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Abstract. This paper is concerned with the minimum-weight design of structures

subjected to periodic loading, under the constraint of a prescribed deflection at a specified

point of the structure. For elastic sandwich beams, the method of stationary mutual

potential energy is extended to cover periodic loading and a sufficient condition for

stationary weight is derived.

1. Introduction. The optimal design of structures subjected to a single periodic

concentrated load has been investigated by Icerman [1]. He obtained sufficient con-

ditions for minimum-weight design under the constraint of a prescribed deflection at

the point of application of the load. A generalization of this problem is considered in

this paper in which the loading may consist of distributed loads, concentrated loads,

and concentrated moments, all periodic with the same frequency, and the deflection is

prescribed at any specified point of the structure.

The method to be used is different from that of [1]. The principle of stationary mutual

potential energy, which was introduced by Shield and Prager [2] and has been applied

to optimal structural design problems in [2]—[6], is extended here to cover the case of

periodic loading. For elastic sandwich beams, a sufficient condition for stationary weight

is derived from this principle. The cases of continuously varying stiffness and segment-

wise constant stiffness are treated, and some examples are considered.

2. Stationary principle. Consider a beam that is simply supported, built in, or

free at the ends x = 0 and x = I, with variable bending stiffness s(x) and mass per unit

length m(x). Denote the distributed load by q(x) cos ut, typical concentrated loads by Q

cos of, and typical concentrated couples by C cos of. Let u(x) cos cot be the deflection

of the beam. It is desired to find the design s(x) which makes f m(z) dx stationary under

the constraint u(x0) = u„ , where x„ is a specified cross-section of the beam and ua is a

prescribed value.

Consider a second state of loading consisting of a single concentrated load Q cos ut

applied at x = x0 , with u(x) cos ut the corresponding deflection of the beam. Let u*(x),

u*(x) be any kinematically admissible deflections. Then we define the mutual total

energy as

U[u*, u*, u, u) s] = | su*"u*" dx — J qu* dx — ^ Qu* — Cu*'

— Quo — co2 J muu* dx — co2 J muu* ctaj- (1)
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With the use of the principle of virtual work combined with D'Alembert's principle [7]

and following the procedure of [2], one can show that

U[u*, u*, u, u) s] — U[u, u; s] = ^ J s(w*" — u")(u*" — u") dx

where U[u, u; s] = U[u, -u, u, u\ s]. Therefore the mutual total energy is stationary at

u* = u, u* = u.

Now consider a second design with bending stiffness s(x) and mass per unit length

m(x), for which the deflection u(x) cos cd under the loads q, Q, C also satisfies the con-

straint u{x0) = u0 . The deflection caused by the single load Q cos ut is designated as

u {x) cos ut. Continuing the procedure of [2], one obtains the relation

U[u, if] s] = U[u, u) s] + |w2|j" muu dx - J muu" dx

and, finally,

J [(s — s)u"u" — o2(m — m)uu\ dx

= J [s(u" — u")(u" — u ") — u2m(u — u)(u — u )] dx. (2)

For designs s(x) in the neighborhood of the design s(x), the right side of (2) vanishes to

first order.

3. Optimal design. The beam is assumed to have a sandwich cross-section with

a core of constant height, so that the mass-stiffness relation is given by

m(x) = a2 + b2s(x)

where a and b are constants. If the deflections u(x) and u(x) satisfy the optimality con-

dition

u"(x)u"{x) - u%%(x)u(x) = k2 (3)

where k is a constant, then (2) becomes

J (m — to) dx = (b2/k2) J" [s(u" — u")(u" — u ") — co2m(u — u)(u — u )] dx (4)

and the structural weight of design s is stationary with respect to the weight of all

designs s in the neighborhood of s for which the deflection constraint is satisfied. The

design s provides a local minimum if the right side of (4) is positive for nearby designs s

and a global minimum if it is positive for all possible designs s.

The optimality condition obtained in [1] is found to be a special case of (3). If the

loading q, Q, C consists only of a single load Q cos ut at x = x0 , then u = u if Q is set

equal to Q and (3) yields

u"2(x) — cc2b2u2{x) = k2. (5)

Eq. (4) takes the form

J (m — m) dx = (b2/k2) J [s(u" — u")2 — u2m(u — w)2] dx.
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For this special case, therefore, a sufficient condition for J m dx > f m dx is that (5)

be satisfied and co be less than the fundamental frequency of the beam having stiff-

ness s(x).

Another special case is that of a beam with segmentwise constant stiffness. If the

subscript i refers to quantities in the t'th segment, then one obtains from (2)

T. — ffl,-) J (u'i'u'i' — ui2b2UiUi) cta,| = 0 (6)

to first order, where = a2 + fr2s; . The weight of the beam for design s( is 23 >

and it follows that a sufficient condition for stationary weight is

y- J {u'i'u'i' — u?b2UiiIi) dxi — k2 (independent of i). (7)

In general the optimalitj* conditions (3) and (7) are not simple to apply. For beams

of continuously varying stiffness the optimality condition (3), the equation of motion of

the beam under loads q, Q, C, and the equation of motion under Q form a system of

three coupled differential equations in s(x), u(x), and u(x). The situation is a little more

hopeful in the case of segmentwise constant stiffness, since the equations of motion

may be solved for Ui{x) and u,(x) in terms of the stiffnesses s; . Substitution of the re-

sulting deflections into the optimality condition (7) then yields the solution s, for station-

ary weight.

4. Examples. (A) Consider a cantilevered sandwich beam of length I under a

distributed load q{x) cos at. The beam is to be designed for minimum weight subject

to the constraint that the deflection at the free end is to have the amplitude u0 .

Let x = 0 at the built-in end and x — I at the free end. The equation of motion for

u(x) is given by

[s(x)u"(x)]" — w2m{x)u{x) = q{x), (8)

with boundary conditions

•u(O) = 0, w'( 0) = 0, s(l)u"(l) = 0, \s(x)u" (x)]'z.l = 0.

The deflection u{x) is caused by a concentrated load Q cos wf acting on the beam at

x = I, and hence

[s(x)u" (x)]" — a2m(x)u(x) — 0, (9)

w(0) = 0, w'(0) = 0, s(l)u"(l) = 0, [s(x)u"{x)]'z_l = —Q.

A sufficient condition for stationary weight is given by (3). To find the optimal design

s(x), the coupled equations (3), (8), and (9) must be solved together with their boundary

conditions and the constraint condition u(l) = u0 ■

(B) Again consider the cantilevered sandwich beam described above, but this time

the bending stiffness is to have a constant value sx for 0 < x < c and a constant value

s2 for c < x < I. Denote u(x) = ux{x) for 0 < x < c and u{x) = u2(x) for c < x < I.

Then (8) takes the form

SiU'i'"{x) — u2m,iUi(x) = q(x), i = 1, 2, (10)

with boundary conditions
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w^O) = 0, Mi'(O) = 0, Wi(c) = u2{c), u[(c) = u'2{c),

Siu['(c) = s2u2(c), Siui"(c) = s2u'2"(c), «2«i'(0 - 0, s2u'2"{T) = 0.

Similarly, if w(^) = wx(x) for 0 < Z < c and w(:r) = u2 (x) for c < x < I, then

SiU'i'"(x) — urriiUiix) = 0, z = 1, 2, (11)

and u satisfies the above boundary conditions for u except that s2u2"(l) = 0 is replaced

by s2u'2"(l) = —Q. Eq. (7) gives the following sufficient condition for stationary weight:

^ J (u"u" — wb\iUi) dx = ^ (u"u" — u?b2u2u2) dx. (12)

To find the optimal design Si , s2 , Eqs. (10) and (11) are solved for uAx) and Ui(x),

respectively, in terms of S! , s2 . Condition (12) and the deflection constraint u2(l) = ua

then provide two equations which yield the optimal values Si and s2 .
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