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1. Introduction. Let (2, F, P) be a complete probability space
equipped with an increasing, right-continuous family of complete sub-o-
fields (F),s, such that F = VY, F,. Let X be an (F,)-adapted and right-
continuous process such that

(1) E’[S}IDX?]<°°, EX;1< o (20

where x*=max(z, 0) and x~=max(—x, 0). We define the following classes
of stopping times:

(2) C, = {r|stopping time, 7 = t, E[X;] < o},
C, = {r e C,| finite} ,

for each ¢ = 0, where X, is interpreted as limsup,..X,. A stopping
time o € C, is said to be optimal if E[X,] = sup..z, B[ X.]. Snell’s envelopes
Y and Y are defined as follows:
Y, = ess sup E[X.|F)], Y,=esssupE[X.|F)].
TeCly re(?t

Our aim is to give some extensions of the results in optimal stopping
and the penalty method presented by Fakeev [4] and Stettner and Zabezyk
[9]. In Section 2, we show that the right-continuity of Y follows from
that of X. This fact is not necessarily pointed out in other articles [4],
[7] and [10], and it plays an important role in Sections 3 and 4. In
Section 5, we introduce the generator A associated with non-Markov
processes. In Section 6, we assume that X is of the form X, =

t
e f, + Se‘“‘g,ds for some f, g, and we give a martingale treatment of

variationoal inequalities presented by Bensoussan and Lions [2] and ap-
proximate Snell’s envelope Y by the penalty method in [9], whose results
are reduced to the case of g = 0.

2. Right-continuous Snell’s envelope.

LEMMA 1. Let t=0,e >0 and A€ F, be arbitrary. Then there
exists T €C, such that E[Y I, £ E[X.1,] + .
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Proor. Let v, #e€C, and define ¢ = vl + pl; with B = {E[X, | F,] <
E[X,|F.]}. Then,

E[X,|F|] = esssup (E[X,| F}], E[X.| F}]),

that is, the class {F[X,|F,]|ve€C,} is closed under the operation sup.
By Proposition VI-1-1 of [6], there exists a sequence 7,€C, such that
E[X., | F]isincreasing and lim,_., E[ X, |F,]=Y,a.s. Since{E[X. |F]|n=
1,2, .-} dominates the random variable E[X, | F], the monotone conver-
gence theorem implies that lim,.. E[X, I,] = E[Y.I,] for each AcF,.
Thus the lemma is proved.

THEOREM 1. Let X be the process satisfying (1). Then there exists
a right continuous supermartingale Y majorizing X and satisfying:

@ Y, =Y, =Y. as,t=0,

(b) lim sup,%, Y, = lim sup,... X,

(¢) E[Y]= sup,eo,E[X] = sup..q, B[ X],

(d) For any o,7eC, with 0 <7, E[|Y.]] < « and E[Y.|F]< 7Y,

PROOF. We first note that X, <Y, <Y, a.s. for all ¢&. By Lemma
1, for any ¢ >0,t=s5=0 and AcF, there exists teC, such that
E[Y,I,) < E[X.1,] +¢. Hence,

E[Y. 1) < E[E[X.|F,]I,] + ¢ < E[Y,I,] +¢.

Letting ¢ — 0, we see that Y is a supermartingale. Define the process
Y by Y,=Y,,. Clearly, Y is a right-continuous supermartingale such
that X, <Y, <Y, a.s. for all t. For each u = 0, sup,», X, belongs to L'
by the inequalities X, < sup,., X, < sup,.. X,". Forany ¢ =wuandreC,

t] = E[sup X, t] ,

from which ¥, <Y, < E[sup,., X, | F,]. Letting { > ~, we see that
limsup?, < supX <o (uw=0),

t—roo

E[X.|F] < E[sup X,

and then, letting u — «, we obtain the inequality

lim squ = hm supX < oo,

Thus (b) follows from the fact that X, <,¥ for all ¢. For any teC,
and A€ F,,

(3) E[Y,.L]= E[Y.Lcw] + B[V, L]
2 E[X. Ligccw] + E[E[X | Filln 20l = E[E[X. | F]1],
that is, we have E[ X |F,] < f‘w. Applying the optional sampling theorem
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to the right continuous supermartingale (Y,,.), we obtain (d). By (d),
for any reC, E[X.|F, < E[Y.|F,]<Y, Thus we have ¥, <7, which
implies (a). From (a) it follows that sup..z, F[X.] = E[Y)]. By Lemma
1, for any & > 0, there exists r € C, such that E[Y,] < E[X.] + . Thus
we have E[¥,] < sup,.q, E[X.] +¢. Letting ¢ » 0, we obtain (c). Con-
sequently, the theorem is established.

3. Conditions for optimality.

THEOREM 2. o¢cC, is optimal if and only if E[X,|F]=Y, , for
all t.

ProoF. The sufficiency follows immediately from Theorem 1 (¢). To
prove the necessity, let us show that
(4) E[X,|F]=Y, on {t<o}.

By Theorem 1 (d), E[X,v.|F<E[Y,,.|F]<Y, from which E[X,|F,|<7,
on {t <o}. On the other hand, set B={E[X,|F,] <Y} and A= Bn
{t £ o). Suppose that P(A) > 0. Then, by Lemma 1, for any & with
0 <e< (B[YI)]— E[X,L,]), there exists v € C, such that

E[Y,I) < E[X.I] + ¢ < E[X.I] + E[Y,I] — E[X,L],

that is, E[X,I,] < E[X.I,]. Define peC, by

p = TIA ‘I" O'IAG == TIA + O-IBcﬂ(azt) + O.I(a<t) .
Then, E[X,] = E[X.I,] + E[X,I,] > E[X,I,] + E[X,I,.]] = E[X,], which
is a contradiction. Let o be optimal. Then we have E[X,]= E[Y,] =2
E[Y,] by Theorem 1, and so X, =Y,. By (4), for any A€ F,,

E’[i}t/\aIA] = E[YaIAﬂ(a<t)] + E[i}tIAﬂ(azt)]
= E[X, 1<) + EE[X,|F )20 = E[E[X,|F]I,] .

A~

Consequently, we have E[X,|F,] =Y,,,, completing the proof.

Since the process (¥, — E[sup, X,;'| F}]) is a negative right-contionuous
supermartingale, it belongs to the class (DL). By the Doob-Meyer
theorem, Y has a unique decomposition

?t = Mt - At ’
where M is a martingale and A is a predictable increasing process with
A,=0.

THEOREM 3. In order that there exists an optimal stopping time
o € C,, it 18 necessary and sufficient that the stopping time 6 =inf {t| X, =
M.} belongs to C,. In this case 6 s optimal in C,.
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PrROOF. By Theorem 2, we have
E[Xo I Ft] = Yt/\a = Mt/\a - At/\a .

Hence, (A,,,) is a predictable increasing martingale, and so A4,,, = 0.
Letting ¢ — o, we have M, =Y, = X,. Therefore, § < o < «, and X, =
Y, = E[X,| Fole L', i.e., 6 €C,. Conversely, since X, = Y, = M,, we have
A, = 0 and then ¥,,, = M,,,. By (3) and the definition of ¥,

F,:| .

Thus, it is easy to see that (Y,,,) is a uniformly integrable martingale.
By the optional sampling theorem, we have

E[X,|F) = E[Y,|F] =Y, .
By Theorem 2, 6 is optimal in C,.

E[X,|Fl< Vs E[sup X

4. Existence of optimal stopping times.
THEOREM 4. Suppose that for any sequence t, € C, increasing to <,
(5) limsup X, < X, on {7 < }.

n—o0

Then v = inf{t | X, =Yt} is optimal in C,, and there exists an optimal
stopping time o € C, if and only if ¥ < «~ a.s. If, in addition, lim, . X, =
—co, then ¥ is optimal in C,.

ProOOF. This is proved in [7], except the last assertion, but we
briefly sketch its proof. By Theorem 1 (b), for any integer =, it is
possible to show that z, = inf{t| X, =¥, — 1/n} is finite a.s. and X, =
ff,” — 1/n. According to the same arguments as in [10, Chap. 3, Lemma
19], we can prove that E[f’,n] = E[Y,]. Thus, it is clear that z,€C,
and

(6) E[¥.] = sup BIX] < E[X.] + 1/n .
TGUO
Let ¢ =lim,..7,. Then v < 7 a.s. and by (5) and (6),
E[Y)] = lim E[X.] < E[lim sup X] < E[X)].

Clearly, teC, and X.=Y.. Therefore, 7 =7 is optimal in C, and if
v < o a.s., then 7 is optimal in C,. Conversely, if there exists an
optimal stopping time o € C,, then X, =¥, by Theorem 8 and thus v <
o < o a.s. To prove theA last assertion, let us assume that P(y = o) >
0. By Theorem 2, lim,.,Y,,, = lim,_. E[X;| F,] = X;. Hence, lim, ...V, =
X; a.s. on {y = }. If lim,.. X, = —, it follows from Theorem 1 (b)
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that lim,..Y, = —oco, which is a contradiction. Thus the theorem is
established.

5. Generator A. For 1 < p < ~ fixed, let W? be the Banach space
of all right-continuous, (F,)-adapted processes z such that |z], =
|[sup, |®,] [|z» < . We set T,x(t) = E[x(t + s)|F,] for each s =0 and
x € W?, and define the linear operators {G,},., from W? into itself by

Got) = | Tatyds = B | o005 F.] .
0 t
Then, G, is one to one and satisfies the resolvent equation

(7) Ga_Gﬂ_l_(a_B)GaGﬁ:O (a)B>0)'

Indeed, interchanging the orders of integration, we obtain

G.Ga(t) = [S ~ate- “EH o0 gy drlF:ldleJ

[S S et g=Br= g e >d3 t:l
- {(oereerealpair]
¢

- EB:“( 8 — @) (et — e_‘g"‘”)x,dr‘ Ft]

= (B — o) (G, — Gpa(t) ,
which implies (7). Let Gx(t) = 0 for each ¢ = 0. Then G,x(t) = 0 for
all 3 >0 by (7). Hence T.x(t) = 0 for all s = 0 by the right-continuity
of the mapping s — T,x(t). Thus, taking s = 0, we have z, = 0. This
implies that G, is one to one. Therefore, G (W?) and a — G;' are
independent of «. Consequently, we can define the subelass D(A) of
W? and the generator A from D(A) into W? by D(A) = G (W?) and
A=a—G"
LEMMA 2. Let x,c€ W? and y<€ D(A). Then we have:
t
(i) w, = Sc,dr implies x € D(A) and Az = c.
0
(ii) A(e*y)(t) = e (—a + A)y().

ProOF. Interchanging the orders of integration, we have

aG.a(t) = ae“‘EB (S o dr)ds‘F]

= ae“‘EUZ(St e“"’ds)crdfr + St <Sje““‘ds>c,dr‘Ft:|

= xt + Gac(t) ’
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which implies (i). Let y = G,x for x€ W*. Integrating by parts, we
obtain

G (e > x)(t) = e“‘EI:S:oe‘“‘(e‘“‘x,)ds‘Ft:|
= e"‘E|:|:e‘“‘( —S:oe‘”"x,dfr)]:o + aS:oe’“‘<~S:oe""’x,d'r)dle,]
= ¢ "G x(t) — aG (e * (G x))(t) .

Thus, (aG, — e >y = G (e *(—a + A)y), which implies (ii).
THEOREM 5. Let ye D(A) and s =0. Then,

Ty(s) — y(s) = StT,Ay(s)d'r for all t=0.
0
ProOF. Let y = G for x€ W?. Integrating by parts, we obtain
S T.AG,x(s)dr — aEU G.a(s + r)dr ] U”x(s + r)dr F]
0
= B[ (e ({"emnan)ir |, ] + B | Ve ar | R
- femeal

— E E|:S e—a(r—(t+s))xrdr Ft+s:|
L t+s

COROLLARY. Let x€ D(A) and Ax £ 0. Then x is a supermartingale.

F] — Ga(s) .

This completes the proof.

ProOF. The proof is immediate from Theorem 5.

REMARK. Let xe€ W?. Then 2 is a martingale if and only if Ax =
0. Indeed, the sufficiency is immediate from Theorem 5. Conversely,
let x€ W? be a martingale. Then « can be rewritten as z, = E[x.|F,]
for some x. € L?. Hence,

Ga(t) = E[re‘““'”E[xw | F,]ds'Ft] - E[Sme’“““”xwds
t t

t:' = x,/a .
Thus, we have x € D(A) and Ax = 0.

, 6. The penalty method. Let f, ge W= and set X, = e *f, +
Se““g,ds for « > 0. Let U be the class of all adapted and right-con-
0

tinuous processes z such that

(8) e*ze W> and lime*2, =0 a.s.,

t—ro0
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(9) fi <z forall t,
10) <e‘°"zt + Ste‘“‘g,ds> is a supermartingale .
(]
We next consider the penalized problem, defined as follows: to find
the solution z:e W= of the following equation
1) (a— Az —e(f —2)r=g, €>0.
Then we can obtain the following theorem.

THEOREM 6. The solution z° of (11) converges to the minimal element
z2* of U almost surely for each t as €| 0 and

12) 2*(t) = esssup K l:e“""““ fr + Sre“”"‘“ g,dlet} .
i t

telCy

Furthermore, if f satisfies (5), then { = inf{t|2*(¢) = f.} is an optimal
stopping time in C, with respect to X.

For the proof, we need the following lemmas.
LEMMA 3. Equation (11) has a unique solution z°e€ D(A).
PrOOF. Let xe W=, and define z = T.x by

3

2(t) = EBt - (g | gy x(s))ds‘Ft] .

Then T. maps W= into itself. Moreover, for 2z, = T.x;, with x,€ W*
(# =1, 2), we have
[2,(t) — 2,(t)| = Sje“““""‘E"E[If Va(s +t) — f Vs + t)|| Filds
= (ae + 1)7'E[sup |a,(r) — x(r)| | F] .

Thus, ||z, — 2,||l. = (@e + 1)7*||®, — %, ]|, and so the map T, is a contrac-
tion. A fixed point z¢ of T, satisfies

2(t) = E[Sme““ﬂ_'“’“’(g, + e X(f — 2°)¥(s) + e-lzs(s))dle,] .
t
By virtue of Lemma 1 of [9], this equality is equivalent to
(13) 2= G, (g +e'(f — 29,
which completes the proof.

Let V. be the class of all progressively measurable processes v = (v,)
satisfying the inequalities 0 < v, < ¢! for all ¢. For each veV,, we
define
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J(v) = E[S” exp(—gea +v,dr)g. + v, f,)dlet:l .
Then we can obtain the following lemma:

LEMMA 4. Let v'(t) =€ if 25() < f,, and v(¢) =0 if 2:(t) > f.
Then we have

(14) 2(t) = J,(v°) = esssup J,(v) .
veV,
PrOOF. By virtue of Lemma 1 of [9] and (13),

#(t) = B| | exp(~{a + 0.dr)g, + & = 2)°6) + v.26)ds

t

")
- J,(v)+EUj exp (—S:aw,dr)(v,(zi— F)(8)+ e~ (f —2°)H(s))ds F,] .

For any ve V,, we have v(z* — f) + ¢(f — 2°)* = 0, and also v*(z* — f) +
e(f —2)" =0. Thus we obtain (14).

LEMMA 5. Let ze U and ge W>*. Then

esssup J:(v) < 2, for all t,

vevV,
where Ji(v) = E[r exp(—ssa + v,dr)(g8 + v,z,)dlet}
t t

Proor. We denote y, = e *(z, — G,g(t)). Since (y,) can be rewritten

as
¢

Y, = e %z, + S e “g.ds — E[Swe‘“g,ds’Ft} s
0

0

(y,) is a supermartingale such that lim,..y, = 0. By virtue of Lemma
4 of [9], we have

E[ST exp(—SZv,dr)('v,y,)ds‘FJ =Y.
Also, by virtue of Lemma 1 of [9], G,g can be rewritten as
Go®) = B |"exo(={'a + v.dr)(a. + 0.6.060ds|F.].
Hence,
(o) — Gug®) = e8] | exp (| v.dr)w)ds| 7.
S ey =2, — G,

which completes the proof.

PrROOF OF THEOREM 6. By virtue of Theorem 1, the right hand side
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of (12) admits the right-contAinuous modification, denoted by 2z’. Right-
continuous Snell’s envelope Y of X is of the form

A T t
Y, = esssup E': e~ f. + S e”“'g,ds,Ft:I = g™z, + S e *g.ds .

reEt 0 [
By using Theorem 1, it is easy to check that 2z’ belongs to U. For any
ze U, by (8)-(10),

~ T [
Y, < esssup E [e“"’zr + S e“""g,,dle,J < e %z, + S e “g.ds .
z€0y 0 0
This implies that 2’ is a minimal element of U. By (9), (14) and Lemma 5,
2°(t) = ess sup E[r exp (— Saa + v,dr)(ga + v,f,)dle,:l
t t

VeV

< esssup E[Swexp <— Ssa + vrdqﬁ)(g, + v,2")ds
t t

VeV,

Ft] <z,

and z°(t) is increasing as ¢ | 0. Thus we can define 2*(¢) = lim, ;, 2°(¢) a.s.,
and we show that z* belongs to U. By Lemma 2,

A(e""“ze @) + g:e“"’g,ds> = —e *(a — A)z(t) + e %y,
=e*(—e(f —2)" () =0.

t
Hence, by Corollary to Theorem 5, <e‘“‘z‘(t) + Se‘“‘gsds is a supermar-
[}

tingale. Thus, by the monotone convergence theorem and Theorem 16 of
i
[6, Chap. VI], it is easily seen that (e""tz*(t) + g e‘“’g,ds) is a right-
[}
continuous supermartingale, i.e., z* satisfies (10). By the inequalities
<2 <2, 2* satisfies (8). By (11), it is clear that G (f — 29t =
¢zt — G,9) < (7' — G,g9), which converges to zero as € | 0. Hence, by
the monotone convergence theorem, we have G, (f — z*)* =0, which
implies that z* satisfies (9). Collsequently, z*e U and (12) follows from
the minimality of 2’. Finally, Y can be rewritten as
Y, = e tz*(t) + gte_“’g,ds .
0
Therefore, we have { = inf {¢| X, = ¥,}, which is optimal in C, by Theorem
4. The theorem is established.
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