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Abstract

We consider a class of optimal stopping problems where the ability to stop depends on
exogenous Poisson signal process – one can only stop at the Poisson jump times. Even though
the time variable in these problems has a discrete aspect, a variational inequality can be obtained
by considering an underlying continuous time structure. Depending on whether stopping is
allowed at t = 0, the value function exhibits different properties across the optimal exercise
boundary. Indeed, the value function is only C0 across the optimal boundary when stopping
is allowed at t = 0 and C2 otherwise, both contradicting the usual C1 smoothness that is
necessary and sufficient for the application of the principle of smooth fit. Also discussed is an
equivalent stochastic control formulation for these stopping problems. Finally, we derive the
asymptotic behavior of the value functions and optimal exercise boundaries as the intensity
of the Poisson process goes to infinity, or roughly speaking, as the problems converge to the
classical continuous-time optimal stopping problems.
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1 Introduction

Optimal stopping problems have many applications in engineering, economics and finance; see e.g.
[1]-[4], [6], [8]-[11]. The usual setting is either in continuous time where stopping times can take any
value in a certain time interval, or in discrete time where stopping times can only take values in a
pre-specified grid. Explicit solutions to these problems, which are valuable for subsequent analysis,
are rarely available except in some simple continuous time problems with infinite time horizon. To
fix ideas, let us consider a classical irreversible investment problem, which is also equivalent to an
perpetual American option pricing problem; see e.g. [6, 9].

∗Research supported in part by the National Science Foundation (NSF-DMS-0072004) and the Army Research
Office (ARO-DAAD19-99-1-0223).
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Suppose a firm is considering a certain investment opportunity. At any time t, the firm has an
option to pay a fixed cost K to install an investment project, whose market value St is stochastic
and assumed to be a geometric Brownian motion:

dSt

St
= b dt + σ dWt, S0 = x; t ≥ 0.

Here W = (Wt,Ft) is a standard Brownian motion, and σ > 0 and b are constants that stand for
volatility and drift, respectively. The payoff from this option at time t is therefore (St − K)+ ·=
max{St−K, 0}, and the firm wants to maximize its expected present value by judiciously choosing
an investment time. This is equivalent to an optimal stopping problem

v(x) .= sup
τ∈S

Ex
[
e−rτ (Sτ − K)+

]
,

where r is the discount rate (r > b), S is the set of all admissible stopping times (investment times),
and Ex denotes expected value given S0 = x.

Usually S is the set of all stopping times taking values in [0,∞], which means that the firm
can pay the cost K and install the project at any time. A closed-form solution has been obtained
under these assumptions. A discrete time version of this optimal stopping problem would restrict,
for example, S to be the set of all stopping times taking values in the time grid {nh : n ≥ 0}, where
h > 0 is a constant. However, to the best knowledge of the authors a closed form solution has not
been obtained for this problem.

Even though the continuous-time model is more likely to yield an explicit solution, the lack of
any restriction on the possible stopping times is sometimes unrealistic. In this paper we investi-
gate an optimal stopping problem that is intermediate between the continuous and discrete time
problems just discussed. Suppose that there exists an exogenous, uncontrolled Poisson process (say
N ) serving as a signal process, and that the controller can stop only at the times when the Poisson
process N makes a jump. In other words, the investment can be only be made at the random
times T1 < T2 < · · · < Tn < · · · , where {T1, T2 − T1, T3 − T2, · · · } are independent and identically
distributed (iid) exponential random variables. In this framework, the investor does not have total
freedom over the possible investment times – he has to rely on the Poisson process to give him a
certain signal (in this case, the jumps), in order to trigger the investment. For example, it may be
that an investment is possible only at those times when certain assets are made available, and not
otherwise.

This formulation can be easily extended to problems with more complicated payoff. Although
the set of times when one can stop is discrete, explicit solutions are possible for some simple models
with an infinite-time horizon. To the best of our knowledge, this type of constraint on the stopping
times has not been studied before. Its counterpart in stochastic control was first studied by [12],
where an exogenous Poisson process is used to model liquidity effects; see also [13] for an application
to problems in singular control.

The paper is organized as follows. In Section 2 we introduce two optimal stopping problems and
their associated discrete-time versions. In Section 3 we derive the associated variational inequality
by exploiting an underlying continuous time structure. The rest of Section 3 is devoted to solving
the variational inequality and proving a verification theorem. An equivalent stochastic control
formulation is discussed in Section 4. An asymptotic analysis is carried out in Section 5 as λ (the
intensity of the exogenous Poisson process) goes to infinity, in order to relate this formulation to the
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usual continuous-time model. For the sake of completeness, a very brief account of the analogous
continuous-time optimal stopping problem is also included.

Remark 1. In the standard continuous time formulation the so-called principle of smooth fit is
used to identify the boundary of the continuation region. The application of this principle usually
produces a solution that is continuously differentiable but not twice continuously differentiable
across this boundary. An interesting feature of the problem we study is that this qualitative
property is never observed. In fact, the value function of the optimal stopping problem turns out
to be either C0 or C2, depending on whether stopping is allowed at t = 0 or not.

2 The optimal stopping problem

Consider a probability space (Ω,F , P;F) with filtration F = (Ft) satisfying the usual conditions:
right-continuity and completion by P-negligible sets. The state process S = (St,Ft) is assumed to
be a geometric Brownian motion with

(2.1)
dSt

St
= b dt + σ dWt, S0 = x.

Here W = (Wt,Ft) is a standard F-Brownian motion and b and σ > 0 are constants. We also assume
the probability space is rich enough to carry a Poisson process (the signal process) N = (Nt,Ft)
with intensity λ. Throughout this paper we assume that the Brownian motion W and the Poisson
process N are independent. The n-th jump time of the Poisson process is denoted by Tn, with the
conventions T0 ≡ 0, T∞ ≡ ∞.

We study the following optimal stopping problem. Let S be the set of admissible stopping
times. The objective is to maximize the discounted payoff

(2.2) v(x) ·= sup
τ∈S

Ex
[
e−rτ (Sτ − K)+

]
.

Here r and K are both positive constants, and we will assume that r > b. Note that the case where
r ≤ b is trivial — the process

{
e−rt(St − K)+; t ≥ 0

}
becomes a submartingale, the value function

is infinity, and an optimal strategy does not exist.
Suppose that the decision maker can only stop the process at the jump times of the Poisson

processes. In other words,

(2.3) S = {F-stopping time τ : for every ω ∈ Ω, τ(ω) = Tn(ω) for some n = 1, 2, · · · ,∞}

We have the following preliminary result, whose proof is elementary and thus omitted.

Lemma 1. For any random variable N : Ω → {0, 1, 2, · · · ,∞}, the following two statements are
equivalent.

1. The random variable N is a G-stopping time and N ≥ 1; here G = (Gn) ·= (FTn).

2. The random variable τ
·= TN ∈ S.
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This lemma ensures the one-to-one correspondence between the admissible stopping time set S and
the set

(2.4) N ·= {N ≥ 1 : N is a G-stopping time} .

Define the G-adapted process

(2.5) Zn
·= (Tn, STn), n ≥ 0.

It follows that

(2.6) v(x) = sup
N∈N

Ex [φ(ZN ) |Z0 = (0, x)] , where φ(Zn) ·= e−rTn(STn − K)+.

Note that in the preceding setup, the decision maker is not allowed to stop at t = 0 (or, n = 0).
If we remove this restriction, we have the following optimal stopping problem. The set of admissible
stopping times becomes

(2.7) S0 = {F-stopping time τ : for every ω ∈ Ω, τ(ω) = Tn(ω) for some n = 0, 1, 2, · · · ,∞}
and the value function is defined as

(2.8) v0(x) ·= sup
τ∈S0

Ex
[
e−rτ (Sτ − K)+

]
.

It follows similarly that

(2.9) v0(x) = sup
N∈N0

E [φ(ZN) |Z0 = (0, x)] , where N0
·= {N ≥ 0; N is a G-stopping time} .

There are several reasons for the simultaneous introduction of problems (2.2), (2.6), (2.8) and
(2.9). One is that the variational inequality is very easy to derive for the continuous-time problem
(2.2), from which the value function for problem (2.8) can be obtained. However, the verification
theorem for (2.2) is achieved through problem (2.8), and it depends heavily on the discrete-time
formulations (2.6), (2.9).

Remark 2. The optimal stopping problem (2.2) is time-homogeneous, in the sense that at any
time t, the next opportunity of stopping will appear after an exponential time of rate λ (due to
the memoryless property). However, it is interesting to note that the discrete-time version (2.6)
is not time-homogeneous since one can stop at any n except n = 0. An analogous observation
applies to the stopping problem (2.8). The discrete-time version (2.9) is time-homogeneous, while
the continuous-time version (2.8) is not, since at any t except t = 0 one has to wait an exponential
time for the stopping opportunity to come.

Remark 3. One would naturally expect that the following two equalities hold.

v0(x) = max
{
(x − K)+, v(x)

}
(2.10)

v(x) = Ex

∫ ∞

0
e−rtv0(St) · λe−λt dt.(2.11)

The intuition behind the two equalities is clear. The first equality says that at t = 0, one can either
stop to get payoff (x − K)+ or continue to get payoff v(x). Hence the value v0 is the maximum of
the two. As for the second equality, in the problem defining V one has to wait an exponential time,
and is then allowed to stop at any of the following Poisson jump times (including the first one).
Since the Poisson process is independent of the driving Brownian motion, this gives the integral
representation for v in terms of v0. A detailed proof is given in Theorem 2.
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3 Variational Inequality and Verification Theorem

Here we consider the optimization problem (2.2), that is,

v(x) ·= sup
τ∈S

E
[
e−rτ (Sτ − K)+

∣∣S0 = x
]
.

Let us proceed heuristically for a while. From now on, we will use L to denote the infinitesimal
generator of the geometric Brownian motion S = (St,Ft). Thus

(3.1)
(Lu

)
(x) =

1
2
x2σ2u′′(x) + bxu′(x), ∀ x ≥ 0.

It is natural to guess that the optimal strategy should take the following form: try stopping whenever
the state process S exceeds some threshold x∗ > K, and continue otherwise. In other words, the
optimal strategy should be

τ∗ ·= inf {Tn : n ≥ 1, STn ≥ x∗} .

If it is optimal to continue when the state process is below x∗, then we would expect

(3.2) −rv + Lv = 0, ∀ x ∈ (0, x∗).

When x > x∗, however, one cannot stop unless the Poisson process N makes a jump. Note that
in a small time interval of length dt, the Poisson process has probability λ dt to make a jump, i.e.,
with probability λ dt the process will be stopped with a payoff x−K, and the process will continue
with probability 1 − λ dt. This formally suggests that for x > x∗,

v(x) = λ dt · (x − K) + (1 − λ dt) · E
[
e−r· dtv(Sdt) | S0 = x

]
= λ(x− K) dt + (1− λ dt) [v(x) + (−rv + Lv) dt]
= v(x) + (−rv + Lv) dt + λ · [(x− K)− v] dt,

which yields

(3.3) −rv + Lv + λ · [(x − K) − v] = 0, ∀ x > x∗.

Many optimal stopping problems in continuous time yield a value function which is C1 across the
optimal exercise boundary (cf. Section 5). An interesting observation here is that v is likely to
be C2 across x∗. Indeed, we expect that v(x) > (x − K)+ for all x < x∗ (otherwise, one should
try to stop instead of continuing), and similarly v(x) < (x − K)+ for all x > x∗ (here the strict
inequality follows from the fact that the decision maker does not have total freedom and cannot
stop arbitrarily). If one believes that the smooth-fit principle still holds in this case (i.e. the value
function v is C1 across the boundary x = x∗), then v(x∗) = x∗ −K, which in turn implies that v is
C2 across the optimal exercise boundary x∗ from equations (3.2) and (3.3) for v.

We obtain the following variational inequality from the preceding heuristic argument.
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Variational Inequality. Find a non-negative, twice continuously differentiable function V : R+ →
R+, and a constant x∗ > K, such that

V (0+) = 0;(3.4)
V (x∗) − (x∗ − K)+ = 0;(3.5)

−rV + LV = 0; 0 < x < x∗(3.6)
−rV + LV + λ [(x − K) − V ] = 0; x ≥ x∗(3.7)

V (x) − (x − K)+ > 0; 0 < x < x∗(3.8)
V (x) − (x − K)+ < 0; x > x∗.(3.9)

This variational inequality admits a unique solution that can be calculated explicitly. It turns out
that the solution is indeed the value function and x∗ is indeed the optimal exercise boundary.

We have the following theorem.

Theorem 1. Let
(
V (x), x∗) be the unique solution to the variation inequality (3.4)–(3.9), and let

v(x) .= sup
τ∈S

E
[
e−rτ (Sτ − K)+

∣∣S0 = x
]
.

Then V (x) = v(x) for all x ∈ (0,∞). Furthermore, the following stopping time is optimal:

τ∗ ·= inf {Tn : n ≥ 1, STn ≥ x∗} .

The rest of the section is devoted to solving the variational inequality (3.4)–(3.9) and to proving
Theorem 1. We have to show that the solution

(
V (x), x∗) is unique, and that the conjectured

strategy is indeed optimal. The proof also implies the following result.

Theorem 2. The value function v0 of the optimal stopping problem (2.8) equals

V0(x) ·= max
{
(x − K)+, V (x)

}
=
{

(x − K)+, x ≥ x∗

V (x) , 0 ≤ x < x∗,

and the optimal stopping policy is

τ∗
0

·= inf {Tn : n ≥ 0, STn ≥ x∗} .

Furthermore,

v(x) = Ex

∫ ∞

0

e−rtv0(St) · λe−λt dt.

3.1 Solution to the variational inequality

To solve the variational inequality (3.4)–(3.9), we first observe that equation (3.6) implies

V (x) = A+xα+ + A−xα− , 0 ≤ x < x∗.

Here α+ and α− are the two roots of the quadratic equation

f(α) .=
1
2
α2 +

(
b

σ2
− 1

2

)
α − r

σ2
= 0 or α± =

(
1
2
− b

σ2

)
±
√(

1
2
− b

σ2

)2

+
2r

σ2
.
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Since α− < 0, it follows from equation (3.4) that A− = 0. Hence, with A
·= A+, α

·= α+, we have

(3.10) V (x) = Axα where α =
(

1
2
− b

σ2

)
+

√(
1
2
− b

σ2

)2

+
2r

σ2
, ∀ 0 ≤ x < x∗.

For x > x∗, it is not difficult to verify that equation (3.7) implies that

V (x) = B+xβ+ + B−xβ− +
λ

λ + r − b
x − λK

λ + r
, ∀ x > x∗.

Here β+ and β− are the two roots of quadratic equation

g(β) .=
1
2
β2 +

(
b

σ2
− 1

2

)
β − λ + r

σ2
= 0 or β± =

(
1
2
− b

σ2

)
±
√(

1
2
− b

σ2

)2

+
2(λ + r)

σ2
.

Moreover, it is very easy to show that β+ > 1 since r > b. Therefore, we must have B+ = 0 from
equation (3.9) and the non-negativity of V , which in turn implies that, with B

·= B− and β
·= β−,

(3.11)

V (x) = Bxβ +
λ

λ + r − b
x − λK

λ + r
with β =

(
1
2
− b

σ2

)
−
√(

1
2
− b

σ2

)2

+
2(λ + r)

σ2
, ∀ x > x∗.

There are three unknowns (A, B, x∗). However, the continuity of V (x) and V ′(x) across the optimal
exercise boundary x∗, as well as equation (3.5), gives that

V (x∗+) = V (x∗−) = (x∗ − K)+ = x∗ − K, V ′(x∗+) = V ′(x∗−).

Here we have used the assumption x∗ > K. Therefore

A(x∗)α = x∗ − K,

B(x∗)β +
λ

λ + r − b
x∗ − λK

λ + r
= x∗ − K,

βB(x∗)β−1 +
λ

λ + r − b
= αA(x∗)α−1.

One can directly calculate the unique solution

(3.12) x∗ =
α − r

λ+rβ

α − r−b
λ+r−bβ − λ

λ+r−b

·K,

and that the pair of coefficients (A, B) are determined by

(3.13) A =
x∗ − K

(x∗)α
, B =

r−b
λ+r−bx

∗ − r
λ+rK

(x∗)β
.

We have the following proposition.

Proposition 1. The pair
(
V (x), x∗) determined by equations (3.10), (3.11), (3.12) and (3.13) is

the unique solution to the variational inequality (3.4)-(3.9).
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Proof: We first show that the optimal exercise boundary satisfies x∗ > K, and A > 0, B > 0. It is
very easy to see that α > 1 and β < 0. Hence, the numerator and denominator in equation (3.12)
are both positive since r > b. In particular, x∗ is positive. We study the following two cases.

1. Case b < 0: It suffices to show that

x∗ > K
(
hence, x∗ > r

λ+r
λ+r−b

r−b K
)

.

A bit of algebra shows that this is equivalent to the inequality β > λ+r
b . However, since β

solves the quadratic equation g(β) = 0, with

g

(
λ + r

b

)
=

(λ + r)(λ + r − b)
2b2

> 0, g(0) = −λ + r

σ2
< 0,

the claim follows.

2. Case b ≥ 0: It suffices to show that

x∗ >
r

λ + r

λ + r − b

r − b
K (hence, x∗ > K) .

Elementary manipulations show that this is equivalent to the inequality α < r
b . However, α

solves the quadratic equation f(α) = 0, with

f
( r

σ

)
=

r(r − b)
2b2

> 0, f(0) = − r

σ2
< 0,

and the claim follows readily.

It remains to show that V is non-negative and the inequalities (3.8), (3.9) hold. However, since
A > 0, α > 1 and B > 0, β < 0, it is easy to see that V is convex on the intervals [0, x∗) and
[x∗,∞), respectively. Since V is twice continuously differentiable, it must be convex on the whole
interval [0,∞), and thus non-negative. It is easy to check that

lim
x→∞V ′(x) = lim

x→∞

(
βBxβ−1 +

λ

λ + r − b

)
=

λ

λ + r − b
< 1.

It follows that V ′(x) < 1 for all x ∈ [0,∞), which in turn implies inequalities (3.8) and (3.9) with
the aid of equality (3.5). �

Remark 4. We have shown that V satisfies the following dynamic programming equation

−rV + LV + λ ·max
{
(x − K)+ − V, 0

}
= 0, x ∈ (0,∞).

3.2 Verification theorem

In this subsection, we will simultaneously prove Theorems 1 and 2. Let
(
V (x), x∗) be the unique

solution to the variational inequality (3.4) - (3.9), and define

V0(x) = max
{
(x − K)+, V (x)

}
=
{

(x − K)+, x ≥ x∗

V (x) , 0 ≤ x < x∗ ,
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We divide the proof into several steps.

Step 1: We first show the equality

(3.14) V (x) = Ex

∫ ∞

0

e−rtV0(St) · λe−λt dt

holds. Indeed, it follows from Remark 4 that

−rV + LV + λ · (V0 − V ) = −(r + λ)V + LV + λV0 ≡ 0.

Consider the process M = (Mt,Ft) where

MT
·= e−(r+λ)T V (ST ) +

∫ T

0
λe−(r+λ)tV0(St) dt, T ≥ 0.

It follows from Itô’s rule that

MT = V (x) +
∫ T

0
e−(r+λ)t [−(r + λ)V + LV + λV0] (St) dt +

∫ T

0
e−(r+λ)tV ′(St) · σSt dWt

= V (x) +
∫ T

0
e−(r+λ)tV ′(St) · σSt dWt.

Since V ′ < 1 (see the proof of Proposition 1), it is not difficult to verify that the stochastic integral
defines a martingale, and therefore

V (x) = ExM0 = ExMT = Exe−(r+λ)T V (ST ) + Ex

∫ T

0
λe−(r+λ)tV0(St) dt, ∀ T ≥ 0.

However, since there exists a constant c such that V (x) ≤ x + c for all x ∈ [0,∞) and r > b,

lim sup
T→∞

Exe−(r+λ)T V (ST ) ≤ lim sup
T→∞

Ex
[
e−(r+λ)T (ST + c)

]
= lim sup

T→∞
e−(r+λ)T (ebT + c) = 0.

Letting T → ∞, (3.14) follows from the monotone convergence theorem.

Step 2: Here we show that v0(x) = V0(x) is the value function and τ∗
0 defines an optimal stopping

strategy for the optimization problem (2.8). First, it follows from Step 1 that

V0(x) ≥ V (x) =
∫ ∞

0
e−rtV0(St) · λe−λt dt = Exe−rUV0(SU)

where U is an independent exponential random variable with rate λ. This implies that the process(
e−rTnV0(STn), Gn

)
is indeed a non-negative supermartingale. It follows from the optional sampling

theorem that
V0(x) ≥ Ex

[
e−rTN V0(STN

)
] ≥ Ex

[
e−rTN (STN

− K)+
]

for all G-stopping times N . Hence, we have V0(x) ≥ v0(x) after taking supremum over N on the
right-hand side. It remains to show that

V0(x) = Ex
[
e−rτ∗

0 (Sτ∗
0
− K)+

]
,
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where by definition
τ∗
0 = TN∗

0
, with N ∗

0
·= inf {n ≥ 0 : STn ≥ x∗} .

To this end, it suffices to show that the process

Q
·=
(
e
−rTN∗

0
∧nV0(STN∗

0
∧n

); Gn

)
is a uniformly integrable martingale. Indeed, if this is true, then the optional sampling theorem
yields

V0(x) = ExQN∗
0

= Ex
[
e−rτ∗

0 V0(Sτ∗
0
)
]

= Ex
[
e−rτ∗

0 (Sτ∗
0
− K)+

]
.

The martingale property is fairly easy to prove. For n ≥ 1, we have

E
[
Qn

∣∣Gn−1

]
= E

[
e−rTnV0(STn) · 1{N∗

0≥n}
∣∣Gn−1

]
+

n−1∑
i=0

E
[
e−rTiV0(STi) · 1{N∗

0=i}
∣∣Gn−1

]

= 1{N∗
0≥n}E

[
e−rTnV0(STn)

∣∣Gn−1

]
+

n−1∑
i=0

e−rTiV0(STi) · 1{N∗
0 =i}

= 1{N∗
0≥n}e−rTn−1ESTn−1 e−rUV0(SU) +

n−1∑
i=0

e−rTiV0(STi) · 1{N∗
0 =i}

= 1{N∗
0≥n}e−rTn−1V (STn−1) +

n−1∑
i=0

e−rTiV0(STi) · 1{N∗
0 =i}

= 1{N∗
0≥n}e

−rTn−1V0(STn−1) +
n−1∑
i=0

e−rTiV0(STi) · 1{N∗
0 =i}

= Qn−1.

Here the third equality follows from the strong Markov property with U being an independent
exponential random variable of rate λ. The fourth equality follows from Step 1 and the fifth
equality follows from the fact that on set {N ∗

0 ≥ n} we have STn−1 < x∗, which implies that
V0(STn−1) = V (STn−1) on this set by the definition of V0.

In order to show that Q is uniformly integrable, it suffices to show that supt≥0 e−rtV0(St) is
integrable. However, since V0(x) ≤ x+c for some constant c, we only need to show that supt≥0 e−rtSt

is integrable. Note that

sup
t≥0

e−rtSt = eY , where Y
·= sup

t≥0

(
σWt − 1

2
σ2t + (b − r)t

)
.

The distribution of Y can be found in standard textbooks; e.g. [7]. We have

E

[
sup
t≥0

e−rtSt

]
= 1 +

∫ ∞

0
eyP(Y ≥ y) dy = 1 +

∫ y

0
eye

2y
σ ( b−r

σ
−σ

2 ) dy = 1 +
σ2

2(r − b)
.

Step 3: Finally, we show that v(x) = V (x) is the value function and τ∗ defines an optimal stopping
strategy for the optimization problem (2.2). Indeed, since

(
e−rTnV0(STn), Gn

)
is a non-negative

10



supermartingale (see Step 2), we have that, for all G-stopping times N ≥ 1,

Ex
[
e−rTN (STN

− K)+
] ≤ Ex

[
e−rTN V0(STN

)
]

≤ Ex
[
e−rT1V0(ST1)

]
= Ex

∫ ∞

0
e−rtV0(St) · λe−λt dt

= V (x).

Taking the supremum over such N on the left-hand side, we have v(x) ≤ V (x) for all x. It remains
to show that

V (x) = Ex
[
e−rτ∗

(Sτ∗ − K)+
]
.

However, by conditioning on the first jump time T1, it follows from the strong Markov property
that

Ex
[
e−rτ∗

(Sτ∗ − K)+
]

=
∫ ∞

0
Ex
[
e−rτ∗

(Sτ∗ − K)+
∣∣T1 = t

]
· λe−λt dt

= Ex

∫ ∞

0
e−rtESt

[
e−rτ∗

0 (Sτ∗
0
− K)+

]
· λe−λt dt

= Ex

∫ ∞

0
e−rtV0(St) · λe−λt dt

= V (x).

This completes the proof. �

4 An Equivalent Stochastic Control Formulation

The optimal stopping problem (2.2) exhibits several interesting properties: (i) it is easy to obtain
the dynamic programming equation formally from the continuous-time version even though the
underlying problems are essentially discrete; (ii) the value function is C2; (iii) the verification
theorem is proved by introducing the auxiliary optimal stopping problem (2.8).

Now let us consider the problem (2.2) from the point of view of stochastic control. At any time
t, the decision maker has indeed two control strategies: either continue or try stopping. Such an
strategy can be represented by a (control) process with binary values. Hence we can heuristically
translate the optimal stopping problem into a stochastic control problem: suppose that u = (ut,Ft)
is a control process, with ut = 1 for trying to stop and ut = 0 for continuing. The objective is to
maximize the associated expected payoff by judiciously choosing a control process. The proposed
control problem should possess the following property: the value function should equal v, and the
optimal control process should take form u∗

t = 1{St≥x∗}. (Note that for nondegenerate stochastic
optimal control problems it is often true that the value function is C2.)

Such a control problem exists and has a very clear interpretation. Define the set of admissible
controls

A ·= {u = (ut,Ft) : u is measurable and adapted, with ut = 0 or 1} ,

and the associate payoff

(4.1) J(x; u) ·= Ex

∫ ∞

0
λute

−rt−λ
∫ t
0

us ds(St − K)+ dt.

11



The objective is to maximize the expected payoff

(4.2) v̄(x) ·= sup
u∈A

J(x; u).

Remark 5. The stochastic control formulation (4.1), (4.2) is equivalent to the optimal stopping
problem (2.2), thanks to the Theorem 3 below. Here is a heuristic explanation of why we define
the associated payoff J as in (4.1). Consider a control process u ∈ A which is FW

t -adapted, where
FW is the filtration generated by the Brownian motion W (since W and N are independent, the
consideration of such control processes should be sufficient, at least intuitively). The control u

represents an investment strategy, and the investment (i.e., stopping) will take place the first time
that both u = 1 and the Poisson process makes a jump. Let Pt stands for the conditional probability
conditioning on FW

t , and let m denote Lebesgue measure. Under the proposed investment strategy,
we have formally

Pt

(
the investment takes place on time interval [t, t + dt)

)
= Pt

(
ut = 1 and a Poisson jump occurs at time interval [t, t + dt)

)
× Pt

(
no investment takes place on time interval [0, t)

)
However,

Pt

(
ut = 1 and a Poisson jump occurs at time interval [t, t + dt)

)
= 1{ut=1} · Pt

(
a Poisson jump occurs at time interval [t, t + dt)

)
= ut · λ dt.

and

Pt

(
no investment takes place on time interval [0, t)

)
= Pt

(
no Poisson jumps at time s, for all s ∈ [0, t) such that us = 1)

= e−λ·m({s∈[0,t): us=1})

= e−λ
∫ t
0

us ds.

Therefore, the total expected payoff from the investment policy associated with process u is∫ ∞

0

Ex
[
e−rt(St − K)+ · 1{the investment takes place at time interval [t, t + dt)}

]

= Ex

∫ ∞

0
e−rt(St − K)+ · Pt

(
the investment takes place at time interval [t, t + dt)

)
= Ex

∫ ∞

0
e−rt(St − K)+ · λute

−λ
∫ t
0 us ds dt,

which is exactly J as defined in (4.1); here the first equality follows by conditioning on FW
t .

We have the following result. Let v and x∗ denote the value function and optimal exercise
boundary for problem (2.2).

Theorem 3. v̄(x) = v(x) for x ∈ (0,∞), and the optimal control process is given by u∗ = (u∗
t ,Ft),

with
u∗

t
·= 1{St≥x∗}.

12



Proof: We first show that v(x) ≥ v̄(x). Consider any admissible control policy u ∈ A, and the
process

Xt
·= e−rt−λ

∫ t
0 us dsv(St), t ≥ 0.

It follows from Itô’s formula that for every T ≥ 0

XT = v(x) +
∫ T

0

e−rt−λ
∫ t
0 us ds

(−λutv − rv + Lv
)
(St) dt + MT ,

where

MT
·=
∫ T

0
e−rt−λ

∫ t
0 us dsv′(St) · σSt dWt, T ≥ 0.

Since |v′(x)| ≤ 1 for x ∈ (0,∞), M = (Mt,Ft) is a martingale, and hence ExMT = 0. Also, since
−rv + Lv ≤ 0 (see Remark 4) and ut ∈ {0, 1}, we have

XT ≤ v(x) +
∫ T

0
e−rt−λ

∫ t
0 us dsut

(−λv − rv + Lv
)
(St) dt + MT , ∀ T ≥ 0.

Again it follows from Remark 4 that

−λv − rv + Lv = −λ max{(x− K)+, V } ≤ −λ(x − K)+,

which implies that

XT ≤ v(x)−
∫ T

0
e−rt−λ

∫ t
0 us dsλut(St − K)+ dt + MT , ∀ T ≥ 0.

Taking expectation on both sides gives

v(x) ≥ Ex

∫ T

0
e−rt−λ

∫ t
0 us dsλut(St−K)+ dt+ExXT ≥ Ex

∫ T

0
e−rt−λ

∫ t
0 us dsλut(St−K)+ dt, ∀ T ≥ 0.

Letting T → ∞, the monotone convergence theorem implies v(x) ≥ J(x; u). Since u is arbitrary,
v(x) ≥ v̄(x).

It remains to show that v(x) ≤ J(x; u∗), which implies that v ≤ v̄. If this is true then v = v̄,
and u∗ is the optimal control. Observe that (3.6) and (3.7) imply(−λu∗

t v − rv + Lv
)
(St) = u∗

t

(−λv − rv + Lv
)
(St) = −λu∗

t (St − K)+.

We have similarly

X∗
T = v(x)−

∫ T

0
e−rt−λ

∫ t
0 u∗

s dsλu∗
t (St − K)+ dt + M∗

T , ∀ T ≥ 0,

where X∗ and the martingale M∗ are defined as before with u∗ replacing u. We have shown

ExX∗
T +

∫ T

0
e−rt−λ

∫ t
0

u∗
s dsλu∗

t (St − K)+ dt ≥ v(x).

Now let T → ∞ and observe that for some constant c,

lim sup
T→∞

ExX∗
T ≤ lim sup

T→∞
Exe−rT v(ST ) ≤ lim sup

T→∞
Exe−rT (ST + c) = 0.

The last equality follows since r > b. An application of the monotone convergence theorem gives
v(x) ≤ J(x; u∗). �
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Remark 6. It is easy to see from its proof that Theorem 3 still holds if the set of admissible
controls is defined as

A ·= {u = (ut,Ft) : u is measurable and adapted, with ut ∈ [0, 1]} .

Remark 7. This equivalent stochastic control formulation has the following advantage: suppose a
cost is charged during the times when assets are made available, i.e., there is a charge at all times
when the controller is actively “trying” to stop. Although this problem cannot be formulated as an
optimal stopping problem, it can be formulated as an extension of the stochastic control problem
considered in this section.

5 Asymptotics as λ → ∞
A relevant question for this formulation is the following: what is the cost of having such constraints
on the stopping times? In other words, how does this problem differ from the classical continuous-
time optimal stopping, which can be regarded as the limiting model when λ → ∞. For the
convenience of the reader, we include a brief account of the corresponding continuous-time optimal
stopping problem, whose applications include the irreversible investment and perpetual American
option pricing; see, e.g., [6, 9] for more details.

5.1 Review of the irreversible investment problem

Let S̄ denote all F-stopping times taking values in [0,∞]. The optimal stopping problem under
consideration is

(5.1) w(x) ·= sup
τ∈S̄

E
[
e−rτ (Sτ − K)+

∣∣S0 = x
]
.

It can be shown that the optimal stopping time is

σ∗ ·= inf {t ≥ 0 : St ≥ x∗
0} ,

for some x∗
0 > K. It can further be shown that on the “continuation” region (0, x∗

0), w satisfies the
equation

−rw + Lw = 0.

This implies w(x) = A0x
α for some constant A0, with α defined as in (3.10). On the “stopping”

region [x∗
0,∞), we have

w(x) = (x− K)+ = x − K.

The unknown pair of constants (A0, x
∗
0) can be determined through the so-called smooth-fit prin-

ciple, which asserts that the value function is C1 across the optimal exercise boundary x = x∗
0. It

follows that

(5.2) w(x) =
{

A0x
α , 0 < x < x∗

0

x − K, x∗
0 ≤ x

; where x∗
0 =

α

α − 1
K, A0 =

x∗
0 − K

(x∗
0)α

.

It is easy to see that w is only C1 across the optimal exercise boundary x = x∗
0.

14



5.2 Asymptotics

Here we study the asymptotics as λ, the intensity of the signaling Poisson process, goes to infinity
(or the mean interjump time h = λ−1 goes to zero). It is natural to expect that the value functions
and the optimal exercise boundary for problem (2.2) approach those of the corresponding optimal
stopping problem (5.1). In this section, we will denote by v

(h)
0 (resp., v(h)) the value function of

problem (2.8) (resp., (2.2)), and the optimal exercise boundaryby x∗
h.

The following result says that the value functions v(h) and v
(h)
0 converges to w with rate λ−1. In

other words, the cost of the constraint on the stopping times is approximately λ−1 times a constant
when λ is large enough. The optimal exercise boundaries x∗

h, however, converge with rate
√

λ−1.

Theorem 4. Let h = λ−1 be the mean interjump time. The optimal exercise boundaries x∗
h satisfy

x∗
h = x∗

0 −
√

2
2

σx∗
0 ·

√
h + o(

√
h).

The value functions v
(h)
0 and v(h) satisfy

v
(h)
0 (x) = v(h)(x) = w(x)− 1

4
α(α − 1)σ2w(x) · h + o(h), ∀ 0 < x < x∗

0

and

v
(h)
0 (x) = w(x)

v(h)(x) = w(x) +
[
Kr − (r − b)x

]
h + o(h),

∀ x > x∗
0,

as well as

v
(h)
0 (x∗

0) = w(x∗
0)

v(h)(x∗
0) = w(x∗

0) + (1 − e−1)
[
Kr − (r − b)x∗

0

]
h + o(h).

Remark 8. The expansion above is not uniform in x ∈ (0,∞). An analogous uniform asymptotic
expansion can also be obtained, and in fact follows from the same detailed calculations as those
given below.

Proof of Theorem 4: The proof is straightforward computation. To ease the notation, let ι
·=
√

h.
We first establish the asymptotics of the optimal exercise boundaries x∗

h. Let βh denote the constant
β in equation (3.11), and let (Ah, Bh) denote the constants in (3.13) (note that α does not depend
on h). It follows from (3.12) that

x∗
h =

α − rι
1+rι2

(ιβh)

α − (r−b)ι
1+(r−b)ι2

(ιβh) − 1
1+(r−b)ι2

· K.

Although βh → −∞ as h → 0, we have

ιβh =
√

hβh → −
√

2
σ

as h → 0 (or ι → 0).
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It follows that the denominator and numerator in the expression for x∗
h converge to α − 1 and α

respectively, as h → 0; in particular, x∗
h → x∗

0. Keeping in mind h = ι2, it is easy to check that

dx∗
h

dι

∣∣∣∣
ι=0

=

(
r
√

2
σ(α − 1)

− α
√

2(r − b)
σ(α − 1)2

)
·K =

√
2(αb − r)K
σ(α− 1)2

= −
√

2
2

σ2α(α − 1)
σ(α− 1)2

K = −
√

2
2

σx∗
0.

The third equality follows from f(α) = 0, with f defined as in Subsection 3.1, and the last equality
follows from (5.2).

It remains to calculate the asymptotics of v
(h)
0 and v(h). First observe that x∗

h ≤ x∗
0 for all h > 0

since w(x) ≥ v
(h)
0 (x) > (x− K)+ for all x < x∗

h. We consider the following three cases separately.

The case 0 < x < x∗
0. Since x∗

h → x∗
0, we can consider h small enough such that x < x∗

h. It follows
that

v
(h)
0 (x) = v(h)(x) = Ahxα; where Ah =

x∗
h − K

(x∗
h)α

from (3.13).

It then follows from (5.2) that

dAh

dι

∣∣∣∣
ι=0

= (1 − α)(x∗
h)−α−1

(
x∗

h − α

α − 1
K

)
· dx∗

h

dι

∣∣∣∣
ι=0

= 0

and

d2Ah

dι2

∣∣∣∣
ι=0

= (1 − α)(x∗
h)−α−1

(
x∗

h − α

α − 1
K

)
· d2x∗

h

dι2

∣∣∣∣
ι=0

+ α(α − 1)(x∗
h)

−α−2

(
x∗

h − α + 1
α − 1

K

)
·
(

dx∗
h

dι

)2
∣∣∣∣∣
ι=0

= 0 + α(α − 1)(x∗
0)

−α−2

(
x∗

0 −
α + 1
α − 1

K

)
·
(
−
√

2
2

σx∗
0

)2

= −1
2
σ2(x∗

0)
−ααK = −1

2
σ2 A0

x∗
0 − K

αK = −1
2
α(α − 1)σ2 · A0.

The case x > x∗
0. In this case, we have v

(h)
0 (x) = w(x) = (x− K)+ = x − K, and

v(h)(x) = Bhxβh +
1

1 + (r − b)h
x − K

1 + rh

thanks to (3.11). It suffices to observe that the term

0 ≤ Bhxβh =
(

x

x∗
h

)βh
(

r − b

λ + r − b
x∗

h − r

λ + r
K

)
≤
(

x

x∗
0

)βh

x∗
0

converges to zero exponentially fast since
√

hβh → −
√

2
σ .
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The case x = x∗
0. In this case, we have v

(h)
0 (x∗

0) = w(x∗
0) = (x∗

0 − K)+ = x∗
0 − K, and

v(h)(x∗
0) = Bh(x∗

0)
βh +

1
1 + (r − b)h

x∗
0 −

K

1 + rh
.

It remains to show that
Bh(x∗

0)
βh = e−1 [(r − b)x∗

0 − Kr]h + o(h).

However, it follows from the asymptotics of x∗
h that

Bh(x∗
0)

βh =
(

x∗
h

x∗
0

)−βh
(

(r − b)h
1 + (r − b)h

− rh

1 + rh
K

)

=

[
1−

√
2

2
σ
√

h + o(
√

h)

]−βh

· [((r − b)x∗
0 − Kr

)
h + o(h)

]
= e−1

(
(r − b)x∗

0 − Kr
)
h + o(h);

here the last equality follows from

lim
h→0

√
2

2
σ
√

h · βh =
√

2
2

σ ·
(
−
√

2
σ

)
= −1.

This completes the proof. �

6 Summary

In this paper, we have considered a class of optimal stopping problems in which the decision maker
does not have total freedom in choosing the stopping times. Instead, an uncontrolled exogenous
Poisson process is introduced so that the stopping occurs only if the Poisson process gives a jump.

Different value functions are obtained, depending on whether stopping is allowed at time t = 0.
These two problems are very closely related. One problem (where no stopping is allowed at t = 0)
makes it possible to obtain explicit solutions for both problems, while the other problem (where
one can stop at t = 0) helps in the proof of the verification theorem. It is also interesting to notice
that the two value functions are C2 and C0 across the optimal exercise boundary, contradicting the
usual C1 fit for optimal stopping problems (smooth-fit-principle). An equivalent stochastic control
formulation for the first problem is discussed.

Also studied are the asymptotics of the constrained optimal stopping problem as the intensity
of the Poisson process goes to infinity. We find that the optimal exercise boundary converges with
rate

√
λ−1, and the cost of the constraint is of magnitude λ−1 for large λ.
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