 0 and for any domain ao with ao c a.
Further, by [10], u G C(ä).
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We denote the solution of (8.1) by (w¿, uk) where k = (kx, k^.

Theorem 8.1. 7/(l.l)-(1.3) a«¿/(8.3), (8.4) hold, then
u'k(x)-»u(x)    weakly in H2(Q)   ask^O. (8.5)

This theorem was stated in §7 for a general system (see Theorem 7.2) in
case a0 is any positive number, but only where the coefficients a,k(x) are
constants.

Proof. We shall use below an inequality of Sobolevsky [18] (for proof see,
for instance, [5]):

ÍLlv  L2vdx> C\\vf„Ha)       Vo E H2(B) n ZfJ(a),   C > O.   (8.6)

Clearly (8.1) implies

k2 < u&x) - u2(x) < *,. (8.7)

We shall now prove that

Kl«*« < C       C' - 1. 2) (8.8)
where C is a generic positive constant independent of k.

Set for simplicity uk = u,uk = v, L1 = L, L2 = M,f = f,f2 = g and

y, = / - Lluk G ß{u' - u>' - k,)       (i,j = 1, 2; i *>j).

Then (8.1) may be written in the form Lu + yx = /, Mv + y2 = g a.e. in a. It
follows that

(lu(Mu - Mv) + fyx(Mu - Mv) = [f(Mu - Mv), (8.9)
Jtt JQ JQ

( Mv(Lv - Lu) + fy2(Lv - Lu) = ( g(Lv - Lu). (8.10)
JQ JQ JQ

By the coercivity of M and L it follows that the second terms on the left-hand
sides of (8.9), (8.10) are nonnegative (cf. Brezis-Strauss [7, Lemma 2]).

Adding (8.9), (8.10) and using the Sobolevsky inequality we get

C(\\u\\2H2 +\\v\\2H2) < ff(Mu - Mv) + fg(Lv - Lu) + 2J MvLu.     (8.11)

hat 7,y2 = 0 a.e., and so (Lu — f)(Mv — g) = 0 ¡

(MvLu < £(||«||^2 + Boj&a) + -7 f(/2 + g2).
JO c   JO.

JQ J Ja

Observe next that y,y2 = 0 a.e., and so (Lu — f)(Mv — g) = 0 a.e. Hence

C
'a . e jo.

Using this in (8.11), the assertion (8.8) follows.
We can now take a subsequence of (uk, vk), which we again denote by

(uk, vk), such that (recall (8.7))

uk,vk-^w   weakly in Zf2(a). (8.12)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



388 L. C. EVANS AND AVNER FRIEDMAN

Since Luk < f, Mvk < g, we get Lw < /, Mw < g, so that

* a max(Lw - /, Mw - g) < 0,       we Zf2(a) n H¿(ü).     (8.13)
We shall prove that w = u, where u is the solution of (8.2).
From the probabilistic interpretation of uk, vk we deduce that

u < uk,       u < vk; (8.14)

therefore
u < w. (8.15)

This we can also prove by the maximum principle. Indeed, if (8.14) is not true
then without loss of generality we may assume that there exists a point
x° e a such that

(u - uk)(x°) = max(« - uk) > 0, (8.16)
D

max(u — uk) > max(w — vk). (8.17)
ü u

Then, by Bony [4],

/(x°) > Lu(x°) > ess lim sup Luk(x) = /(x°) — ess lim inf y„
x^Xo X~*X°

so that ess lim inf yx > 0. Hence uk(x°) > vk(x°). It follows that (u — tk)(x°)
> (u - k¿)(x°), which contradicts (8.16), (8.17).

Having proved (8.15), it remains to prove that w > u. Notice, by (8.13),
that

max{Lw - (/ + $), Mw - (g + $)} a 0
and /+<!></, g + <& < g. Hence it suffices to prove a comparison theorem
for the Bellman equation, namely,

if / < /, g < I   then « < u (8.18)
where ü is the solution corresponding to/, g.

For smooth fj,g,g the proof follows by the probabilistic interpretation of u,
ü or by a simple maximum principle argument using the C2+a(8) n C(ß)
regularity of u and ü.

To prove (8.18) for general fj,g,g, we approximate these functions by
smooth functions and use the following lemma.   □

Lemma 8.2. Let max(Lum - fm, Mum - gm) = 0 a.e. in a, um G H2(ü) n
H¿(Ü). Iffm ^f, gm^g in L2(a), then um^u in H2(Si).

Proof. We have Lum + ß(Mum - gm) 3 fm, Lu + ß(Mu - g) 3 f. Hence

L(um-u)+ym-y=fm-f (8.19)

where ym G ß(Mum - gm), y G ß(Mu - g). Multiplying (8.19) by M(um - u)
+ g ~ gm an<^ integrating over a we obtain, after using the Sobolevsky
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inequality,

c\K - «ll*> < 7ÍW- -y|I» + II&. - »Ii») + £IK - «Ii»
- f(ym - y)(M(um -u) + g-gm).JQ

Since the last integral is nonnegative (by the monotonicity of ß), the assertion
of the lemma follows.   □
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