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Abstract

A decision-maker observes sequentially a given permutation of n uniquely
rankable options. He has to invest capital into these opportunities at the
moment when they appear. At each step only relative ranks are known. At
the end the true rank of the option, at which the investment has been made, is
known. [Bruss and Ferguson(2002)] have considered such problems under the
assumption that an investment on the very best opportunity yields a lucrative,
possibly time-dependent, rate of return. Uninvested capital keeps its risk-free
value. Wrong investments lose their value.

In this paper we partially extend results by [Bruss and Ferguson(2002)].
We confine our study to linear utility but a wider range of payoffs is taken
into account. Two cases are considered. The first-type payoff gives a positive
rate of return if the investment is made on the best or the second best option.
The second-type payoff pays when the investment is at the second best option.
We motivate these payoff choices. A few examples are explicitly solved.

1 Introduction

In their paper [Bruss and Ferguson(2002)] have considered the investment models
based on the best-only payoff of the classical secretary problem. Although a version
of the secretary problem (the beauty contest problem, the dowry problem or the
marriage problem) was first solved by [Cayley(1875)], it was not until four decades
ago there had been sudden resurgence of interest in this problem. Since the arti-
cles by [Gardner(1960a), Gardner(1960b)] the secretary problem has been extended
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and generalized in many different directions. Excellent reviews of the develop-
ment of this colorful problem and its extensions have been given by [Rose(1982b)],
[Freeman(1983)], [Samuels(1991)] and [Ferguson(1989)].

[Bruss and Ferguson(2002)] introduce the following model. The choice of secre-
tary corresponds now to an investment: At the beginning of the investment process
the fortune of investor is x0. Observing the rankable opportunities sequentially the
decision maker is able to invest any amount b1, 0 ≤ b1 ≤ x0, in the opportunity.
After such investment he is leaving fortune x1 = x0 − b1 for future investments. If,
after all n opportunities have been observed, this opportunity is the best one, then
the return on our investment is y1 = β1b1, where β1 ≥ 1 is a known rate of return
available at stage 1, otherwise the investment is lost.

Similarly, at stage k = 2, 3, . . . , n, if the k-th opportunity is relatively best
and our remaining (uninvested) fortune is xk−1, we may invest any amount bk,
0 ≤ bk ≤ xk−1, in the kth opportunity and the return on the investment will be
yk = βkbk if the k-th opportunity is best overall and 0 otherwise, where βk ≥ 1. Our
problem is to choose a sequence of investments to maximize the final expected value
of our total fortune from invested and uninvested capital. No interest accumulates on
uninvested capital or on lost capital. The uninvested capital contribution makes here
an essential difference. If this part is neglected, the unified approach of [Bruss(1984)],
and the general setting of the Odds–Theorem (see [Bruss(2000)]) give both results
which are, in some ways, stronger.

Our work is also related with that of [Rasmussen and Pliska(1976)], where a
discount penalty α, 0 < α < 1, for each additional observation is taken. It is an
investment problem in which the one unit can be invested at moment k, 1 ≤ k ≤ N ,
and the return will be αk if we invest to the best overall opportunity. Otherwise
we get nothing. This approach models the time pressure rather than the division
of our fortune between investment opportunities. We finally mention the work of
[Assaf et al.(2000)], where the objective is avoiding bankruptcy.

The mathematical models related to the best choice problem also stimulate the
research in the psychology (see [Corbin(1980)] and [Miller and Todd(1998)]). They
observed that it is not rare that the aim in search for the best in practice can
mean to look for non-extremal option. It will be formulated as the problem of
choosing the option which has the rank belonging to a fixed set A. In the mathe-
matical literature there are papers devoted to extensions of the classical secretary
problem of such kind. In special cases, when A = {1, 2, . . . , s}, the statement of
the optimal strategy for s = 2 has been given by [Gilbert and Mosteller(1966)].
[Dynkin and Yushkevich(1969)] outline a proof. The paper by [Quine and Law(1996)]
has been devoted for the case s = 3. For s ≥ 3 authors such as [Gusein-Zade(1966)]
and [Frank and Samuels(1980)] provide asymptotic results for the optimal strat-
egy. In all these papers the character of set A is such that it contains all ranks
from 1 to some s. A more complicated case, when the sequence of ranks in A has
‘holes’, has been considered by [Rose(1982a)], [Mori(1988)], [Szajowski(1982)] and
[Suchwa lko and Szajowski(2002)]. These results are motivation for the extensions
of the investment model considered by [Bruss and Ferguson(2002)]. Assuming that
the investment to the non-extremal options is also profitable we admit some kind of
hedging of the high risk investment.

High risk investments are related to real investments, where wrong investments
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are lost. If the only profitable option is the best overall one then the only opportunity
of rational investment is a relatively best opportunity. This is the case considered
by [Bruss and Ferguson(2002)]. However, in real life, the best opportunity can be
spread between few top possibilities. If targets with positive return are those with
rank belonging to some set A (assume that the best option has the rank 1), then
the only possibility of rational investment are opportunities with relative rank from
RA = {1, . . . , max(A)}. At the moment of investment the relative rank of oppor-
tunity are usually different from the absolute rank. The prospective value of the
option will change from moment of investment to the end of investment period when
the final is known. Taking this into account one can consider items with relative
ranks at investment moment not belonging to the set A as “hedging”. The details
will be specified later.

In this paper two types of payoffs are adopted. In section 2 the successful invest-
ments are those to the best and the second best option. Section 3 is devoted to the
case when success is to choose of the second best option. The form of the optimal
strategy in the finite horizon case and the asymptotic solution are given.

2 Investment on the best or the second best

Let us denote the relative ranks by Y1, . . . , Yn and the absolute ranks by X1, ..., Xn.
The investment on the opportunity at moment k gives the return α(Xk,Yk),kIA(Xk),
where A = {1, 2}, IA(·) is the characteristic function of the set A and α(i,r),k is the
rate of return when the unit has been invested at moment k into the relative r-th
option which is absolutely the i-th best. The initial capital is x0 and the investment
horizon is n > 0. At the first opportunity, at moment k = 1, we can invest a part
of capital b1, where 0 ≤ b1 ≤ x0. The rest of money, x1 = x0 − b1, can be used
for investment at following opportunities. This option has the relative rank 1. If
at the end of investment period this option is absolutely first then the return is
y1 = α1b1. If it happens that this option will be the absolutely second, then the
return is z1 = β1b1, where α1 = α(1,1),1 and β1 = α(2,1),1 are given. In other cases
the investment in the first opportunity is lost.

Similarly, at stage k = 2, 3, . . . , n, if the k-th opportunity is relatively best and
our uninvested money is xk−1, we may invest any amount bk, 0 ≤ bk ≤ xk−1 to this
opportunity. The return on this investment will be yk = αkbk, αk = α(1,1),k, if at
the end it turn out that it is the best one, and zk = γkyk, γk = α(2,1),k, if at the end
it turn out that it is the absolutely second best one (i.e. at stages i = k + 1, . . . , n
there is only one better option than that at stage k), where yk is the value of the
previous investment at the last relatively best. If the k-th opportunity is relatively
second, and at the end of investment period, it is the absolutely second then the
return will be zk = βkbk, βk = α(2,2),k. In other cases we lose the invested money.

At the stage n, if the n-th opportunity is the relatively best, then it is certain to
be best overall. In this case we must invest all our remaining fortune. The return
will be yn = αnxn−1. If the n-th opportunity is the relatively second, it is the second
best overall and we have to invest all our remaining money. The return are then
zn = βnxn−1. The aim of the decision-maker is to maximize the expected utility of
sequential investments at the end of the considered period.
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2.1 The recursive equations

Let us adopt the utility function u(·) and let us denote by Vk(x, y, z) the expected
utility of our assets (x, y, z) at stage k, where x is the money still available for
investment, y is the value of the investment at the relatively best option and z is the
value of the investment at the relatively second best. Based on the Bellman principle
and the properties of the relative ranks we formulate the recursive relations

Vn(x, y, z) =
n− 2

n
u(x + y + z) +

1

n
u(y + βnx) +

1

n
u(αnx + γny), (1)

Vk(x, y, z) =
k − 2

k
Vk+1(x, y, z)

+
1
k

(
max
0≤b≤x

Vk+1(x− b, αkb, γky) + max
0≤b≤x

Vk+1(x− b, y, βkb)
)

, (2)

for k = 2, ..., n− 1, and

V1(x, y, z) = max
0≤b≤x

V2(x− b, α1b, 0). (3)

For linear utility function it is possible to get Vk(x, y, z) in an explicit form.

Theorem 2.1. Let u(x) = x. For k = 3, . . . , n we have

Vk(x, y, z) =
(k − 2)(k − 1)

n(n− 1)
[x + y + z + aky + bkx]. (4)

For k = 1, 2

V2(x, y, z) =
1

n(n− 1)
[y(1 + γ2 + a3) (5)

+x[max{1 + b3, α2(1 + a3)}+ max{1 + b3, β2}]]

V1(x, y, z) =
x

n(n− 1)
max{α1(1 + γ2 + a3), (6)

max{1 + b3, α2(1 + a3)}+ max{1 + b3, β2}},

where an = 1+γn

n−2
, bn = αn+βn

n−2
and

ak = ak+1 +
1

k − 2
(1 + γk + ak+1), (7)

bk = bk+1 +
1

k − 2
[max{1 + bk+1, αk(1 + ak+1)}+ max{1 + bk+1, βk}]. (8)

Let k = 1. The optimal investment strategy is to allocate all money to the first
coming option when

α1(1 + γ2 + a3) ≥ max{1 + b3, α2(1 + a3)}+ max{1 + b3, β2},

otherwise for k ≥ 2

• all money are invested to the first relative best opportunity when αk(1+ak+1) >
1 + bk+1;
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• all money are invested to the first relatively second opportunity when βk >
1 + bk+1.

Proof. For k = n

Vn(x, y, z) =
n− 2

n
(x + y + z +

1 + γn

n− 2
y +

αn + βn

n− 2
x)

=
n− 2

n
(x + y + z + any + bnx)

Let us assume that

Vk+1(x, y, z) =
k(k − 1)

n(n− 1)
((1 + bk+1)x + (1 + ak+1)y + z)

then we have

Vk(x, y, z) =
k − 2

k
Vk+1(x, y, z)

+
1

k

(
max
0≤b≤x

Vk+1(x− b, y, βkb) + max
0≤b≤x

Vk+1(x− b, αkb, γky)
)

=
k − 2

k
Vk+1(x, y, z) +

1

k
(max{Vk+1(x, 0, γky), Vk+1(0, αkx, γky)}

+ max{Vk+1(x, y, 0), Vk+1(0, y, βkx)})

=
(k − 1)(k − 2)

n(n− 1)
((1 + bk+1)x + (1 + ak+1)y + z)

+
1

n− 2
(max{1 + bk+1, (1 + ak+1)αk}x + (1 + γk + ak+1)y})

=
(k − 1)(k − 2)

n(n− 1)
(x + y + z + aky + bkx)

It gives the form of Vk(x, y, z) for k = 3, 4, . . . , n. From (2) and (4) we have

V2(x, y, z) =
1

2

(
max
0≤b≤x

V3(x− b, α2b, γ2y) + max
0≤b≤x

V3(x− b, y, β2b)
)

=
1

2
(max{V3(x, 0, γ2y), V3(0, α2x, γ2y)}

+ max{V3(x, y, 0), V3(0, y, β2x)})

=
1

n(n− 1)
(y(1 + γ2 + a3)

+x[max{1 + b3, α2(1 + a3)}+ max{1 + b3, β2}]) .

The form of V2(x, y, z) and (3) follow that V1(x, y, z) = max{V2(x, 0, 0)+V2(0, α1x, 0)}.
Hence V1(x, y, z) has the form (6). �

2.2 Continuous approximation of discrete time investment problem

Similarly as in [Bruss and Ferguson(2002)] we investigate now the asymptotic be-
haviour of the total return under an optimal strategy.
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Definition 2.2. Let ~α(i,r),n = (α(i,r),1, α(i,r),2, . . . , α(i,r),n) for i ∈ A = {1, 2, . . . , s},
i ≥ r and n ∈ N be the given vector of the rate of returns and let α(i,r)(t) be the real
value functions defined on [0, 1] such that lim

n→∞
k(n)

n
→t

α(i,r),k(n) = α(i,r)(t). For the initial

capital x0 denote ρn( ~αn) the optimal return of investments for the rate of return
defined by ~αn. If the limits lim

n→∞
k(n)

n
→t

ρn( ~αn) = ρ(~α(t)) and ρ = limn→∞ ρ(~α(t)) exist the

value of ρ is called the optimal asymptotic return (the limit expected fortune). The
limit of corresponding strategies are called the asymptotic optimal strategy.

We now allow that the parameters αk, βk, γk and the coefficients ak and bk

depend on n. Let us assume there are continuous functions: α(t), β(t) and γ(t) on
(0, 1], such that αk = α( k

n
), βk = β( k

n
), γk = γ( k

n
). The equations (7) and (8) can

be written in the form

ak+1,n − ak,n
1
n

= − n

k − 2
[1 + γ(

k

n
) + ak,n] (9)

bk+1,n − bk,n
1
n

= − n

k − 2

[
max{1 + bk+1, α(

k

n
)(1 + ak+1)} (10)

+ max{1 + bk+1, β(
k

n
)}

]

These show that the sequences ak and bk are monotone decreasing. Let fn(t) and
gn(t) interpolate on [0, 1] points ( k

n
, ak,n) and ( k

n
, bk,n), respectively. Both functions

are monotone on [0, 1]. Using these functions we get from (9) and (10)

fn(k+1
n

)− fn( k
n
)

1
n

= − n

k − 2
[1 + γ(

k

n
) + fn(

k

n
)] (11)

gn(k+1
n

)− gn( k
n
)

1
n

= − n

k − 2
[max{1 + gn(

k + 1

n
), α(

k

n
)
(
1 + fn(

k + 1

n
)
)
} (12)

+ max{1 + gn(
k + 1

n
), β(

k

n
)}].

Theorem 2.3. Let us assume the function α(t), β(t) and γ(t) defined on [0, 1] are
continuous and let α(t) > 1, β(t) > 1 on [0, 1].

(i) As n tends to ∞, fn(t) → f(t), gn(t) → g(t), where f(t) and g(t) satisfy the
set of differential equations

f ′(t) = −1

t
(1 + γ(t) + f(t)) (13)

g′(t) = −1

t
[max{1 + g(t), α(t)(1 + f(t))}+ max{1 + g(t), β(t)}] (14)

on (0, 1] with boundary conditions f(1) = 0 and g(1) = 0.

(ii) The limiting optimal investment policy is to invest the whole money in the first
relatively best option at moment t when α(t)(1 + f(t)) ≥ 1 + g(t) and in the
first relatively second occurring at a time t for which β(t) ≥ 1 + g(t).
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(iii) The asymptotic optimal expected fortune at moment t is

Vt(x, y, z) = lim
n→∞

k(n)
n
→t

Vk(n)(x, y, z) = t2(x + y + z + f(t)y + g(t)x). (15)

If t0 = min{0 < t ≤ 1 : 1 + g(t) ≤ β(t) or 1 + g(t) ≤ α(t)(1 + f(t))} > 0 then
the optimal asymptotic return ρ = limt→0+ t2(f(t)y + g(t)x).

Proof. This proof, using results of [Henrici(1962)] on Euler-Cauchy approximations
and of [Bruss(1988)] on limiting record frequencies, is along the same lines as the
proof of Theorem 2 of [Bruss and Ferguson(2002)], and can therefore be omitted.

�

Remark 2.4. The solution of the equation (13) on (0, 1] is

f(t) =
1− t +

∫ 1
t γ(s)d s

t
. (16)

2.3 The constant rate of return

Consider the case of the constant rate of return assuming that α(t) = α ≥ 1,
β(t) = γ(t) = β ≥ 1 and α ≥ β. For t ∈ (0, 1], for every α and β we have
α(1+β

t
− β) ≥ β. The equations (13) and (14) for 0 < t ≤ 1 have the form:

f ′(t) = −1
t
(1 + β + f(t)) (17)

g′(t) =


−2

t (1 + g(t)) for 1 + g(t) ≥ α(−β + 1+β
t ),

−1
t (

α(1+β)
t − αβ + 1 + g(t)) for β ≤ 1 + g(t) < α(−β + 1+β

t ),
−1

t (
α(1+β)

t − αβ + β) for 1 + g(t) < β

(18)

with boundary condition f(1) = 0 and g(1) = 0. The solution of this set of equations

has the form: f(t) = (1+β)(1−t)
t

,

g(t) =


−β(1− α) ln(t) + α(1+β)

t
(1− t) for t2 < t ≤ 1,

−α(1 + β) ln(t) + t2(1−α)β+α(1+β) ln(t2)
t

+ αβ − 1 for t1 < t ≤ t2,
α((1+β)t1−βt21)

t2
− 1 for 0 < t ≤ t1,

where t2 is the solution in (0, 1] of the equation 1 + g(t) = β and t1 is the solution
of the equation 1 + g(t) = α(1 + f(t)) in (0, t2]. In this case the asymptotic optimal
fortune is equal ρ = α((1 + β)t1 − βt21)x, where x = x0 is the initial fortune.

Corollary 2.5. The asymptotically optimal strategy for the problem of investment,
when the positive rate of return is given by the best or the second best option, is as
follows. We do not invest any capital into an option which appear from 0 to t1. On
the interval [t1, 1] we invest all our capital at the first relatively best option and on
the interval [t2, 1] also at the relatively second best option, which appears first.
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3 Investment on the second best

Let us consider the investment problem at the sequence of different option when
the positive return is possible on the absolutely second best opportunity and the
initial capital is x0. This may seem strange but can indeed be a good objective,
if–as e.g. for targeted investments– a strong competitor is known to hunt for similar
opportunities. We observe the relative ranks of options as in the problem solved by
[Bruss and Ferguson(2002)] and in Section 2. In this case the investment opportu-
nity at moment k gives the return α(Xk,Yk),kIA(Xk), where A = {2}. The positive
return is possible when we invest on the relatively best or the second best opportu-
nity. Let us assume that at some moment k, having still whole capital xk−1 = x0

not engaged, we observe the relatively best option and we invest bk, 0 ≤ bk ≤ xk−1

in that opportunity, leaving fortune xk = xk−1− bk for future investments. If, at the
end of investment period, this opportunity appears to be the second best overall, it
means that at some moment i, k < i < n, the next relatively best option appeared.
In this case the return on our investment at previous relatively best will work in
fact. To formalize this we adopt the following convention: having the best option
at moment i and the invested money bk at moment k our stage of investment would
be zi = α(2,1),iyi, where yk = α(1,1),kbk and we can invest bi, 0 ≤ bi < xi−1 at the
current best. If it happens that the option at moment i will be the second best,
then the return is zi = α(2,2),ibi. At the last stage n, if the option is the second best
we have to invest all capital available to get zn = α(2,2),nxn−1. Taking into account
the payoff structure we can parametrize the rate of return as follows: α(1,1),k = 1,
α(2,1),k = γk and α(2,2),k = βk.

Our aim is to maximize the return from the investment process.

3.1 The recursive determination of the value function

Let Vk(x, y, z) be the expected return under the optimal investment policy when
at stage k, 1 ≤ k ≤ n, the capital which is not invested is equal x. The capital
invested at the current relatively best is y and at the current second best is z. If at
stage n the best option appears we do not invest at this option but the investment
to previous the best will pay γny. If at stage n the second best appears the total
capital is allocated to this option with return βnx. We have

Vn(x, y, z) =
n− 2

n
u(x + z) +

1

n
u(βnx) +

1

n
u(γny) (19)

Similar consideration as in construction of the formulae (2) leads to equations

Vk(x, y, z) =
k − 2

k
Vk+1(x, y, z) +

1

k
max
0≤b≤x

Vk+1(x− b, b, γky) (20)

+
1

k
max
0≤b≤x

Vk+1(x− b, y, βkb) for k = 2, . . . , n− 1,

V1(x, y, z) = max
0≤b≤x

V2(x− b, b, 0). (21)

The set of equations (19)-(21) for the linear utility function can be solved and
the result similar to the theorem 2.1 is formulated.
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Theorem 3.1. Let the utility function be u(x) = x. The expected optimal return
functions have the form

Vk(x, y, z) =
(k − 2)(k − 1)

n(n− 1)
[x + z + aky + bkx] for k = 3, . . . , n,

V2(x, y, z) =
1

n(n− 1)
[y(γ2 + a3) + x[max{1 + b3, a3}+ max{1 + b3, β2}]]

V1(x, y, z) =
x

n(n− 1)
max{γ2 + a3, max{1 + b3, (1 + a3)}+ max{1 + b3, β2}}

where an = γn

n−2
and ak = ak+1 + 1

k−2
(γk + ak+1) for k = 3, . . . , n− 1, bn = βn

n−2
and

bk = bk+1 + 1
k−2

[max{1 + bk+1, ak+1}+ max{1 + bk+1, βk}] for k = 3, . . . , n− 1.
The optimal investment strategy at moment k = 1 is to allocate all the money to

the first option, if

γ2 + a3 ≥ max{1 + b3, a3}+ max{1 + b3, β2},

otherwise for k ≥ 2

• all money are invested to the first relative best opportunity when ak+1 > 1 +
bk+1;

• all money are invested to the first relatively second opportunity when βk >
1 + bk+1.

Proof. For k = n

Vn(x, y, z) =
n− 2

n
(x + z +

γn

n− 2
y +

βn

n− 2
x) =

n− 2

n
(x + z + any + bnx).

At stage n we invest when the second best appears. Let us assume that Vk+1(x, y, z) =
k(k−1)
n(n−1)

(x + z + ak+1y + bk+1x), then we have

Vk(x, y, z) =
k − 2

k
Vk+1(x, y, z) +

1
k

(
max
0≤b≤x

Vk+1(x− b, b, γky) + max
0≤b≤x

Vk+1(x− b, y, βkb)
)

=
k − 2

k
Vk+1(x, y, z) +

1
k

(max{Vk+1(x, 0, γky), Vk+1(0, x, γky)}

+max{Vk+1(x, y, 0), Vk+1(0, y, βkx)})

=
(k − 1)(k − 2)

n(n− 1)

[
x + z + y(ak+1 +

1
k − 2

(γk + ak+1) (22)

+x

(
bk+1 +

1
k − 2

(max{1 + bk+1, ak+1}+ max{1 + bk+1, βk})
)]

(23)

=
(k − 1)(k − 2)

n(n− 1)
(x + y + z + aky + bkx).

It gives the form of Vk(x, y, z) for k = 3, . . . , n and the optimal investment strategy
follows from (22)-(23). For k = 2, by backward induction, we have

V2(x, y, z) =
1

2

(
max
0≤b≤x

V3(x− b, b, γ2y) + max
0≤b≤x

V3(x− b, y, β2b)
)

=
1

n(n− 1)
((γ2 + a3)y + (max{a3, 1 + b3}+ max{β2, 1 + b3})x) .
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Finally, the form of the expected return at k = 1 follows the optimal investment
strategy at this stage.

V1(x, y, z) = max
0≤b≤x

V2(x− b, b, 0)

=
1

n(n− 1)
max{γ2 + a3, max{a3, 1 + b3}+ max{β2, 1 + b3}}

�

3.2 Asymptotic solution of the investment in the second best option

In this section, similarly as in Section 2.2, the asymptotic behaviour of the total
return and the optimal strategies are investigated. Let us allow that the parameters
βk, γk and the coefficients ak and bk depend on n. Let us assume there are continuous
functions: β(t) and γ(t) on (0, 1], such that βk = β( k

n
), γk = γ( k

n
). Let fn(t) and

gn(t) interpolate on [0, 1] points ( k
n
, ak,n) and ( k

n
, bk,n), respectively. Based on the

recurrence relation for ak and bk formulated in Theorem 3.1 we get the differential
equations for coefficients of the asymptotic solution. The details of the proof are
omitted.

Theorem 3.2. Let us assume the function β(t) and γ(t) defined on [0, 1] to be
continuous and let β(t) > 1 and γ(t) > 1 on [0, 1].

(i) As n tends to ∞, fn(t) → f(t), gn(t) → g(t), where f(t) and g(t) satisfy the
set of differential equations

f ′(t) = −1

t
(γ(t) + f(t)) (24)

g′(t) = −1

t
[max{1 + g(t), f(t)}+ max{1 + g(t), β(t)}] (25)

on (0, 1] with boundary conditions f(1) = 0 and g(1) = 0.

(ii) The limiting optimal investment policy is to invest all money in the first rela-
tively best option at time t if f(t) ≥ 1 + g(t) and in the first relatively second
occurring at a time t for which β(t) ≥ 1 + g(t).

(iii) The asymptotic optimal expected fortune at moment t is

Vt(x, y, z) = lim
n→∞

k(n)
n
→t

Vk(n)(x, y, z) = t2(x + y + z + f(t)y + g(t)x). (26)

If t0 = min{0 < t ≤ 1 : 1 + g(t) ≤ β(t) or 1 + g(t) ≤ f(t)} > 0 then the
optimal asymptotic return ρ = limt→0+ t2(f(t)y + g(t)x).
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3.3 Constant rate of return

Consider the case of a constant rate of return assuming that β(t) = β ≥ 1 and
γ(t) = γ ≥ 1. The equations (24) for 0 < t ≤ 1 has the form:

f ′(t) = −1

t
(γ + f(t)) (27)

with boundary condition f(1) = 0. The solution of this equation in (0, 1] is the
function f(t) = γ 1−t

t
. In some left hand side neighbourhood of 1 the equation (25)

takes form g′(t) = −1
t
(1 + β + g(t)) with boundary condition g(1) = 0. It has the

solution g1(t) = (1+β)(1
t
−1). If β ≥ γ, then 1+g(t) ≥ f(t) in (0, 1]. The inequality

1 + g(t) < β is fulfilled for t ∈ (1+β
2β

, 1]. We have

g′(t) =

 −1+β+g(t)
t

if t ∈ (1+β
2β

, 1],

−2(1+g(t))
t

if t ∈ (0, 1+β
2β

].
(28)

The function

g(t) =


(1+β)(1−t)

t
if t ∈ (1+β

2β
, 1],

(1+β)2

4βt2
− 1 if t ∈ (0, 1+β

2β
].

(29)

is the solution of (28) with boundary condition g(1) = 0 when β ≥ γ. Hence in
this case the optimal investment strategy is to put all money at the first relatively
second opportunity after the moment 1+β

2β
. The optimal limit expected fortune is

ρ = (1+β)2

4β
x. This solution is also valid for β ≤ γ < (1+β)2

β
.

When γ > (1+β)2

β
then the solution of (25) has form

g(t) =



(1+β)(1−t)
t

if t ∈ (1+β
2β

, 1],
(1+β)2

4βt2
− 1 if t ∈ (t1,

1+β
2β

],
γ
t

ln t1
t

+ (γ − 1) + γ(1−2t1)
t

if t ∈ (t0, t1],
γt0(1−t0)

t2
− 1 if t ∈ (0, t0],

(30)

where t1 =
1+

√
1− (1+β)2

βγ

2
and t0 = min{0 < t < t1 : γ

t
ln t1

t
+ (1 − γ) t1

t
< 0}. The

construction of the solution follows the consideration of optimal strategies in turn
at the intervals (1+β

2β
, 1], (t1,

1+β
2β

], (t0, t1] and for t ≤ t0. The optimal limit expected

fortune is ρ = γt0(1− t0)x.

Corollary 3.3. The asymptotically optimal strategy for the problem of investment
when the positive rate of return is from the second best option is as follows. If

γ ≤ (1+β)2

β
then we do not invest any capital until time 1+β

2β
. On the interval (1+β

2β
, 1]

we invest all our capital at the first relatively second best option, which appears first.

If γ > (1+β)2

β
then we do not invest any capital at option which appear from 0 to

t0. On the interval (t0, t1] we invest all our capital at the first relatively best option
and on the interval (1+β

2β
, 1] we invest all our capital at the first relatively second best

option.
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4 Final remarks

It is difficult to obtain solutions in analytical form. From the theorems presented in
this paper it is possible to find solution by numerical methods.

We may also consider more general utility functions. Typical utility function
have been suggested by [Bruss and Ferguson(2002)] such as uα(x) = xα−1

α
, for α 6= 1

and u0(x) = log(x) for α = 0. The solution of the investment problem for such
functions will be studied of a separate paper.
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ul. Żagańska 27, PL-25-528 Kielce, Poland


