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1 Introduction

Let us consider a two-level hierachical system where two decision makers try to find
best decisions with respect to certain, but generally different goals. Moreover, assume
that these decision makers cannot act independently of each other but only according
to a certain hierarchy, whereby the optimal strategy chosen by the lower level (here-
after the “follower”) depends on the strategy selected by the upper level (hereafter
the “leader”). On the other hand, let the objective function of the leader depend not
only on its own decision but also on the reaction of the follower. Then while having
the first chocie, the leader is able to evaluate the true value of his own selection only
after knowing the follower’s possible reactions. Assume that the game is cooperative,
i.e., if the follower’s problem has several optimal decisions for a given leader’s decision,
then the follower allows the leader to choose which of them is actually used. Thus the
leader will choose his optimal decision among all decisions available and the follower’s
optimal decision to minimize his objective. In particular, we consider a hierachical
dynamical systems where the state z(t) € R? is influenced by the decisions of both
leader and follower u(-) and v(-). The state z(t) € R? is described by

(t) = ¢, z(t),ult),v(t)) ae. tE€ to,t]
$(t0) = Xy,
where u(t) € R*, v(t) € V(t) C R™ In mathematical terms, given any control

function u(-) selected by the leader, the follower faces the ordinary (single level)

optimal control problem involving a parameter u:
Pfw) min  Ja(e,u) = [ Gltat),u), o(®)d + ga(n))
s.t. Z(t) = ot z(t), u(t),v(t)) a.e.
z(to) = o,
v(t) e V() ae,
while the leader faces the bilevel dyndmz’c problem:
P, min  Ji(z,uv) = /t‘ F(t, 2(8), u(t), v(e))dt + f(z(ts))
over  u € L*([to, t1], B") and all solutions (z,v) of Py(u).

The bilevel static problem where both leader and follower’s decisions are vectors
instead of control functions was first introduced by von Stackelberg [10] for an eco-

nomic model. The bilevel dynamic problems were first considered by Chen and Cruz
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in [2]. Most of the bilevel (static or dynamic) problems are attacked by reducing the
bilevel problem to a single level problem with the first order necessary conditions for
the lower level problem as additional constriants (cf. Bard and Falk [1] and Zhang
[13] [14] for bilevel static problems, Chen and Cruz [2] and Zhang [13] for bilevel
dynamic problems). The reduction is equivalent if and only if the lower level optimal
control problem is convex since in this case the first order necessary condition is also
sufficient. Apart from the strong convexity assumption, the resulting optimality con-
ditions of the above approach involve second order derivatives and a larger system
since the reduced problem minimizes over the set of original decesion variables as well
as the set of multipliers of the lower level problem.

To our knowledge, there is no optimality conditions for a general bilevel dynamic
problem to date. The necessary condition obtained by Chen and Cruz in [2] holds
in the case where the Pontryagin’s maximum principle for the lower level optimal
control problem is sufficient for optimality and no bounds are allowed for the control
functions. The necessary condition was stated in a normal form (i.e. the mulitiplier
for the objective function of the upper level problem is 1) which only holds when
the reduced single level optimal control problem is calm (see [4] for definition). The
necessary condition obtained by Zhang in [13] is only for a bilevel dynamic problem in
which the dynamic is linear in the state and control variables and requires convexity
assumptions on the objective function of the lower level problem. The purpose of this
paper is to provide first order necessary conditions for problem P; under very general
assumptions (in particular, without convexity assumptions and with bounds on the
control functions on the lower level problem).

Define the value function of the lower level optimal control problem as an extended-
valued functional V() : L*([to, 1], R*) — R defined by

it Gty 2(t),u(t),v(t))dt + g(z(t)) = &(t) = ¢(t,2(2), u(t), v(t)) a-e.
V(u) := inf v(t) € V(t) a.e. '

LY m(t()) = Xg

where R := RU{—o0} U {+0co} is the extended real line and inf ) = 400 by conven-
tion. Our approach is to reformulate P, as the following single level optimal control
problem:

P, min  Ji(u,v) = /ct1 F(t,z(t), u(t), v(t))dt + f(z(t1))

0

st z(t) = oL, z(t), u(t), v(t)) a.e.
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z(to) = xo
u(-) € L¥([to, 11}, R™),v(t) € V(t) a.e.

>/ (£, z(t), ult), v(t))dt + g(z(ty)).

"The above problem is obviously equivalent to the original bilevel dynamic problem P
and is a nonstandard optimal control problem since the constraints involve a functional
defined by the value function V'(u) of the lower level optimal control problem. In
general V (u) is not an explicit function of the problem data and is nonsmooth even in
the case where all problem data are smooth functions. To derive a necessary condition
for optimality for problem P;, one needs to study the Lipschitz continuity and the
generalized derivatives of the value function V' (u) and develop a necessary optimality
condition for the nonstandard optimal control problem with functional constraints.
Recent development in nonsmooth analysis allow us to study the Lipschitz continuity
and generalized derivative of the value function with respect to infinite-dimensional
perturbation V' (u). We then reformulate the nonstandard optimal control problem as
an infinite dimensional optimization problem and use a result due to Ioffe [8] to derive
a necessary optimality condition for the nonstandard optimal control with functional
constraints.

The approach of reducing a bilevel problem to a single level problem was first
used by Ye and Zhu [12] to derive first order necessary conditions for the static bilevel
optimization problem. In Ye [11], a bilevel dynamic optimization problem where the
lower level is an optimal control problem while the upper level decision variable is a
vector is considered. Although the bilevel dynamié optimization problem considered
in [11] is a special case of the problem we study in this paper, it deserves a special
attention since it reduces to a single level optimal control problem with end point
contraints involving a value function which is a function of the upper level decision
vector. Different techique from the one we use for this paper was used and hence a
necessary optimality condition with stronger results and more general assumptions
than otherwise derived from being a special case of the bilevel dynamic problem
studied in this paper has been derived.

The following basic assumptions are in force throughout this paper:

(A1) V() : [to,t:] — R™ is nonempty compact valued set-valued map. The graph
of Vi(t) (i.e., the set {(s,7) : s € [to,t1],7 € V(s)}), denoted by GrV, is £ x
B measurable, where £ x B denotes the o-algebra of subsets of [tg,t;] x R™



generated by product sets M x N where M is a Lebesgue measurable subset of
[to,t1] and N is a Borel subset of R™;

(A2) The function F(t,z,u,v) : [to,t1] x R x R* x R™ — R is £ x B measurable
in (¢,v) and continuously differentiable in z and u. The functions ¢(t, z, u, v) :
[to,t1] x R? x R* x R™ — R¢, G(t,z,u,v) : [to,t1] X R% x R* x R™ — R are
measurable in ¢, continuously differentiable in = an u and lower semicontinous

in v.
(A3) There exists an integrable function 7 : [to, )] — R such that

Iv(z,u)FI + lv(x,u)GI + Iv(z,u)¢l < "l](t)

(A4) The function f(z) : R* — R is locally Lipschitz continuous and the function
g(z) : R* > R is Lipschitz continuous of rank L.

(A5) For any u € L?*([to,t1], "), P:(u) has an admissible pair (whose definition is

given below).

A control function for Py(u) is a (Lebesgue) measurable selection v(-) for V'(-); that is
a measurable function satisfying v(t) € V(t) a.e. t € [to,t1]. An arc is an absolutely
continuous function. An admissible pair for P;(u) is a pair of functions (z(-),v(-)) on
[to, t1] of which v(-) is a control function for P(u) and z(:) : [to,t,] — R? is an arc
which satisfies the differential equation #(t) = ¢(t, z(t), u(t),v(t)) a.e., together with
the initial condition z(to) = xo. The first and the second components of an admissible
pair are called admissible trajectory and admissible control respectively. A solution to
problem P,(u) is an admissible pair for P;(u) which minimizes the value of the cost
functional Ja(z,u,v) over all admissible pairs for Py(u). An admissible strategy for
P includes u € L?([to, 1], R) and an optimal control v for Py(u). The strategy (u,v)
and the corresponding trajectory z are optimal for the bilevel dynamic problem P,
if (z,u,v) minimizes the value of the cost functional Ji(z,»,v) among all admissible
strategies and the corresponding trajectories for P;.

The plan of the paper is as follows: In section 2, we study generalized differentia-
bility of the value function V(u). The necessary condition for optimality is given in

section 3.



2 Differentiability of the value function

Let X be a Hilbert space. Consider a lower semicontinuous functional ¢ : X —
IR U {400} and a point & € X where ¢ is finite. A vector ¢ € X is called a prozimal
subgradient of ¢(-) at T provided that there exist M > 0,6 > 0 such that

(¢,2' - z) < ¢(a") - ¢(Z) + M|jz' - Z||* o' €i+6B.

The set of all proximal subgradients of ¢(-) at Z is denoted 87¢(z). A limiting
subgradient of ¢ at T is the set '

Op(%) := {weak® Jim G : G € 0" p(ae), T — T, p(ae) — $(2)}-

The limiting subgradient is a smaller object than the Clarke generalized gradient
(see Clarke [3] for definition). In fact, if ¢ is Lipschitz continuous near z, we have
d¢(x) = clcodep(z), where & and clcoA denote the Clarke generalized gradient and
closed convex hull of set A respectively. For the definition and the precise relation
between the limiting subgradient and the Clarke generalized gradient, the reader is
referred to Clarke [4] and Rockafellar [9] for more details.

The following result concerning about the compactness of trajectories to a differ-
ential inclusion is slightly different from [Theorem 3.1.7. of Clarke [3]] and will be
used repeatively. We omit the proof here since it can be proved similarly as [Theorem
3.1.7. of Clarke [3]].

. Proposition 2.1 Let T be set-valued map defined on [to, t1] x R¢ x R*. We suppose
that T' is integrably bounded (i.e., there exists an integrable function k(t) such that
|v] < k(t) for all v € T'(t,z,u)) and that T is nonempty, compact and conver. We
suppose that for every (t,z,u) € [to, 1] X R? x R", the set-valued map t' — ', z, u)
is measurable and for all [to,t1] x R% x R", the set-valued map (z',u') — T'(t, 2, ') is
uppersemicontinuous. Let I' be L x B measurable where L x B denotes the o-algebra
of subsets of [to, 11] X R% x R™ generated by product sets M x N where M is a Lebesque
measurable subset of [to,t1] and N is a Boreal subset of R® x R".

Let {x;} be a sequence of arcs on [to,t1] and {(;} be a sequence of functions in
L3([to, t1], R™) satisfying:

(1) @:(t),G(t) € T, zi(t),uilt))  a.e t€ [to,t]



(iii) u; — u in L2
(iv) {zi(to)} is bounded.

Then there ezists a subsequence of {x;} which converges uniformly to an arc x such
that

(&), C()) € T(t, z(t), u(t)  ae. t € [to,t1].

To discuss generalized differentiability of the value function V' (u), we will need

the following assumptions:

(A6) There exists k(t) € L2([to,t1], R) such that

6] + [Ve¢l + |G| + | VoGl + VLG < k(2).

(A7) For any (t,z,u) € [to, t1] x IR® x R™, the set
is convex.

(A8) The Jacobi matrix V,¢ is invertible and
[(Vu®) ™| + [ Vug] < M,
where M > 0 is a constant.

In [5], Clarke studied the generalized differentiablity of the value function of an
optimal control problem with an additive infinite-dimensional perturbation in the
dynamic and pointed out that the extension of the theory to infinite-dimensional
perturbations occurring in as general a fashion as the finite-dimensional ones stud-
ied by Clarke and Loewen [6] is problematic. Our assumptions allow the nonadditive
perturbations both in dynamic and objective functions with restrictions in the pertur-
bation structure (see Assumption (A8)). Our result is not strictly more general than
Clarke [5] since we can only deal with an optimal control problem without endpoint
constraints while [5] has the result for the optimal control problem with endpoint
constraints. However, we choose to study the problem without endpoint contraints
but with nonadditive perturbations in both dynamic and objective functions instead
of the problem with endpoint constraints but with only additive perturbation in the

dynamic since the latter is too restrictive for the bilevel dynamic problem where the
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perturbation is the control function of the upper level problem which will usually oc-
cur in both dynamic and objective function of the lower level optimal control problem
and will usually occur nonadditively. As in the ordinary optimal control problem, the
bilevel dynamic problems without endpoint constraints are basic problems to study.
Most of the papers in the literature also stud.y the problem without endpoint con-
straints. :

Let Hamiltonian for P(u) be the function defined by

HQ(t7$’u’p2) = Sup{p2 ) d)(t,z,u,v) - G(t,:B,'lL,'U) 'V E V(t)}

and Y, be the set of all optimal trajectory x to problem Po(u).
The following result gives the Lipschitz continuity of the value function and char-
acterizes the generalized derivatives of the value function.

Theorem 2.1 Suppose assumptions (A1)—(A8) hold. ThenV is Lipschitz continuous

near u and one has

OV (u) C clcoUgey, {¢: 3 arc ps s.t. (—p2,(, %) € OHs(t, x,u,p2) a.e.
—pa(t1) € dg(z(tr))},
where OH, denotes the Clarke generalized gradient respect to (x,u, ps)-
Before proving Theorem 2.1, we first give the following result:

Lemma 2.1 Let u; be a sequence converging (in L?) to » and let (z;,v;) be an ad-
missible pair for P,(u;). Then there exists a subsequence of {z;} converging uniformly

to an arc z and a control v with (z,v) being an admissible pair for Py(u) such that

Jo(z,u,v) < liminf Jo(x;, u;, v;).

Proof. Let
5i(t) == G, zi(t), uilt), wi(t)).
Then
(Z:(8), %:(t)) € Tt xi(t), v:(t), ui(?)), (1)
where

I(t,z,y,u) := {(¢(t,z,u,0),7) : Gt,z,u,0) ST < K(t) + Lv e V(D))

Q
o]



The proof can be reduced to an application of Proposition 2.1 by studying differential
inclusion (1). The essential fact in the reduction is Fillipov’s lemma: an (extended)
arc (z,y) satisfies the differential inclusion iff there is a control function v for x such
that (z,v) is feasible for P;(u) and y satisfies G(¢,z,u,v) <y <k(t)+1. &

We now turn to the proof of the theorem. By (A5), Pp(u) has an admissible pair.
So V(u) is finite. By Lemma 2.1, V is (strongly) lower semicontinuous.

Step 1. Let u € L?([to, 1], R*) and { € 6"V (u). Let (x,v) be a solution of Pp(u)
which exists by virtue of Lemma 2.1. Then by definition, for some M > 0 and for all

¢ near u (in the L? norm), we have

V(W) = (Gu)+ Ml =l 2 Vi) - ()
= [ Glt,a(e), u(t), ve)de + glatt) - [ (€0, u(®)es

Let (z',7') be an admissible pair for Pp(u'). Then

[ 6t ®,u@),0 e+ gl @) - [0, @)t + M’ —ul?

> [ Gt w(0), u(t),ve)dt + gle(t)) - [ (C0),u®)e

to to

Hence (x,u,v) is a solution of the following optimal control problem:

t
min | (Gt 2 (8), (), v'(5) ~ (), (Dt + g’ (1))
{1}
st () = @,z (1), (), v (1)) a.e.
x’(to) = To
V() e V() ae.
W(t) e U(t) :={u' € R*: |u' —u(t)| < €}
In the proof of Theorem 5.2.1. of Clarke [3], if we replace the the Clarke generalized
gradient 8 by the limiting subgradient 8 in the transversality conditions, the argument
goes through without modification [¢f. Clarke [4]]. Applying Theorem 5.2.1. of Clarke
[3] with the Clarke generalized gradient replaced by the limiting subgradient in the

transversality conditions to the above optimal control problem with free end points

leads to the existence of anl arc p, such that

—P2(t) = Vad(t, 2(), u(t), v(t) pa(t) = VoGt 2(t),u(t), v(t))  ae (2)
max {pl’(t) : ¢(t’$(t)’uvv) - G(t,:v(t),u,v) - <C(t)vu>}

wER™ vEV (L)



= pa(t) - (¢, z(t), u(t), v(t)) — G(t,z(t), u(t), v(t)) — (C(t),u(t)) ae.  (3)
—pa(t1) € Og(x(tr)) (4)

where T denotes the transpose. (3) implies

max (pa(8) - 605, 2(0),u(0), ) ~ Gt 2(0),u(t), )

= p2(t) - 9(2, z(8), u(t), v()) — G(¢, 2(t), u(t), v(t)) ae. (5)

and ,
¢(t) = Vug(t, 2(t), u(t), v(t)) T pa(t) — VuG(t, z(2), u(t), v(t)). (6)
Step 2. For any ¢ € 8V (u), by definition, ¢ = weak® lim;_.o (; Where {; € 6™V (w),

u; — u in L? and V(u;) — V(u). By step 1, for each u;, there eixsts an arc pi and

an arc x; which solves Py(u;) (along with v;) such that

=P2'(t) = Veo(t, zi(t), wi(t), v:(1)) Tp5(t) = VoG (t, (), wi(t), wi(2)) ae. (7)

max {pa(t) - 9(t, 2:(0), wi(t), v) — Gt :(8), wi(t), v)}
= py(t) - ¢t i(t), ui(t), vi(t)) — G(t, 24(2), wilt), vilt)) ace. (8)
Gi(t) = Vaudp(t, (), wi(8), (1)) TPa(t) — VuG(t, za(t), walt), vi(2)) (9)

 —pi(ta) € Bg(w:(t)).
By [Theorem 2.8.2, Clarke [3]], (7) (8) and (9) implies that

(=12 (1), Gi(1), 5i(2)) € OH(t, a(2), wi(t), 3(2))  ae. (10)
—ph(tr) € Bg(xi(tr)). . (11)

From (7), one has
B (1) < k@ (r@)]+1) (12)
By assumption (A8), (9) implies that
B3 < [(Vad) 1G] +1(Vug) VG
< M(IG@)] + |V.Gl)

which implies that ||pi|l; is bounded since ||(;]2 is bounded and |V, G| is bounded by

a L? function. Therefore p}(0) admit a uniform bound and (12) implies that ||p|); is
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bounded by Hélder’s inequality. Hence ||p} — p5(0)]leo is bounded which implies that
lPille is bounded. It follows that the set-valued map OH, is integrably bounded.
Applying Proposition 2.1 to differential inclusion (10) with boundary conditon (11),
one concludes that there exist a convergent subsequence of {z;,p5} which converges
to the arcs z, p» such that

(=p2(2),C(8), £(t)) € OH2(t, 2(2), u(t), p2(t)) 2.

Note that by Lemma 2.1 we may suppose z € Y, since z; is an optimal trajectory of
Py(u;). From the semicontinuity of the limiting subgradients, one also have

—pa(t1) € Bg(z(ty)).
Therefore we conclude that
8V (u) C Usev, {¢ : 3 arc pp s.t. (—p2,{, %) € OHa(t, ,u,p2) ae., —pa(t1) € dg(z(tr))}-

Step 3. To complete the proof of the theorem, one only have to show that V'
is Lipschitz near u. By a recent result of Clarke et al [Theorem 3.6. of [7]], V is
Lipschitz near u of rank C if and only if

sup{|[¢]l2: ¢ € 8"V(u)} £C Vi in a neighorhood of u.

Indeed, by Step 1, for any u and any ¢ € 8"V (u) there exists an arc p, along with a
solution (x,v) of Po(u) such that (2), (4) and (6) hold. Therefore one has

[p2(t)] < k(@)(Ip2(8)] + 1) (13)
[p2(ta)| < Ky (14)
1<) < M(|p(2)] + [VuGI). (15)

Together with Gronwall’s lemma, (13) and (14) yield an a priori bound on all such
lp2]|o- It then follows from (15) that all ¢ € 6"V (u), Vu € L*([to, t1], R™) are bounded

in' 2. Hence V is Lipschitz continuous. and the proof of Theorem 3.1 is now complete.
B

3 Necessary conditions for optimality

In this section we derive the necessary optimality condition for the nonstandard prob-

lem with a functional constraint. Our approach is to reformulate the original problem
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as an infinite dimensional optimization problem and derive the desired result from
the necessary optimality condition for this infinite dimensional optimization problem.
Formulation as an infinite dimensional optimization problem takes care the functional
constraints. However, usual Lagrange multiplier rule for infinite dimensional opti-
mization problems can not be used here since problem data are not Lipschitz in the
control variable in the lower level optimal control problem. Ioffe [8] derived a very
general maximum principle for the standard optimal control problem by reduction to
an infinite dimensional optimization problem. We will use the result and approach of
Ioffe to derive the necessary optimality condition of maxmum principle type for the
bilevel dynamic problem.

Define the pseudo Hamiltonian for problem (P)) as
Hl(t,ll:,’u,'U,pl; )"T) =D ¢(t,x,u,v) - TG(t,.’II,’lL,'U) - /\F(t,x,u,v),
for t € [to,t1], z,;1 € R%, u € R*, v € R™, \,r € R.

Theorem 3.1 Assume that assumptions (Al)-(A4) hold. Let (u*(t),v*(t)) be an
optimal strategy of the bilevel dynamic problem Py and z*(t) the corresponding trajec-
tory. Assume that the value function for the lower level problem V is locally Lipschitz

continuous near u*. Then there exist A > 0,7 > 0 and an arc p; such that:

—Bi(t) = Vo Hi(t, (), u* (), v (&) A7) ae. (16)
max Hit,a*(8),u' (0,0, () Ar) = Ho(te* (0,4 (0,0 (0, (0 A7) ald)
—pi(t1) € A0f(z*(t1)) + rdg(z*(t1)) (18)
VuHi(t2' (), ' (1), v' e A7) € OV (W) aee. (19)
Ipilleo + A+ 7 >0, (20)

where || - || denotes the supremum norm.

Proof. We pose the optimal control problem P, equivalently as the following
problem

-~

P min  f(z(t1)) + z(t1)
st z(t) = ot z(t),u(t),v(t)) ae.
U(t) = G(t,z(t), u(t), v(t)) a.e.

2(t) = F(t,z(t),u(t), v(t)) a.e.

12



v(t) e V(t) a.e.
(z,y,2)(to) € {zo} x {0} x {0}
V(u) 2 y(t1) + g(z(t1)).

We now reformulate the above problem as an infinite dimensional optimization prob-
lem. Let C([to,t1], R®) be the space of continuous mappings from [to,?;] into R"

with the usual supremum norm. Let V denote the collection of all admissible control

functions for Po(u). Set

Z:= (x,y,z), 5:: (¢7G’F)
For v(+) € V, the mapping (Z(-), u(-)) = Fo(F(-),u(-),v(:)) from X = C([to, t1], R**?)x
L([to,ta], R™) into Y := C([to, t], R**?):
Ro(B(),u(), 00))(€) = 3(0) ~ 30 + || 3(5,3(6),u(s), (o))
is well defined and continuously (Gateaux) differentiable in (Z(:),u(-)). Let finally
fo(Z()) = f(z(t)) + 2(t1)
Go(Z(-),u(")) :=y(t1) + g(x(t1)) — V(v)
S:={Z CY:x(to) = zo,y(te) = 0, 2(to) = 0}.
Then Problem P, is equivalent to the problem
P’ min  fo(%)
s.t.  Fo(Z,u,v)=0
Go(f,’l[:) S 0
(%,u) € S x L?

v e V.

The above problem is in the form of a very general problem in §4 of Ioffe [8]. Let the
Lagrangian of the above problem be

L\, 7,0,Z,u,v) := Mo(T) + rGo(Z, u) + (@, Fo(Z,u,v)).

As in §5 of Ioffe [8], one can verify that the assumptions for Theorem 2 of Ioffe [§]

are satisfied. By Theorem 2 of Ioffe [8], if (z*,u*,v*) is a local solution to P;’, then
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there exist Lagrange multipliers A > 0,7 > 0, @ € Y* not all equal to zero such that

0 € Oz L(A 10,3, 0", v") + Ns(z*) x {0} (21)
L\ 7o,z u*v') = IIIGI\I} L\ ra,Z*u"v) (22)
rGo(*,u*) = 0, (23)

where Y* denotes the space of continuous linear functions on Y. (21) implies that

0 € O;L(A\, r,a, T*,u*,v*) + Ng(Z*) |

C A fo(Z*) + r0:Go(Z*,u*) + Dz{a, Fo(Z*,u',v*")) + Ns(Z*)  (24)

0 € r8,Go(&",u") + Dula, Fo(&,u*,v"))

= —r0V (u*) + Dy(a, Fo(T*, u*,v*)). (25)
Notice that {e, Fo(F,u,v)) can be represented as

(a, Fo(Z,u,v))
= [ @) - 7o), &N - [ ([ 67 3,20, ue) 00

where the pair (p,£(-)) represents the functional @ € Y* (i being a nonnegative
Radon measure on [to, %] and £(-) : [te, t1] — R%*2, p-integrable), i.e.,

/tl @), y@)dp = {o,y(-)),  Vy() €Y.

to
Now let us analyse (24). We have: 8f(Z(-)) contains those § € Y* which can be

represented in the form

(ﬂa h’()) = (a'a h’(tl»
for some a € 8f(z(t;)) x {0} x {1}.

Similarly, 8:Go(Z,u) contains those 8 € Y* which can be represented in the form

(B, h(-)) = (b, h(tr))

for some b € 8g(z(t1)) x {1} x {0}.
Let p(t) := ff* €(1)dp. Then pisan arc. Let Dy{a, Fo(Z,u,v)) denote the Gateaux
derivative of the functional (o, Fy(%,u,v)) with respect to Z. Then for any h € X,

one has

i

(Dz(a, Fo(Z, u,v)), h(-)) /t:l (h(8) — ko), E(D)d
* /tt (Vz0(t, E (1), u(t), v(1) Tp(2), h(t))dt
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Ng(Z) contains those 3 € Y* which can be represented in the form

(B, h(-)) = (c, h(to))

for some ¢ € Nz} x{0}x {0} (Z(t0))-
(24) yields the existence of

a € 8f(z"(tr)) x {0} x {1},b € Bg(z*(tr)) x {1} x {0}, ¢ € Nizoyxfoyxiop(F* (to))
such that
0 = Ma,h(ty)) +r(b,h(t:)) + /tt (h(t) — hits), £(8))di
+ ft:l(V;J(t,gv(t),u*(t),v’;(t))Tp(t),h,(t))dt + e h(t)) VheX.

Let us denote h = (hy, he, ha), £ = (&1,€2,&3), p = (p1, P2, p3) where 1 corresponding
vectors in R%, 2,3 to those in R. Especially, if we choose h(-) which are absolutely
continuous and h(tg) = 0, h;(¢;) = 0 for ¢ = 1,3, we have

0 = rhy(ty) + / ha(®)Ea(t)dus

which is equal to T
0= [ ([ &als)dp + r)aha(t
which implies that py(t) = —r.
Similarly, if we choose h(-) which are absolutely continuous and h(tp) = 0, h;(t;) =

0 for i = 1,2, we have .
1
0= Aha(ty) + [ ho(t)es()d

which implies that ps(t) = - A.
If we choose h(-) which are absolutely continuous and h(ty) = 0, hi(¢;) = 0 for

i = 2,3, we have
[
0 = Ma,hu(t)) + b, ha(t)) + J. (ha(®), &a(t))dp
0

+ [ (VB2 (1), 0t (8), v* () TolE), ha ().

to

Setting —g = Aa; + 7b; and changing the order of integration, we obtain

0 = [N 6Odn+ Va2 0,0 0,0 (0) o)
-7V G(t, x*(t),u (1), v*(t)) — AVLF (¢, 2 (t),u*(t), v* (1)) — ¢, k(t))dt
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where k(t) = A(t) is an arbitrary integrable mapping. In view of definition of p(t),
this implies
t
nt)—q = ft (Vag(s,2°(5),u*(s),2*(5)) ' pa(s)
—rV.G(s,x*(s),u*(s),v*(s)) — AV F(s,z*(s),u*(s),v*(s)))ds.

from which we derive (16).

(19) are derived from (25) in an exactly similar way.

We also have

p(t1) = g € =9 f(z*(t1)) — rOg(z* (t1))-

That is (18).

(22) implies that

- [ 60,80, 0, 00,0 N < - [ 000,321, 00, o0

Since —A = po(t),r = —ps(t), the above inequality implies that

[ et 0,0 0,00, @5 A2 [ B30, (0,00, 90 A r)de

for any v(-) € V. Since for any measurable set E C [to, 1], one has
v(-) = xe(-)v() + (1 - xe())v*()
belongs to V whenever v(-) € V, it follows that
Hl(t7x*(t)>U*(t)) v*(t)7pl(t); )‘7 'I") Z Hl(t7x*(t))U*(t),v(t)apl(t); /\7 T) a.e. t

for any v(-) € V. From measurable selection theory, (17) follows.

(20) follows easily from the fact that A\, r, o are not all equal to zero. The proof
of the theorem is now complete. &

Combining Theorem 3.1 and Theorem 2.1, one has the following necessary condi-

tions for optimality for the general bilevel dynamic problem.

Theorem 3.2 Assume assumptions (A1)-(A8) hold. Let (u*(t),v*(t)) be an optimal
strategy of the bilevel dynamic problem P, and x*(t) the corresponding trajectory.
Then there exist A > 0,7 > 0 and arc p; such that:

—p1(t) = VL Hy(t,z*(t),u*(t),v* (t); A, 7)

max Hy(t, 2" (1), v (t), v, p1(t); ) = Hat,2°(8), " (8), 0" (), (8 Ar) - e
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—pi{t1) € AOf(z*(t1)) + rdg(z*(t1))
VuHi(t, 2 (t), u*(t),v*(t); A, 1) € releo Ugey,, {¢ : 3 arc p; s.t.
(_Zj2ig’i) € 5H2(t,x,u‘,p2) a.c., "'pZ(tl) € ég(m(tl))})

Ip1lloo + A+ 7 > 0.

4 Conclusion and future research

In this paper we derive a necessary optimality condition for the bilevel dynamic prob-
lem. Due to the technical difficulties in studying the value function of optimal control
problem with respect to general infinite-dimensional perturbations in dynamic and
objective functions, we can only studied the problem without endpoint constraints.
The perturbation structure we allowed are also limited. This will be subject to future

research.
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