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1. Introduction. Let (Ω, F, P) be a complete probability space
equipped with an increasing, right-continuous family of complete sub-α -
fields (Ft)ffc0 such that F = yt^0Ft. Let X be an (F t)-adapted and right-
continuous process such that

( 1 ) JsΓsup xf\ < oo , E[Xτ] < oo (t ^ 0)

where x+=ma,x(x, 0) and ar = max(—as, 0). We define the following classes
of stopping times:

, 9 x Ct = {τ\ s t o p p i n g t i m e , τ^t, E[X~] < oo} ,
1 Ct = {τeCt\ finite} ,

for each t ^ 0, where Xo is interpreted as lim s u p ^ Xt. A stopping
time σ 6 Co is said to be optimal if E[Xσ] = supre ^^[-STJ- SnelΓs envelopes
Y and F are defined as follows:

Yt = ess sup jE[Xr I Ft] , F t = ess sup E[XT \ Ft] .

Our aim is to give some extensions of the results in optimal stopping
and the penalty method presented by Fakeev [4] and Stettner and Zabczyk
[9]. In Section 2, we show that the right-continuity of Y follows from
that of X. This fact is not necessarily pointed out in other articles [4],
[7] and [10], and it plays an important role in Sections 3 and 4. In
Section 5, we introduce the generator A associated with non-Markov
processes. In Section 6, we assume that X is of the form Xt =

e~atft + \ e~a8g8ds for some /, g, and we give a martingale treatment of
Jo

variational inequalities presented by Bensoussan and Lions [2] and ap-
proximate SnelΓs envelope Y by the penalty method in [9], whose results
are reduced to the case of g = 0.

2 Right-continuous SnelΓs envelope.

LEMMA 1. Let t ^ 0, ε > 0 and AeFt be arbitrary. Then there
exists τeCt such that E[YtIA] ^ E[XJΛ] + ε.
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PROOF. Let v, μ e Ct and define σ = vIBc + μIB with B = {E[X, \ Ft] <
E[Xμ\Ft]}. Then,

E[Xσ I Ft] = ess sup (E[XU \ Ft], E[Xμ | FJ) ,

that is, the class {E[XV\Ft]\veCt} is closed under the operation sup.
By Proposition VI-1-1 of [6], there exists a sequence τn e Ct such that
E[XTn I Ft] is increasing and lim^E[XTn\F t] = Yt a.s. Since{#[Xr*\Ft]\n=
1, 2, •} dominates the random variable E[XTl | Ft], the monotone conver-
gence theorem implies that lim^^ E[XTnIA] = E[YtIA] for each AeFt.
Thus the lemma is proved.

THEOREM 1. Let X be the process satisfying (1). Then there exists
a right continuous supermartingale Ϋ majorizing X and satisfying:

(a) Ϋt =Yt =Yta.s., t ^ 0 ,
(b) lim supt-̂ oo Ϋt = lim s u p ^ Xt,
(c) E[Ϋt] = sup r e^ E[Xτ] = sup r e 5 ί E[Xr],
(d) For α ^ σ, τ e Co with σ ^ τ, ^[IΓ i] < oo ^

PROOF. We first note that Xt ^ Yt ^ ? f a.s. for all ί. By Lemma
1, for any ε > 0 , t ^ s^ 0 and A e F8, there exists τ eCt such that
J T O I J ^ £ [ I r ί J + e. Hence,

E[YtIA] ^ E[E[Xτ I F J I J + ε ^ £?[FΛ] + ε .

Letting ε -+ 0, we see that 7 i s a supermartingale. Define the process
Ϋ by Ϋt = F ί + . Clearly, f is a right-continuous supermartingale such
that Xt 5j F t ^ F t a.s. for all t. For each u ^ 0, s u p ^ X8 belongs to L1

by the inequalities Xu ^ sup8^w Xs ^ sups^w Xs

+. For any t ^ u and τ 6 Ctf

E[XT\Ft] ^ ^ΓsupX8 FΛ ^ ΐ?Γsup X8 Ft] ,

from which Ϋt ^Yt ^ -2£[supβ2Ξ% X s | Ft]. Letting t —> oo, we see that

lim supF t ^ sup Xβ < oo (u ^ 0) ,

and then, letting u —• oo, we obtain the inequality

lim sup Ϋf ^ lim sup -XΓt < oo .
t-*oo t—*oo

Thus (b) follows from the fact that Xt£tΫ for all t. For any τeCt

and AeFt9

(3) J&[flAA] = ϊ [ ^ π c < « ] + E[ΫtIAςnτ>=t)]

^ E[XTIA,iτ<t)] + E[E[Xτ I F J / A n ( r t l ) ] = ^[J^[X r I Ft]IA] ,

that is, we have E[Xτ\Ft] ^ F < Λ Γ . Applying the optional sampling theorem
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to the right continuous supermartingale (YfΛr), we obtain (d). By (d),
for any τ e Ct, E[Xτ \ Ft] ^ E[Ϋτ \ Ft] ^ Ϋt. Thus we have Ϋt ^ Ϋt which
implies (a). From (a) it follows that sup r 6^ E[Xτ] <^ E[Ϋt]. By Lemma
1, for any ε > 0, there exists τ eCt such that E[Ϋt] <; E[Xτ] + ε. Thus
we have E[Ϋt] ^ supreί7f E[Xτ] + ε. Letting ε->0, we obtain (c). Con-
sequently, the theorem is established.

3. Conditions for optimality.

THEOREM 2. σeC0 is optimal if and only if E[Xσ\Ft] =ΫtΛσ for
all t.

PROOF. The sufficiency follows immediately from Theorem 1 (c). To
prove the necessity, let us show that

(4) E[Xσ\Ft]=Ϋt on {t^σ}.

By Theorem 1 (d), E[XσVt\Ft]^E[ΫσVt\Ft]^Ϋtf from which E[Xσ\Ft]^ Ϋt

on {t ^ σ}. On the other hand, set B = {E[Xσ | Ft] < Ϋt} and A = B Π
{t ^ σ}. Suppose that P(A) > 0. Then, by Lemma 1, for any ε with
0 < ε < (E[ΫtIA] — E[XσIA]), there exists τ eCt such that

E[ΫtIA] <ί E[XJA] + ε < E[XJA] + E[ΫtIA] - E[XσIA] ,

that is, E[XJA] < E[XJA]. Define psC0 by

p = τIA + σIAc = τIA + σIBCf](σZt) + σl{σ<t) .

Then, E[XP] = E[XJA] + E[XJAC] > E[XJA] + E[XσIAc] = E[X.], which
is a contradiction. Let σ be optimal. Then we have E[Xσ] = £/[Γo] ^
ί;[yσ] by Theorem 1, and so Xσ =Ϋσ. By (4), for any AeFt,

E[ΫtAσIA] = E[ΫσIA,{σ<t)] + E[ΫJAίHM)]

= E[XJAΓ]{σ<t)] + E[E[Xσ\Ft]IAf]^t)] = E[E[Xσ\Ft]IA] .

Consequently, we have E[Xσ \ Ft] = ΫtAσ, completing the proof.

Since the process (Ϋt — i?[sup8 X+\Ft]) is a negative right-contionuous
supermartingale, it belongs to the class (DL). By the Doob-Meyer
theorem, Ϋ has a unique decomposition

Ϋt = Mt - At ,

where Λf is a martingale and A is a predictable increasing process with

Λ=0.

THEOREM 3. In order that there exists an optimal stopping time
σ 6 Co, it is necessary and sufficient that the stopping time θ = inf {t\Xt —
Mt) belongs to Co. In this case θ is optimal in Co.
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PROOF. By Theorem 2, we have

E[Xσ\Ft]=ΫtAσ = MtAσ-AtAσ.

Hence, (AtAσ) is a predictable increasing martingale, and so AtAa = 0.
Letting t —> oo, we have Ma—Ϋa — Xσ. Therefore, θ <; σ < oo, and X* =
Ϋθ = -EtX I F<?] e L1, i.e., 0 6 Co. Conversely, since X, = Ϋ, = Jtf,, we have
Aθ — 0 and then Γ ^ = ΛftΛ̂ . By (3) and the definition of Ϋ,

E[X§\Ft]£ ΫtAθ^.

Thus, it is easy to see that (ΫtAθ) is a uniformly integrable martingale.
By the optional sampling theorem, we have

ΊpV Y \ τp Λ TPΪV I ΊP Ί _ V"

i^L^l^ljΓj — J2J[I0 \ Jo t\ — ϊ t A e .

By Theorem 2, 0 is optimal in Co.

4. Existence of optimal stopping times.

THEOREM 4. Suppose that for any sequence τn 6 CQ increasing to τ,

(5 ) lim sup Xτ <̂  Xτ on {τ < oo} .
7 = inf{£ I Xt = Y"J is optimal in COf and there exists an optimal

stopping time σeC0 if and only ifΎ< °° a.s. If, in addition, lim ôo-X"* =
— oo, then 7 is optimal in CQ.

PROOF. This is proved in [7], except the last assertion, but we
briefly sketch its proof. By Theorem 1 (b), for any integer n, it is
possible to show that τn = inf {t\Xt ^Ϋt — 1/n} is finite a.s. and XTn ^
Ϋτ% — 1/n. According to the same arguments as in [10, Chap. 3, Lemma
19], we can prove that E[ΫTn] = E[Ϋ0]. Thus, it is clear that τneCQ

and

(6 ) E[ΫQ] = sup E[Xτ] ^ E[XτJ + 1/n .
r e C'o

Let τ = lim^oo τn. Then τ ^ 7 a.s. and by (5) and (6),

E[Ϋ0] = lim E[Xτλ ^ EΪlim sup x l ^ E[Xr] .

Clearly, τ eC0 and Xτ — Ϋτ. Therefore, τ = 7 is optimal in Co and if
7 < oo a.s., then 7 is optimal in <70. Conversely, if there exists an
optimal stopping time σ 6 Co, then Xσ — Ϋσ by Theorem 3 and thus 7 ^
σ < oo a.s. To prove the last assertion, let us assume that P(7 = oo) >
0. By Theorem 2, l im^f t Λ Γ = l i m ^ E[Xr \ Ft] = Xr. Hence, lim^eof, =
Xr a.s. on {7 = co}. If lim^oo-Σ"t = — oo, it follows from Theorem 1 (b)
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that ^
established.

= — oo. which is a contradiction. Thus the theorem is

5. Generator A. For 1 < p ^ oo fixed, let Wp be the Banach space
of all right-continuous, (Ft)-adapted processes x such that ||a&||p =
||sup t \xt\ \\LP < oo. We set T8x(t) = E[x(t + s)\Ft] for each s ^ 0 and
x 6 Wp, and define the linear operators {Gα}α>0 from TΓP into itself by

Gax(t) = ^e-«8T8x(t)ds = EΪ\ V β (- t }a? fώ F,Ί .

Then, Gα is one to one and satisfies the resolvent equation

(7) Ga - Gβ + (a - /9)GβG, = 0 (α, /3 > 0) .

Indeed, interchanging the orders of integration, we obtain

GaGβx(t) =

which implies (7). Let Gax(t) = 0 for each t ^ 0. Then Gβx(t) = 0 for
all /3 > 0 by (7). Hence Tsx(t) = 0 for all s ^ 0 by the right-continuity
of the mapping s—> T8x(t). Thus, taking s = 0, we have xt = 0. This
implies that Gα is one to one. Therefore, Ga(Wp) and a — G"1 are
independent of α. Consequently, we can define the subclass D(A) of
Wp and the generator A from D(A) into Wp by D(Λ) = Gα(TFp) and
A = α - G"1.

LEMMA 2. Lei α?, ce Wp α'/icί j/ei)(A). Γfte^ we have:

S t

crdr implies xeD(A) and Ax = c.
(ii) A ( e ^ ) ( ) ί( A ) ( )

PROOF. Interchanging the orders of integration, we have

aGax(t) =

Gac(t) ,
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which implies (i). Let y = Gax for x e Wp. Integrating by parts, we
obtain

Ga(e-«'x)(t) = eat Ft~\

t~\

- e-«*Gax(t) - aGa(e-«\Gax))(t) .

Thus, (aGa - I)e~a'y = Ga(e~a'(-a + A)y), which implies (ii).

THEOREM 5. Let yeD(A) and s ^ 0. Then,

Tty(s) - y(s) = [TrAy(s)dr for all t ^ 0 .
Jo

PROOF. Let y = Gax for x e Wp. Integrating by parts, we obtain

I TrAGax(s)dr = aE\ \ Gax{s + r)dr F8 — E I x(s + r)dr
Jo LJo J LJo

t+s /f°° \ "1 ΓΓ ί + s

β \Jr / J LJβ

]ί+s ~|

F8
8 J

e-«(*-(*+-)>a.rdr i r t + Ί F8\ - Gax{s) .
8 J J

This completes the proof.

COROLLARY. Let x e D(A) and Ax <̂  0. Then x is a supermartingale.

PROOF. The proof is immediate from Theorem 5.
REMARK. Let xeWp. Then x is a martingale if and only if Ax =

0. Indeed, the sufficiency is immediate from Theorem 5. Conversely,
let x e Wp be a martingale. Then x can be rewritten as xt — E[x«> \ Ft]
for some x^eL9. Hence,

Ft t~] = ^ / α .Gax(t) =

Thus, we have xeD(A) and Aa; = 0.

6. The penalty method. Let f, geW°° and set Xt = e~atft +

S t
e~a8g8ds for a > 0. Let C7 be the class of all adapted and right-con-

p
tinuous processes z such that
(8) e~a'z e W°° and lim e~a% = 0 a.s.,

ί-*oo
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( 9 ) ft^Zt for all t ,

(10) (e~atzt + I e~a8g8ds) is a supermartingale .

We next consider the penalized problem, defined as follows: to find
the solution zε e W°° of the following equation

(11) (α - A)zε - e-\f - zε)+ = g , ε > 0 .

Then we can obtain the following theorem.

THEOREM 6. The solution zε of (11) converges to the minimal element
z* of U almost surely for each t as ε I 0 and

(12) z*(t) = esssup J
rβC t ί

Furthermore, if f satisfies (5), then ζ = mf{t\z*(t) = ft) is an optimal
stopping time in CQ with respect to X.

For the proof, we need the following lemmas.

LEMMA 3. Equation (11) has a unique solution zεeD(A).

PROOF. Let x e W°°, and define z = Tεx by

z(t) = ̂ [ j V ( β + -1)(-"(flr. + ε"1/ V α?(β))

Then Tε maps W°° into itself. Moreover, for zt = Γ,^ with a;, 6
(i — 1, 2), we have

- ».(ί)l ^ ( V ^ ^ ' e " 1 ^ ! ! / V ^(β + t) - / V x2(s + t)\\Ft]ds
Jo

^ (αe + l

Thus, | | ^ — z2\\oo ^ (αε + I)" 1 \\x1 — ̂ lU, and so the map Tε is a contrac-
tion. A fixed point zε of Γε satisfies

z\t) =

By virtue of Lemma 1 of [9], this equality is equivalent to

(13) zε - Ga(g + e-\f - zε)+) ,

which completes the proof.

Let Vε be the class of all progressively measurable processes v = (vt)
satisfying the inequalities 0 ^ vt ^ ε"1 for all t. For each ve Vε, we
define
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JtiV) = .

Then we can obtain the following lemma:

LEMMA 4. Let vε(t) = ε"1 if zε(t) <, ft, and v\t) = 0 if z\t) > ft.

Then we have

(14) zε(t) = Jt(vε) = ess sup Jt(v) .
veVε

PROOF. By virtue of Lemma 1 of [9] and (13),

z\t) = E\\ expf — Γα + vrdr\g8 + e~\f - ^ε)+(s) + v8z%s))ds

.

For any t; e Fε, we have v(zε - /) + ε"^/ - ze)+ ^ 0, and also vε{zε — /) +
ε-χ(/ - sε)+ = 0. Thus we obtain (14).

LEMMA 5. Let zeU and geW°°. Then

ess sup J[{v) ^ zt for all t ,
vevε

where J't{v) = E\ I expί —\ a + vrdr\g8 + v8zs)ds Ft .

PROOF. We denote yt = e~a\zt — Gag(t)). Since (yt) can be rewritten

as

Vt =

(?/t) is a super martingale such that lim^oo ^ = 0. By virtue of Lemma
4 of [9], we have

Also, by virtue of Lemma 1 of [9], Gag can be rewritten as

Gag(t) = #βjexp(-j 'α + vrdr)(gs + v

Hence,

Jl(v) - Gag{t) = e

α t

J

^ «"'»* = zt - Gag{t) ,

which completes the proof.

PROOF OF THEOREM 6. By virtue of Theorem 1, the right hand side
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of (12) admits the right-continuous modification, denoted by z'. Right-
continuous SnelΓs envelope Ϋ of X is of the form

Ϋt = e s s s u p # [ V α r / r + \Te-a8g8ds Ft~] = e~atz't + [e-a8g8ds .
τect L JO J Jo

By using Theorem 1, it is easy to check that zf belongs to U. For any
zeU, by (8)-(10),

y πΓ - fΓ - ™Ί ί1 -
Yt ^ ess sup E e aτzτ + \ e a8g8ds £ t\ = e *t + I β a8g9ds .

τeΊjt L JO J JO

This implies that zr is a minimal element of U. By (9), (14) and Lemma 5,

zε(t) = ess sup E\ \ exp ( - \ a + M r \ g s + v8f*)ds FA
vevε LJί \ Jt / J

Γf°° / f8 \ / -rri

^ e s s s u p E\ \ e x p ( — \ a + v r d r ){g8 + v8ί2; s ) α s Ft\^ z t ,
vevε LJί \ Jί / J

and zε(t) is increasing as ε | 0. Thus we can define z*(t) = \imεloz
ε(t) a.s.,

and we show that z* belongs to U. By Lemma 2,(e~atzz{t) + JV"β 0 .ώ) = - e " α ί ( α - A)«ε
e~atgt

= e - ^ - e - V - sε)+(*)) ^ 0 .

Hence, by Corollary to Theorem 5, ( e~atzε(t) + I β~αβ5r8ds j is a supermar-
tingale. Thus, by the monotone convergence theorem and Theorem 16 of
[5, Chap. VI], it is easily seen that (e~atz*(t) + 1 e~assg8ds\ is a right-
continuous super martingale, i.e., z* satisfies (10). By the inequalities
zε ^ z* ̂  z\ z* satisfies (8). By (11), it is clear that Ga(f - zε)+ =
ε{zε — Gag) <; e(z' — Gag)y which converges to zero as ε [ 0. Hence, by
the monotone convergence theorem, we have Ga(f — z*)+ = 0, which
implies that 2* satisfies (9). Consequently, z* e U and (12) follows from
the minimality of zf. Finally, Ϋ can be rewritten as

Yt = e-
atz*(t)

Jo

Therefore, we have ζ = inf {t \ Xt = Yt}, which is optimal in Co by Theorem
4. The theorem is established.
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