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ABSTRACT: I describe two new methods for estimating the optimal treat-
ment regime (equivalently, protocol, plan or strategy) from very high dime-
sional observational and experimental data: (i) g-estimation of an optimal
double-regime structural nested mean model (drSNMM) and (ii) g-estimation
of a standard single regime SNMM combined with sequential dynamic-
programming (DP) regression. These methods are compared to certain re-
gression methods found in the sequential decision and reinforcement learning
literatures and to the regret modelling methods of Murphy (2003). I con-
sider both Bayesian and frequentist inference. In particular, I propose a novel
“Bayes-frequentist compromise” that combines honest subjective non- or semi-
parametric Bayesian inference with good frequentist behavior, even in cases
where the model is so large and the likelihood function so complex that stan-
dard (uncompromised) Bayes procedures have poor frequentist performance.

1 Introduction

The goal of this paper is to describe several methods for estimating the op-
timal treatment regime (equivalently, protocol, plan or strategy) from obser-
vational (i.e. nonexperimental) and randomized studies when a data on high
dimensional time-dependent response (i.e. covariate) processes are available.
The first method is based on doubly robust locally semiparametric efficient
(dr-lse) g-estimation of the so-called blip (i.e. treatment effect) function of
an optimal double-regime structural nested mean model (drSNMM). The sec-
ond method is based on a dynamic-programming (DP) -like regression model
applied to g-estimates of the blip ( treatment effect) function of a standard
single regime SNMM. I shall refer to the models required by this method as
DP-regression SNMMs.

I introduced standard single-regime structural nested mean model (srSN-
MMs) and proposed dr-lse g-estimation of their blip function in Robins
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(1994,1997,2000). Standard srSNMMs model the effect of a final blip of ac-
tive treatment (versus zero treatment ) at time m before following the zero
treatment regime from time m+1 to end of follow-up. Here ”zero” treatment
refers to a substantively meaningful baseline level of treatment such as ”no
treatment”. Double-regime SNMMs and optimal drSNMMs are introduced
here. A drSNMM models the effect of a final blip of active treatment (versus
zero treatment ) at time m before following a given prespecified regime from
time m+ 1 to end of follow-up. An optimal drSNMM is a drSNMM in which
the regime followed from time m+1 onwards is the optimal treatment regime.
In Sections 3 and 4 I show drSNMMs and optimal drSNMMs are but a minor
technical generalization of the standard srSNMMs of Robins (1994).

My methods were motivated by but differ from but those proposed by
Susan Murphy in her seminal paper on this topic. Section 6 compares and
contrasts Murphy’s methods with mine. I show that Murphy’s semiparamet-
ric regret model is a particular nonstandard single-regime SNMM, not only
in terms of the observed data likelihood, but also as a counterfactual model.
A nonstandard srSNMM differs from a standard srSNMM only in that the
data analyst’s definition of the ”zero” level of treatment at any time m may
vary both with time and with past treatment and covariate history, and thus
may have little or no consistent substantive meaning. From a mathemati-
cal and statistical point of view, standard and non-standard srSNMMs are
identical; they only differ in the substantive meaning of the treatment effect
encoded in their blip functions. It follows, as conjectured by Murphy, that
my prior work on SNMMs indicates how to extend her results to include
(i) sensitivity analysis and instrumental variable methodologies that allow for
unmeasured confounders (Robins, Rotnitzky, Sharfstein, 1999a, Sec 8.1b,8.2b;
Robins, Greenland, Hu 1999d, Sec.2d.5; Section 7 below) (ii) continuous time
treatments (Robins,1998ab; Section 8 below), (iii) locally semiparametric ef-
ficient doubly- robust (lse-dr) estimation (Robins,1994, 2000a; Sections 3-4
below), and (iv) an asymptotic distribution-free test of the g-null hypothe-
sis that the mean response is the same for all regimes (Robins, 1994,1997;
Sections 3-4 below) [provided the treatment probabilities are known (as in a
randomized study) or can be correctly modelled.].

In addition I show in Section 6.1 that the proposed optimal drSNMMs have
two advantages over the semiparametric regret models proposed by Murphy
(2003). First, when the time interval between treatment innovations is not too
short, they admit closed formed estimators of the optimal treatment regime
for non-continuous (e.g. dichotomous) treatments without requiring smooth-
ing or (differentiable) approximation of indicator functions. Second, and more
importantly, I believe it is easier to specify substantively meaningful (e.g. bio-
logically meaningful) optimal drSNMMs than semiparametric regret models,
because regrets are not effect measures about which scientists have clear sub-
stantive opinions amenable to easy modelling. I believe this last statement to
be true not only for the sequential decision problem that is the subject of this
paper but also for the simpler single time decision problem.
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Section 6.2 compares and contrasts optimal regime SNMMs with DP-
regression SNMMs. Optimal drSNMMs enjoy a certain robustness property
not shared by the DP-regression SNMMs. Specifically, when the treatment
probabilities are known (as in a randomized study) or can be correctly mod-
elled, optimal drSNMMs quite generally allow consistent estimation of the
optimal treatment regime without restricting or modelling the joint distribu-
tion of the time -dependent covariate processes. In contrast, the DP-regression
component of a DP-regression SNMM model is a model for aspects of the joint
distribution of this covariate process. I show that misspecification of the DP-
regression model results in inconsistent estimation of the optimal treatment
regime, except when the g-null hypothesis of no treatment effect holds. How-
ever, I do not consider this lack of robustness to be a shortcoming of the
DP-regression SNMM compared to the optimal drSNMM methodology for
the following reason. To obtain a consistent estimate of the optimal regime
dop under an optimal drSNMM, the optimal drSNMM must be correct. But,
due to the high dimension of the covariate processes, this is not possible when-
ever the g-null hypothesis is false. Indeed, no method can provide a consistent
estimator for dop under such a high dimensional alternative, even when the
treatment probabilities are known. The relevant question then is whether,
based on our substantive subject specific knowledge, do we expect to obtain
less biased estimates of dop by specifying a DP-regression SNMM or by spec-
ifying an optimal drSNMM? Even when we possess a great deal of accurate
substantive knowledge, this is often a very difficult question to answer. As a
consequence I would recommend estimation of the optimal regime based on
both models and then either (i) checking whether the optimal regimes and
estimated expected utilities (or confidence sets for the optimal regime and
for their expected utility) computed under the two different models agree at
least qualitatively or (ii) choosing among the estimated optimal regimes by
comparing independent estimates of their expected utilities by employing the
cross-validation methods described in Section 9.

Overview: To fix ideas consider the HIV infected patients receiving their
health care at a large HMO. Suppose that each patient is seen weekly begin-
ning shortly after their time of infection with the virus. At each visit clinical
and laboratory data are obtained. On the basis of a patient’s treatment,
clinical, and laboratory history, the patient’s physician decides whether to
treat with anti-virals in the next week, and, if so, the particular drugs and
dosages to prescribe. Physicians wish to maximize the quality-adjusted sur-
vival time of their patients. Because there is no single agreed upon treatment
protocol, different physicians make different treatment decisions in the face of
the same patient history. Suppose that, after several years, the HMO wishes
to estimate from data collected to date an optimal treatment protocol that,
when implemented uniformly by all HMO-physicians, will maximize quality
adjusted survival time. A treatment protocol or regime is a rule (function)
that at the beginning of each week m takes as input a patients treatment,
laboratory, and clinical history up to m and deterministically prescribes the
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dosage of each available antiviral drug to be taken during the week. Our goal
is to develop methods for estimating the optimal treatment protocol by uti-
lizing the variability in treatment found in the HMO data. This variability
exists because different physicians have made different treatment decisions in
the face of similar patient histories.

A key identifying assumption that we shall assume until Section 7 is the
assumption of no unmeasured confounders, which is also referred to as the as-
sumption of sequential randomization. It says that, in the HMO data, among
patients with a common measured (i.e. recorded for data analysis) treatment,
laboratory, and clinical history up to any time m, those receiving a particu-
lar dose of treatment in week m do not differ on unmeasured (unrecorded)
determinants of quality-adjusted survival. This assumption will be true if all
determinants of quality-adjusted survival that are used by physicians to de-
termine the dosage of treatment at m have been recorded in the data base.
For example, since physicians tend to withhold anti-viral treatment from sub-
jects with very low white blood count (WBC), and in untreated subjects, low
white blood count is a predictor of survival, the assumption of no unmeasured
confounders would be false if data on WBC history was not recorded. It is a
primary goal of the HMO epidemiologists to record data on a sufficient num-
ber of covariates to ensure that the assumption of no unmeasured confounders
will be at least approximately true.

The assumption of no unmeasured confounders is the fundamental con-
dition that will allow us to draw causal inferences and to estimate the effect
of interventions from observational data. It is precisely because it cannot be
guaranteed to hold in an observational study and is not empirically testable
that it is so very hazardous to draw causal inferences from observational data.
On the other hand, the assumption of no unmeasured confounders is guar-
anteed to be true in a sequential randomized trial. A sequential randomized
trial is a trial in which, at each time m, the dose of treatment is chosen at
random by the flip of a (possibly multi-sided) coin, with the coin probabili-
ties depending on past measured laboratory, clinical and treatment-history .
It is because physical randomization guarantees the assumption of sequential
randomization that most people accept that valid causal inferences can be ob-
tained from a randomized trial. In Section 7, we discuss how the consequences
of violations of the assumption of no unmeasured confounders can be explored
through sensitivity analysis.

The problem of determining an optimal treatment strategy is a sequen-
tial decision problem in that the treatment to be prescribed at each week m
is decided based on updated information. As discussed by Murphy (2003),
Sutton and Barto (1998), Cowell et. al. (1999), and Bertsekas and Tsitsiklis
(1996), this same problem is of concern in many other disciplines and sub-
disciplines including the disciplines of Markov Decision Processes, Multi-stage
or Sequential Decision Analysis, Influence Diagrams, Decision Trees, Dynamic
Programming, Partially Observed Markov Decision Processes, and Reinforce-
ment Learning. Susan Murphy (2003) showed that under the assumption of
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no unmeasured confounders, the mathematical problem we are attempting to
solve is identical to that treated in these other disciplines. Thus the estimation
methods developed in these disciplines could be used in place of the proposed
methodologies to estimate the optimal treatment regime. However, we argue
that in principle for many, if not most, of the very high dimensional sequential
decision problems faced in clinical medicine, the estimation methods of Mur-
phy and myself are better than any previous approach for the following reason.
In biomedical studies, it is often the case that the treatment being evaluated
has no effect on survival but may cause mild to moderately severe side effects.
If so, the treatment regime that maximizes the quality-adjusted survival is
to withhold all treatment. In section 2, I argue that in this setting, previ-
ous methods, other than Murphy’s and my own, can, with probability near
1, estimate an optimal treatment regime that inappropriately recommends
treatment for certain patients. The advantage of Murphy and my methods
is intimately connected with recent work on the foundations of statistics in
very high dimensional models (Robins and Ritov, 1997; Robins Rotnitzky, van
der Laan, 2000, Robins and Rotnitzky,2001). This work shows that in high
dimensional, sequential randomized trials with known randomization proba-
bilities (i.e. known conditional probabilities of treatment at each time m), any
method, whether Bayesian or frequentist, that satisfies the likelihood princi-
ple must ignore the known randomization probabilities. However any method
of estimation that ignores these probabilities will, with high probability, in-
correctly estimate, as optimal, regimes that prescribe active drug, even under
the null hypothesis of no drug effect. In contrast, methods such as Murphy’s
and mine, that violate the likelihood principle by using these probabilities,
will correctly estimate as optimal the regime that withholds all drug. In this
paper the question of optimal experimental design is not adressed. Rather we
take the data as given and develop analytic methods for estimation of optimal
or near optimal decision rules.

Organization of the Paper: In Section 2, we formalize our problem and
describe its relation with the problem treated in the sequential decision liter-
ature. In Section 3, we define drSNMMs and srSNMMs. and construct dr-lse
estimators of the model parameters. In Section 4, we define optimal drSNMMs
and construct dr-lse estimators. In Section 5 , we consider how to use our es-
timates of an optimal drSNMM to make optimal decisions. We consider both
frequentist and Bayesian approaches. Because, for an optimal drSNMM, the
expectation of our dr-lse estimating functions may not be differentiable with
respect to the model parameters, standard methods of confidence interval con-
struction can fail. In Section 5 we describe a novel method for the construction
of frequentist confidence intervals in this setting. Furthermore, in Section 5,
we show that, due to the curse of dimesionality, standard Bayesian methods
fail when analyzing high dimensional data arising from either a sequential
randomized trial or an observational study data. We therefore propose a new
type of Bayes-Frequentist compromise procedure that allows a valid Bayesian
analysis of high dimensional data by reducing the data to the locally effi-



6 James M. Robins

cient doubly robust frequentist estimating function for the data, which is
then viewed as a stochastic process whose index is the parameter vector of
our optimal drSNMM. In Section 6 we compare and contrast drSNMMs with
Murphy’s regret models and DP-regression SNMMs. In Section 7, we allow
for unmeasured confounding variables and propose sensitivity analysis and
instrumental variable methodologies. Section 8 briefly considers extensions to
the continuous time setting in which the treatment and covariate processes
can jump at random times. Results in Sections 1-8 rely on two assumptions
that will never be strictly correct: the first that our optimal drSNMM is cor-
rect and the second that either (but not necessarily both) a low dimensional
model for the conditional law of treatment or a low dimensional model for
the mean of the counterfactual utility given the past is correct. In section
9, we relax both assumptions, although not simultaneously. To accomplish
this, we use recent results of van der Laan and Dudoit (2003) on model se-
lection via cross-validation and of Robins and van der Vaart (2003,2004) on
adaptive non-parametric confidence intervals and inference based on higher
order influence functions. [Robins and van der Vaart (2004) consider relaxing
both assumptions simultaneously.] In Appendix 1, we provide detailed calcu-
lations for a specific example in order to clarify the inferential consequences of
using estimating functions with the non- differentiable expectations. Finally,
Appendix 2 and 3 contain the deferred proofs of several theorems.

2 The Data and Analysis Goals

2.1 Observational Studies and Sequential Randomized Trials:

In an observational study or sequential randomized trial we assume that we
observe n i.i.d. copies Oi, i = 1, ..n, of the random vector O =

(
LK+1, AK+1

)

where AK+1 = {A0, . . . , AK+1} are temporally ordered treatment variables
given at non-random times t0, . . . , tK+1, LK+1 = {L0, L1, . . . , LK+1} are re-
sponses (i.e. covariates) with Lm temporally subsequent to Am−1 but prior to
Am, and we have represented random variables by capital letters. Both Am
and Lm may be multivariate. For example in a study of HIV infected sub-
jects, Am = (Am1, Am2, Am3)

T
might be the three vector of doses of protease

inhibitor, nonnucleoside reverse transcriptase inhibitor (RTI) and nucleoside
RTI received in the interval (tm, tm+1], while Lm might be a vector with
components of white count, red count, CD4 count, level of serum HIV RNA,
indicators for each HIV associated opportunistic infection, weight, height,
blood pressure, etc. recorded at time tm. [In particular Lm would include the
indicator Dm of survival to tm.] In typical applications, the number of time
steps K would be in the range of 10 to 500. If the time subscript is absent,
we take the history indicated by the overbar through the end of the study.
For example, L = LK+1. Without loss of generality, we will take AK+1 = 0
with probability one, as AK+1 cannot causally influence LK+1. Thus, in a
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mild abuse of notation, we can write A = AK . For any random vector Zk,
we use the corresponding lower case letter zk to denote a realization of Zk
and the corresponding calligraphic letter Zk to denote the support set (i.e.
possible values of) of Zk. We write Zk = {Z0, Z1, . . . , Zk} and, by convention,
set Z−1 ≡ Z−1 ≡ z−1 ≡ z−1 ≡ 0 with probability one.

We assume there is a known function y (·) of the observed data O whose
expectation E [y (O)] we would like to maximize. That is Y = y (O) can
be thought of as a utility and our goal is to maximize expected utility. For
example, y (O) =

∑K+1
m=1 Dmwm

(
Lm, Am

)
is quality-adjusted years of life

where Dm = 1 if alive at tm, 0 otherwise and wm (·, ·) is an agreed upon
function of past treatment and covariate history quantifying the quality of
life at tm. If wm (·, ·) ≡ 1, y (O) is total years of life during the study period.
[Note that a subject who survived until end of follow-up at time tK+1, will
presumably survive a considerable time past end of follow-up. This implies
that the weight function wK+1(·, ·) should dominate the function wm(·, ·),
m < K + 1, especially for values of LK+1, AK that suggest the subject is
healthy and is expected to live a long time after the study comes to an end.]

A treatment regime or strategy p = (p0, ..., pK) is a collection of condi-
tional densities pm = pm

(
am|lm, am−1

)
for the density of treatment at tm

given past treatment and covariate history. A given treatment strategy p is
a deterministic strategy, say d = (d0, ..., dK) , if for all m, am is a deter-
ministic function dm = dm

(
lm, am−1

)
of
(
lm, am−1

)
. That is p = d means

pm
(
am|lm, am−1

)
= 1 if am = dm

(
lm, am−1

)
. Let pobs = (p0,obs, ..., pK,obs)

be the set of conditional treatment densities that generated the observed data.
Then we can write the density fobs = fobs (o) of the law that generated the
observed data with respect to a dominating measure µ (·) as the product of
the conditional response densities fres and the conditional treatment densities
ftr,pobs . Specifically we write, fobs ≡ fpobs ≡ fresftr,pobs where for any p

fp (o) = fres (o) ftr,p (o) , (2.1)

fres = fres (o) =
K+1∏
m=0

f
[
lm | lm−1, am−1

]
,

ftr,p = ftr,p (o) =
K∏
m=0

pm
(
am|lm, am−1

)

Note that knowing fres (o) is the same as knowing each f
[
lm | lm−1, am−1

]
,

m = 0, ...,K + 1, since the f
[
lm | lm−1, am−1

]
are densities; for example

f (l0) = f
[
l0 | l0−1, a0−1

]
=

∫
· · ·
∫
fres (o)

K+1∏
m=1

dµ (lm) . In an observational

study neither fres nor ftr,pobs are known and must therefore be estimated
from the observed data Oi, i = 1, ..., n. In a sequential randomized trial fres is
unknown but ftr,pobs is known by design since the randomization probabilities

pm,obs
(
am|lm, am−1

)
are chosen by the investigators .
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Note fp (o) = fp = fresftr,p is a law in which the treatment regime p
replaces the observed regime pobs. Actually fp is not well-defined unless p is
a feasible regime defined as follows.

Definition: A regime p is feasible if fp
(
lm, am−1

)
> 0 implies the support

of Am under the conditional law pm
(
·|lm, am−1

)
is contained in the support

of pm,obs
(
·|lm, am−1

)
. We let P be the set of all feasible regimes and let D be

the set of all deterministic feasible regimes.
If p is not feasible, then there must exist

(
lm, am

)
such that fp

(
lm, am

)
> 0

but fpobs
(
lm, am

)
= 0. Thus fp

(
lm+1|lm, am

)
is not a function of fobs ≡ fpobs

and thus is not non-parametrically identified. For any given p ∈ P , fp is
identified from the observed data, since fp is a function of fres and fres is
a functional of the joint density fpobsof the observed data. Until Section 3.2,
we restrict attention to feasible regimes. In Section 3.2, we make additional
modelling assumptions that allow borrowing of information across regimes.
As a consequence, the restriction to feasible regimes becomes unnecessary.

Let fpint (o) be the density of O that would have been observed if, contrary
to fact, all subjects had followed regime p. The subscript ”int” denotes that
fpint is the density of the data that would have been observed under an inter-
vention that forced all subjects to follow regime p. Our interest in fp derives
from the fact that, as formally discussed in section 3, under a sequential ran-
domization assumption, fpint (o) = fp(o) for all p ∈ P, which implies fpint (o)

is identified from the observed data. Let Jpint = Eint,p [Y ] and Jp = Ep [Y ] be

the expectation of Y = y (O) under fpint and fp, respectively. Also for a deter-

ministic strategy d, define Jd to be Jp for p = d. Note Jpobs is the mean of Y
in the observed study. If our goal is to treat a new patient, exchangeable with
the n patients in the study, with the regime that maximizes expected utility,
we wish to treat with a (possibly nonunique) regime pop that maximizes Jpint
over p ∈ P . Under sequential randomization, this is equivalent to maximizing
Jp . It is clear that we can always take pop to be a deterministic strategy dop,
because one can always match a random strategy with a deterministic one.

That is, supp∈P Jp = supd∈D Jd. Thus, under sequential randomization, our

goal is to find dop maximizing Jd.

2.2 The Sequential Decision Literature:

The standard sequential decision literature with a finite time horizon K + 1
deals with the following problem. A set P of strategies and a product of

conditional densities fres (o) =
K+1∏
m=0

f
[
lm | lm−1, am−1

]
are given such that

fp = fresftr,p is well defined for all p ∈ P . The goal is again to find

dop ∈ D ⊂ P maximizing Jd over d ∈ D. See Sutton and Barto (1998) and
Bertsekas and Tsitsiklis (1996). Thus the problem treated in this literature is
exactly as above except now (i) fres is known rather than estimated from the
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data and (ii) there is no data. Thus the problem is purely computational rather
than statistical. The dynamic programming algorithm of Bellman (1957) is the
classic method of computing dop. However in high dimensional problems the
classical dynamic programming algorithm cannot be implemented because it
depends on the calculation of conditional expectations that require the evalua-
tion of very high dimensional integrals and thus only approximate solutions are
available. These approximate solutions are often based on choosing a known
regime pobs and simulating data Oi, i = 1, ..., n, from fpobs . The needed con-
ditional expectations are then evaluated by fitting linear or non-linear (e.g.
neural network) regression models by least squares. These models are meant
to roughly approximate the true functional form of the conditional expecta-
tions determined by fres (o) (Bertekas and Tsilikis,1996). We will call this
fitting method the regression method. Thus in the recent sequential decision
literature, the analysts actually create sequential randomized trials to approx-
imately solve an intractable computational problem by simulation. However
we will argue that, for the high dimensional problems typically occurring in
biomedical studies, the regression method is inferior to dr-lse g-estimation
of optimal double-regime SNMMs. Indeed the difficulty with the regression
approach is already evident in high dimensional single decision problems.

Difficulty with the regression-method: We will consider the special
case where K = 1 so the observed data is o = (l0, a0, l1, a1, l2). Further, to
simplify matters, we suppose A1 is the constant 0 with probability 1 so we
can only consider treating with a1 = 0 at t1 and so A1 can be ignored.
For convenience we suppress the subscript 0 so d0 = d, l0 = l, a0 = a.

Our goal is then to find the function dop (·) of l that maximizes Jd =∫
y (l2, l1, l, a)dF (l2 | a, l, l1) dF (l) dF (l1 | a, l) . Thus dop (l) = argmaxa∈A

E[Y | A = a, L = l] =
∫
y (l2,l1, l, a)dF (l2 | a, l, l1)dF (l1|a, l). Now if

l1 and/or l2 is very high dimensional the integral is intractable even if as
in the sequential decision literature f(l1|a, l) and f (l2 | a, l, l1) are known . In
that case we choose a known density pobs (a|l) and simulate n iid copies Oi =
(L2i,L1i, Ai, Li) from fresftr,pobs (o) = f(l2|a, l, l1)f(l1|a, l)f (l) pobs (a|l) . In
the regression method we obtain the OLS estimate η̂ of η from the fit of a re-
gression modelE (Y |A,L) = ηTw(A,L) to the data Yi = y(L2i, L1i,Li, Ai), Ai, Li,
i = 1, ..., n, where w(A,L) is an investigator chosen vector of regressors se-
lected to have ηTw(a, l) approximate the true regression function
E (Y |A = a, L = l) =

∫
y (l2,l1, l, a)dF (l2 | a, l, l1)dF (l1|a, l). The regression-

estimate of dop (l) is d̂op (l) = argmaxa∈A η̂Tw(a, l). Suppose, for the moment,
the utility y(l2, l1, l, a) = l2 where L2 is the biological outcome of interest. In
biomedical studies, it is often the case that the treatment being evaluated has
no effect on the biological outcome L2. In that case all treatment regimes d re-
sult in the same utility, so the true regression function E (Y |A = a, L = l) does
not depend on a. However when l is very high dimensional, the regression
model ηTw(A,L) is almost guaranteed to be misspecified and, as discussed
further below, because of this misspecification, even in large samples η̂Tw(a, l)
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will nearly always depend on a . It follows that if for some non-zero dose a,
η̂Tw(a, l) exceeds η̂Tw(0, l), treatment will be unneccessarily recommended.

Remark : Of course, when y (l2,l1, l, a) does not depend on a and both
f(l1|a, l) and f(l2 | a, l, l1) are known then a sufficient condition for the null
hypothesis to hold is that both the known densities f(l1|a, l) and f(l2 | a, l, l1)
do not depend on a, which can be checked by inspection. However, surprisingly,
as discussed by Robins and Wasserman (1997), it often happens in realistic
biomedical settings that both densities depend on a and yet the null hypothesis

that the integral Jd is the same for all d ∈ D is true. Thus whether this null

hypothesis holds cannot be checked without evaluation of the integral Jd but,
in high dimensions, this is not possible. Robins and Wasserman (1997) refer
to this as the null paradox since the factors in the integral J d̄ depend on a but
the integral does not. Although such a cancellation may appear miraculous it
is quite common in many realistic biomedical settings. Specifically it will occur
whenever (i) neither A nor L1 affects L2 (ii) treatment A affects L1 and (iii),
as will nearly always be the case, pre-treatment unmeasured health status,
say U , is a causal determinant of both L1 and L2. As a specific example in
HIV patients infected with AZT-resistant HIV, A being treatment with AZT,
L1 being red blood count (RBC) and L2 being HIV RNA, (i) and (ii) will
hold as (i) neither AZT nor RBC will influence HIV RNA but (ii) AZT is a
direct red blood cell toxin.

Now if the null hypothesis of no treatment effect is false and thus
E (Y |A = a, L = l) depends on a, then, because of the high dimension of l
and logistical limits to the number of observations n we can obtain or simu-
late, we cannot hope to correctly estimate dop (l). Thus some approximation
is necessary. But we would like to use a statistical method to do this approxi-
mation that, in contrast to the regression method, does not lead us to falsely
conclude that E (Y |A = a, L = l) depends on a when in fact the null hypoth-
esis is true. We now describe such a method after first giving a more precise
treatment of the failings of the regression method.

Let γ (l, a) = E (Y |A = a, L = l)− E (Y |A = 0, L = l) and
b (l) = E (Y |A = 0, L = l) , where 0 is a substantively meaningful baseline
level of a (e.g. no treatment). Then E (Y |A = a, L = l) = γ (l, a) + b(l). Note
γ (l, 0) = 0. The optimal strategy depends solely on the function γ (l, a)
since dop (l) = argmaxa∈A γ (l, a). Suppose, as an example, we model γ (l, a)
by γ (l, a, ψ) =

∑s
j=1 ψjhj (a)w1j (l) and E (Y |A = 0, L = l) by b (l, θ) =∑r

j=1 θjw2j (l) where hj , w1j and w2j are functions chosen by the analyst
with hj (0) = 0, so γ (l, 0, ψ) = 0 as it must. The model γ (l, a, ψ) for γ (l, a) is
a simple special case of an optimal drSNMM of Section 4. Thus our model is

E (Y |A = a, L = l) = ηTw(a, l) = γ (l, a, ψ) + b (l, θ) (2.2)

Consider also the larger semiparametric partially linear model

E (Y |A = a, L = l) = γ (l, a, ψ) + b (l) (2.3)
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where b (l) is a completely unknown function of l. Note, under the null hy-
pothesis E (Y |A = a, L = l) = E (Y |L = l) , model (2.3) is guaranteed to be
correctly specified with ψ = 0 since E (Y |A = a, L = l) does not depend on

a if and only if ψ = (ψ1, ..., ψs)
T
= 0. In contrast, under the null, the model

γ (l, a, ψ)+b (l, θ) is correctly specified only if b (l, θ) equals E (Y |A = 0, L = l)
for some θ, which is almost certainly false when L is high dimensional. Because
of this model misspecification, the regression method will fail. Specifically the
OLS estimate ψ̂ from the fit of the model γ (l, a, ψ) + b (l, θ) will , except for
certain exceptional data generating processes, be biased with confidence inter-
vals that in large samples will fail to include zero, even though the null ψ = 0
is true. [In exceptional cases the OLS estimate ψ̂ of ψ = 0 remains unbiased
under the null (ψ = 0) even though the model b (l, θ) for E (Y |A = 0, L = l)
is misspecified. An example of such an exception is the special case in which,
in the definitions of γ (l, a, ψ) and b (l, θ) , we have r = s, w1j (l)=w2j (l) for
each j, and A is independent of L under pobs (a|l) = pobs (a) .]

If we could obtain a consistent estimator of ψ in the semiparametric model
(2.3) we would be guaranteed to not be led astray under the null as, then, (2.3)
is a correctly specified model with ψ = 0. The key to doing so is to use the fact
that pobs (a|l) is determined by the simulator or randomizer and thus is known.

For example, consider the so-called g-estimator ψ̂(s) solving 0 =
∑

i Ui (ψ, s)
with U (ψ, s) = H (ψ) {s (A,L)− E [s (A,L) |L]} , H (ψ) = Y − γ (L,A, ψ) ,
s (A,L) is a vector function of the dimension of ψ chosen by the analyst, and
E [·|L] is computed under the known pobs (a|l) . Because under the model (2.3),
U (ψ, s) has mean zero at the true ψ, it follows that under standard regularity

conditions ψ̂(s) is a consistent asymptotically normal estimate of ψ, i.e., as

n → ∞, n1/2
(
ψ̂(s)− ψ

)
converges in law to a normal with mean zero and

variance that depends on the particular choice of s (A,L) . Efficient choices for
s (A,L) are discussed in Section 3. However a goal that may be more important
than efficiency is to choose s (A,L) and pobs (a|l) such that E [s (A,L) |L] can
be computed in closed form. For example if we choose s (A,L) = As∗ (L) and
pobs (a|l) to have mean v (L) then E [s (A,L) |L] = v (L) s∗ (L) . In section 3,
we extend this approach to the sequential decision setting.

Remark 2.1: Dimension Reduction and Estimation of ψ Using
A Deterministic Design: Suppose A and L are discrete with card(A) and
card(L) levels respectively. It would not be unusual to have the vector L
have card(L) = 108 in a biomedical application. Then in a saturated model
γ (l, a, ψ) for γ (l, a), ψ is {card (A)− 1}card(L) dimensional and its value

determines which of the card(A)card(L)
treatment regimes is optimal. Our

use of an unsaturated model γ (l, a, ψ) with ψ of dimension much less than
{card (A)− 1}card(L) makes the problem tractable at the cost of possible
misspecification bias when the null hypothesis is false. If ψ is sufficiently low
dimensional and, as in the sequential decision literature, the design parameters
of a simulation study are under the analyst’s control, it is computationally
feasible to estimate ψ without bias under the null hypothesis and without
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using g-estimation by employing a deterministic design. We describe 2 such

methods. Suppose γ (l, a, ψ) = a
(
ψ0 +

∑s
j=1 ψj lj

)
. where l = (l1, ..., ls)

T
.

Then we can estimate ψ0 by simulating Oi i = 1, ..., n as above but with
Li = 0 for all i and with Ai = amax = max {a; a ∈ A} for i ≤ n/2 and with
Ai = amin = min {a; a ∈ A}for i > n/2, and estimating the mean of ψ0 by

{amax − amin}−1
times the difference between the averages of Yi in the first

and second half of the sample. We can then estimate ψ0 +ψj and thus ψj for
each j by repeating the above with Li the vector that has a 1 in entry j and 0
elsewhere. This approach is unbiased under the null hypothesis. Alternatively
we could use a L−matched design to control confounding wherein we first take
a random sample O1i = (L1i, A1i, Y1i) i = 1, ..., n of size n and then create
a second sample O2i i = 1, ..., n where O2i = (L2i = L1i, A2i = 1−A1i, Y2i)
with Y2i drawn from the conditional law of Y given (L2i, A2i) and then mini-

mize
∑n

i=1

{
Y2i − Y1i − (A2i −A1i)

(
ψ0 +

∑s
j=1 ψjLji

)}2

over ψ.

2.3 A Counterfactual Formulation:

Following Murphy (2002), we will find it useful to have a counterfactual for-
mulation of the problem. We adopt the model of Robins (1986). In this model
associated with each treatment history a = aK ∈ A = AK and eachm we have
a counterfactual response vector La,m = Lam−1,m = (La,0,, La,1,..., La,m) =(
L0,, La0,1,..., Lam−1,m

)
where La,j = Laj−1,j records a subjects outcome at tj

if, possibly contrary to fact, the subject had followed treatment history aj−1.
This notation includes the assumption that the future does not determine
the past, since for any two treatment histories a and a∗ that agree through
tj−1, La,j = La∗,j . The counterfactual data is linked to the observed data
by the consistency assumption that if a subject’s observed treatment history
A agrees with a treatment history a through tj−1 then a subject’s observed
response Lj equals the counterfactual response La,j at time tj. That is,

If Aj−1 = aj−1, then Lj = Laj−1,j (2.4)

In particular, La,0 equals L0.
Let Dm be the set of all functions dm that are the mth component

of some d ∈ D. Let Dm and Dm be the set of dm = (d0, ..., dm) and
dm = (dm, ..., dK) respectively, each of whose components is in some Dk. We
define the counterfactual outcome and treatment histories Ld,m = Ldm−1,m

=(
Ld,0,, ..., Ld,m

)
=
(
L0, Ld0,1, ..., Ldm−1,m

)
and

Ad,m = Adm,m =
(
Ad,0,, ..., Ad,m

)
=
(
Ad0,0, ..., Adm,m

)
associated with fol-

lowing regime d in terms of the La,j recursively as follows: Ld,0 = L0 and,

for m = 0, ...,K + 1, Adj ,j = dj

(
Ldj−1,j

, Adj−1,j−1

)
, where Ldj−1,j

= Laj−1,j

with aj−1 = Adj−1,j−1. That is ones counterfactual treatment Ad,j = Adj ,j
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under d at time tj is the treatment assignment function dj (·, ·) applied to the

past counterfactual history
(
Ldj−1,j

, Adj−1,j−1

)
. Similarly, ones counterfac-

tual outcome Ld,j = Ldj−1,j
under d at time tj is ones counterfactual outcome

Laj−1,j associated with the treatment aj−1 equal to one’s counterfactual treat-

ment history Adj−1,j−1 through tj−1 under d. This notation incorporates the

assumption that the response of a given subject under regime d does not
depend on the treatments received by any other subject. By definition, the
distribution of these counterfactuals are linked to the previously introduced
intervention distributions f d̄int by f d̄int(l̄, ā) = fL̄d̄,Ād̄(l̄, ā) where, for any ran-
dom variable X, fX (x) is the density of X at x and FX (x) is the distribution
function of X at x.

The distribution F d̄
int(l̄) = FL̄d̄(l̄) of the counterfactual data Ld = Ld,K+1

for d ∈ D is identified from the distribution of the observables under the
following sequential randomization assumption.

Sequential Randomization:{La; a ∈ A}
∐

Ak | Lk, Ak−1 w.p.1, (2.5)

for k = 0, 1, . . . ,K and a ∈ A

We also refer to (2.5) as the assumption of no unmeasured confounders.
Eq. (2.5) states that among subjects with covariate history Lk through tk, and
treatment history Ak−1 through tk−1, treatment Ak at time tk is independent
of the set of counterfactual outcomes La. It can be shown that if (2.5) holds,
it also holds with {Ld, d ∈ D} substituted for {La; a ∈ A} (Robins, 1986).
A sequential randomized trial is a designed study in which treatment level is
randomly assigned at each time tk with the known randomization probabilities
pk
(
ak|Lk, Ak−1

)
, possibly depending on past outcome and treatment history(

Lk, Ak−1

)
. Eq. (2.5) will be true in a sequential randomized trial because

La, like gender or age at enrollment, is a fixed characteristic of a subject
unaffected by the randomized treatments Ak actually received and thus is
independent of Ak given the determinants

(
Lk, Ak−1

)
of Ak. As stated in

the following theorem of Robins (1986), Eqs. (2.5) implies that the density
of f d̄

int

(
lK+1

)
of Ld is a functional (termed the g-computational algorithm

functional or g-functional) of the distribution of the observables O and thus
is identified.

Theorem 2.1 : Under (2.5), for all d ∈ D, (i) f d̄
int

(
lK+1

)
is equal to

f
d

(
lK+1

)
=

K+1∏
m=0

f
[
lm | lm−1, am−1

]
, where, recursively, am = dm

(
lm, am−1

)
,

for m = 0, 1, ...,K, and

(ii)fdint (y) =

∫
· · ·
∫
y
(
lK+1,, aK

) K∏
m=0

dF
[
lm | lm−1, am−1

]

with am = dm
(
lm, am−1

)
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Note: The expression for fd
(
lK+1

)
given in the theorem is equivalent to

the previous definition of fd
(
lK+1

)
, because the treatment density at each

m is degenerate, taking the value am = dm
(
lm, am−1

)
with probability 1.

We have two goals. The first goal is to develop useful models for estimating

the mean E
[
Yd
]
≡ Ed̄

int
[Y ] ≡ Jdint of Y under a given regime d and to

derive easily computed locally-efficient doubly-robust estimators of the model
parameters. Note, by Theorem 2.1, under (2.5), E

[
Yd
]
equals the identifiable

quantity Jd . The second goal is to find the optimal regime(s) maximizing
E
[
Yd
]
= Jd over d ∈ D and to estimate E

[
Yd
]
for the optimal regime. We

turn next to goal one.

3 Regime-Specific Additive Structural Nested Mean

Models

3.1 Definition and Characterization:

In this section we show that regime-specific additive structural nested mean
models can be used to estimate the mean of Yd for a given regime d.

We begin with some definitions. For any zk, let zk = (zk, ..., zK+1) .

Given regimes d = (d0, ..., dK) and d
∗
and a treatment history ak−1, we write

Yak−1,d∗k,dk+1,
as the response (utility) Y under the regime

(
ak−1, d

∗
k, dk+1

)
,

assumed to be D, in which the nondynamic regime ak−1 is followed through

tk−1, d
∗
is followed at tk and the regime d is followed from tk+1 onwards. Let

the “blip” function

γd,d
∗ (
lm, am

)
≡ γdm+1,d

∗
m
(
lm, am

)
=

E
[
Yam,dm+1

− Yam−1,d∗m,dm+1
|Lm = lm, Am = am

]

be the causal effect on the mean of Y among those with history Lm =
lm, Am = am of taking one’s observed treatment am versus treatment
d∗m
(
lm, am−1

)
at time tm and then following the regime d from tm+1 onwards.

Note that from its definition γd,d
∗ (
lK , aK

)
is the same for all d ∈ D at the

final treatment time tK
(
since dK+1 is empty

)
. The functions γd,d

∗

(lm, am)

will be useful for estimating E
[
Yd
]
. The regime d

∗
functions only as a base-

line level of treatment and will commonly be chosen to be the regime in which
treatment is always withheld. It is for this reason that we give d pride of

place before d
∗
when writing γd,d

∗

.
Remark 3.1: The preceding definition includes a minor abuse of notation:

Technically we should have written γd,d
∗ (
lm, am

)
as γd,d

∗

m

(
lm, am

)
because,

for k �= m, γd,d
∗ (
lm, am

)
and γd,d

∗ (
lk, ak

)
have different domains and are

different functions .
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Remark 3.2: If for k ≥ m, dk+1

(
lk+1, ak

)
only depends on the variables(

lm, am−1

)
prior to am, then γd,d

∗ (
lm, am

)
represents the effect of one last

blip of treatment am (versus d∗m(l̄m, ām−1)) at time tm. However when, for
some k > m, dk+1

(
lk+1, ak

)
depends on

(
lm+1, am

)
, the actual treatment of

subjects following regime
(
am, dm+1

)
may differ from those following regime(

am−1, d
∗
m, dm+1

)
at times subsequent to tm and thus γd,d

∗ (
lm, am

)
may de-

pend on the effect of treatments at times subsequent to tm.
The following lemma that is a consequence of Theorem 2.1 states that

under sequential randomization γdm+1,d
∗
m
(
lm, am

)
is also equal to the above

counterfactual contrast among all subjects who would have history lm under
the counterfactual treatment history am−1.

Lemma 3.1: Under the sequential randomization assumption (2.5),

γd,d
∗ (
lm, am

)
= γdm+1,d

∗
m
(
lm, am

)

= E
[
Yam,dm+1,

− Yam−1,d∗m,dm+1,
|Lam−1,m = lm

]
.

Note that sequential randomization in the hypothesis of Lemma 3.1 guarantees
that the conditional means of Yam,dm+1,

and Yam−1,d∗m,dm+1
among the subset

of the population with observed history
(
lm, am

)
is equal to the means among

the larger subset who would have had history lm upon receiving the (possibly
counterfactual) treatment am−1 through tm−1. It follows from Theorem 2.1

and Lemma 3.1 that the function γd,d
∗ (
lm, am

)
is nonparametrically identi-

fied under sequential randomization. The following theorem below states that

under sequential randomization the function γd,d
∗ (
lm, am

)
being identically

zero for a single regime pair (d, d
∗
) is equivalent to the g − null hypothesis

E
[
Yd∗∗∗

]
= E

[
Yd∗∗

]
for all d

∗∗∗
, d

∗∗ ∈ D (3.1)

of no effect of any feasible treatment regime on the mean of Y. Further the

theorem provides formulae for E
[
Yd
]
when γd,d

∗ (
lm, am

)
is non-zero. Below

we use the notational convention h (x) ≡ 0 to denote that the range of the
function h (x) is zero. Parts (i)-(ii) are special cases of Theorem 7.1 below.
Part (iii) is a special case of Theorem 7.6.

Theorem 3.1: Given sequential randomization (2.5), and regimes d and
d̄∗ ∈ D,

(i) γd,d
∗ (
Lm, Am

)
≡ 0 w.p.1 for m = 0, ...,K if and only if the g-null

mean hypothesis (3.1) holds.
(ii)

E
[
Yd
]
= E

[
Hd
]

(3.2)

where Hd = Y +
∑K

m=0 ̺
d
(
Lm, Am

)
and

̺d
(
Lm, Am

)
= γd,d

∗ (
Lm, Am−1,dm

(
Lm, Am−1

))
− γd,d

∗ (
Lm, Am

)

= E
[
YAm−1,dm

− YAm,dm+1
|Lm, Am

]
= −γd,d(Lm, Am)
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More generally,

E
[
Yak−1,dk

|Lk = lk, Ak = ak
]
= E

[
Hd
k |Lk = lk, Ak = ak

]
(3.3)

where Hd
k = Y +

∑K
m=k ̺

d
(
Lm, Am

)
.

(iii) For any other d
∗∗ ∈ D,

E
[
Yd∗∗

]
=

E
[
Yd
]
+

∫
· · ·
∫ [ K∑

m=0

{
γd,d

∗ (
lm, am

)
− γd,d

∗ (
lm, am−1,dm

(
lm, am−1

))}
]

×
K∏
m=0

dF
[
lm | lm−1, am−1

]

where, for m = 0, 1, ...,K, am = d∗∗m
(
lm, am−1

)
.

Note that neither H d̄, H d̄
k nor ̺d̄(l̄m, ām) depend on d̄∗. It follows

from Theorem 3.1(ii) that if the identifiable function γd,d
∗ (
lm, am

)
were

known, a n1/2- consistent estimate of E
[
Yd
]
would be the sample aver-

age of the observable random variable Hd.. Intuitively at each time tm,

Hd removes the effect of observed treatment Am (compared to treatment

d∗m
(
Lm, Am−1

)
) from Y by subtracting γd,d

∗ (
Lm, Am

)
and then adds back

the effect γd,d
∗ (
Lm, Am−1,dm

(
Lm, Am−1

))
of the treatment dm

(
Lm, Am−1

)

specified by the regime d (again compared to treatment d∗m(Lm, Am−1))
Why Eq. (3.2) and (3.3) should be expected to hold is particularly trans-

parent under additive local rank preservation, which we now define.

Definition: Let γd,d
∗ (
y, Lm, Am

)
be the counterfactual conditional quantile-

quantile function F−1
YAm−1,d

∗
m,dm+1

[
{
FYAm,dm+1

(
y|Lm, Am

)}
|Lm, Am]. We say

we have local rank preservation w.r.t.
(
d, d

∗)
if γd,d

∗
(
YAm,dm+1

, Lm, Am

)
=

YAm−1,d∗m,dm+1
w.p.1. for all m.

Definition: If γd,d
∗ (
y, Lm, Am

)
= y− γd,d

∗ (
Lm, Am

)
w.p1. and we have

local rank preservation w.r.t.
(
d, d

∗)
, we say we have additive local rank

preservation w.r.t.
(
d, d

∗)
.

The existence of local rank preservation is non-identifiable (i.e. untestable)
since we never observe both YAm,dm+1

and YAm−1,d∗m,dm+1
on any subject

with Am �= d∗m
(
Lm, Am−1

)
. However, we can rule out additive local rank

preservation under sequential randomization as both γd,d
∗ (
y, Lm, Am

)
and

γd,d
∗ (
Lm, Am

)
are identifiable so the truth of γd,d

∗ (
y, Lm, Am

)
= y −

γd,d
∗ (
Lm, Am

)
is subject to empirical test.
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Lemma: Suppose additive local rank preservation w.r.t.
(
d, d

∗)
holds.

Then, with probability 1,

Y = YAK ,

Y − γdK+1,d
∗
K
(
LK , AK

)
= YAK−1,d∗K

,

Hd
K = Y − γdK+1,d

∗
K
(
LK , AK

)
+

γdK+1,d
∗
K
(
LK , AK−1, dK

(
LK , AK−1

))
= YAK−1,dK

Hd
k = Y +

K∑

m=k

̺d
(
Lm, Am

)
= YAk−1,dk

Hd
k − γd,d

∗ (
Lk−1, Ak−1

)
= Y +

K∑

m=k

̺d
(
Lm, Am

)
− γd,d

∗ (
Lk−1, Ak−1

)

= YAk−2,d∗k−1,dk
,

Hd
k−1 = Hd

k − γd,d
∗ (
Lk−1, Ak−1

)
+

γd,d
∗ (
Lk−1, Ak−2, dk−1

(
Lk−1, Ak−2

))
= YAk−2,dk−1

In particular, (3.2) and (3.3) hold.
Proof: All results follow directly from the definitions and the assumption

of additive local rank preservation w.r.t.
(
d, d

∗)
.

It follows that (3.2) and (3.3) hold under additive local rank preservation

w.r.t.
(
d, d

∗)
even without the assumption of sequential randomization. In

fact, Theorem 7.1 below implies the following more general result.
Lemma 3.2 : Eqs. (3.2) and (3.3) hold if

γd,d
∗ (
Lm, Am−1,dm

(
Lm, Am−1

))

= E
[
YAm−1,dm,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am �= dm

(
Lm, Am−1

)]
.

The left hand side of the above equation is, by definition,

E
[
YAm−1,dm,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am = dm

(
Lm, Am−1

)]

The previous equation will be true if any one of the following are true: the
assumption of sequential randomization, the assumption of additive local rank

preservation w.r.t.
(
d, d

∗)
, or the regime d is the same as the regime d

∗
(since

in this latter case the left hand side and right hand side of the equation are
both zero).

Since γd,d
∗ (
lm, am

)
has a high dimensional argument

(
lm, am

)
, nonpara-

metric estimation is not feasible. Therefore we shall consider parametric mod-

els for γd,d
∗ (
lm, am

)
.
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Definition: A d, d
∗
double-regime additive SNMM for the outcome Y

specifies that

γd,d
∗ (
lm, am

)
= γd

∗ (
lm, am;ψ

†) (3.4)

where γd
∗ (
lm, am;ψ

)
is a known function depending on a finite dimen-

sional parameter ψ ∈ Ψ ⊂ Rp that (i) satisfies γd
∗ (
lm, am;ψ

)
= 0 if

am = d∗m
(
lm, am−1

)
and (ii) γd

∗ (
lm, am;ψ

)
≡ 0 for all m if and only if

ψ = 0, so under sequential randomization, ψ† = 0 is equivalent to the g-null
mean hypothesis (3.1).

An example of such a function is γd
∗ (
lm, am;ψ

)
= am (1, lm, am−1)ψm =

am (ψ1m + ψ2mlm + ψ3mam−1) . Note it is comprised of a main effect term
for am plus terms representing interactions of am with past treatment and
covariates. In this example the dimension of ψ = (ψT1 , ..., ψ

T
K)

T is 3K.

Notational Conventions: The function γd
∗ (
lm, am;ψ

)
is indexed by d

∗

to indicate that condition (i) in the definition below Equation (3.4) holds.

Sometimes to help the reader recall the d, d
∗
regime that we are modelling,

we will write the function γd
∗ (
lm, am;ψ

)
as γd,d

∗ (
lm, am;ψ

)
. Similarly we

will sometimes write the parameter ψ as ψd,d
∗

to indicate it is the parameter

of a drSNMM for γd,d
∗ (
lm, am

)
. Occasionally we will write γd

∗ (
lm, am;ψ

)

simply as γ
(
lm, am;ψ

)
to indicate a generic drSNMM model.

Remark: Robins (1994,1997) proved Theorem 3.1 and then studied esti-
mation of the parameters ψ† for (d̄, d̄∗) -double-regime additive SNMMs in the

special cases in which d and d
∗
are (i) the same treatment regime and (ii) this

common regime d is the identically ”zero” regime- that is dm(l̄m, ām−1) ≡ 0
for all m where 0 is a baseline level of treatment selected by the data analyst.
Because, as discussed in Robins (1986), we are free to define the ”zero” level of
treatment am for subjects with history

(
lm, am−1

)
to be dm

(
lm, am−1

)
(even

though the substantive meaning of am = 0 now depends on the
(
lm, am−1

)
),

it follows that Robins’ (1994) additive SNMM model applies whenever prop-
erty (i) of this remark holds, with (ii) simply a notational convention. When
d̄ equals d̄∗, we refer to our model as a d̄−regime additive srSNMM where sr
stands for single-regime. If, in addition, d̄ is the zero regime and the treat-
ment level 0 has a natural substantive meaning (such as no treatment), we
shall refer to the 0−regime srSNMM as a standard srSNMM.

Remark: From the fact that, by definition,

γd,d
∗ (
Lm, Am−1,dm

(
Lm, Am−1

))
− γd,d

∗ (
Lm, Am

)

= E
[
YAm−1,dm

− YAm,dm+1
|Lm, Am

]

it follows that if γd
∗ (
Lm, Am, ψ

)
is a correctly specified d, d

∗
drSNMM for

γd,d
∗ (
Lm, Am

)
, then

̺d
(
Lm, Am, ψ

)
= γd

∗ (
Lm, Am, ψ

)
− γd

∗ (
Lm, Am−1,dm

(
Lm, Am−1

)
, ψ
)
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is a correctly specified d̄−regime srSNMM for γd,d
(
lm, am

)
.

3.2 Inefficient Estimation

We now discuss (inefficient) estimation of the parameter ψ† of a (d̄, d̄∗) -
double-regime additive SNMM when, as in a sequential randomized trial,
pm
[
am | Am−1, Lm

]
is known by design. Efficient estimation and estimation

in observational studies with unknown pm
[
am | Am−1, Lm

]
is considered in

Section 3.3. Our fundamental tool is the characterization of the true blip

function γd,d
∗ (
lm, am

)
given in Theorem 3.2. Let γd

∗∗ (lm, am
)
denote an

arbitrary function of
(
lm, am

)
satisfying (3.6) below, where the second ”∗”

denotes that this is a particular, but arbitrary, function. Let

Hd
m

(
γd

∗∗
)
= H

dm
m

(
γd

∗∗
)

(3.5)

= Y +

K∑

j=m

{
γd

∗∗ (Lj , Aj−1,dj
(
Lj , Aj−1

))
− γd

∗∗ (Lj , Aj
)}

The following is a special case of Theorems 7.1 and 7.2.
Theorem 3.2: Given a regime d, sequential randomization (2.5), and any

function γd
∗∗ (Lm, Am

)
satisfying for all m

γd
∗∗ (Lm, Am

)
= 0 if Am = d∗m

(
Lm, Am−1

)
(3.6)

the following three conditions are equivalent.

(i) γd
∗∗ (Lm, Am

)
= γd,d

∗ (
Lm, Am

)
w.p. 1,

i.e., γd
∗∗ (Lm, Am

)
is the true blip function γd,d

∗ (
Lm, Am

)

(ii) For m = 0, . . . ,K,

E
[
H
dm
m

(
γd

∗∗
)
| Am, Lm

]
(3.7)

does not depend on Am w.p. 1.

(iii) For each function Sm (Am) ≡ sm
(
Am, Am−1, Lm

)

E
[
H
dm
m

(
γd

∗∗
){

Sm (Am)− E
[
Sm (Am) | Am−1, Lm

]}]
(3.8)

= 0 .

provided the expectation exists.
Remark: In contrast with theorem 3.1, neither the assumption of additive

local rank preservation w.r.t.
(
d, d

∗)
nor having the regime d be the same as

the regime d
∗
can substitute for the assumption of sequential randomization

in theorem 3.2.



20 James M. Robins

We now show how to use the Theorem 3.2 to estimate the parameters of
a drSNMM. Given a dr SNMM, define

Hd,d
∗

m (ψ) = H
dm,d

∗
m

m (ψ)

= Y +
K∑

j=m

{
γd

∗ (
Lj , Aj−1,dj

(
Lj , Aj−1

)
, ψ
)
− γd

∗ (
Lj , Aj , ψ

)}

and

Ud,d
∗

(ψ, s) =

K∑

m=0

Ud,d
∗

m (ψ, s) with (3.9)

Ud,d
∗

m (ψ, s) = H
dm,d

∗
m

m (ψ)
{
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}

where s = (s0, ..., sK) and Sm (Am) ≡ sm
(
Am, Am−1, Lm

)
is a vector val-

ued function with range the dimension of ψ, chosen by the analyst. Note

Ud,d
∗

(ψ, s) can be explicitly computed from the data when p
[
am | Am−1, Lm

]

is known, since then the expectation in (3.9) can be calculated. It fol-

lows from (3.8) that Ud,d (ψ, s) is an unbiased estimating function, i.e.,

E
[
Ud,d

∗ (
ψ†, s

)]
= 0. Define Pn to be the expectation operator with re-

spect to the empirical distribution so Pn [Z] = n−1
∑

i Zi. Then, by the

central limit theorem, n1/2Pn[U
d,d

∗

(ψ†, s)] is asymptotically normal with
mean 0 and covariance Σ(ψ†, s) which can be consistently estimated by

Σ̂(ψ†, s) = Pn[U
d,d̄∗(ψ†, s)⊗2]. Thus the set of ψ for which

nPn[U
d̄d̄∗(ψ, s)]T Σ̂ (ψ, s)−1 Pn[U

dd̄∗ (ψ, s)] is less than the α upper quantile
of a χ2 distribution on the dimension of ψ degrees of freedom is a large sam-

ple 1− α confidence interval for ψ†.. Further Ud,d (ψ, s) is smooth in ψ when
γ
(
Lm, Am, ψ

)
is smooth in ψ and is linear in ψ when γ

(
Lm, Am, ψ

)
is linear.

Suppose E
[
∂Ud,d∗ (ψ†, s

)
/∂ψ

]
exists and is invertible. Then under standard

regularity conditions there will be a consistent asymptotically normal (CAN)

root ψ̂ = ψ̂ (s) of the estimating function Pn

[
Ud,d

∗

(ψ, s)
]
= 0 under (2.5).

That is n1/2
(
ψ̂ − ψ†

)
will converge to a normal distribution with zero mean

and finite variance; further Pn

[
H
d0d

∗
0

0

(
ψ̂
)]

is a CAN estimator of E
[
Yd
]
that

does not require knowing or modelling f
[
lm | lm−1, am−1

]
.

Remark: In fact Pn

[
H
d0d

∗
0

0

(
ψ̂
)]

is a CAN estimator of E
[
Yd
]
even if

d is not a feasible regime, because, by assuming the parametric model (3.4)

is correct, the estimator Pn

[
H
d0d

∗
0

0

(
ψ̂
)]

succeeds in borrowing sufficient in-

formation from subject’s following other regimes to estimate E
[
Yd
]
at an

n1/2−rate.
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When γd
∗ (
Lm, Am, ψ

)
is a linear function of ψ, Pn

[
Ud,d

∗

(ψ, s)
]

= 0

will, with probability approaching 1, have a unique root. However when

γd
∗ (
Lm, Am, ψ

)
is a nonlinear function of ψ, E

[
Ud,d

∗

(ψ, s)
]
= 0 may have

roots in addition to ψ†, in which case even asymptotically Pn

[
Ud,d (ψ, s)

]
= 0

will have additional inconsistent roots. In that case it can help to choose func-
tions sm whose range is of greater dimension than ψ and find the minimizer

ψ̂ (s) of the smooth function
{
Pn

[
Ud,d

∗

(ψ, s)
]}T

×
B{Pn

[
Ud,d

∗

(ψ, s)
]
} for some positive definite matrix B (e.g. the identity

matrix) [as Pn

[
Ud,d

∗

(ψ, s)
]
= 0 will no longer have a solution.] It follows

from Theorem 3.2(iii) that in sufficiently large samples, this should solve the
multiple root problem provided that one can solve the computational problem

of minimizing
{
Pn

[
Ud,d

∗

(ψ, s)
]}T

B{Pn
[
Ud,d

∗

(ψ, s)
]
}.

Remark: The approach based on choosing functions sm whose range is
of greater dimension than ψ will fail when the model (3.4) is even slightly
misspecified as then there will in general be no ψ for which E[U d̄,d̄∗(ψ, s)] = 0.
Unfortunately, in practice, the drSNMM (3.4) would never be expected to be
precisely correct (unless saturated) [even though it might well be close enough

to being correct that the bias of Pn

[
H
d0d

∗
0

0

(
ψ̂
)]

as an estimator of E
[
Yd
]
is

of little substantive importance.] Nonetheless we will continue to assume (3.4)
is precisely correct until Section 9. In Section 9 we explore the consequences
of dropping this assumption.

3.3 Locally Efficient Doubly-Robust Estimation:

We now consider how to obtain a locally semiparametric efficient estimator
of the parameter ψ∗ of a drSNMM. To do so we introduce a generalization of
the estimating function U (ψ, s) .

Again let Sm (Am) ≡ sm
(
Am, Am−1, Lm

)
have range the dimension of ψ.

Now given dim ψ vector-valued functions Cm = cm
(
Am, Lm

)
chosen by the

investigator, define C = c
(
LK , AK

)
=

K∑
m=0

{
Cm − E

[
Cm|Am−1, Lm

]}
and

U † (ψ, s, c) = U (ψ, s)− C

where for notational convenience we have suppressed the d and d
∗
super-

scripts denoting the regimes under consideration. We will now consider es-
timators of ψ under three different semiparametric models which we de-
note by (a.1), (a.2), and (a.3). The three models differ only in the a priori
knowledge about the conditional treatment laws p

[
Am | Lm, Am−1

]
. Specif-

ically, they are characterized by an d, d̄∗−regime specific additive SNMM
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model γ
(
lm, am, ψ

)
, the sequential randomization assumption (2.5), and a

model
{
pm
(
am | lm, am−1;α

)
;α ∈ α

}
for pm

(
am | lm, am−1

)
with true pa-

rameter α† where pm
(
am | lm, am−1;α

)
is a conditional density known up

to α. In model (a.1), α =
{
α†} is a singleton, so pm

(
am | lm, am−1

)
=

pm
(
am | lm, am−1;α

†) is known as in a sequential randomized trial. In model
(a.2), α ⊂ Rp is a finite-dimensional parameter. In model (a.3), α is an infinite-
dimensional set indexing all conditional densities possibly restricted by the
requirement that they belong to some prespecified smoothness class.

To avoid misspecification bias we would like to use model (a.3) in analyzing
observational data. Due to the high dimension of

(
Lm, Am−1

)
this is often not

possible, and thus in practice, model (a.2) would often be used for dimension
reduction. Let U † (ψ, α, s, c) be U † (ψ, s, c) with pm

[
Am | Lm, Am−1

]
replaced

by
p
[
Am | Lm, Am−1;α

]
in the expectation in (3.9) and let ψ̂ (s, c;α) denote a

solution to
Pn
[
U † (ψ, α, s, c)

]
= 0.

Finally, in model (a.2), let α̂ solve the parametric partial likelihood score
equation

Pn [Spart (α)] = 0

with Spart (α) = ∂ log
K∏
m=0

pm
[
Am | Lm, Am−1;α

]
/∂α, and in model (a.3) let

pm
[
Am | Lm, Am−1; α̂smooth

]
denote a high-dimensional non-parametric esti-

mate of pm
[
Am | Lm, Am−1

]
possibly obtained by smoothing.

The following theorem 3.3 states results related to the asymptotic prop-
erties of estimators of the form ψ̂

(
s, c;α†) , ψ̂ (s, c; α̂) and ψ̂ (s, c; α̂smooth) .

Theorem 3.3 and 3.4 below are special cases of Theorem 4.3 in Robins and Rot-
nitzky (2003). We stress that when, as will usually be the case,

(
Lm, Am−1

)

is high dimensional, pm
[
Am | Lm, Am−1; α̂smooth

]
will be a poor estimate of

pm
[
Am | Lm, Am−1

]
in the moderate sized samples occurring in practice and

thus the asymptotic results for model (a.3) described in the theorem will not
be a useful guide to finite sample properties. However knowledge of the asymp-
totic results for model (a.3) will be useful in understanding the mathematical
structure of the problem.

We shall need the following definitions. An estimator ψ̂ of ψ
†

is asymptoti-

cally linear if n1/2
(
ψ̂ − ψ

†
)
= n1/2Pn [D]+op (1) with E [D] = 0, E

[
DTD

]
<

∞, and op(1) denotes a random variable converging to zero in probability. D

is to referred to as the influence function of ψ̂. If an estimator is asymptoti-

cally linear then n1/2
(
ψ̂ − ψ†

)
is asymptotically normal with mean 0 and

variance E
[
DDT

]
. An estimator ψ̂ is regular if its convergence to its limiting

distribution is locally uniform in n−1/2 neighborhoods of the truth.
Theorem 3.3: Suppose that the sequential randomization assumption

(2.5) holds and we have a correctly specified dr SNMM γ
(
lm, am, ψ

)
. Suppose
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that for all c and for all s such that ∂E {U (ψ, s)} /∂ψ|ψ=ψ† exists and is non-

singular, ψ̂ (s, c; α̂smooth) is a regular asymptotically linear (RAL) estimator in

model (a.3) and thus in models (a.2) and (a.1), ψ̂ (s, c; α̂) is a RAL estimator

in model (a.2) and thus in model (a.1), and ψ̂
(
s, c;α†) is a RAL estimator in

model (a.1). Then
(i) The influence function of any RAL estimator of ψ in models (a.1),

(a.2) and (a.3) is equal to that of ψ̂
(
s, c;α†), ψ̂ (s, c; α̂), and ψ̂ (s, c; α̂smooth),

respectively for some (s, c).
(ii) For a given s, the asymptotic variance of any RAL estimator of the

form ψ̂
(
s, c;α†), ψ̂ (s, c; α̂), or ψ̂ (s, c; α̂smooth) is minimized at cs

(
LK , AK

)
=

K∑
m=0

{
Cs
m − E

[
Cs
m|Am−1, Lm

]}
with

Cs
m ≡ E

[
U
(
ψ†, s

)
| Am, Lm

]

Further, under (2.5), E
[
Hm (ψ) | Aj , Lj

]
= E

[
Hm (ψ) | Aj−1, Lj

]
for j ≥ m.

Thus

Cs
m − E

[
Cs
m|Am−1, Lm

]

= E
[
Um
(
ψ†, s

)
| Am, Lm

]
− E

[
Um
(
ψ†, s

)
|Am−1, Lm

]

= E
[
Hm

(
ψ

†
){

Sm (Am)− E
[
Sm (Am) | Am, Lm

]}
| Am, Lm

]

= E
[
Hm

(
ψ

†
)
|Am−1, Lm

] {
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}
.

Hence

U † (ψ, s, cs) = (3.10)

K∑

m=0

{
Hm (ψ)− E

[
Hm (ψ) |Am−1, Lm

]} {
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}
.

Further, in model (a.3) the RAL estimators ψ̂ (s, c; α̂smooth) have the same
influence function for all c.

(iii) The influence functions of ψ̂
(
s, c;α†), ψ̂ (s, c; α̂), and ψ̂ (s, c; α̂smooth)

are respectively equal to I−1U † (s, c),

I−1
{
U † (s, c)− E

[
U † (s, c)STpart

] {
E
[
S⊗2
part

]}−1
Spart

}
, and I−1U † (s, cs) where

U † (s, c) = U † (ψ†, s, c
)
, Spart = Spart

(
α†), and I = −E

[
∂U
(
ψ†, s

)
/∂ψ

]
.

The asymptotic variance of ψ̂ (s, c; α̂smooth) is always less than or equal to

that of ψ̂ (s, c; α̂), which is always less than or equal to that of ψ̂
(
s, c;α†).

However, when c = cs, all three estimators have the same asymptotic variance.
(iv) The semiparametric variance bound is the same in models (a.1), (a.2)

and (a.3) and is equal to the asymptotic variance of ψ̂ (seff , c
seff ) . An explicit
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closed form expression for seff is given in Robins (1994). The expression is
very complex except in the special case in which

var
(
Hm

(
ψ†) |Lm, Am

)
= var

(
Hm

(
ψ†) |Lm, Am−1

)
(3.11)

does not depend on Am for all m. In that case

seff,m
(
Lm, Am

)
≡ Seff,m

(
Am, ψ

†) with (3.12)

Seff,m (Am, ψ) =
{
E
[
∂Hm (ψ) /∂ψ|Lm, Am

]} {
var
(
Hm (ψ) |Lm, Am−1

)}−1
.

Double Robustness: Surprisingly, given (2.5) and a correct drSNMM,

the estimator ψ̂ (s, cs; α̂) is a CAN estimator of ψ† even if the model
pm
[
Am | Lm, Am−1;α

]
for pm

[
Am | Lm, Am−1

]
is misspecified because

E
[
U † (ψ†, s, cs; α̂

)]
= 0 under misspecification of pm

[
Am | Lm, Am−1;α

]
.

However this is of no direct use because E
[
Hm (ψ) |Am−1, Lm

]
is unknown

and thus U † (ψ†, s, cs; α̂
)
is not computable. Therefore we consider a model

ςTWm for E
[
Hm

(
ψ†) |Lm, Am−1

]
where Wm = wm

(
Am−1, Lm

)
is a known

vector function of
(
Am−1, Lm

)
and ς is an unknown parameter. Define

ψ̂ (s, cs; α̂, ς̂) to be a solution to Pn
[
U † (ψ, s, cs; α̂, ς̂)

]
= 0 where

U † (ψ, s, cs; α̂, ς̂) (3.13)

=

K∑

m=0

{
Hm (ψ)− ς̂T (ψ)Wm

} {
Sm (Am)− Eα̂

[
Sm (Am) | Am−1, Lm

]}

is Equation (3.10) with −Eα̂
[
Sm (Am) | Am−1, Lm

]
} substituted for

−E
[
Sm (Am) | Am−1, Lm

]
and with ς̂T (ψ)Wm substituted for

E
[
Hm (ψ) |Am−1, Lm

]
. Here ς̂T (ψ) solves the OLS estimating equation

Pn

[∑K
m=0

(
Hm (ψ)− ςTWm

)
Wm

]
= 0. The following theorem and Remark

3.1 below describe the so called ”double-robustness” properties of ψ̂ (s, cs; α̂, ς̂)
and U † (ψ†, s, cs; α̂, ς̂

)
.

Theorem 3.4: Consider the d, d
∗
”union” model characterized by (i) the

sequential randomization assumption (2.5), (ii) a correctly specified (d̄, d̄∗)-
double-regime-specific SNMM γ

(
lm, am, ψ

)
and that either (but not necessar-

ily both) the parametric model pm
[
Am | Lm, Am−1;α

]
for pm

[
Am | Lm, Am−1

]

is correct or the regressionmodel ςTWm for E
[
Hm

(
ψ†) |Lm, Am−1

]
is correct.

Then , under standard regularity conditions, (i) n−1/2Pn
[
U † (ψ†, s, cs; α̂, ς̂

)]
=

n−1/2Pn

[
U †
adj

(
ψ†, s, cs;α∗, ς∗

)]
+op (1) , where
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U †
adj

(
ψ†, s, cs;α∗, ς∗

)
=

U † (ψ†, s, cs;α∗, ς∗
)
−

E
[
∂U † (ψ†, s, cs;α∗, ς∗

)
/∂αT

]
E
[
∂Spart (α

∗) /∂αT
]−1

Spart (α
∗)+

E
[
∂U † (ψ†, s, cs;α∗, ς∗

)
/∂ς
(
ψ†)T ]×

E
[∑K

m=0 W
⊗2
m

]−1∑K
m=0

(
Hm

(
ψ†)− ς∗

(
ψ†)Wm

)
Wm

(3.14)

and (α∗, ς∗) is the probability limit of (α̂, ς̂). Since

Spart (α
∗),
∑K

m=0

(
Hm

(
ψ†)− ς∗

(
ψ†)Wm

)
Wm and, under the union model,

U † (ψ†, s, cs;α∗, ς∗
)
all have mean 0, it follows that, by Slutsky’s theorem, (i)

n−1/2Pn
[
U † (ψ†, s, cs; α̂, ς̂

)]
is asymptotically normal with mean zero and co-

varianceE
[
U †
adj

(
ψ†, s, cs;α∗, ς∗

)⊗2
]
, (ii) ψ̂ (s, cs; α̂, ς̂) is asymptotically linear

with influence function

−E
[
∂U †

adj

(
ψ†, s, cs;α∗, ς∗

)
/∂ψ

]−1

U †
adj

(
ψ†, s, cs;α∗, ς∗

)

provided E
[
∂U †

adj

(
ψ†, s, cs;α∗, ς∗

)
/∂ψ

]
exists and is invertible and (iii)

ψ̂ (seff , c
seff ; α̂, ς̂) attains the semiparametric efficiency bound for the ”union”

model at the submodel in which (3.11) holds and both the model
pm
[
Am | Lm, Am−1;α

]
and the model ςTWm for E

[
Hm

(
ψ†) |Lm, Am−1

]
are

correct. Theorem 3.4 suggests an analysis based on the following algorithm.

Algorithm:
Step 1: Specify regimes of interest d and d̄∗.

Step 2:Specify a drSNMM model γ
(
Lm, Am, ψ

)
for γd,d

∗ (
Lm, Am

)

Step 3: For each subject calculate Hm (ψ) , m = 0, ...,K for each possible
value of ψ. (Obviously this is not computationally feasible since ψ can take
values in Rdim(ψ). Below we discuss how one can reduce the number of ψ for
which Hm (ψ) must be evaluated in order to make the algorithm feasible).

Step 4: For each subject estimate E
[
Hm (ψ) |Lm, Am−1

]
under a model

ςTWm by ς̂T (ψ)Wm where ς̂T (ψ) solves the OLS estimating equation

Pn

[∑K
m=0 (Hm (ψ)− ςWm)Wm

]
= 0 and Wm = wm

(
Am−1, Lm

)
is known

vector function of
(
Am−1, Lm

)
.

Step 5. For each subject estimate var
(
Hm

(
ψ†) |Am−1, Lm

)
by the fitted

value exp
(

κ̂ (ψ)
T
Bm

)
from the nonlinear least squares fit of the regression

of the estimated squared residual {Hm (ψ)− ς̂ (ψ)Wm}2
on the regression

function exp (κBm) where Bm = bm
(
Lm, Am−1

)
is a known vector function.

Step 6. For each subject estimate E
[
∂Hm (ψ) /∂ψ|Lm, Am

]
under a mul-

tivariate regression model ζRm by the fitted value ζ̂ (ψ)Rm from the multi-
variate OLS regression of ∂Hm (ψ) /∂ψ on Rm where Rm = rm

(
Am, Lm

)
is

a known vector function and ζ is a matrix of regression coefficients.
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Step 7: Specify a parametric model pm
[
Am | Lm, Am−1;α

]
and find α̂

solving Pn [Spart (α)] = 0
Step 8: For each subject compute

Ŝeff,m (Am) = ζ̂ (ψ)Rm

{
exp
(
κ̂ (ψ)T Bm

)}−1

and

U †
(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

(3.15)

=

K∑

m=0

{Hm (ψ)− ς̂ (ψ)Wm}
{
Ŝeff,m (Am)− Eα̂

[
Ŝeff,m (Am) | Am−1, Lm

]}

Step 9: Compute

Pn

[
∂U †

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ς̂ (ψ)

T
]
,

Pn

[
∂U †

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂α̂T

]
,

Pn

[
K∑

m=0

W⊗2
m

]
,

Pn
[
∂Spart (α̂) /∂α

T
]
,

Pn

[
∂U †

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ψT

]

Step 10: For each subject compute U †
adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

= U †
(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
− (3.16)

Pn

[
∂U †

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂α̂T

]
Pn
[
∂Spart (α̂) /∂α

T
]
Spart (α̂)+

Pn

[
∂U †

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ς̂ (ψ)T

]
Pn

[
K∑

m=0

W⊗2
m

]−1

×

K∑

m=0

(Hm (ψ)− ς̂ (ψ)Wm)Wm

Step 11:Declare the set ψ for which

χ2
score (ψ) = nPn[U

†
adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)T

]× (3.17)

Σ̂adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)−1

Pn[U
†
adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
]

is less than the α upper quantile of a χ2 distribution on the dimension of ψ
degrees of freedom to be a locally efficient large sample 1−α score confidence
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interval for ψ† where

Σ̂adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
= Pn

[
U †
adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)⊗2
]
.

Step 12: Solve Pn

[
U †
adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)]

= 0 to obtain the esti-

mator ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
.

Estimate Jd = E
[
Y d
]
by Pn

[
H0

(
ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
))]

.

Step13: Declare the set ψ for which χ2
wald (ψ) =

n

(
ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)T

− ψT
)
×

Pn

[
∂U †

adj

(
ψ̂, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ψT

]
×

Σ̂adj

(
ψ̂, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)−1

Pn

[
∂U †

adj

(
ψ̂, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ψ

]
×

(
ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
− ψ
)

(3.18)

is less than the α upper quantile of a χ2 distribution on the dimension of ψ
degrees of freedom to be a locally efficient large sample 1−αWald confidence

interval for ψ†. Here ψ̂ = ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

Remark: If inference is to be based on Steps 12 and 13 then we can use
Newton-Raphson to obtain the solution in Step 12 and we only need to run
the algorithm for the values of ψ required by the Newton-Raphson updates.
If Step 11 is to be used for inference then we might use a finite search pro-
cedure and run the algorithm for the values of ψ on a finite lattice. Other
computational approaches are also possible. It follows from Theorems 3.3

and 3.4 above that the estimator ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
is, under the union

model, RAL and locally efficient at the submodel in which (3.11) holds and the
model pm

[
Am | Lm, Am−1;α

]
, the model ςTWm for E

[
Hm

(
ψ†) |Lm, Am−1

]
,

the model exp (κBm) for var
(
Hm

(
ψ†) |Lm−1, Am

)
, and the model ζRm for

E
[
∂Hm

(
ψ†) /∂ψ|Lm, Am

]
are all correct. Analogously the estimator

Pn

[
H0

(
ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
))]

is a RAL estimator of Jd = E
[
Y d
]
in

the union model that is efficient at the above submodel. We therefore refer
to these estimators as locally semiparametric efficient in the union model at
the above submodel. These estimators are also locally semiparametric effi-
cient (at the same submodel) in the more restrictive models (a.1) and (a.2)
which, in addition to the assumptions of the union model, respectively assume
that pm

[
Am | Lm, Am−1

]
is known and the model pm

[
Am | Lm, Am−1;α

]
is

correct.
Remark:We henceforth refer to ψ̂

(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

as a doubly-

robust locally semiparametric efficient (dr-lse) estimator. It is doubly robust
because it is a RAL estimator in the union model that assumes either a model
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for pm
[
Am | Lm, Am−1

]
or a model for E

[
Hm

(
ψ†) |Lm, Am−1

]
be correct. It

is locally semiparametric efficient because it is efficient in the union model at
the submodel described above.

All the results obtained in the this and the previous section in regards to
point and interval estimates of ψ† (but not of E [Y d]) remain true when we

replace H
dm,d

∗
m

m (ψ) by the modified version

H
dm,d

∗
m

mod,m (ψ) = H
dm,d

∗
m

m (ψ)− γd
∗ (
Lm, Am−1,dm

(
Lm, Am−1

)
, ψ
)

(3.19)

= Y − γd
∗ (
Lm, Am, ψ

)
+

K∑

j=m+1

{
γd

∗ (
Lj , Aj−1,dj

(
Lj , Aj−1

)
, ψ
)
− γd

∗ (
Lj , Aj , ψ

)}

to obtain modified estimating functions Ud,d
∗

mod and Ud,d
∗
,†

mod .This follows from

the fact that the difference between H
dm,d

∗
m

mod,m (ψ) and H
dm,d

∗
m

m (ψ) is fixed when

we condition on Lm, Am−1. Futher the efficient choice seff is exactly the same

function of the data whether we useH
dm,d

∗
m

mod,m (ψ) orH
dm,d

∗
m

m (ψ) . The usefulness
of this modification will become clear in Section 4.1.1 below.

4 Optimal drSNMM

4.1 Estimation

We now turn attention to estimation of the optimal treatment regime when, as
in a sequential RCT , sequential randomization (2.5) holds and pm

[
Am | Lm, Am−1

]

is known. We first characterize the optimal regime. Define

dop,K
(
LK , AK−1

)
= arg max

aK∈AK

E
[
YAK−1,aK

|LK , AK−1

]
, (4.1)

so dop,K
(
LK , AK−1

)
is the optimal treatment at time tK for someone with

observed history
(
LK , AK−1

)
. If there is more than one value of aK ∈ AK

at which E
[
YAK−1,aK

|LK , AK−1

]
is maximized, dop,K

(
LK , AK−1

)
can be

arbitrarily chosen to be any one of the maximizers.
For m = K − 1, ...0, recursively define

dop,m
(
Lm, Am−1

)
= arg max

am∈Am

E
[
YAm−1,am,dop,m+1

|Lm, Am−1

]
(4.2)

where dop,m+1 = (dop,m+1, ..., dop,K) with ties again broken arbitrarily. Thus

dop,m
(
Lm, Am−1

)
is the optimal treatment at time tm for someone with ob-

served history
(
Lm, Am−1

)
who is planning to follow regime dop,m+1 beginning

at time tm+1. The following trivial Lemma follows directly from the defini-
tions.
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Lemma 4.1:
dop,m = dop,m

(
Lm, Am−1

)
= argmaxam∈Am γdop,d

∗ (
Lm, Am−1, am

)
.

We then have the following which is a special case of Theorem 7.4 below.
Theorem 4.1: Under the sequential randomization assumption (2.5), the

regime dop,m maximizes

E
[
YAm−1,dm

|Lm, Am−1

]
over all regimes dm ∈ Dm where Dm is the set of all

feasible regimes beginning at time tm. Further dop = dop,0 maximizes E
[
Yd
]

over all d ∈ D. In addition Theorems 3.1 and 3.2 still hold with dop substituted

for d and with H
dm
m

(
γd

∗∗
)
= H

dop,m
m

(
γd

∗∗
)
redefined to be

H
dop,m
m

(
γd

∗∗
)
= Y +

K∑

j=m

{
γd

∗∗ (Lj, Aj−1,d
∗∗
j

(
Lj , Aj−1

))
− γd

∗∗ (Lj , Aj
)}

with d∗∗m
(
Lm, Am−1

)
= argmaxam∈Am γd

∗∗ (Lm, Am−1, am
)
.

Suppose for a given subject we are unable to intervene prior to time tm
although data on Lm, Am−1 is available. Theorem 4.1 implies that dop,m is
the optimal treatment plan beginning at time tm.

Remark: Note that without sequential randomization Theorem 4.1 will
not hold, because then, for example, dop,K−1 = (dop,K−1, dop,K) may not

maximize E
[
YAK−2,dK−1

|LK−1, AK−2

]
. To see this consider the subset of

subjects with observed history
(
lK−1, aK−2

)
. Note, without sequential ran-

domization, the mean of YaK−2,dop,K−1(lK−1,aK−2),aK among the subgroup

with observed history (lK , aK−2, aK−1 = dop,K−1

(
lK−1, aK−2

)
) need not

equal the mean among the larger subgroup who would have had history
(lK , aK−2, aK−1 = dop,K−1

(
lK−1, aK−2

)
) if, contrary to fact, the entire sub-

set with observed history
(
lK−1, aK−2

)
had followed following regime dop,K−1

and thus received treatment dop,K−1

(
lK−1, aK−2

)
at tK−1. In that case one

cannot use the basic method of backward induction (i.e. dynamic program-
ming ) to solve the sequential decision problem. See section 7.2 below for a
more complete discussion.

Definition:Given a regime d
∗
, an optimal drSNMMmodelγdop,d

∗ (
lm, am

)
≡

γd
∗ (
lm, am;ψ

)
is a drSNMM model for γdop,d

∗ (
lm, am

)
.

Definition: Define

dop,m
(
Lm, Am−1, ψ

)
= arg max

am∈Am

γd
∗ (
Lm, Am−1, am, ψ

)

Note we shall model γdop,d
∗ (
lm, am

)
even though dop is unknown. How-

ever the model itself determines dop as a function of the parameter ψ† via

dop,m
(
lm, am−1

)
= argmaxam∈Am γd

∗ (
lm, am;ψ

†) . We shall see that under

sequential randomization the parameter ψ† can be estimated at a n1/2−rate.
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Without loss of generality, we shall usually take the regime d
∗
to be the zero-

regime 0 .
Example (1): Suppose γ0

(
lm, am, ψ

)
= amr

(
m, lm, am−1, ψm

)
with

a the common maximum and 0 the common minimum element in each Am, r
a known function of ψm, and ψT = (ψ0, ..., ψK). Then dop,m

(
lm, am−1, ψ

)
=

a
[
I
{
r
(
m, lm, am−1, ψm

)
> 0
}]

. We consider the explicit choice

r
(
m, lm, am−1, ψm

)
= (1, lm, am−1)ψm = ψ1m + ψ2mlm + ψ3mam−1 in much

of the ensuing discussion.
Example (2): Suppose now

γ0
(
lm, am, ψ

)
= am

[
r1
(
m, lm, am−1, ψ1

)]
+ a2

m

[
r2
(
m, lm, am−1, ψ2

)]

with each Am being the interval [0, a] on the real line and r1 and r2 are known
functions of ψ1 and ψ2. Then

dop,m
(
lm, am−1, ψ

)
=

{
I
[
r2
(
m, lm, am−1, ψ2

)
< 0
]}
I
(
0 ≤ g

(
m, lm, am−1, ψ

)
≤ a
)
g
(
m, lm, am−1, ψ

)

+a
{
I
[
r2
(
m, lm, am−1, ψ2

)
≥ 0
]}{

I

[
ar2
(
m, lm, am−1, ψ2

)

+r1
(
m, lm, am−1, ψ1

)
]
> 0

}

where g
(
m, lm, am−1, ψ

)
= −r1

(
m, lm, am−1, ψ1

)
/2r2

(
m, lm, am−1, ψ2

)
and

the first term corresponds to a maximum in the interior of [0, a] and the second
term corresponds to a maximum at the boundary point a. Here I [B] is the
indicator function that takes the value 1 if B is true and 0 otherwise.

Under sequential randomization (2.5) and pm
(
am|Lm, Am−1

)
known ,we

now consider the properties of approximate minimizers of

{Pn [U (ψ, s)]}T B {Pn [U (ψ, s)]} with U (ψ, s) = Udop,0 (ψ, s) as defined in
Equation (3.9), each function sm having range the dimension of ψ, B a posi-

tive definite square matrix, and H
dop,0
m (ψ) defined by

Hdop,0
m (ψ) = Y +

K∑

j=m

{
γ0
(
Lj , Aj−1,dop,j

(
Lj , Aj−1, ψ

)
, ψ
)
− γ0

(
Lj , Aj , ψ

)}
.

Note that even when as in examples 1 and 2, γ0
(
lm, am, ψ

)
is smooth (or

even linear) in ψ, Hdop,0 (ψ) and Udop,0 (ψ, s) will not be everywhere dif-
ferentiable in ψ (because ψ appears within indicator functions), although

both remain continuous in ψ. Because Udop,0 (ψ, s) is a nonlinear function

of ψ,E
[
Udop,0 (ψ, s)

]
= 0 may have roots in addition to ψ† in which case

{Pn [U (ψ, s)]}T B {Pn [U (ψ, s)]} will have an inconsistent minimizer even
asymptotically. As before if we increase the dimension of the s, then in suf-
ficiently large samples the problem of multiple minimizers should disappear
under correct specification, but not if the model γ0

(
lm, am, ψ

)
is misspecified.
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Define U †dop,0
(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

as above but restricted to the

set of ψ at which the required ψ−derivatives exist. Refer to this set as
the admissible set. [In example 1, these ψ−derivatives will fail to exist
only for values of ψ satisfying (1, Lm,i, Am−1,i)ψm = 0 for some study
subject i as it is only at these values of ψ for which the contribution of
subject i is nondifferentiable. Specifically in that case dop,j

(
Lj,i, Aj−1,i, ψ

)

and H
dop,0
j,i (ψ) , j ≤ m are non differentiable for that subject.] A unique

n1/2 − consistent member ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

of the admissible set

solving Pn

[
U †dop,0

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)]

= 0 will exist with probabil-

ity approaching one. It is a dr-lse estimator (i.e. it is RAL and lse not only
in model (a.1) with pm

(
am|Lm, Am−1

)
known but also in the larger dop, 0

”union” model of Theorem 3.4 in which pm
(
am|Lm, Am−1

)
is not known),

except under the exceptional laws FO defined as those laws at which, for
some m, argmaxam∈Am γ0

(
Lm, Am−1, am, ψ

†) is not unique with positive
probability. In example 1, these exceptional laws are the laws under which
(1, Lm, Am−1)ψ

†
m = 0 with positive probability. Even at these laws this esti-

mator remains n1/2−consistent for ψ† although not CAN and thus not RAL.
These exceptional laws are discussed in detail in Section 5.1 and Appendix 1.

A Closed-Form Estimator of an Optimal drSNMM

We now show that, if, as in our examples, γ0
(
lm, am, ψ

)
is linear in ψ, we can

obtain a closed -form n1/2-consistent estimator ψ̃ under the union model of
Theorem 3.4 based on solving a sequence of linear estimating functions. Then

Pn

[
H
dop,0
0

(
ψ̃
)]

is a closed-form n1/2-consistent estimator of E
[
Ydop

]
that

does not require modelling f
[
lm | lm−1, am−1

]
. The importance of having a

closed-form n1/2-consistent estimator of ψ† is that it avoids the problem with
our earlier estimating functions. That is they could have multiple roots, an
unknown one of which is consistent. Although the closed-form estimator ψ̃ is
not locally efficient, the one-step update

ψ̃(1) = ψ̃ + Pn

[
EIF

(
ψ̃
)]

where

EIF
(
ψ̃
)
= Pn

[
∂U †

adj

(
ψ̃, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ψT

]−1

×

Pn

[
U †
adj

(
ψ̃, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)]

is locally efficient in the union model of Theorem 3.4. Note EIF
(
ψ̃
)

is

an estimator of the efficient influence function for ψ in the union model

at a particular submodel. The key to obtaining ψ̃ is to use U
dop,0
mod (ψ, s) =
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K∑

m=0

U
dop,0
mod,m (ψ, sm) defined just before Section 4 as a basis for estimation

rather than Udop,0 (ψ, s) .

We first show how to construct ψ̃ in the case in which pm
(
am|Lm, Am−1

)

is known, ψ = (ψ0, ..., ψK) and γ0
(
lm, am, ψ

)
= γ0

(
lm, am, ψm

)
with

γ0
(
lm, am, ψm

)
linear and/or smooth in ψm but not necessarily in ψ

m+1
.

It is crucial that at time tm, our model γ0
(
lm, am, ψ

)
depends on ψ only

through ψ
m
. We estimate the ψm recursively beginning with ψK so that at

the step in which we estimate ψm, we have already estimated the vector ψ
m+1

.

Specifically let ψ̃K solve Pn

[
U
dop,0
mod,K (ψK , sK)

]
= 0 where U

dop,0
mod,K (ψK , sK) =

H
dop,0
mod,K (ψK)

{
SK (AK)− E

[
SK (AK) | AK−1, LK

]}
, and H

dop,0
mod,K (ψK) =

Y − γ0
(
LK , AK , ψK

)
. Then, for m = K − 1, ..., 0, let ψ̃m recursively solve,

Pn

[
U
dop,0
mod,m

(
ψm, ψ̃m+1

, sm

)]
= 0, where

U
dop,0
mod,m

(
ψm, ψ̃m+1

, sm

)

= H
dop,m,0

mod,m

(
ψm, ψ̃m+1

){
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}
,

H
dop,m,0

mod,m

(
ψm, ψ̃m+1

)
= Y − γ0

(
Lm, Am, ψm, ψ̃m+1

)

+

K∑

j=m+1

{
γ0
(
Lj , Aj−1,dop,j

(
Lj , Aj−1, ψ̃j

)
, ψ̃

j

)
− γ0

(
Lj , Aj, ψ̃j

)}
,

and Sm (am) = sm
(
Lm, Am−1, am

)
has range the dimension of ψm. Note

E
[
U
dop,0
mod,m

(
ψ†
m, ψ

†
m+1

, sm

)]
= 0. Further each of these estimating functions

are smooth in ψm when γ0
(
lm, am, ψm

)
is smooth in ψm and will be linear in

ψm when γ0
(
lm, am, ψm

)
is linear in ψm. In the linear case ψ̃ (s) = ψ̃

0
(s) =

ψ̃
0
=
(
ψ̃0, .., ψ̃K

)T
is unique and exists in closed form. In the following, we

suppress the dependence on s and write ψ̃
0
(s) = ψ̃

0
=
(
ψ̃0, .., ψ̃K

)T
. With

γ0
(
lm, am, ψ

)
= (1, lm, am−1)ψm of Example 1,

ψ̃m = Ĩm
−1 × Pn[ {

Sm (Am)− E[Sm (Am) |Am−1, Lm]
}
×{

Y +
∑K

j=m+1

{
γ0
(
Lj , Aj−1,dop,j

(
Lj , Aj−1, ψ̃j

)
, ψ̃j

)
− γ0

(
Lj , Aj , ψ̃j

)}}
]
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whenever the three by three derivative matrix Ĩm =
Pn
[{
Sm (Am)− E[Sm (Am) |Am−1, Lm]

}
Am (1, Lm, Am−1)

]
is invertible. Fur-

ther, when γ0
(
Lm, Am, ψm, ψ̃m+1

)
is linear in ψm , ψ̃m

(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

solving Pn

[
U

†,dop,0
mod,adj,m

(
ψm, ψ̃m+1

, ŝeff , c
ŝeff , α̂, ς̂ , κ̂, ζ̂

)]
= 0 is a closed form

dr-lse estimator (i.e. it is lse not only in model a.1 with pm
(
am|Lm, Am−1

)

known but also in the larger dop, 0 ”union” model of Theorem 3.4 in which
pm
(
am|Lm, Am−1

)
is not known) except at the exceptional laws mentioned

above where it remains n1/2− consistent.
Remark on Estimation Under A Deterministic Design: When

ψm is of sufficiently low dimension and, as in the sequential decision liter-
ature, the design parameters of the simulation generating the data under
analysis are in the analyst’s control, it is computationally feasible to ac-
curately estimate the ψm without using the above estimation methods by
recursively employing time-specific deterministic designs to obtain estima-
tors ψ̂m,m = K, ..., 0 as described in Section 2.2. For example at time tm
we can estimate ψ1m by fixing

(
Lm,i, Am−1,i

)
= 0 for all i, i = 1, ..., n,

and simulating Yi under the subsequent regime
{
amax,m, dop,m+1

(
ψ̂
m+1

)}
for

i ≤ n/2 and
{
amin,m, dop,m+1

(
ψ̂
m+1

)}
for i > n/2, and taking ψ̂1m to be

{amax,m − amin,m}−1 times the difference between the averages of Yi in the
first and second half of the sample of size n. One can gain computational
efficiency by reusing relevant simulations from times greater than tm. Alter-
natively one could use a matched design as described in Remark 2.1 of Section
2.2.

Now suppose that, as in example 1, ψm is the same for each m so
γ0
(
lm, am, ψm

)
= (1, lm, am−1)ψ. One can still artificially regard the com-

mon ψ as K + 1 separate time-specific parameter vectors ψm. We can ob-
tain the K + 1 estimates ψ̃m (s) and their (estimated) covariance matrix and
combine them by inverse covariance weighting to give a final more efficient

estimate ψ̃ (s) . Indeed if we let ψ̃m

(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
be as above, the

inverse covariance weighted estimator will be a dr-lse of the time-independent
parameter ψ, except at the exceptional laws. This efficiency result requires
that ŝeff estimate the optimal choice seff for the model that does not im-

pose equality of the different ψm. Alternatively the estimator ψ̃(1) is a dr-lse,
but here ŝeff must estimate seff for the model that does impose equality of
the different ψm

Suppose the time ∆t = tm+1 − tm between treatments is so short that

very few subjects have Am+1 different from Am. Then, ψ̃m ,m < K, can have
unacceptable small sample bias, even though it is asymptotically unbiased if
∆t stays fixed as n → ∞. To see why note that ψ̃K will then be excessively
variable because its variance is an increasing function of the inverse of the
conditional variance of AK given

(
AK−1, LK

)
that increases to infinity as the
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conditional variance of AK+1 decreases to zero. The excessive variability in

ψ̃K will then lead to severe small sample bias in ψ̃K−1 because ψ̃K enters

the estimating function U
dop
mod,K−1

(
ψK−1, ψ̃K , s

∗
K−1

)
in a highly non-linear

manner through it’s inclusion within an indicator function. Thus even when
all the ψm = ψ are known to be equal and K is large so there is plenty of in-
formation available to estimate ψ, our locally efficient one-step estimator ψ̃(1)

can be very biased. Thus we have no choice but to solve the non-differentiable

vector of estimating functions U
dop
mod (ψ, s) non-sequentially, which can be com-

putationally difficult and may suffer from the problem of multiple roots . In
Section 8 we consider the extreme case of treatment innovations in continuous
time, where ∆t can be arbitrarily small.

Uniform Asymptotic Confidence Intervals For ψ and dop By
Inverting Tests

Although the estimators ψ̃ and ψ̂ of the previous subsections will be n1/2-

consistent (i.e., n1/2
(
ψ̂ − ψ†

)
and n1/2

(
ψ̃ − ψ†

)
are bounded in probability)

at all laws allowed by our model , they will be neither asymptotically unbiased
nor asymptotically normal under “exceptional” laws FO satisfying, for some
m, argmaxam∈Am γ0

(
Lm, Am−1, am, ψ

†) is not unique with positive proba-
bility. Specifically, as discussed in Appendix 1.1, the limiting distributions of

n1/2
(
ψ̂ − ψ†

)
and n1/2

(
ψ̃ − ψ†

)
will be non-normal with a non zero mean

(and thus will not be CAN) at such exceptional laws. Indeed, as shown in Ap-
pendix 1.1, ψ† is not a regular parameter at these laws in the sense that it is
not a differentiable function of a smooth finite dimensional parameterization
of the law of O. It follows that, because of their unknown asymptotic bias, we
cannot obtain uniformly asymptotically unbiased estimators of ψ† and thus
cannot construct valid (i.e. uniform over the entire model ) asymptotic Wald-

type confidence intervals for ψ† centered on any estimator including ψ̂ or ψ̃ of
the previous subsections.

However one can obtain valid uniform confidence intervals for such non-
regular parameters by inverting tests. For example, uniformly over all laws FO
allowed by the model with pm

(
am|Lm, Am−1

)
known the sets C (1− α) and

Cmod (1− α) of ψ for which nPn[U
dop,0 (ψ, s)]T Σ̂ (ψ, s)

−1
Pn[U

dop,0 (ψ, s)] and

nPn[U
dop,0
mod (ψ, s)

T
]Σ̂mod (ψ, s)

−1
Pn[U

dop,0
mod (ψ, s)], respectively, are less than

the α upper quantile, say, χα,dim(ψ), of a χ2 distribution on the dimension
of ψ degrees of freedom are uniform large sample 1 − α confidence interval
for ψ†.. [The set C (1− α) has no relation to the random variable C defined
in Section 3.3.] Further under the dop, 0 union model of Theorem 3.4 or the
more restrictive models (a.1) and (a.2), the interval Cop (1− α) based on

χ
2,dop,0
score (ψ) of Eq (3.17) will be a uniform asymptotic confidence interval over

all laws allowed by the model.
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One can also obtain conservative uniform large sample (i.e. asymptotic)
1− α confidence intervals for functions of ψ†, even discrete functions such as
dop. The set

Dop (1− α) = (4.3)
{
dop (ψ) ; dop,m (ψ) = arg max

am∈Am

γdop0
(
lm, am;ψ

)
, ψ ∈ Cop (1− α)

}

is an example. That is, writing dop
(
ψ†) as dop (FO) and Dop (1− α) as

Dop,n (1− α) to emphasize the dependence on sample size n, by the defi-
nition of an conservative uniform asymptotic confidence interval in Appendix
1.1, we have that given any δ > 0, there exists a N (δ) such that

for all n > N (δ) and all sequences FO,1, FO,2, ... in the union model

(1− α)− PrFO,n
[
dop (FO,n) ∈ Dop,n (1− α)

]
< δ. (4.4)

In contrast, by definition, a non-uniform conservative asymptotic (1− α)
confidence interval D∗

n (1− α) satisfies: given any δ > 0 and any FO in the
union model, there exists a N (δ, FO) depending on FO, such that

for all n > N (δ, FO) (4.5)

(1− α) − PrFO
[
dop (FO) ∈ D∗

n (1− α)
]
< δ

Thus only the conservative uniform asymptotic confidence interval has
the property that there exists some finite sample size N (δ) such that for
n > N (δ) , the interval Dop,n (1− α) contains the true optimal regime dop
with probability greater than (1− α− δ) . In contrast a conservative non-
uniform asymptotic (1− α) confidence interval is not guaranteed to con-
tain the true dop with probability greater than (1− α− δ) at any sample
size. For this reason we are only interested in uniform asymptotic confidence
intervals. Now because the volume of Cop (1− α) is asymptotically equiv-
alent to the volume of the Wald intervals based on the dr-lse estimator.
ψ̂
(
ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
at the unexceptional laws, we doubt it will be possi-

ble to obtain an interval for dop
(
ψ†) that is substantially narrower (say by a

factor of more than 2 under any law in the union model) than Dop,n (1− α).
However the confidence interval Dop,n (1− α) for the optimal regime dop may
at a given sample size n be too wide (i.e., contain too many candidate regimes
dop (ψ)) to provide reliable optimal decisions. In that case we must make a
choice among these dop (ψ). We discuss this issue further below and in partic-
ular discuss a Bayesian solution based on informative priors for the unknown
parameters.

It is useful to understand when Dop,n (1− α) may contain many candidate
regimes dop (ψ) . In a slight abuse of notation we say the confidence interval
Cop,n (1− α) contains a law FO if Cop,n (1− α) contains a value ψ such that
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γ0
(
Lm, Am−1, am, ψ

)
equals the blip function γdop0

(
Lm, Am−1, am

)
associ-

ated with FO. At a fixed sample size n, even if the data were generated under
a (unknown) nonexceptional law Fne,O and n is very large, the confidence in-
terval Cop,n (1− α) may contain one or more exceptional laws (i.e a law Fe,O

under which argmaxam∈Am γdop0
(
Lm, Am−1, am

)
is not unique with positive

probability). It then follows that the interval Cop,n (1− α) will (generally)
also contain another non-exceptional law F ∗

ne,O such that dop (Fne,O) differs

from dop
(
F ∗
ne,O

)
, as the exceptional laws form the boundary separating non-

exceptional laws corresponding to different optimal treatment regimes.
Thus Cop,n (1− α) may often contain both Fne,O and F ∗

ne,O and thus

Dop,n (1− α) will often contain both dop (Fne,O) and dop
(
F ∗
ne,O

)
. Because

both Fne,O and F ∗
ne,O are non-exceptional laws, we know that under Fne,O, the

maximal expected utility E[Ydop(Fne,O)] is strictly greater than E[Ydop(F∗
ne,O )]

while under F ∗
ne,O, E[Ydop(F∗

ne,O )] is strictly greater than E[Ydop(Fne,O)]. Now

since, without further information we remain uncertain whether Fne,O or
F ∗
ne,O or neither generated the data, we do not know whether to choose

dop (Fne,O) or dop
(
F ∗
ne,O

)
or neither. Such further information may be avail-

able as informative priors for unknown parameters.
Note that because (i) the data were generated under Fne,O and (ii)

dop (Fne,O) differs from dop
(
F ∗
ne,O

)
, it is true that our non-uniform asymp-

totics guarantees that there exists some sample size ñ = ñ
(
Fne,O, F

∗
ne,O

)
, ñ >

n, such that Dop,n (1− α) will exclude dop
(
F ∗
ne,O

)
with very high probabil-

ity. But of course this fact is of no use when the actual sample size is n.
Thus, we see that a ”uniform asymptotics” in contrast to a ”non-uniform
asymptotics” correctly recognizes that even when data is generated under an
unknown non-exceptional law Fne,O, at (even a large) fixed sample size n,
we often cannot rule out the hypothesis that the data were generated either
under an exceptional law Fe,O or under a non-exceptional law F ∗

ne,O with

dop
(
F ∗
ne,O

)
different from dop (Fne,O) .

5 Locally Efficient Optimal Treatment Decisions For

Individual Patients

In this section we will restrict attention to dichotomous (0, 1) treatments, so

that any model for γdop,0
(
lm, am

)
takes the form

γ0
(
lm, am, ψ

)
= amr

(
m, lm, am−1, ψ

)
of example 1 of Section 4.1 with

am ∈ {0, 1} . Thus dop,m
(
lm, am−1, ψ

)
= I

{
r
(
m, lm, am−1, ψ

)
> 0
}
. Sup-

pose, after the study is completed, a new patient appears in his physicians
office at time tm since diagnosis with past data

(
lm, am−1

)
. One might

suppose that for this patient on day tm, the parameter of immediate in-
terest is ψint = r

(
m, lm, am−1, ψ

)
, as the patient should be treated if

ψ†
int = r

(
m, lm, am−1, ψ

†) is positive and not treated if negative. [Here ’int’
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abbreviates ’interest’ and not ’intervention’]. If this supposition were correct
we might wish to obtain locally efficient tests of the single null hypothesis
H0 : ψ†

int ≤ 0 versus the alternative H1 : ψ†
int > 0 without any consideration

given to simultaneous inference or the multiple testing problem that results
from testing similar hypotheses at many times and for many patients with
different

(
lm, am−1

)
histories. However the sign of ψ†

int only determines the
optimal treatment decision on day tm for this patient if in fact the patient
follows the optimal regime from tm+1 onwards. But because of uncertainty we
cannot be assured that the subject will follow the optimal regime subsequent
to time tm unless m = K, as tK is the final treatment time (even if we as-
sume, as we shall do for the time being, that all uncertainty is attributable
to sampling variability and not also to model mispecification, to unmeasured
confounding, or to lack of compliance.) Nonetheless we shall study the inter-
esting mathematical issue of how to obtain locally efficient tests of the single
null hypothesis H0 : ψ†

int ≤ 0 versus the alternative H1 : ψ†
int > 0, in the

prescence of exceptional laws, as the results will be useful later.

5.1 A Frequentist Approach to Locally Efficient Tests of
H0 : ψ

†
int ≤ 0

It follows from Equation (3.19) that we can rewrite H
dop,0
mod,m (ψ) =

Y −Amr
(
m,Lm, Am−1, ψ

)
+

K∑

j=m+1

{
I
{
r
(
j, Lj, Aj−1, ψj

)
> 0
}
−Aj

}
r
(
j, Lj , Aj−1, ψ

)
,

and from Equation (3.9) and (3.10) that we can rewrite U
†,dop,0
mod

(
ψ, seff , c

s
eff

)
=

K∑

m=0

{
H
dop,0
mod,m (ψ)− E

[
H
dop,0
mod,m (ψ) |Am−1, Lm

]}
×

{Seff,m (1, ψ)− Seff,m (0, ψ)}
{
Am − E

[
Am | Am−1, Lm

]}

In the remainder of this section we suppress the dop, 0 superscript and as-
sume r

(
m,Lm, Am−1, ψ

)
is twice continuously differentiable with respect to

ψ with probability one. Differentiability of U †
mod

(
ψ†, seff , cseff

)
at ψ† with

probability one will turn out to be of crucial concern. We now show that

U †
mod

(
ψ†, seff , cseff

)
and (indeed U †

mod

(
ψ†, s, cs

)
for any s) is differentiable

at ψ† w.p.1 except for laws FO under which for some (j,m) ,with non-zero
probability all of the following hold, (i) r

(
j, Lj , Aj−1, ψ

†) = 0 (ii) m < j

and (iii) Bmj
(
ψ†) = 1. Here Bmj

(
ψ†) is the indicator of the event that

r
(
j, Lj , Aj−1, ψ

)
depends on at least one component of

(
Am, Lm+1

)
for
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some ψ in every open neighborhood of ψ†. To obtain this result note (i)
Hmod,m (ψ)− E

[
Hmod,m (ψ) |Am−1, Lm

]
will be a function of

I
{
r
(
j, Lj , Aj−1, ψ

)
> 0
}
unless Bmj (ψ) = 0 for all j > m and (ii) if, for

all ψ in a neighborhood of ψ†, Bmj (ψ) = 0 w.p1. for all (m, j) , j > m,

then U †
mod

(
ψ, seff , c

s
eff

)
does not have ψ occurring within an indicator

function and is thus smooth at ψ†. A law FO satisfying (i)-(iii) is said
to be an exceptional law. In general any law FO under which the g-null
hypothesis ψ† = 0 holds will be an exceptional law, except if the model
r
(
m, lm, am−1, ψ

)
rules out all treatment interactions apriori by specifying

that r
(
m, lm, am−1, ψ

)
= r (m,ψ) does not depend on lm, am−1 for all ψ, in

which case U †
mod

(
ψ, seff , c

s
eff

)
is smooth in ψ.

Remark: The non-doubly robust statistic Umod (ψ, s) , in contrast to

U †
mod (ψ, s, c

s) , will be nondifferentiable at ψ† with positive probability when,
for some m, r

(
m,Lm, Am−1, ψ

†) = 0 with non-zero probability. This is equiv-

alent to saying that argam∈Am
γ0
(
Lm, Am−1, am, ψ

†) is not unique with posi-
tive probability. Thus, when earlier, we were considering tests and estimators
based on Umod (ψ, s) , we referred to any law FO satisfying only condition (i)
as an exceptional law.

We now reparametrize so that the parameter ψint is substituted for some
component of ψ on which r

(
m, lm, am−1, ψ

)
functionally depends, so now, in

a slight abuse of notation,

ψ =
(
ψint, ψ

T
−int
)T

where ψ−int are the unchanged components of the
original ψ.

Write U †
mod adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
as

(
U †

modadj,int

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
, U †

modadj,−int

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)T)T

Define Sint,eff

(
ψ, α̂, ς̂ , κ̂, ζ̂

)
=

U †
modadj,int

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
−

E[∂U †
modadj,int

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ψT−int]×

E[∂U †
modadj,−int

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
/∂ψT−int]

−1×

U †
modadj,−int

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

The (locally) efficient score Sint,eff
(
ψ†, α∗, ς∗ ,κ∗, ζ∗

)
for ψint with the other

components of ψ−int treated as nuisance parameters is the probability limit

of Sint,eff

(
ψ†, α̂, ς̂ , κ̂, ζ̂

)
in the dop, 0 union model of Theorem 3.4, provided

FO is not an exceptional law. The locally efficient score for ψint is undefined
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at exceptional laws, because ψint is a non-regular parameter under these laws.
See appendix A1.1.

We now construct a conservative 1 − α uniform asymptotic confidence
interval for ψ†

int that quite generally will be narrower than the so-called 1−α
projection interval {ψint;ψint = ψint (ψ) for some ψ ∈ Cop (1− α)} based on
the interval Cop (1− α) for the vector ψ. In the following ∅ denotes the null
set and C−int, (1− ε, ψint) is a uniform large sample 1 − ε joint confidence

interval for ψ−int when assuming that ψ†
int is known apriori to be equal to

ψint. For example, C−int, (1− ε, ψint) could be the interval Cmod (1− ε) of the

last subsection given by U
dop,0
mod (ψ, s)T Σ̂mod (ψ, s)

−1 U
dop,0
mod (ψ, s) is less than

the ε upper quantile of a χ2 distribtion on dim (ψ−int) = dim (ψ) − 1 d.f.

except that one component (say the last) of U
dop,0
mod (ψ, s) has been eliminated

so U
dop,0
mod (ψ, s) is now of dim (ψ) − 1 to reflect the fact that ψint is regarded

as known.
Theorem 5.1: . Let the interval C−int, (1− ε, ψint) be a uniform large

sample 1 − ε joint confidence interval for ψ−int, when assuming that ψ†
int is

known apriori to be equal to ψint. Under regularity conditions sketched in the
proof below, the region




ψint;C−int (1− ε, ψint) �= ∅

infψ−int∈C−int,(1−ε,ψint)

∣∣∣∣∣
n1/2Pn[Sint,eff((ψint,ψ−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ−int),α̂,ς̂ ,κ̂,ζ̂)

2
]1/2
∣∣∣∣∣ < zα/2




(5.1)

is a conservative 1−α−ε uniform asymptotic confidence region for ψ†
int over all

laws allowed by the model. The interval’s coverage and length are asymptot-
ically equivalent to the asymptotic coverage of (1−α) and the length of the lo-

cally optimal interval

{
ψint;

∣∣∣∣∣
n1/2Pn[Sint,eff((ψint,ψ†

−int),α
∗,ς∗ ,κ∗,ζ∗)]

E
[
Sint,eff((ψint,ψ†

−int),α∗,ς∗ ,κ∗,ζ∗)
2
]1/2
∣∣∣∣∣ < zα/2

}

at all laws but the exceptional laws. Similarly for zα > 1, the test that rejects
when

I





C−int (1− ε, ψint) �= ∅ or

infψ−int∈C−int,(1−ε,ψint)
n1/2Pn[Sint,eff((0,ψ−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((0,ψ−int),α̂,ς̂ ,κ̂,ζ̂)

2
]1/2 > zα





is a conservative uniform asymptotic α + ε − level test of H0 : ψ†
int ≤

0 versus H1 : ψ†
int > 0 whose asymptotic level will be α and whose

asymptotic local power will be equal to that of the locally optimal test

I




n1/2Pn

[
Sint,eff

((
0,ψ†

−int

)
,α∗,ς∗ ,κ∗,ζ∗

)]
Pn

[
Sint,eff

((
0,ψ†

−int

)
,α∗,ς∗ ,κ∗,ζ∗

)2
]1/2 > zα



 under all laws but the excep-

tional laws.
Remark:When a conservative uniform asymptotic confidence interval for

a vector ψ is available, the method given in Theorem 5.1 is a quite general
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method of obtaining a conservative uniform asymptotic confidence interval
for a subvector ψint of ψ that will in general be narrower than the projection
interval. The narrowness of the interval and the power of the associated test
depend critically on the fact that, when ψint = ψ†

int, the statistic’s numerator,

here n1/2Pn

[
Sint,eff

(
(ψint, ψ−int) , α̂, ς̂ , κ̂, ζ̂

)]
, has an expectation that, for

n sufficiently large, varies less (to a smaller order) as ψ−int varies over a

1 − ε confidence interval C−int
(
1− ε, ψ†

int

)
than as ψint varies around ψ†

int

over an interval of length O
(
n−1/2

)
. This general approach would allow us

to construct confidence intervals for ψint that can do better than projection
intervals even when ψ−int is infinite dimensional and/or ψint is only estimable
at non square-root n rates.

Proof: At any law that is not an exceptional law, ψint and ψ−int are
regular parameters. At any such law we assume that, with probability one,

U †
modadj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

has bounded second derivatives with re-

spect to ψ−int. [Note this assumption cannot hold at an exceptional law

since at these laws U †
mod adj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
, although continuous,

will not be even once differentiable.] Further, when ψint = ψ†
int, the value

ψ̂inf,−int where the infimum is attained will be uniformly n1/2 − consistent

for ψ†
−int as all members of the set C−int, (1− ε, ψint) are uniformly n1/2 −

consistent over all laws in the model. It then follows from the following
lemma 5.1 and some standard limit arguments using contiguity theory that
n1/2Pn[Sint,eff((ψint,ψ̂inf,−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ̂inf,−int),α̂,ς̂ ,κ̂,ζ̂)

2
]1/2 =

n1/2Pn[Sint,eff((ψint,ψ†
−int),α

∗,ς∗ ,κ∗,ζ∗)]

E
[
Sint,eff((ψint,ψ†

−int),α∗,ς∗ ,κ∗,ζ∗)
2
]1/2 +

op (1) when ψint = ψ†
int + kn−1/2 for any constant k.

Suppose now we are at an exceptional law and ψint = ψ†
int. Let ψ̂inf,−int be

the minimizer of (5.1). We know with probability 1−ε that C−int, (1− ε, ψint)

contains ψ†
−int. Thus with uniform probability 1− ε,∣∣∣∣∣

n1/2Pn[Sint,eff((ψint,ψ̂inf,−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ̂inf,−int),α̂,ς̂ ,κ̂,ζ̂)

×2
]1/2
∣∣∣∣∣ ≤
∣∣∣∣∣
n1/2Pn[Sint,eff((ψint,ψ†

−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ†

−int),α̂,ς̂ ,κ̂,ζ̂)
×2

]1/2
∣∣∣∣∣ .

But

∣∣∣∣∣
n1/2Pn[Sint,eff((ψint,ψ†

−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ†

−int),α̂,ς̂ ,κ̂,ζ̂)
×2

]1/2
∣∣∣∣∣ < zα/2 with uniform probability

1− α as n→∞. Thus as

n → ∞,

∣∣∣∣∣
n1/2Pn[Sint,eff((ψint,ψ̂inf,−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ̂inf,−int),α̂,ς̂ ,κ̂,ζ̂)

×2
]1/2

∣∣∣∣∣ < zα/2 with uniform proba-

bility at least 1− ε− α.
Lemma 5.1: Suppose Eψ1,ψ2 [Ua (ψ1, ψ2)] = Eψ1,ψ2 [Ub (ψ1, ψ2)] and

∂2Ua (ψ1, ψ2) /∂
2ψ2 and ∂

2Ub (ψ1, ψ2) /∂
2ψ2 are continuous and bounded with

probability 1. Define
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U1 (ψ1, ψ2)

= Ua (ψ1, ψ2)− Pn [∂Ua (ψ1, ψ2) /∂ψ2] {Pn [∂Ub (ψ1, ψ2) /∂ψ2]}−1
Ub (ψ1, ψ2)

Then under mild regularity conditions Pψ1,ψ2 ,n
1/2Pn

[
U1

(
ψ1, ψ̂2

)]

= n1/2Pn [U1 (ψ1, ψ2)]+op (1) whenever n
1/2
(
ψ̂2 − ψ2

)
is uniformly bounded

in probability.
Proof: see Appendix 2
Remark: Note that, even if Ua (ψ1, ψ2) and Ub (ψ1, ψ2) are non differ-

entiable, Lemma 5.1 remains true under weak regularity conditions if the
derivatives ma (ψ1, ψ2) = ∂Eψ1,ψ2 [Ua (ψ1, ψ

∗
2)] /∂ψ

∗
2 |ψ∗

2=ψ2 and mb (ψ1, ψ2) =
∂Eψ1,ψ2 [Ub (ψ1, ψ

∗
2)] /∂ψ

∗
2 |ψ∗

2=ψ2 exist and U1 (ψ1, ψ2) is redefined to be

U1 (ψ1, ψ2)

= Ua (ψ1, ψ2)− m̃a (ψ1, ψ2) {m̃b (ψ1, ψ2)}−1
Ub (ψ1, ψ2)

where m̃a (ψ1, ψ2) and m̃b (ψ1, ψ2) are based on ”numerical derivatives”
of Pn [Ua (ψ1, ψ2)] and Pn [Ub (ψ1, ψ2)] with step sizes of O

(
n−1/2

)
when-

ever Ua (ψ1, ψ2) and Ub (ψ1, ψ2) are non differentiable. This still does not
help at exceptional laws since, under exceptional laws, the derivative of

E
[
Sint,eff

((
ψint, ψ

†
−int

)
, α∗, ς∗ ,κ∗, ζ∗

)]
with respect to ψ†

−int does not ex-

ist.

Remark 5.1:

{
ψint;

∣∣∣∣∣
n1/2Pn[Sint,eff((ψint,ψ̂−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((ψint,ψ̂−int),α̂,ς̂ ,κ̂,ζ̂)

×2
]1/2
∣∣∣∣∣ < zα/2

}
for

ψ̂−int an arbitrary n1/2-consistent estimator of ψ†
−int need not be a 1-α − ε

uniform asymptotic confidence interval for ψ†
int for any given ε because, at

the exceptional laws, we do not obtain guaranteed coverage of 1-α− ε unless
we use the minimizer ψ̂inf,−int of (5.1). Similiarly

I

{
n1/2Pn[Sint,eff((0,ψ̂−int),α̂,ς̂ ,κ̂,ζ̂)]

Pn
[
Sint,eff((0,ψ̂−int),α̂,ς̂ ,κ̂,ζ̂)

×2
]1/2 > zα

}
need not be a conservative asymp-

totic α + ε− level test under an exceptional law. Furthermore had we taken
the infimum over all ψ−int (rather than just over ψ−int in C−int, (1− ε, ψint)),
the resulting test

I




infψ−int

n1/2Pn

[
Sint,eff

(
(0, ψ−int) , α̂, ς̂ , κ̂, ζ̂

)]

Pn

[
Sint,eff

(
(0, ψ−int) , α̂, ς̂ , κ̂, ζ̂

)×2
]1/2 > zα





with zα > 1, though conservative, may have power zero, as it is possible
that the test statistic may equal zero with probability one, at both local and
global alternatives to ψ†

int. < 0 whether the data were generated under an
exceptional or nonexceptional law. To see why the power can be poor if we
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take the infimum over all ψ−int, consider the following simple example of a
model with an exceptional law.

Example: Suppose we observe n iid copies of
X˜N (β, 1) , Y ˜N (ψ − I (β > 0)β, 1) , X and Y independent. Then ψ is in
the role of ψint, β is in the role of ψ−int and ψ is a regular parameter except
at the exceptional laws that have β = 0. If β �= 0, the efficient score based
on one observation for ψ at ψ = 0 is I (β ≤ 0)Y + I (β > 0) (Y +X) . Thus
our .05 level test of ψ > 0 that takes the infimum over all β rejects only if
I
{
min

(
n1/2Yav, n

1/2 (Yav +Xav) /
√
2
)
> 1.64

}
= 1. Suppose the law gener-

ating the data has β = −100n−1/2, ψ = 10n−1/2 so Y has mean 10n−1/2, X
has mean −100n−1/2 and Y +X has mean −90n−1/2, and X − Y has mean
−110n−1/2. Then the test will fail to accept the true alternative ψ > 0 with
probability essentially one (i.e it has power zero). On the other hand the effi-
cient score for β with ψ = 0 is I (β ≤ 0) (X − β) + I (β > 0) (X − Y − 2β) so
Cβ (1− ε, ψ = 0) =

{
β;β ≤ 0 andXav − n−1/2zε < β < Xav + n−1/2zε, or

β > 0 and
[

(Xav−Yav)−n−1/2zε
√

2
2

]
< β <

[
(Xav−Yav)+n−1/2zε

√
2

2

]
}
.

Now, if we choose ε large enough that zε < 100/
√
2, then Cβ (1− ε, ψ = 0) is,

with probability essentially one, the set{
β;β ≤ 0 and Xav − n−1/2zε < β < Xav + n−1/2zε

}
. Thus the test of ψ > 0

that takes the infimum only over all β ∈ Cβ (1− ε, ψ = 0) rejects whenever
I
{
n1/2Yav > 1.64

}
= 1 and thus has power essentially 1. If we take the

infimum over all β, the power of zero is not only against local alternatives or
near exceptional laws as can be seen by noting that again we have power zero
if β = −100, ψ = 10 or β = −100, ψ = 10n−1/2.

We can also use this example to understand why we needed to add the con-
dition C−int (1− ε, ψint) �= ∅ to our interval and testing procedures. Suppose
the true data generating process has β = 100n−1/2 and ψ = 300n−1/2. Then
with probability essentially one, the interval Cβ (1− ε, ψ = 0) will be empty
for any reasonably small ε since X has mean 100n−1/2 and X − Y has mean
100n−1/2 − 200n−1/2 = −100n−1/2. The emptiness of the confidence interval
for β can be taken as evidence of model misspecification due to assuming,
for the purpose of hypothesis testing, that ψ is known apriori to be equal to
0. Thus ψ = 0 should, as is appropriate, not be included in the confidence
interval and also be rejected when doing two-sided testing. For a one sided
test we may not wish to reject as we may not know which side of ψ = 0 we
are on.

The above results leave open the question of what α− level or more pre-
cisely α+ε− level to choose to make the best treatment decision. We shall see
there is no easy answer. Suppose we choose ε to be much smaller than α so
we can ignore the distinction between α and α + ε. The classical thoughtless
frequentist tradition is to choose α = .05, but there is really no justification
for this convention. Further as patients are seen at many different times tm
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from diagnosis with different histories
(
lm, am−1

)
, we will be testing the null

hypothesis ψint ≤ 0 about many time-history-specific parameters ψint. How
should we adjust the α−level of our tests to account for the multiple hypothe-
ses being tested? How should we account for the fact that with the exception
of the last treatment occassion K, we cannot be certain we shall succeed in
following the optimal regime in the future? Perhaps a Bayesian approach is
best. We next explore such an approach.

5.2 Approximate Bayesian Inference:

To begin we will study the following two decision rules (i) and (ii) in which we
treat a patient with past data

(
lm, am−1

)
on day tm if (i) the posterior proba-

bility that ψint = r
(
m, lm, am−1, ψ

)
is positive exceeds 1/2 (i.e. the posterior

median is positive) or (ii) the posterior mean of ψint = r
(
m, lm, am−1, ψ

)

is positive. In our complex high-dimensional model, exact Bayesian inference
that respects the semiparametric nature of the problem is not computation-
ally feasible nor, as we shall argue, would it be desirable even if compu-
tationally feasible. Therefore, we consider an approximate (i.e. asymptotic)
Bayesian analysis. Our analysis will face 2 separate problems. First how do
we obtain an approximate posterior for the model parameter ψ† and thus for
r
(
m, lm, am−1, ψ

†). Our second problem will be to consider whether either of
the two decision rules (i) and (ii) is the optimal Bayes decision rule and, if
not, how might we approximate the optimal Bayes rule. The first problem we
shall consider now. As for the second, we shall later show that neither decision
rule may be the Bayes rule.

Let t be the dim(ψ) vector with each component equal to t. For any dim(ψ)
random variable V, define the the t− truncated version

Vt = V I
[
V TV < dim (ψ) t2

]
+ tI

[
V TV > dim (ψ) t2

]

of V to the variable that takes the value t whenever the norm of V exceeds
dim (ψ)

1/2
t. In this section, our approach will be to pretend that rather than

observing the data Oi, i = 1, ..., n, we only observed the t − truncated ver-

sion Ẑt (·) = Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
of the multivariate stochastic process

Ẑ (·) indexed by ψ
where

Ẑ (·) = Z
(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)

= Σ̂−1/2
(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
n1/2Pn

[
U †
adj

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)]
.

We now argue that for large n and for t = t (n) going to infinity slowly

enough with n, the distribution associated with the stochastic process Ẑt (·)
under a law FO with parameter ψ† = ψ† (FO) depends on FO only through
ψ† with a ”density” proportional to that of the t-truncated version of a dim
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(ψ) MVN (0, I) random variable evaluated at the argument Ẑt
(
ψ†) . That

is f
(
Ẑt (·) |FO

)
is proportional to φt−Normal

(
Ẑt
(
ψ†)) where φt−Normal (u)

is the density of a t−truncated MVN(0, 1) random variable. Thus with p

the dimension of ψ† we can approximate the likelihood f
(
Ẑt (·) |FO

)
with

(2π)
−p/2

exp
(
−Ẑt

(
ψ†)T Ẑt

(
ψ†) /2

)
uniformly in FO, whenever

Ẑt
(
ψ†)T Ẑt

(
ψ†) < dim (ψ) t2. To see why, write Zt as Zn,t(n) and Ẑt as

Ẑn,t(n). Then, the approximation follows from the fact that, under regularity

conditions, it can be shown that (i) Ẑn,t(n) (·) is uniformly asymptotically
degenerate, i.e. given any ǫ > 0, there exists N (ǫ) such that for n > N (ǫ)

sup
FO

prFO



∣∣∣∣∣∣

f
(
Ẑn,t(n) (·) |FO

)

f
(
Ẑn,t(n) (ψ†) |FO

) − 1

∣∣∣∣∣∣
> ǫ


 < ǫ

where ψ† = ψ† (FO), (ii) Ẑn,t(n)

(
ψ†) can be approximated by the t-truncated

version Zn,t(n)

(
ψ†, FO

)
of the limit random variable Zn

(
ψ†, FO

)
, where

Zn (ψ, FO) = Z (ψ) =

Z
(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)

= Σ̂−1/2
(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)
n+1/2×

Pn

[
U †

mod adj

(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

with the ∗ limits evaluated under FO;that is, for any ǫ > 0, there exists N∗ (ǫ)
such that for n > N∗ (ǫ)

sup
FO

prFO

{∣∣∣Ẑn,t(n)

(
ψ†)− Zn,t(n)

(
ψ† (FO) , FO

)∣∣∣ > ǫ
}
< ǫ

and (iii) the limit variable Zn,t(n)

(
ψ† (FO) , FO

)
is uniformly asymptotically

t-truncated normal i.e., given u, for any ǫ > 0, there exists N∗∗ (ǫ) such that
for n > N∗∗ (ǫ)

sup
FO

∣∣prFO
[
Zn,t(n)

(
ψ† (FO) , FO

)
> u
]
− Φt(n),normal (u)

∣∣ < ǫ

where φt−Normal (u) is the distribution function of a t−truncated MVN(0, I)
random variable. In each case the sup is over the FO in the union model
of Theorem 3.4. Thus we have a uniform large sample approximation to the

likelihood function based on observing Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
.

We give a rough sketch of the proof. The key idea is to show that Theorem
3.4 implies that under the dop, 0 union model, for

(
ψ − ψ†) of O

(
n−1/2

)
,
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n+1/2Pn

[
U †

modadj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)]

(5.2)

= n+1/2Pn

[
U †

mod adj

(
ψ†, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

+ κ
(
ψ, ψ†, FO

)
+ oP (1)

where ψ† = ψ† (FO) , the oP (1) is uniform over the model, and κ (·, ·, ·) is
a non-random function that equals 0 at ψ = ψ†, is everywhere continuous in
ψ, and differentiable when FO is a non-exceptional law. Note if it were not

for exceptional laws, where E
[
U †

mod adj

(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

may be

non-differentiable in ψ (although continuous), standard arguments could be
used to show that Eq.(5.2) was true with κ

(
ψ, ψ†, FO

)
equal to

∂E
[
U †

modadj

(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

/∂ψT|ψ=ψ† n
1/2
(
ψ − ψ†)

Because it would be notationally complex and thereby obscure the essential
idea, we do not provide a general proof of (5.2); rather in appendix A1.2 , we
provide, with essentially no loss of generality, an explicit proof for a simple
paradigmatic example.

Remark 5.2: Under an exceptional law FO, for all ψ (except ψ†) in a
neighborhood of ψ† DER (ψ) = DER (ψ, FO)

= ∂E
[
U †

mod adj

(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

/∂ψT exists and

κ
(
ψ, ψ† (FO) , FO

)
= DER (ψ)n1/2

(
ψ − ψ†); however, DER

(
ψ†) is unde-

fined because for different sequences seqm = {ψmj ; j = 1, 2, ...} all converging
to
ψ†, {DER (ψmj) ; j = 1, 2, ...} may converge to different limits depending
on the particular seqm . Nonetheless since the set of limits is bounded,
κ
(
ψ, ψ† (FO) , FO

)
converges to 0 as ψ → ψ†. See Appendix A1.2 for an

example. One can view the lack of existence of the derivative of DER
(
ψ†) at

ψ† under an exceptional law as the reason that ψ̂ solving

n−1/2Pn

[
U †

modadj

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)]

= 0 is asymptotically biased

since, plugging ψ̂ in place of ψ in (5.2) with κ
(
ψ, ψ†, FO

)
= DER (ψ)n1/2

(
ψ − ψ†),

we have

n+1/2Pn

[
U †

modadj

(
ψ̂, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)]

(5.3)

= n+1/2Pn

[
U †

modadj

(
ψ†, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

+

DER
(
ψ̂, FO

)
n1/2

(
ψ̂ − ψ†

)
+ oP (1)

so n1/2
(
ψ̂ − ψ†

)
=

−
{
DER

(
ψ̂
)}−1

n−1/2Pn

[
U †

modadj

(
ψ†, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

+oP (1) .

The bias results from the fact that DER
(
ψ̂
)
is not converging in probability

but rather, due to the lack of continuity of the derivative DER (ψ) at ψ†,
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DER
(
ψ̂
)
has variance O (1) . Eq (5.2) implies that, uniformly, for

(
ψ − ψ†)

in a ball of radius O
(
n−1/2

)
,

Ẑ (ψ) = Z
(
ψ†)+ κ∗

(
ψ, ψ†, FO

)
+ oP (1) (5.4)

where κ∗
(
ψ, ψ†, FO

)
is a non-random function that is continuous in ψ, differ-

entiable at non-exceptional laws, equal to 0 at ψ = ψ†, and, for ψ �= ψ†, equal
to

κ∗
(
ψ, ψ†, FO

)
= [∂EFO [Z (ψ)] /∂ψ]n1/2

(
ψ − ψ†) (5.5)

in a neighborhood of ψ†.
It follows from Eqs. (5.4) and (5.5) that if, as we assume,

n1/2E
[
U †

modadj

(
ψ, s∗eff , c

s∗eff , α∗, ς∗ ,κ∗, ζ∗
)]

is greater than O (1) whenever
(
ψ − ψ†) is greater than O

(
n−1/2

)
, the stochastic process Ẑt (·) (with t go-

ing to infinity slowly enough with n) is asymptotically degenerate under FO,
because (i) the local process{
Ẑ (ψ) ;

(
ψ − ψ†) in a ball of radius O

(
n−1/2

)}
is, to order op (1) , a deter-

ministic function of Z
(
ψ†) and (ii) for

(
ψ − ψ†) greater thanO

(
n−1/2

)
, Ẑ (ψ)

is greater than O (1) so Ẑt (ψ) = t with probability going to one. Finally, the
limiting distribution of Z

(
ψ†) under FO is MVN(0, I).

We can use the approximation (2π)−p/2 exp
(
−Ẑt

(
ψ†)T Ẑt

(
ψ†) /2

)
to the

likelihood
f
(
Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
|FO
)

to compute an asymptotic approxi-

mation

πpost
(
ψ†)

=
I
{
ψ†;
∣∣∣
∣∣∣Ẑt
(
ψ†)
∣∣∣
∣∣∣ < t dim

(
ψ†)1/2} exp

(
−Ẑt

(
ψ†)T Ẑt

(
ψ†) /2

)
π
(
ψ†)

∫
{ψ†;||Ẑt(ψ†)||<tdim(ψ†)1/2} exp

(
−Ẑt (ψ†)

T
Ẑt (ψ†) /2

)
π (ψ†) dψ†

to the posterior π
(
ψ†|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
given

Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
for t = t (n) , n sufficiently large, with t (n) going

slowly to ∞ with n, so we can ignore the set where
∣∣∣
∣∣∣Ẑt
(
ψ†)
∣∣∣
∣∣∣ > t dim (ψ)1/2.

Consider a prior π
(
ψ†) that is absolutely continuous wrt Lesbegue mea-

sure, and charges ψ† in a volume of radius O (1) (that includes the true
parameter value). Such a prior is effectively uniform on a volume with ra-
dius O

(
n−1/2

)
around the truth. Since the likelihood is highly peaked on a

volume of O
(
n−1/2

)
, it follows that the approximate posterior based on a

prior π
(
ψ†) is just the rescaled likelihood i.e. set the prior π

(
ψ†) to be 1 in

the previous display.
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Thus for sufficiently large t and n, an approximate highest posterior
(1− α) credible regions Ccred (1− α) for ψ† is

Ccred (1− α) =
{
ψ; Ẑt (ψ)

T Ẑt (ψ) < c2α

}
where c2α satisfies

1− α

=

∫
{ψ†;Ẑt(ψ†)T Ẑt(ψ†)<c2α} exp

(
−Ẑt

(
ψ†)T Ẑt

(
ψ†) /2

)
dψ†

∫
{ψ†;||Ẑt(ψ†)||<tdim(ψ†)1/2} exp

(
−Ẑt (ψ†)

T
Ẑt (ψ†) /2

)
dψ†

≈
∫ cα
0

exp
(
−u2/2

)
area (u) du∫∞

0
exp (−u2/2)area (u)du

and

area (u) du =

∫

{ψ†;Ẑt(ψ†)T Ẑt(ψ†)=(u+du)2}
dψ† −

∫

{ψ†;Ẑt(ψ†)T Ẑt(ψ†)=u2}
dψ†

is the volume of the infinitesmal annulus between{
ψ†; Ẑt

(
ψ†)T Ẑt

(
ψ†) = (u+ du)

2
}

and
{
ψ†; Ẑt

(
ψ†)T Ẑt

(
ψ†) = u2

}
. Thus

area (u) is the (surface) area of the set
{
ψ†; Ẑt

(
ψ†)T Ẑt

(
ψ†) = u2

}
of dime-

sion Rdim(ψ†)−1 imbedded in Rdim(ψ†). The surface area of this set is well-
defined with probability one since, under any law including an exceptional
law, Ẑt

(
ψ†) is almost surely a continuous function of ψ† and smooth ex-

cept on a set of ψ† of Lesbegue measure 0. We have used the fact that∫∞
t

exp
(
−u2/2

)
area (u) du goes to zero as t = t (n)→∞

Henceforth, it will be convenient to index the likelihood approximation

exp
(
−Ẑt (ψ)T Ẑt (ψ) /2

)
by ψ and again only use ψ† to denote the true

value of ψ. Upon inserting the expansion (5.4) − (5.5) into the approxi-

mate likelihood (2π)
−p/2

exp
(
−Ẑt (ψ)T Ẑt (ψ) /2

)
, we see that with prob-

ability going to one, the posterior for ψ is asymptotically quadratic in
E
[
∂Z (ψ) /∂ψT

] (
ψ − ψ†) for

(
ψ − ψ†) of O

(
n−1/2

)
. Thus the posterior will

be asymptotically quadratic in
(
ψ − ψ†) (and indeed asymptotically nor-

mal with mean ψ̂) if E
[
∂U †

modadj (ψ) /∂ψ
T
]
= E

[
∂U †

modadj

(
ψ†) /∂ψT

]
+

o (1) and thus E
[
∂Z (ψ) /∂ψT

]
= E

[
∂Z
(
ψ†) /∂ψT

]
+ o (1) does not depend

on ψ to this order. Here ψ̂ is our locally efficient doubly robust estimator solv-
ing Ẑt (ψ) = Ẑ (ψ) = 0. This lack of dependence on ψ will be true, when, as
we are assuming, r

(
m, lm, am−1, ψ

)
is smooth in ψ, except for the case where

the data were generated under an exceptional law. Thus, in large samples,
under non-exceptional laws, the posterior distribution of ψ will be normal.
It follows that under non-exceptional laws we can substitute for area (u) the
suface area of the dim (ψ) ball of radius u in Rdim(ψ). Thus, for example, if
dim (ψ) = 3, then area (u) = 4πu2. In that case cα is equal to the upper
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α quantile χα,dim(ψ) of a χ2 random variable on dim (ψ)-d.o.f. and thus our
highest posterior credible interval Ccred (1− α) for ψ is exactly the same as
the frequentist confidence interval Cop (1− α) based on the pivotal statistic

Ẑ (ψ) . Thus a result which is well known for regular parametric models con-
tinues to hold for our semiparametric model at non-exceptional laws.

However, under the exceptional laws, the posterior distribution for ψ†

will be non-quadratic and the surface
{
ψ; Ẑt (ψ)

T
Ẑt (ψ) = u2

}
will not be a

sphere of radius u. Thus area(u) will not be proportional to the suface area of
the dim (ψ) ball of radius u in Rdim(ψ). Nonetheless, the frequentist interval
Cop (1− α) will remain a highest posterior credible interval Ccred (1− α∗)
with the ’frequency-calibrated’ α∗ given by

α∗ = α∗ (α) ≈
∫ χα,dim(ψ)

0 exp
(
−u2/2

)
area (u)du∫∞

0
exp (−u2/2)area (u) du

where χα,dim(ψ) is again the upper α quantile χα,dim(ψ) of a χ
2 random variable

on dim (ψ) d.o.f.
Indeed even when the data are not generated under an exceptional law,

for
(
ψ − ψ†) of O

(
n−1/2

)
, the o (1) in the equation E

[
∂U †

modadj (ψ) /∂ψ
T
]
−

E
[
∂U †

modadj

(
ψ†) /∂ψT

]
= o (1) is non-uniform in ψ† because ψ† may still be

close to an exceptional law (see Appendix A1.2 for additional discussion).
However the Lebesgue measure of the set of ψ† for which this o (1) difference
will not be small will decrease as n increases so that posterior associated
with a prior absolutely continuous wrt Lesbegue measure that charges ψ† in
a volume of radius O (1) will eventually be quadratic.

Nonetheless, in practice, if frequentist interval Cop (1− α) includes excep-
tional laws (or laws very close to exceptional laws) and thus the set where
the likelihood is relatively large contains an exceptional law, it is best not to
use a normal approximation, but rather to use either Markov chain Monte
Carlo or rejection sampling techniques to generate a sample ψ(v), v = 1, ..., V

from a density proportional to exp
(
−Ẑ (ψ)

T
Ẑ (ψ) /2

)
to construct a high-

est posterior credible intervals, even if one had a prior mass of zero on the
exceptional laws. Informally, this recommendation represents the possibility
that one may be in asymptopia in regards to using the uniform approxima-

tion exp
(
−Ẑ (ψ)

T
Ẑ (ψ) /2

)
to the likelihood of Z

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
,

but may not be in asymptopia as far as the non-uniform approximation

E
[
∂U †

modadj (ψ) /∂ψ
T
]
− E

[
∂U †

modadj

(
ψ†) /∂ψT

]
= o (1) is concerned.

A way to formalize this approach to approximate Bayes inference when the
set where the likelihood is relatively large contains an exceptional law is to
assume that our prior π (ψ) , although still absolutely continuous, only charges
a volume with radius O

(
n−1/2

)
but that volume includes the set where the

likelihood is relatively large. [Robins, Scheines, Spirtes, andWasserman (2003)
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also discuss the fact that Bayesian inference can be made to qualitatively
agree with uniform asymptotic frequentist inference by letting the support
of the prior vary with the sample size.] When the support of the prior only
charges a volume with radius O

(
n−1/2

)
, the posterior may be non-normal

even under non-exceptional laws and even if the prior π (ψ) is uniform on
its support. In finite samples, one’s substantive priors in high dimensional
semiparametric problems are often not ’washed out’ by the data and thus an
asymptotics that assumes the prior charges a volume with radius O

(
n−1/2

)

may be more relevant to finite sample inference than an asymptotics that
takes priors as being O (1) since the latter priors are not sensitive to the
fact that, due to non-uniform convergence, even at a reasonably large sample
size n, the uniform asymptotic frequentist interval Cop (1− α) may contain
several subsets with nearly equal measure such that the subset-specific typical

values of E
[
∂U †

modadj (ψ) /∂ψ
T
]
and thus dop (ψ) , differ between subsets by

O (1) . Indeed, as discussed in the introduction, in many biomedical studies,
one may wish not to use an absolutely continuous prior but rather to give a
positive prior mass to ψ = 0 representing laws (essentially always exceptional)
satisfying the g-null hypothesis. In that case, the posterior can often be far
from normal.

Failure of the Bernstein–Von Mises Theorem Based on all the
Data: It is natural to inquire how a highest posterior (1− α) credible region
based on a posterior π (ψ|Oi, i = 1, ..., n) that conditions on all the data com-

pares to that based on observing only Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
. In regular

parametric models, the standardized estimated efficient score process for a
subset of the model parameters is asymptotically sufficient so the intervals
should be asymptotically equivalent. A formal proof relies on the Bernstein–
Von Mises theorem that shows that π (ψ|Oi, i = 1, ..., n) is asymptotically nor-
mal centered on an efficient estimator of ψ† with variance converging to the
Cramer Rao variance bound for ψ†. In particular it implies that the poste-
rior median is n1/2 − consistent under the true data generating process FO.
In semiparametric models, a general proof of the Bernstein–Von Mises the-
orem does not yet exist. However we can prove that, if Lm has continuous
components, then in model (a.1) with the pm

(
am|Lm, Am−1

)
known (and

thus in the larger dop, 0 union model of Theorem 3.4 as well), the Bernstein
Von Mises theorem cannot hold for any Bayesian who would use the same
prior π (fres) for the response densities fres, whatever be the known treat-
ment probabilities pm

(
am|Lm, Am−1

)
. This follows from the fact that, under

such an ’independence’ prior, the posterior π
(
ψ†|Oi, i = 1, ..., n

)
and thus the

posterior median is not a function of pm
(
am|Lm, Am−1

)
. But Robins and

Ritov (1997) showed that any estimator of ψ† that does not depend on the
pm
(
am|Lm, Am−1

)
must converge at rate no greater than log (logn) under

some treatment process pm
(
am|Lm, Am−1

)
and response law fres, contra-

dicting the conclusion of the Bernstein–Von Mises theorem. Indeed Robins
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and Ritov (1997) prove that under an ’independence’ prior, the highest pos-
terior (1− α) credible regions based on posterior π (ψ|Oi, i = 1, ..., n) cannot
both have asymptotic frequentist coverage of 1 − α and volume converging
to zero as n → ∞. Since both these desirable properties are true of the in-

tervals based on π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
, it follows that intervals

based on π (ψ|Oi, i = 1, ..., n) and π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
are not

asymptotically equivalent and from a frequentist point of view those based

on π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
are preferable. The good performance

of intervals based on π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
in our union model

depends critically on the fact that Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
is a function

of either the true pm
(
am|Lm, Am−1

)
(when the latter is known) or of a

model-based estimate of pm
(
am|Lm, Am−1

)
(when the true function is un-

known). It can be argued from general decision theoretic results that there
exists a particular prior for fO = fresftr,obs with fres and the ftr,obs =∏

m

pm
(
am|Lm, Am−1

)
apriori dependent such that π (ψ|Oi, i = 1, ..., n) is an

accurate large sample approximation to π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))

when the treatment probabilities are known. However the prior may be hard
to derive and will essentially never represent the analyst’s subjective beliefs.

Marginal Bayesian inference: Bayesian inference concerning the

marginal ψint is based on integration of π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
∝

(2π)−p/2 exp
(
−Ẑt (ψ)T Ẑt (ψ) /2

)
π (ψ) over ψ−int. Thus, if π (ψ) is smooth

and charges ψ† in a volume of O (1) , then, in large samples, under non-
exceptional laws, the posterior distribution of ψint will be normal if, as we
have assumed, r

(
m, lm, am−1, ψ

)
is smooth in ψ and and thus (a) the pos-

terior median and posterior mean of ψint will agree in sign and (b) further-
more the highest (1− α) posterior credible region for ψint will be asymp-
totically equivalent to the univariate (non-simultaneous) (1− α) confidence
interval for ψint considered in the last subsection. However because of the
possibility that the data were generated under an exceptional law or be-
cause we are not in asymptopia in regards to the non-uniform approxima-

tion E
[
∂U †

modadj (ψ) /∂ψ
T
]
− E

[
∂U †

modadj

(
ψ†) /∂ψT

]
= o (1), it is again

best not to use a normal approximation but rather to use either Markov
chain Monte Carlo or rejection sampling techniques to generate a sample

ψ(v), v = 1, ..., V from a density proportional to exp
(
−Ẑt (ψ)T Ẑt (ψ) /2

)

or exp
(
−Ẑt (ψ)T Ẑt (ψ) /2

)
π (ψ) and then report whether the sample mean

or median of the ψ
(v)
int exceeds zero as an estimate of the posterior mean

E
(
ψint|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
or median of ψint. In this setting, the
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posterior mean and median may fail to agree in sign, leading to differ-
ent decisions under our two different decision rules. Further, the highest
(1− α∗) posterior credible region for ψint, in contrast to the credible inter-
val Ccred (1− α∗) for the entire vector ψ, (i) may have frequentist coverage
less than (1− α) when we choose α∗ equal to α∗ (α) and (ii) may not be
asymptotically equivalent (in terms of shape and volume) to the univariate
(non-simultaneous) (1− α) confidence interval for ψint considered in the last
subsection for any value of α∗.

Optimal Bayes Decison Rules: The actual fact is that the optimal
Bayes decision rule (i.e. the rule that maximizes posterior expected util-
ity) that a Bayesian should use in deciding whether to treat a patient with
past data

(
lm, am−1

)
on day tm may be captured by neither of our de-

cision rules. Thus, in principle, we should not choose between them but
calculate the optimal Bayes rule. First suppose we have a correctly speci-

fied model γ0
(
lm, am, ψ

)
= amr

(
m, lm, am−1, ψ

)
for γdop,0

(
lm, am

)
so the

true optimal regime dop = dop
(
ψ†) is a deterministic function of the true

value ψ†. Let Ψ be a set that contains ψ with posterior probability one so
Dop (Ψ) = {dop (ψ) ;ψ ∈ Ψ} contains the optimal regime with posterior proba-
bility one. Further we can assume the true ψ† that actually generated the data
is in Ψ. Nonetheless the optimal Bayes decision rule (i.e. treatment regime)
need not be an element of Dop (Ψ). Here is a specific simple example. Suppose
the data is A0, A1, and Y = L2 with no L0 or L1. Suppose we have a satu-

rated model γ0
(
lm, am, ψ

)
= γ0 (am, ψ) , ψ = (ψm=0, ψm=1,a0=1, ψm=1,a0=0)

for γdop,0
(
lm, am

)
and the posterior distribution is discrete with 2 support

points: ψm=0 = −100, ψm=1,a0=1 = 0, ψm=1,a0=0 = 10 with posterior proba-
bility .4 and ψm=0 = 50, ψm=1,a0=1 = 1, ψm=1,a0=0 = −20 with posterior
probability .6. Then, with posterior probability .4, the optimal treatment
regime is dop0 = 0, dop1 = 1 and with posterior probability .6, dop0 = 1,
dop1 = 1. So the set Ψ consists of two vectors ψ and Dop (Ψ) contains
only the two regimes dop0 = 0, dop1 = 1 and dop0 = 1, dop1 = 1. But the
optimal Bayes decision rule is dop0 = 0, dop1 = 0 as it has posterior ex-
pected utility of .4 × (−10 + c1) + .6 × (−50 + c2) while the posterior ex-
pected utility of dop0 = 0, dop1 = 1 is .4 × c1 + .6 × (−50− 20 + c2) , of
dop0 = 1, dop1 = 1 is .4 × (−100 + c1) + .6 × (c2) and of dop0 = 1, dop1 = 0 is
.4× (−100 + c1) + .6× (−1 + c2) , where c1 is the posterior utility of dop0 = 0,
dop1 = 1 conditional on the first support point and c2 is the posterior utility
of dop0 = 1, dop1 = 1 conditional on the second support point.

Note in this simple example, the optimal Bayes decision rule was a func-
tion of the marginal posterior distribution of ψ. In the next paragraph we will
see that, when the sample size is large, this remains true even when data on
covariates Lm are available, provided the data is generated under a nonexcep-
tional law and the prior for ψ charges a volume with radius O (1). However, we
show in the next paragraph but one that, even in large samples, if either the
prior for ψ only charges a volume of radius O

(
n−1/2

)
or the data were gener-
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ated under an exceptional law, the optimal Bayes decision rule will generally
be a complex function of the posterior distribution of the infinite-dimensional
nuisance parameters.

Suppose the data were generated under an unexceptional law and the
prior π (ψ) is absolutely continuous and charges a volume with radius O (1).

We therefore approximate the posterior π
(
ψ|Zt

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

))
by

the approximate posterior

πpost (ψ) =
I
{
ψ;
∣∣∣
∣∣∣Ẑt (ψ)

∣∣∣
∣∣∣ < t dim (ψ)

1/2
}
exp
(
−Ẑt (ψ)T Ẑt (ψ) /2

)

∫
{ψ;||Ẑt(ψ)||<t dim(ψ)1/2} exp

(
−Ẑt (ψ)T Ẑt (ψ) /2

)
dψ

.

Then, for sufficiently large n and t, the posterior mean∫
aKr

(
K, lK , aK−1, ψ

)
πpost (ψ) dψ of γdop,0

(
lK , aK

)
based on a correct smooth

model
γ0
(
lm, am, ψ

)
= amr

(
m, lm, am−1, ψ

)
will to o (1) be aKr

(
K, lK , aK−1, ψ̂

)

because πpost (ψ) is normal with mean equal to the locally efficient dou-

bly robust estimator ψ̂ solving Ẑt (ψ) = Ẑ (ψ) = 0, the variance of ψ̂

is O (1/n) , and ψ̂ is greater than O
(
n−1/2

)
away from any ψ for which

argmaxam∈Am γ0
(
Lm, Am−1, am, ψ

)
is not unique with positive probabil-

ity (by our assumption the data were generated under a nonexceptional
law.) The optimal Bayes decison dbayes,K

(
lK , aK−1

)
for a subject known

to have history lK , aK−1 is argmaxak∈Ak
of the posterior mean, which un-

der our assumptions is equal to argmaxak∈Ak
aKr

(
K, lK , aK−1, ψ̂

)
with

probability going to 1. Further because ψ̂ is n1/2 − consistent for ψ†, re-
sults described in the following paragraph imply that, with probability go-
ing to one, the optimal Bayes decison dbayes,K−1

(
lK−1, aK−2

)
for a sub-

ject known to have history lK−1, aK−2 is argmaxak−1∈Ak−1
of the posterior

mean
∫
aK−1r

(
K − 1, lK−1, aK−2, ψ

)
πpost (ψ) dψ of γdop,0

(
lK−1, aK−1

)
=

aK−1r
(
K − 1, lK−1, aK−2, ψ

†) which, under our assumptions is equal, with

probability approaching 1, to argmaxak−1∈Ak−1
aK−1r

(
K − 1, lK−1, aK−2, ψ̂

)
.

Continuing in this manner we see that the optimal bayes decision rule

dbayes,m
(
lm, am−1

)
is dop,m

(
lm, am−1, ψ̂

)
for each m.

Suppose next the data were generated under an exceptional law and/or
the prior π (ψ) only charges a volume with radius O

(
n−1/2

)
. Although we

still approximate the posterior by πpost (ψ) , now πpost (ψ) may neither have

mean ψ̂ nor be normal, and thus

dbayes,K
(
lK , aK−1

)
= arg max

ak∈Ak

∫
aKr

(
K, lK , aK−1, ψ

)
πpost (ψ) dψ

may differ from dop,K

(
lK , aK−1, ψ̂

)
.Now, by definition, dbayes,K−1

(
lK−1, aK−2

)

is the optimal Bayes choice for aK−1 given that aK will equal dbayes,K
(
lK , aK−1

)
.
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That is dbayes,K−1

(
lK−1, aK−2

)
equals argmaxak−1∈Ak−1

of the posterior

mean of E
[
YaK−2,aK−1,dbayes,K |AK−2 = aK−2, LK−1 = lK−1

]
and, thus, of

E
[
YaK−2,aK−1,dbayes,K − YaK−2,0,dop,K−1 |AK−2 = aK−2, LK−1 = lK−1

]
.

At ψ = ψ†, this contrast can be written as

E
[
YaK−2,aK−1,dbayes,K − YaK−2,aK−1,dop,K−1|AK−2 = aK−2, LK−1 = lK−1

]
+

γdop,0
(
lK−1, aK−1, ψ

)

= E

{
E
[
YaK−2,aK−1,dbayes,K − YaK−2,aK−1,dop,K−1 |AK−1 = aK−1, LK

]

|AK−1 = aK−1, LK−1 = lK−1

}
+

+ γdop,0
(
lK−1, aK−1, ψ

)

= E
[
jBayes

(
LK , AK−1

)
|AK−1 = aK−1, LK−1 = lK−1

]
+ γdop,0

(
lK−1, aK−1, ψ

)

where

jBayes
(
lK , aK−1

)

= γdop,0
(
lK , aK−1, dbayes,K

(
lK , aK−1

)
, ψ
)
−

γdop,0
(
lK , aK−1, dop,K

(
lK , aK−1, ψ

)
, ψ
)

=
{
dbayes,K

(
lK , aK−1

)
− dop,K

(
lK , aK−1, ψ

)}
r
(
K, lK , aK−1, ψ

)

Hence

dbayes,K−1

(
lK−1, aK−2

)

= arg max
ak−1∈Ak−1

[

∫ {
dbayes,K

(
lK , aK−1

)
− dop,K

(
lK , aK−1, ψ

)}
×

r
(
K, lK , aK−1, ψ

)
dF
(
lK |lK−1, aK−1; η

)
πpost (η|ψ)πpost (ψ) dψdµ (η) +∫

aK−1r
(
K − 1, lK−1, aK−2, ψ

)
πpost (ψ) dψ]

where η denotes the parameter governing the density f
(
lK |lK−1, aK−1

)

and πpost (η|ψ) is the conditonal posterior of η with respect to the measure
µ (·) . One possible approach to obtaining dbayes,K−1

(
lK−1, aK−2

)
would be

to specify a parametric model f
(
lm|lm−1, am−1; η

)
, estimate η by the MLE

η̂ and take πpost (η|ψ) = πpost (η) to be normal with mean η̂ and variance
given by the inverse Hessian matrix for η̂. A second approach, analogous
to that taken in Section 6.2 and (more specifically) Section 7.2 below, is to
assume the law of j

(
LK , AK−1

)
|AK−1 = aK−1, LK−1 = lK−1 is normal with

mean ν
(
aK−1, lK−1;βK

)
and, say, variance σ2

K where ν
(
aK−1, lK−1;βK

)
is
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a known function and βK and σ2
K are unknown parameters. We might take

the posterior of βK given ψ to be normal with mean equal to the (possibly

nonlinear) least squares regession estimator β̂K (ψ) from the regression of
j
(
LK , AK−1

)
= j
(
LK , AK−1, ψ

)
on
(
LK−1, AK−1

)
with regression function

ν
(
aK−1, lK−1;βK

)
. Then take dbayes,K−1

(
lK−1, aK−2

)
=

argmaxak−1∈Ak−1

∫ ∫ {
ν
(
aK−1, lK−1;βK

)
+ aK−1r

(
K − 1, lK−1, aK−2, ψ

)}
×

πpost (βK |ψ)πpost (ψ) dψdµ (βK) ..More generally, under this second approach,
it follows from results in Section 6.2 and 7.2 that dbayes,m

(
lm, am−1

)
is

arg max
am∈Am

[

∫ {
ν
(
am, lm;βm+1

)
+ amr

(
m, lm, am−1, ψ

)}
×

πpost

(
βm+1|ψ, βm+2

)
×

πpost

(
ψ, β

m+2

)
dψdµ

(
ψ, β

m+2
, βm+1

)
]

where ν
(
am, lm;βm+1

)
is a parametric model for

E
[
j
(
Lm+1, Am

)
|Lm = lm, Am = am

]
with

j
(
Lm, Am−1

)
= E

[
YAm−1,dbayes,m

− YAm−1,dop,m
|Lm, Am−1

]
.

Under either of the 2 approaches, the principal benefit of specifying a op-

timal drSNMM γdop,0
(
lm, am, ψ

)
is lost when computing the optimal Bayes

decision, in the sense that, even when the treatment probabilities are known,

we must model, in addition to γdop,0
(
lm, am

)
, other aspects of the joint dis-

tribution of the observed data. Further the second approach may result in
incompatible models in the sense that there is no joint distribution for the
observed data satisfying all the functional form restrictions imposed by the

models ν
(
am, lm;βm+1

)
and γdop,0

(
lm, am, ψ

)
. Indeed, Robins (1994) shows

that even the first approach may suffer from model incompatibility. At the
cost of a complex reparametrization of the joint distribution of the observed
data described in the Appendix of Robins (1994), the possibility of model
incompatibility when using the first approach can be resolved.

To overcome the need to model other aspects of the joint distribution

of the observed data we might specify a drSNMM γdBayes,0
(
lm, am, ψ

)
for

E
[
YAm−1,am,dbayes,m+1

− YAm−1,0,dbayes,m+1
|Lm = lm, Am−1 = am−1

]

= γdBayes,0
(
lm, am

)
so that dbayes,m

(
lm, am−1, ψ

)

= argmaxam∈Am

∫
γdBayes,0

(
lm, am, ψ

)
πpost (ψ) dψ. This idea raises all sorts

of interesting and unresolved philosophical and statistical questions because
of course dbayes,m

(
lm, am−1, ψ

)
is a function of the data through the pos-

terior πpost (ψ) . [However the above expectation is to be computed treating
dbayes,m+1 as a given fixed regime rather than as a random regime that de-
pends on the data.] This idea will be further pursued elsewhere.
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6 Comparison of Optimal drSNMMs with Alternative

Approaches

6.1 Susan Murphy’s semiparametric regret model are SNMMS

I now show that, under sequential randomization Murphy’s semiparametric
regret model is a particular parametrization of an additive d−regime srSNMM
with d the optimal regime dop. Specifically, Murphy’s semiparametric regret

model specifies that the regret E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lam−1,m = lm

]

equals um
(
lm, am, β

†) where um
(
lm, am, β

)
= ηm

(
lm, am−1, βscale

)
×

f
(
am − dop,m

(
lm, am−1, βregime

))
, β = (βscale, βregime) is a finite dimen-

sional parameter vector, f (·) is a known non-negative function satisfying
f (0) = 0, ηm

(
lm, am−1, βscale

)
is a known non-negative scale function, and

dop,m

(
lm, am−1, β

†
regime

)
is the optimal regime dop,m

(
lm, am−1

)
. In all her

examples β = (βscale, βregime) had (i) βscale and βregime as variation indepen-
dent and (ii) ηm

(
lm, am−1, βscale

)
= 0 if and only if βscale = 0. [Murphy also

allows the possibility that um
(
lm, am, β

)
is a sum of Jm terms indexed by j of

the form ηj,m
(
lm, am−1, βj,scale

)
× fj

(
am − dj,op,m

(
lm, am−1, βj,regime

))
]. It

follows that Murphy’s model is a dop−regime srSNMM with −um
(
lm, am, β

)

equal to γdop
(
lm, am;β

)
in my notation. Note that Murphy uses a particu-

lar parametrization, similar to one suggested by Robins (1999, p.125), under
which the ”scale” components βscale of β being zero implies both the g-null
hypothesis and that the other components of βregime are undefined. That
is her parametrization is such that the parameters βregime are only defined
under the alternative βscale �= 0. (This parametrization can result in certain
additional inferential difficulties that have been discussed frequently in the
statistical literature; however, as discussed by Robins (1999) the parametriza-
tion has a certain conceptual justification.)

Comparisons

Limitations of Murphy’s regret model include a) estimation of β† based on
smooth function optimization methods requires (differentiable) approxima-
tions (e.g., with sigmoid functions) of indicator functions and b) regrets are
not effect measures about which scientists have clear substantive opinions
amenable to easy modelling. Optimal drSNMMs do not suffer as severely
from these limitations. We will consider these two limitations within the con-
text of one specific example offered by Murphy. She considers the model
for dichotomous Am and univariate positive Lm given by um

(
lm, am, β

)
=

βscale
{
am − dop,m

(
lm, am−1, βregime

)}2
with dop,m

(
lm, am−1, βregime

)

= I (lm > βregime) , so that treatment is preferred whenever Lm exceeds

β†
regime. Because βregime lies inside an indicator function, Murphy’s crite-

rion function is not differentiable with respect to βregime. In order to use
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smooth function optimization methods, she uses a differentiable approxima-
tion e30(lm−βregime)/

{
1 + e30(lm−βregime)

}
for I (lm > βregime) . The perfor-

mance of this approximation in her simulations was rather poor (in the sense
that estimates of the model parameters were biased).

Murphy’s model also has substantive limitations: it assumes apriori that
the dose response as a function of Lm is positive in the sense that if treatment
is preferred at a given level of Lm, it is preferred at all higher levels; if the
data may imply a negative dose response this cannot be detected using this
model. Further the model implies that the regret βscale of taking treatment

when one should not
(
Lm < β†

regime

)
is exactly equal to the regret of not

taking treatment when one should
(
Lm > β†

regime

)
. Further it assumes that

the advantage βscale of taking treatment once Lm > β†
regime is independent

of the value of Lm and the advantage βscale of not taking treatment once
Lm < β†

regime also does not depend on Lm. It is substantively hard to imagine

such a sharp cut-point β†
regime. Now Murphy clearly did not intend this regret

model to be substantively realistic and one could clearly elaborate the model ,
perhaps by including additional parameters, in order to make it substantively
realistic. I will argue that precisely how to do so requires quite a bit of thought,
tedious calculation, and some mathematical ability.

The substantive difficulty in specifying Murphy’s regret model is already
evident in the simplest of all settings : the setting in which we have a single
time-independent treatment (K = 0) . Thus assume the data are L = L0, A =
A0, Y = L1 with A dichotomous, L univariate and positive and Y continuous.
Then under sequential randomization any

(
d, 0
)
−drSNMM γ0

(
l0, a0;ψ

)
for

γd,0
(
l0, a0

)
= γ0 (l, a) does not depend on d as our only treatment decision

is the final one; in particular γdop,0
(
lm, am

)
equals γd,0

(
lm, am

)
= γ0 (l, a) =

E [Y |L = l, A = a]−E [Y |L = l, A = 0] under sequential randomization. Thus
an optimal drSNMM model is just a model γ0 (l, a, ψ) for E [Y |L = l, A = a]−
E [Y |L = l, A = 0] . The simplest such model that includes the possibility
that optimal treatment may change at some value of L is the simple (semi-
parametric) linear regression model γ0 (l, a, ψ) = a (ψ0 + ψ1l) [i.e. the model
E [Y |L = l, A = a] = a (ψ0 + ψ1l)+ b(l) with b(l) unrestricted.] It is triv-
ial to derive the optimal regime and the regret from this linear regression
model. Specifically, dop (l, ψ) = argmaxa∈{0,1} γ

0 (l, a, ψ) = I (ψ0 + ψ1l > 0)

and the regret E
[
Ydop − Ya|L = l, ψ

]
= {I (ψ0 + ψ1l > 0)− a} (ψ0 + ψ1l) .

Thus in our optimal drSNMM approach, we take our beliefs as to the
functional form of the dose response E [Y |L = l, A = 1] − E [Y |L = l, A = 0]
as primary. We encode these beliefs in a regression model γ0 (l, a, ψ) for
E [Y |L = l, A = a] − E [Y |L = l, A = 0] and then derive the optimal regime
and the regret function from our regression model. I believe that most sci-
entists would use this same approach in working out their beliefs about the
likely functional form of the regret.
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Murphy’s approach is just the converse. She specifies a model dop (l, βregime) =
I (l > βregime) for the optimal regime and for the regretE

[
Ydop − Ya|L = l, ψ

]
=

βscale {a− dop (l, βregime)}2 . This of course induces an optimal dr SNMM
γ0
Murphy (l, a, β) = u (l, 0, β)− u (l, 1, β)
= a {βscaleI (l > βregime)− βscaleI (l ≤ βregime)} = aβscale [2I (l > βregime)− 1]
for E [Y |L = l, A = a]−E [Y |L = l, A = 0] = γ0 (l, a) .Written in terms of the
regression function γ0(l, a), one can immediately see how substantively un-
usual Murphy’s regret model is with a jump discontinuity at βregime, and why
smooth optimization methods cannot be applied without approximation. In
contrast, in section 4.1.1, we have seen how to obtain closed form g-estimates of
the parameters of the semiparametric linear model γ0 (l, a, ψ) = a (ψ0 + ψ1l)
when the treatment probabilities p (a|l) are known or can be modelled.

We have seen it is easy to derive the optimal drSNMMmodel γ0
Murphy (l, a, β)

implied by Murphy’s regret model. We now show the converse is not true. That
is the functional form of Murphy’s regret model implied by the simple optimal
drSNMM model γ0 (l, a, ψ) = a (ψ0 + ψ1l) for γ

0 (l, a) = E [Y |L = l, A = a]−
E [Y |L = l, A = 0] is tedious to derive. Above we saw that the regret is

{I (ψ0 + ψ1l > 0)− a} (ψ0 + ψ1l) . But this is not in the Murphy form of a
sum over j of functions uj (l, a, β) = ηj (l, βj,scale) fj {a− dop,j (l, βj,regime)}
with ηj (l, βscale) nonnegative and fj (u) minimized at u = 0. To put it in the
Murphy form we define β1 = |ψ1|, β2 = −ψ0/ψ1, β3 = I (ψ1 > 0) . Then some
tedious algebra shows that the regret {I (ψ0 + ψ1l > 0)− a} (ψ0 + ψ1l)

=
∑4

j=1 ηj (l, βj,scale) fj {a− dj,op (l, βj,regime)} where fj (u) = u2 for all
j,

η1 (l, β1,scale) = (1− β3) I (β2 > 0)β1|1− β2l|,
dop,1 (l, β1,regime) = I {l < β2} ; η2 (l, β2,scale) = β3I (β2 > 0)β1|1− β2l|,
dop,2 (l, β2,regime) = I {l ≥ β2} ;
η3 (l, β3,scale) = β3I (β2 ≤ 0)β1|1− β2l|,
dop,3 (l, β3,regime) = 1; η4 (l, β4,scale) = (1− β3) I (β2 ≤ 0)β1|1− β2l|,

dop,4 (l, β4,regime) = 0. Note in particular that β1,scale and β1,regime are not
variation independent and that β3,regime and β4,regime do not exist. Given we
choose fj (u) = u2, this is the unique expression for the regret in the Mur-
phy parametrization. Further if we were given the model only in its Murphy
parametrization with parameters buried within indicator functions, it would
not be immediately obvious without some calculations that we could obtain
closed form estimates of the parameter vector β by reexpressing the model
in its alternative form E [Y |L = l, A = a]−E [Y |L = l, A = 0] = a (ψ0 + ψ1l)
with ψ and β related as described above and then fitting using g-estimation.
Indeed, we can obtain closed form dr-lse estimates as described in section 4.

To summarize we note that any optimal drSNMM model γ0
(
lm, am, ψ

)

for
E
[
Yam,dop,m+1

− Yam−1,0m,dop,m+1
|Lam−1,m = lm

]
induces a dop−srSNNM
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̺dop
(
lm, am, ψ

)

= γ0
(
lm, am, ψ

)
− γ0

(
lm, am−1, dop,m

(
lm, am−1

)
, ψ
)

for E
[
Yam,dop,m+1

− Yam−1,dop,m
|Lam−1,m = lm

]
, which is the negative re-

gret. Further the induced regret model −̺dop
(
Lm, Am, ψ

)
can, after some te-

dious calculation, always be reparametrized um
(
lm, am, β

)
where um

(
lm, am, β

)

satisfies Murphy’s parametrization um
(
lm, am, β

)

= ηm
(
lm, am−1, βscale

)
f
(
am − dop,m

(
lm, am−1, βregime

))
.Conversely any

Murphy regret model um
(
lm, am, β

)
induces a optimal drSNMM model

γ0
(
lm, am, β

)
via γ0

(
lm, am, β

)
= um

(
lm, am−1, 0m, β

)
− um

(
lm, am, β

)
. It

follows that there is a clear sense in which optimal drSNMM models and Mur-
phy regret models are mathematically equivalent. In my opinion, however, the
advantages of optimal drSNMMmodels are that (i) it is easier to directly spec-

ify scientifically meaningful models for a) the mean effect γdop,0
(
lm, am

)
of

treatment level am (versus level ”zero” ) at m before following dop from m+1
onwards than for b1) the scale component ηm

(
lm, am−1

)
and b2) the op-

timal treatment regime dop,m
(
lm, am−1

)
of the Murphy parametrized regret

um
(
lm, am

)
for given a function f (·), (ii) it is straightforward to compute both

the optimal regime dop,m
(
lm, am−1

)
= argmaxamγ

dop,0
(
lm, am

)
and the re-

gret γdop,0
(
lm, am−1, dop,m

(
lm, am−1

))
−γdop,0

(
lm, am

)
from γdop,0

(
lm, am

)
,

(iii) the map from γdop,0
(
lm, am

)
to Murphy’s um

(
lm, am

)
is tedious to com-

pute and of no additional utility, and (iv) for a dr SNMM it is usually imme-
diately obvious when it is possible to obtain sequential closed form estimates
of the model parameters by noting whether γ0

(
lm, am, ψ

)
can be embedded

in a model γ0
(
lm, am, ψ

∗
m, ψ

∗
m+1

)
linear in ψ∗

m with ψ a function of ψ∗
0
.

6.2 Comparison of Optimal drSNMMS with DP-regression
SNMMs

Estimation of an Optimal Regime with DP-regression SNMMs

In this subsection we describe how to use a DP-like regression model ap-
plied to an estimated srSNMM or drSNMM to estimate the optimal treat-
ment regime. In the following subsection we compare and contrast the optimal
regime drSNMM methodology with this DP-regression SNMM methodology.

To avoid complex notation we will study the case where our SNMM is
a srSNMM and the single regime is the regime that is always 0. It may be
a standard or non-standard 0 regime. Generalization to other srSNMMs and
drSNMMs is straightforward and is given explicitly in Section 7.3 . Recall the
srSNMM γ0

(
lm, am, ψ

)
is a model for for γ0,0

(
lm, am

)
. If γ0

(
lm, am, ψ

)
is

smooth in ψ we can obtain lse-dr estimators of ψ† as described in Section
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3. We now provide a DP-like algorithm for computing the optimal treatment
regime from knowledge of γ0

(
lm, am, ψ

)
. It is a special case of Theorem 7.6

below. It can also be seen as the consequence of part (iii) of Theorem 3.3.
Theorem 6.1: Under sequential randomization (2.5), the following recur-

sive DP-like algorithm computes dop. Define

q
(
LK , AK−1, aK

)
= γ0,0

(
LK , AK−1, aK

)

For m = K, ..., 0 set

dop,m
(
Lm, Am−1

)
= argmax

am
q
(
Lm, Am−1, am

)
,

j
(
Lm, Am−1

)
= q
(
Lm, Am−1, dop,m

(
Lm, Am−1

))
,

q
(
Lm−1, Am−2, am−1

)
= E

[
j
(
Lm, Am−1

)
|Lm−1, Am−2, Am−1 = am−1

]
+

γ0,0
(
Lm−1, Am−2, am−1

)

Further j
(
Lm, Am−1

)
= E

[
YAm−1,dop,m

− YAm−1,0m
|Lm, Am−1

]
and thus

E
[
Ydop

]
= E

[
j
(
L0, A−1

)]
+ E [Y0] .

Note j
(
Lm, Am−1

)
measures the difference in average utility of subjects

with observed history
(
Lm, Am−1

)
were they were to follow the optimal regime

from time tm onward rather than the 0 regime. The above theorem motivates
the following.

DP-regression srSNMM Fitting Algorithm: Let ψ̂ be a dr-lse effi-
cient estimator of the parameter ψ† of a srSNMM calculated under the union
model of Theorem 3.4. For m = K, ..., 1, we specify regression models

E
[
j
(
Lm, Am−1

)
|Lm−1, Am−2, Am−1 = am−1

]
= r
(
Lm−1, Am−2, am−1;βm

)

and computeQK

(
ψ̂, aK

)
= γ0

(
LK , AK−1, aK , ψ̂

)
. Then recursively, form =

K, ..., 0, (with βK+1 the null set),

dop,m

(
Lm, Am−1, ψ̂, β̂m+1

)
= argmax

am
Qm

(
ψ̂, am, β̂m+1

)
,

Jm

(
ψ̂, β̂

m+1

)
= Qm

(
ψ̂, dop,m

(
Lm, Am−1, ψ̂, β̂m+1

)
, β̂

m+1

)
,

Qm−1

(
ψ̂, am−1; β̂m

)
= r
(
Lm−1, Am−2, am−1; β̂m, ψ̂, β̂m+1

)
+

γ0
(
Lm−1, Am−2, am−1, ψ̂

)
,

where β̂m is the possibly non-linear least squares estimate of βm from the

regression of Jm

(
ψ̂, β̂

m+1

)
on Lm−1, Am−2, Am−1 = am−1 based on the re-

gression function r
(
Lm−1, Am−2, am−1;βm

)
.

Finally calculate
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Êψ̂,β̂
0

[
Ydop,m

]
= Pn

[
J0

(
ψ̂, β̂

1

)]
+ Pn

[
H

0,0
0

(
ψ̂
)]

Note that if the H
0,0
m (ψ) are linear in ψ as for the model γ0

(
lm, am, ψ

)
=

am (1, lm, am−1)ψ, then ψ̂ will exist in closed form. If the q
(
Lm−1, Am−2, am−1;βm

)

are linear in βm and β̂m is the OLS estimator, then dop,m

(
Lm, Am−1, ψ̂, β̂m+1

)

will exist in closed form (provided the argmax function can be evaluated
in closed form). However the model will share the inferential difficulties we
noted in our study of the closed-form inefficient estimator of an optimal
drSNMM. Specifically although the parameter ψ of our srSNMM, in con-
trast to that of an optimal drSNMM, is a regular parameter, the parameters

βm = βm

(
ψ, β

m+1

)
for m < K are not, as βm

(
ψ, β

m+1

)
is not an ev-

erywhere differentiable function of
(
ψ, β

m+1

)
. Specifically, Jm

(
ψ̂, β̂

m+1

)
=

Qm

(
ψ̂, dop,m

(
Lm, Am−1, ψ̂, β̂m+1

)
, β̂

m+1

)
and, for dichotomous

Am, dop,m

(
Lm, Am−1, ψ̂, β̂m+1

)
will jump from 1 to 0 or vice-versa as ψ̂ or

β̂
m+1

are continuously varied. However a large sample confidence interval for

dop,m can be obtained because (i) dop,m is a function of
(
ψ, β

m+1

)
and (ii)

a joint large sample confidence interval for (ψ, β) =
(
ψ, β

1

)
can be obtained

based on inverting a χ2 statistic for the joint estimating functions for (ψ, β)
(which for β are the least squares normal equations). Because the estimating
functions for ψ do not depend on β, the confidence interval is guaranteed to
be valid under the g-null hypothesis when the union model of theorem 3.4 is
correct.

It follows that the misspecification of the regression model
E
[
j
(
Lm, Am−1

)
|Lm−1, Am−2, Am−1

]
= r
(
Lm−1, Am−2, Am−1;βm

)
does not

lead to bias in estimating dop,m
(
Lm, Am−1

)
or E

[
Ydop,m

]
under the g-null

hypothesis that ψ† is zero as q
(
Lm, Am−1, am

)
and j

(
Lm, Am−1

)
are iden-

tically zero. To obtain a consistent estimate of dop under the alternative
ψ† �= 0, correct specification of this regression model will be necessary,
which is not feasible due to the high dimension of the vector

(
Lm−1, Am−1

)
.

However, I do not consider this to be a major shortcoming of the DP-
regression srSNMM methodology compared to the optimal drSNMM method-
ology for the following reason. To obtain a consistent estimate of dop under

an optimal drSNMM, the optimal drSNMM γ0
(
lm, am, ψ

)
for γdop,0

(
lm, am

)

must be correct, but this is also not feasible due to the high dimension
of
(
Lm, Am

)
. That is, because of the high dimensionality of the prob-

lem, no method can provide a consistent estimator for dop under the al-
ternative, even when the treatment probabilities are known. The question
is then do we expect to obtain less biased estimates of dop with the DP-
regression srSNMM methodology that requires us to specify models for
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both γ0,0
(
lm, am

)
and E

[
j
(
Lm, Am−1

)
|Lm−1, Am−2, Am−1 = am−1

]
or with

the optimal drSNMM that requires a model for γdop,0
(
lm, am

)
. In general

that will depend on whether it is easier to use our substantive subject-

matter knowledge to model γdop,0
(
lm, am

)
or to model both γ0,0

(
lm, am

)

and E
[
j
(
Lm, Am−1

)
|Lm−1, Am−2, Am−1 = am−1

]
. There is no general rule

as to which is easier even when we use a standard (i.e. substantively mean-
ingful) zero regime. To understand why it is only an issue about the ease of
applying substantiative knowledge, I will now show there is a precise sense
in which fitting optimal drSNMM models and DP- srSNMM models can be
made algebraically equivalent. To do so I shall use the following Lemma.

Lemma 6.1: Under sequential randomization (2.5),

γdop,0
(
Lm, Am

)
− γdop,0

(
Lm, Am−1, dop,m

(
Lm, Am−1

))

= γ0,0
(
Lm, Am

)
+ j
(
Lm, Am−1

)
− E

[
j
(
Lm+1, Am

)
|Lm, Am

]

= j
(
Lm, Am−1

)
+ q
(
Lm, Am

)
.

Further

Hdop,0
m − E

[
Hdop,0
m |Lm, Am−1

]
= H0,0

m − E
[
H0,0
m |Lm, Am−1

]
+ Zm,

with

Zm =

K∑

j=m+1

j
(
Lj, Aj−1

)
− E

[
j
(
Lj , Aj−1

)
|Lj−1, Aj−1

]
−

E




K∑

j=m+1

j
(
Lj , Aj−1

)
− E

[
j
(
Lj , Aj−1

)
|Lj−1, Aj−1

]
|Lm, Am−1




.
Proof: By definition γdop,0

(
Lm, Am

)
−γdop,0

(
Lm, Am−1, dop,m

(
Lm, Am−1

))
−

γ0,0
(
Lm, Am

)

= −E
[
YAm−1,dop,m

− YAm,dop,m+1
+ YAm,0m+1

− YAm−1,0m
|Lm, Am

]

= −E
[
YAm−1,dop,m

− YAm−1,0m
|Lm, Am

]
+E
[
−YAm,dop,m+1

+ YAm,0m+1
|Lm, Am

]

= −
{
j
(
Lm, Am−1

)
− E

[
j
(
Lm+1, Am

)
|Lm, Am

]}
, where we have used

sequential randomization in the final step. Thus by Lemma 6.1, a model
γ0,0

(
Lm, Am, ψ

)
for γ0,0

(
Lm, Am

)
plus regression models

E
[
j
(
Lm, Am−1

)
|Lm−1, Am−1

]
= r
(
Lm−1, Am−1;βm

)
,

m = K, ..., 1, induce a model γdop,0
(
Lm, Am, ψ, βm

)
for γdop,0

(
Lm, Am

)
.

Conversely a model γdop,0
(
Lm, Am, ψ

)
for γdop,0

(
Lm, Am

)
plus regres-

sion models E
[
j
(
Lm, Am−1

)
|Lm−1, Am−1

]
= r

(
Lm−1, Am−1;βm

)
induces

a model γ0,0
(
Lm, Am, ψ, βm

)
for γ0,0

(
Lm, Am

)
.
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Given models γ0,0
(
Lm, Am, ψ

)
for γ0,0

(
Lm, Am

)
plus regression models

E
[
j
(
Lm, Am−1

)
|Lm−1, Am−1

]
= r
(
Lm−1, Am−1;βm

)
an alternative way to

estimate ψ† would be to solve an estimating equation based on the induced
optimal drSNMM model. For example we can solve

0 = Pn

[
U †dop,0

(
ψ, β̂

0
(ψ) , s, cs,dop,0, ς̂

)]
where β̂

0
(ψ) is obtained as in the

DP srSNMM fitting algorithm. But from Lemma (6.1), this will equal

Pn

[
U †0,0

(
ψ, s, cs,0,0, ς̂

)]
+

Pn

[
K∑

m=0

Zm

(
ψ, β̂

m+1
(ψ) , ς̂

){
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}
]
.

We can always choose our regressionmodelsE
[
j
(
Lm, Am−1

)
|Lm−1, Am−1

]
=

r
(
Lm−1, Am−1;βm

)
such that

Pn

[∑K
m=0 Zm

(
ψ, β̂

m+1
(ψ) , ς̂

){
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}]
is zero

with probability one. Specifically we choose r
(
Lm−1, Am−1;βm

)
= βTmWm

with Wm including each
{
Sj (Aj)− E

[
Sj (Aj) | Aj−1, Lj

]}
as a covariate for

every j < m.
This will guarantee that we obtain the exact same estimates of ψ and

dop by directly solving the induced optimal drSNMM estimating equation

0 = Pn

[
U †dop,0

(
ψ, β̂

0
(ψ) , s, cs,dop,0, ς̂

)]
as by first solving

Pn

[
U †0,0

(
ψ, s, cs,0,0, ς̂

)]
= 0 and then implementing the DP srSNMM fitting

algorithm. Thus the only issue is whether it is an easier substantive task to

model γdop,0
(
lm, am

)
or to model both γ0,0

(
lm, am

)
and

E
[
j
(
Lm, Am−1

)
|Lm−1, Am−2, Am−1 = am−1

]
, as either model can then be

fit using the methods described in section 4 for fitting optimal drSNMM mod-
els.

An example of a setting in which it might be easier to model γdop,0
(
lm, am

)

is one in which one believes that current medical practice fluctuates around
the optimal regime, because the direct experience of clinicians will then be
with subjects who followed treatment plans close to the optimal, providing a

basis for developing a good intuition for the functional form of γdop,0
(
lm, am

)
.

7 Sensitivity Analysis and Decisions with Information

Loss:

In subsections 7.1 and 7.2 we no longer assume that sequential randomiza-
tion holds and develops a sensitivity analysis methodology. In the next sub-

section, we develop two simple methods for estimating a
(
d, d

∗)
drSNMM

model γd
∗ (
lm, am;ψ

)
and the corresponding regime -specific mean E

[
Y d
]
in



Optimal Structural Nested Models for Optimal Sequential Decisions 63

the absence of sequential randomization. The first method requires us to treat
as known two different nonidentifiable functions unless d = d

∗
. These func-

tions are then varied in a sensitivity analysis. The second, more parsimonious,
method only requires us to treat as known a single nonidentifiable function.
However we shall see in section 7.2 that two nonidentifiable functions will
always be required to estimate E

[
Y dop

]
precisely because dop is not known.

In Section 7.2 and 7.3, we consider settings in which the decison maker can
only use a subset of the past information to make a current decision.

7.1 Regime Specific SNMMs

Method 1:

We turn to our first method. Under the assumption of sequential randomiza-
tion, the following function is identically zero for each m. Define

rd,d
∗ (
Lm, Am−1, am

)
= rdm,d

∗
m
(
Lm, Am−1, am

)
=

E
[
YAm−1,am,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am = am

]
− (7.1)

E
[
YAm−1,am,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am �= am

]

We refer to rdm,d
∗
m

(
Lm, Am−1, am

)
as a regime d − specific current treat-

ment interaction function since, among subjects with history
(
Lm, Am−1

)
,

it compares the magnitude of the effect of a last blip of treatment of dose
am compared to dose d∗m

(
Lm, Am−1

)
before following regime d among those

who received treatment am to the same effect among those who did not re-
ceive the treatment am. If, as in this section, we do not assume sequential
randomization but do assume the support of each counterfactual response
may be the whole real line, then the function rdm,d

∗
m

(
Lm, Am−1, am

)
is com-

pletely nonidentified in the sense that the distribution of the observed data
O places no restrictions on rdm,d

∗
m

(
Lm, Am−1, am

)
except for the defini-

tional restriction that rdm,d
∗
m

(
Lm, Am−1, am

)
= 0 if am = d∗m

(
Lm, Am−1

)
.

This is immediately evident because there can be no data evidence restrict-
ing the mean of YAm−1,am,dm+1

among subjects with Am �= am. Thus we

will regard the unidentified function rdm,d
∗
m

(
Lm, Am−1, am

)
as known and

vary it in a sensitivity analysis. Note that under the non-identifiable assump-
tion of additive local rank preservation rdm,d

∗
m

(
Lm, Am−1, am

)
≡ 0. Further

rdm,d
∗
m

(
Lm, Am−1, am

)
≡ 0 under the sharp null hypothesis that Ya = Y for

all a ∈ A w.p.1 of no treatment effect. Thus if one wishes to test the sharp
null hypothesis one must do so assuming rdm,d

∗
m

(
Lm, Am−1, am

)
≡ 0. Define

the function rdm,d
∗
m

(
Lm, Am−1

)
of
(
Lm, Am−1

)
by

rdm,d
∗
m
(
Lm, Am−1

)
≡ rdm,d

∗
m
(
Lm, Am−1, dm

(
Lm, Am−1

))
.
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The following theorem states that knowledge of rdm,d
∗
m

(
Lm, Am−1

)
plus iden-

tification of γd,d
∗ (
Lm, Am−1, am

)
suffices to identify E

[
Y d
]
and more gener-

ally E
[
YAm−1,dm

|Lm, Am−1

]
. Note by the definition of γd,d

∗ (
Lm, Am−1,am

)
,

rdm,d
∗
m
(
Lm, Am−1

)
=

γd,d
∗ (
Lm, Am−1,dm

(
Lm, Am−1

))
−

E
[
YAm−1,dm,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am �= dm

(
Lm, Am−1

)]

We shall need the following definitions which reduce to our previous definitions

(3.5) under sequential randomization. Let γd∗ ∗
(
Lm, Am

)
satisfy (3.6) and

define am = dm
(
Lm, Am−1

)
for the remainder of this paragraph. Define

HK+1

(
γd

∗∗
)
= Y,

HK

(
γd

∗∗
)
= Y − γd

∗∗ (LK , AK
)
+

γd
∗∗ (LK , AK−1,dK

(
LK , AK−1

))
− rdK ,d

∗
K
(
LK , AK−1

) {
1− f

(
aK |LK , AK−1

)}

,

H
dm
m

(
γd

∗∗
)
=

H
dm+1

m+1

(
γd

∗∗
)
+ γd

∗∗ (Lm, Am−1,dm
(
Lm, Am−1

))
−

rdm,d
∗
m
(
Lm, Am−1

) {
1− f

(
am|Lm, Am−1

)}
− γd

∗∗ (Lm, Am
)

= Y −
K∑

j=m

γd
∗∗ (Lj , Aj

)
+

K∑

j=m

γd
∗∗ (Lj , Aj−1,dj

(
Lj , Aj−1

))
− rdj ,d

∗
j
(
Lj , Aj−1

) {
1− f

(
aj |Lj , Aj−1

)}

.

Note H
dm
m

(
γd,d

∗
)
depends only on the data O and the functions rdm,d

∗
m

and γd,d
∗

. In appendix 3 we prove the following.

Theorem 7.1: With H
dm
m

(
γd

∗∗
)
as defined in the previous paragraph,

E
[
H
dm
m

(
γd

∗∗
)
|Lm, Am

]
= E

[
YAm−1,dm

|Lm, Am
]
for all m if and only if

γd
∗∗ (Lm, Am

)
= γd,d

∗ (
Lm, Am

)
w.p.1 for all m (7.2)

In particular E
[
Yd
]
= E

[
H0

(
γd
)]

.
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To see why we require rdK ,d
∗
K

(
LK , AK−1

)
in addition to γd,d

∗ (
lm, am

)
to

identify E
[
YAK−1,dK

|LK , AK−1

]
first note that knowledge of γd,d

∗ (
lK , aK

)

allows us to identify E
[
YAK−1,d∗K

|LK , AK−1, AK = aK

]
for each aK and thus

to identify E
[
YAK−1,d∗K

|LK , AK−1

]
. Since we know

E
[
YAK−1,dK

− YAK−1,d∗K
|LK , AK−1, AK = dK

(
LK , AK−1

)]
, knowledge of

rdK ,d
∗
K

(
LK , AK−1

)
allows us to calculate

E
[
YAK−1,dK

− YAK−1,d∗K
|LK , AK−1, AK �= dK

(
LK , AK−1

)]
and, using the law

of O, E
[
YAK−1,dK

− YAK−1,d∗K
|LK , AK−1

]
as well. Thus we can compute

E
[
YAK−1,dK

|LK , AK−1

]
.

In the absence of sequential randomization, knowledge of rdm,d
∗
m

(
Lm, Am−1

)

is not sufficient to identify γd,d
∗ (

Lm, Am
)
from the law of O. Now under se-

quential randomization the function

vd,d
∗ (
Lm, Am

)
= E

[
YAm−1,d∗m,dm+1

|Lm, Am
]
−

E
[
YAm−1,d∗m,dm+1

|Lm, Am−1, Am = d∗m
(
Lm, Am−1

)]

takes the value zero. Hence vd,d
∗ (
Lm, Am

)
is a measure of the magni-

tude of confounding due to unmeasured factors among subjects with his-
tory

(
Lm, Am−1

)
, as it compares the mean of the same counterfactual in

those who received treatment Am to that in those who received treatment
d∗m
(
Lm, Am−1

)
at tm. Further knowledge of the law of O and of

rdm,d
∗
m

(
Lm, Am−1

)
together place no restrictions on vd,d

∗ (
Lm, Am

)
beyond

the definitional restriction that vd,d
∗ (
Lm, Am

)
= 0 if Am = d∗m

(
Lm, Am−1

)
.

Thus we will regard the unidentified functions rdm,d
∗
m

(
Lm, Am−1

)
and

vd,d
∗ (
Lm, Am

)
both as known and vary both in a sensitivity analysis. The fol-

lowing theorem, proved in Appendix 3, states that knowledge of vd,d
∗ (
Lm, Am

)

and rdm,d
∗
m

(
Lm, Am−1

)
identifies γd,d

∗ (
Lm, Am

)
and thus by Theorem 7.1

E
[
Y d
]
as well.

Theorem 7.2: Let H
dm
m+1

(
γd

∗∗
)
be defined as in Theorem 7.1. Then

E
[
H
dm
m+1

(
γd

∗∗
)
− γd

∗∗ (Lm, Am
)
− vd,d

∗ (
Lm, Am

)
|Lm, Am

]

is not a function of Am for all m if and only if Eq (7.2) of Theorem 7.1 holds

if and only if E[H
dm
m

(
γd

∗∗
)
− vd,d

∗ (
Lm, Am

)
|Lm, Am] is not a function of

Am for all m.
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Inference under Method 1:

The following two corollaries are special cases of Theorem 4.3 in Robins and
Rotnizky (2003)

Corollary 7.2a: Consider again the semiparametric models (a.1) - (a.3)
of Theorem 3.3, except now the assumption of sequential randomization is

replaced by the assumption that the functions vd,d
∗ (
Lm, Am

)
and

rdm,d
∗
m

(
Lm, Am−1

)
are known (but may be non-zero). Then,

a) part (i) of Theorem 3.3 remains true if we replace Hd,d
∗

m (ψ) in Eq. (3.9)

with Hd,d
∗

m (ψ) − vd,d
∗ (
Lm, Am

)
where (a) Hd,d

∗

m (ψ) is now H
dm
m+1

(
γd

∗∗
)
as

defined before Theorem 7.1 with γd
∗∗ (Lm, Am

)
= γd,d

∗ (
Lm, Am, ψ

)
being

the dr SNMM model γd,d
∗ (
Lm, Am, ψ

)
for γd,d

∗ (
Lm, Am

)
. However, part

(ii) and (iii) must be modified as follows.

b) When vd,d
∗ (
Lm, Am

)
and rdm,d

∗
m

(
Lm, Am−1

)
are identically zero, (ii) of

Theorem 3.3 holds. However, if vd,d
∗ (
Lm, Am

)
and rdm,d

∗
m

(
Lm, Am−1

)
are

not identically zero, then ψ̂ (s, cs) ≡ ψ̂
(
s, cs, α†) has asymptotic variance less

than or equal to that of ψ̂ (s, cs, α̂) which has an asymptotic variance less than

or equal to that of ψ̂ (s, cs, α̂smooth) . Further

Cs
m−E

[
Cs
m|Am−1, Lm

]
�= E

[
Um
(
ψ†, s

)
| Am, Lm

]
−E
[
Um
(
ψ†, s

)
|Am−1, Lm

]

and thus

Cs �= C̃s ≡
∑

m

C̃s
m −E

[
C̃s
m|Am−1, Lm

]
with C̃s

m = E
[
Um
(
ψ†, s

)
| Am, Lm

]

Explicit expressions for the influence functions are as follows. ψ̂ (s, c) has in-
fluence function I−1U † (s, c) with variance

I−1
{
E
[
U † (s, c)⊗2

]}
I−1,T where

E
[
U † (s, c)⊗2

]
= E

[
U † (s, cs)⊗2

]
+ E

[
(Cs − C)

⊗2
]
, ψ̂ (s, c, α̂) has influence

function I−1
{
U † (s, c) + E[∂U † (s, c, α)/∂α]

{
E
(
S⊗2
part

]}−1
Spart

}
with vari-

ance I−1×
{
E
[
U † (s, cs)⊗2

]
+ E

[{
Cs − C + E

[
∂U † (s, c, α) /∂α

] [
S⊗2
part

]−1
Spart

}⊗2
]}

I−1,T .

Finally, ψ̂ (s, c, α̂smooth) has has influence function I−1U † (s, c̃s)

with variance I−1
{
E
[
U † (s, c̃s)⊗2

]}
I−1,T .

c) When vd,d
∗ (
Lm, Am

)
and rdm,d

∗
m

(
Lm, Am−1

)
are identically zero, (iii) of

Theorem 3.3 holds. However, if vd,d
∗ (
Lm, Am

)
and rdm,d

∗
m

(
Lm, Am−1

)
are

not identically zero, the semiparametric variance bound is smallest in model
(a.1) and greatest in model (a.3). The bound in model (a.3) is equal to the
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asymptotic variance of ψ̂ (seff , c̃
seff ) . However a simple explicit expression

for seff is no longer available since even when

var
(
Hm

(
ψ†)− vd,d

∗ (
Lm, Am

)
|Lm, Am

)

= var
(
Hm

(
ψ†)− vd,d

∗ (
Lm, Am

)
|Lm, Am−1

)

does not depend on Am for all m, it is no longer the case that, when

vd,d
∗ (
Lm, Am

)
is non-zero, E

[
U †
m (s, c̃)U †

j (s, c̃) |Lm, Am
]
= 0 for m �= j

where U †
m (s, c̃) = Um (s)−

{
C̃s
m − E

[
C̃s
m|Am−1, Lm

]}
.

Next consider a model ςTWm for E
[
Hm

(
ψ†)− vd,d

∗ (
Lm, Am

)
|Lm, Am−1

]

where Wm = wm
(
Am−1, Lm

)
is a known vector function of

(
Am−1, Lm

)

and ς is an unknown parameter. Define ψ̂ (s, c̃s; α̂, ς̂) to be a solution to
Pn
[
U † (ψ†, s, c̃s; α̂, ς̂

)]
= 0 where

U † (ψ†, s, c̃s; α̂, ς̂
)
=

K∑

m=0

{
Hm (ψ)− vd,d

∗ (
Lm, Am

)
− ς̂T (ψ)Wm

}
×

{
Sm (Am)− E

[
Sm (Am) | Am−1, Lm

]}

and ς̂T (ψ) solves the OLS estimating equation

Pn

[∑K
m=0

({
Hm (ψ)− vd,d

∗ (
Lm, Am

)}
− ςTWm

)
Wm

]
= 0. The following

Corollary describes the so called ”double-robustness” properties of ψ̂ (s, c̃s; α̂, ς̂)
and U † (ψ†, s, c̃s; α̂, ς̂

)
.

Corollary 7.2b : Consider the d, d
∗
”union” model characterized by

(a) vd,d
∗ (
Lm, Am

)
and rdm,d

∗
m

(
Lm, Am−1

)
known , (b) a correctly speci-

fied (d̄, d̄∗)-double-regime-specific SNMM γ
(
lm, am, ψ

)
and (c) that either

(but not necessarily both) the parametric model pm
[
Am | Lm, Am−1;α

]
for

pm
[
Am | Lm, Am−1

]
is correct or the regression model

ςTWm for E
[
Hm

(
ψ†)− vd,d

∗ (
Lm, Am

)
|Lm, Am−1

]
is correct. Then, under

standard regularity conditions, the conclusions (i) and (ii) of Theorem 3.4
hold when we replace c by c̃.

It follows that the algorithm following Theorem 3.4 can be used if we

replace c by c̃ and Hm (ψ) by Hm (ψ)− vd,d
∗ (
Lm, Am

)
as defined above. Of

course the resulting estimator will only be locally efficient when vd,d
∗ (
Lm, Am

)

is zero. Further we can also choose to replace Hm (ψ) by Hmod,m (ψ) .

Method 2:

In the special case that d = d
∗
we, of course, do not need to vary

rdm,d
∗
m

(
Lm, Am−1

)
as it is 0 by definition. This raises the question if we
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might circumvent the need for rdm,d
∗
m

(
Lm, Am−1

)
to identify E

[
Yd
]
even

when d �= d
∗
. We shall now show this is possible if we define a modified

version γd,d
∗

mod

(
Lm, Am

)
of γd,d

∗ (
Lm, Am

)
, which equals γd,d

∗ (
Lm, Am

)
under

sequential randomization or when d = d
∗
. In Section 7.2 we will see that, in

the absence of sequential randomization, it is γ
dop,d

∗

mod

(
Lm, Am

)
, rather than

γdopd
∗ (
Lm, Am

)
, that is the essential function we shall need to estimate in

order to find the optimal treatment regime dop.
Define

γd,d
∗

mod

(
Lm, Am

)
=

γd,d
∗ (
Lm, Am

)
+ E

[
YAm−1,dm,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am

]
−

E
[
YAm−1,dm,dm+1

− YAm−1,d∗m,dm+1
|Lm, Am−1, Am = d∗m

(
Lm, Am−1

)]

= E
[
YAm,dm+1

|Lm, Am
]
−

E
[
YAm−1,d∗m,dm+1

|Lm, Am−1, Am = d∗m
(
Lm, Am−1

)]
−

md,d
∗ (
Lm, Am

)
,

where md,d
∗ (
Lm, Am

)
= E

[
YAm−1,dm

|Lm, Am
]
−

E
[
YAm−1,dm

|Lm, Am−1, Am = d∗m
(
Lm, Am−1

)]
.

Under sequential randomization the function md,d
∗ (
Lm, Am

)
takes the

value zero. Hence md,d
∗ (
Lm, Am

)
, like vd,d

∗ (
Lm, Am

)
, is a measure of the

magnitude of confounding due to unmeasured factors among subjects with
history

(
Lm, Am−1

)
, as it compares the mean of the same counterfactual

in those who received treatment Am to that in those who received treat-
ment d∗m

(
Lm, Am−1

)
at tm. In one case the counterfactual being compared is

YAm−1,d∗m,dm+1
and in the other YAm−1,dm

. We have the following.

Theorem 7.3: Let H
dm
m

(
γd

∗∗
)

again be defined as in equation (3.5) .

Then Theorem 7.1 and 7.2 hold when we replace γd,d
∗ (
Lm, Am

)
by γd,d

∗

mod

(
Lm, Am

)

and vd,d
∗ (
Lm, Am

)
by md,d

∗ (
Lm, Am

)
.

Proof: We only prove ⇐ since the proof of ⇒ mimics the proof of ⇒ in
Theorems 7.1 and 7.2 given in the Appendix.

¿From the definition of γd,d
∗

mod

(
Lm, Am

)
, we have

γd,d
∗

mod

(
Lm, Am−1, d

∗
m

(
Lm, Am−1

))
− γd,d

∗

mod

(
Lm, Am

)

= E
[
YAm−1,dm

|Lm, Am
]
− E

[
YAm,dm+1

|Lm, Am
]
.

We proceed by induction in reverse time order.
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Case 1:
m = K : HK

(
γd,d

∗

mod

)
= YAK −E

[
YAK |LK , AK

]
+E

[
YAK−1,dK

|LK , AK
]
,

so E
[
HK

(
γd,d

∗

mod

)
|LK , AK

]
= E

[
YAK−1,dK

|LK , AK
]
.

Case 2: m < K : Assume E
[
Hm+1

(
γd,d

∗

mod

)
|Lm+1, Am+1

]

= E
[
YAm,dm+1

|Lm+1, Am+1

]
. By definition Hm

(
γd,d

∗

mod

)
= Hm+1

(
γd,d

∗

mod

)
+

γd,d
∗

mod

(
Lm, Am−1, d

∗
m

(
Lm, Am−1

))
− γd,d

∗

mod

(
Lm, Am

)

=
{
Hm+1

(
γd,d

∗

mod

)
− E

[
YAm,dm+1

|Lm, Am
]}

+ E
[
YAm−1,dm

|Lm, Am
]
.

So

E
[
Hm

(
γd,d

∗

mod

)
|Lm, Am

]

= E
{
E
[
YAm,dm+1

|Lm+1, Am+1

]
|Lm, Am

}
−

E
[
YAm,dm+1

|Lm, Am
]
+ E

[
YAm−1,dm

|Lm, Am
]

= E
[
YAm−1,dm

|Lm, Am
]
,

proving the analogue of Theorem 7.1.
Thus

E
[
Hm

(
γd,d

∗

mod

)
|Lm, Am

]
−md,d

∗ (
Lm, Am

)

= E
[
YAm−1,dm

|Lm, Am
]
−md,d

∗ (
Lm, Am

)

= E
[
YAm−1,dm

|Lm, Am−1, Am = d∗m
(
Lm, Am−1

)]

which is not a function of Am, proving the analogue of Theorem 7.2.

Corollary 7.3: Given md,d
∗ (
Lm, Am

)
, both γd,d

∗

mod

(
Lm, Am

)
and E

[
Yd
]

are identified.
Note knowledge of rdm,d

∗
m

(
Lm, Am−1

)
is no longer required for identifica-

tion as, in contrast with Theorems 7.1 and 7.2, H
dm
m

(
γd

∗∗
)
in Theorem 7.3

is not a function of rdm,d
∗
m

(
Lm, Am−1

)
.

Inference under Method 2:

Under method 2, we can use a drSNMM model γd
∗ (
lm, am;ψ

)
to model and

estimate γd,d
∗

mod

(
Lm, Am

)
andE

[
Y d
]
since γd,d

∗

mod

(
Lm, Am

)
, like γd,d

∗ (
Lm, Am

)
,

is only restricted by the definitional constraint γd,d
∗

mod

(
Lm, Am−1, d

∗
m

(
Lm, Am−1

))

= 0. Specifically it follows from Theorem 4.3 in Robins and Rotnitzky (2003)

that Corollary 7.2a and 7.2b continue to hold when we replace vd,d
∗ (
Lm, Am

)

bymd,d
∗ (
Lm, Am

)
, references to rdm,d

∗
m

(
Lm, Am−1

)
are deleted,H

dm
m

(
γd

∗∗
)
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is again defined as in equation (3.5) , and γd
∗ (
lm, am;ψ

)
is interpreted as a

model for γd,d
∗

mod

(
lm, am

)
.

Instrumental Variable Estimation under Method 2:

Suppose Am = (Apm, Adm) where Apm is the prescribed dose of a medicine
and Adm is the actual consumed dose. Since we often have good measures
of why doctors prescribe a given dose but poor measures of why patients
comply, it would often be reasonable to assume Eq (2.5) was false but the
partial sequential randomization assumption

{La; a ∈ A}
∐

APk | Lk, Ak−1 w.p.1, for k = 0, 1, . . . ,K (7.3)

was true. Under this assumption we can estimate γd,d
∗

mod

(
lm, am

)
and, by The-

orem 7.3, E
[
Yd
]
as well using Theorems 3.3 and 3.4 plus the algorithm follow-

ing 3.4. Specifically given a correctly specified drSNMM model γd
∗ (
lm, am;ψ

)

for γd,d
∗

mod

(
lm, am

)
, it follows from Theorem 7.3 that Hm

(
γd,d

∗

mod

)
≡ Hd,d

∗

m

(
ψ†)

satisfies E
[
Hd,d

∗

m

(
ψ†) |Lm, Am

]
= E

[
YAm−1,dm

|Lm, Am
]
. Hence

E
[
Hd,d

∗

m

(
ψ†) |Lm, Am−1, APm

]
does not depend on APm under partial se-

quential randomization. Thus, when ψ† is identified, we can estimate the

parameter ψ† of our model for γd,d
∗

mod

(
lm, am

)
using Theorems 3.3 and 3.4

plus the algorithm following 3.4, provided we use functions Sm (APm) ≡
sm
(
APm, Am−1, Lm

)
that only depend on Am only through Apm and our

models for treatment indexed by parameter α are models for pm
(
APm|Am−1, Lm

)

rather than for pm
(
Am|Am−1, Lm

)
. If the exclusion restriction that γd,d

∗

mod

(
lm, am

)

is a function of am only through actual dose adm holds, we say the Apm are
“instrumental variables” for the Adm.

Remark: Even though under assumption (7.3) the function γd,d
∗

mod

(
lm, am

)

is not non-parametrically identified from the law of the observered data,

nonetheless the parameter ψ† of most models for γd,d
∗

mod

(
lm, am

)
will be identi-

fied provided the dimension of ψ† is not too great. Robins(1994) gives precise
conditions for identification.

7.2 Optimal Regime SNMM

Recall that, by definition,

dop,K = dop,K
(
LK , AK−1

)
= arg max

aK∈AK

E
[
YAK−1,aK

|LK , AK−1

]

and for m = K − 1, ...0, dop,m = dop,m
(
Lm, Am−1

)
=

argmaxam∈Am E
[
YAm−1,am,dop,m+1

|Lm, Am−1

]
where
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dop,m+1 = (dop,m+1, ..., dop,K) . In Theorem 7.6 and 7.7, we will show that dop

is identified if, for a pair of regimes d and d
∗
, the nonidentifiable functions

md,d
∗ (
Lm, Am

)
and

gdop,d
∗ (
Lm, Am−1, am

)
= gdop,m,d

∗
m
(
Lm, Am−1, am

)
are known where

gd,d
∗ (
Lm, Am−1, am

)
is a generalization of rd,d

∗ (
Lm, Am−1, am

)
of Eq. 7.1

that is identically 0 under sequential randomization. Specifically, we define

gd,d
∗ (
Lm, Am−1, am

)
=

E
[
YAm−1,am,dm+1

− YAm−1,d∗m
|Lm, Am−1, Am = am

]
−

E
[
YAm−1,am,dm+1

− YAm−1,d∗m
|Lm, Am−1, Am �= am

]

= rd,d
∗ (
Lm, Am−1, am

)
+

E
[
YAm−1,d∗m,dm+1

− YAm−1,d∗m
|Lm, Am−1, Am = am

]
−

E
[
YAm−1,d∗m,dm+1

− YAm−1,d∗m
|Lm, Am−1, Am �= am

]

so that gd,d
∗ (
Lm, Am − 1, am

)
= rd,d

∗ (
Lm, Am − 1, am

)
if d = d

∗
. Note

that gd,d
∗ (
Lm, Am − 1, am

)
is identically zero under the sharp null hypoth-

esis of no effect of treatment. In this sense gd,d
∗ (
Lm, Am − 1, am

)
, like

rd,d
∗ (
Lm, Am − 1, am

)
, is a measure of treatment interaction.

However, as discussed in remark 4.1, in the absence of sequential random-
ization, dop may not be the optimal regime in the sense that dop may not be

the maximizer of E
[
Y d
]
over d ∈ D and thus methods based on backward

induction may not be available. We now characterize those settings in which

dop is the maximizer of E
[
Y d
]

Definition: We say the backward induction feasibility assumption holds
if for all m, all am, and any dm+1 ∈ Dm+1,

E
[
YAm−1,am,dop,m+1

− YAm−1,am,dm+1
|Lm, Am−1, Am = am

]
× (7.4)

E
[
YAm−1,am,dop,m+1

− YAm−1,am,dm+1
|Lm, Am−1

]
≥ 0

so that the two factors never have opposite signs.
This nonidentifiable assumption implies that if dop,m+1 is the optimal

regime among subjects with observed history
(
Lm, Am−1, Am = am

)
then it is

the optimal regime from time tm+1 onwards for subjects with observed history(
Lm, Am−1

)
when they are forced to take treatment am at tm. In Appendix

3, we prove the following.
Theorem 7.4: The regime dop,m maximizes

E
[
YAm−1,dm

|Lm, Am−1

]
over all regimes dm ∈ Dm for each m and dop =
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dop,0 maximizes E
[
Yd
]
over all d ∈ D if and only if the backward induction

feasibility assumption holds.
Note that under sequential randomization the backward induction feasibil-

ity assumption holds and so dop is the optimal regime. Further knowledge of

md,d
∗ (
Lm, Am

)
, rdop,m+1,d

∗
m
(
Lm, Am−1, am

)
and the law of O do not deter-

mine whether the backward induction feasibility assumption holds. We will
not consider the problem of estimating the true optimal regime when this
assumption does not hold and thus dop is not the optimal regime, because
the computational problem of estimating the true optimal regime is then in-
tractable without strong additional assumptions.

When sequential randomization does not hold, additional problematic is-
sues arise even in the case of single stage decisions (i.e. the special case of
K = 0). Specifically E

[
Ydop |L0

]
may be less than E [Y |L0] and thus E

[
Ydop

]

may be less than E [Y ] . This possibility reflects the fact that by definition
any deterministic regime assigns the same treatment to all subjects with a
given value of L0. Thus it might be preferable to allow each subject to choose
their own treatment than to impose the optimal treatment dop (L0) . For ex-
ample, this will be the true when randomization does not hold because for
a subgroup with a common L0, the best treatment varies among individuals,
and each individual is aware of some unmeasured factor that allows her to
self-select the best treatment. Under the non-identifiable assumption of addi-
tive local rank preservation, the backward feasibility assumption always holds
and E

[
Ydop |L0

]
can never be less than E [Y |L0] .

Optimal w-compatible treatment regimes: We will actually prove

identifiability of dop given md,d
∗ (
Lm, Am

)
and gdop,d

(
Lm, Am−1, am

)
in a

broader setting. Specifically we no longer assume that decision rule at tm
can necessarily depend on the entire past history

(
Lm, Am−1

)
. Rather we

assume there exists a known vector-valued function Wm = wm
(
Lm, Am−1

)

representing the data available at time tm on which a decision is to be based.
This would be the case if either (i) rules that can based on all of the data(
Lm, Am−1

)
are viewed as too complex or (ii) because in the future, after the

study is finished, the subject-specific data available to the decision makers
(i.e. physicians) at tm months from, say, onset of HIV infection will only be a
subset wm

(
Lm, Am−1

)
of the data

(
Lm, Am−1

)
available to the investigators

who analyzed the study data. Let wm denote a realization of Wm.

Let d
w

op =
(
d
w

op,1, ..., d
w

op,K

)
be the regime defined recursively as follows.

d
w

op,K (WK) = argmax
aK

E
[
YAK−1,aK

|WK

]
,

d
w

op,m (Wm) = argmax
am

E
[
YAm−1,am,dop,m+1

|Wm

]

We say a regime d = d
w ∈ D is w− compatible if dm

(
Lm, Am−1

)
= dm (Wm)

for each m and we let Dw
denote the set of w − compatible regimes. We say

the regime d
w

op is w − optimal if dwop,m maximizes
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E
[
YAm−1,dm

|Wm

]
over all regimes dwm ∈ Dw

m for each m and d
w

op = dwop,0

maximizes E
[
Ydw
]
over all d

w ∈ Dw
. We say w is increasing if (Wm, Am) is a

function ofWm+1 with probability one, i.e., there is no ’forgetting’. We recover
our previous set-up when Wm is equal to

(
Lm, Am−1

)
so no information has

been lost. We then have:
Theorem 7.5: The regime d

w

op is w − optimal if w is increasing and for
all m, all am, and any dwm+1 ∈ Dw

m+1,

E
[
YAm−1,am,dwop,m+1

− YAm−1,am,dwm+1
|Wm, Am = am

]
≥ 0 (7.5)

⇒ E
[
YAm−1,am,dwop,m+1

− YAm−1,am,dwm+1
|Wm

]
≥ 0.

The proof of theorem 7.5 is analogous to that of 7.4. It is well known that,
even under sequential randomization, backward induction cannot be used to
compute the true w − optimal regime unless w is increasing.

Now let d, d
∗
be two other regimes, either or both of which may themselves

equal d
w

op or one another.

Theorem 7.6 :Given the non-identifiable functions gd
w
op,d
(
Lm, Am−1, am

)

and γd,d
∗

mod

(
Lm, Am

)
, the quantities

d
w

op, E
[
YAm−1,am,dwop,m+1

|Lm, Am−1

]
, E
[
YAm−1,am,dwop,m+1

|Wm

]
, E
[
Ydwop

]

are identified from the law of O =
(
L,A

)
.

Proof: Define

q
(
Lm, Am−1, am

)
= E

[
YAm−1,am,dwop,m+1

− YAm−1,dm
|Lm, Am−1

]

= E
[
YAm−1,am,dwop,m+1

− YAm−1,dm
|Lm, Am−1, Am = am

]
−

{
1− f

(
am|Lm, Am−1

)}
gd

w
op,d
(
Lm, Am−1, am

)
,

and j
(
Lm, Am−1

)
= q
(
Lm, Am−1, d

w
op,m

(
Lm, Am−1

))
(7.6)

= E
[
YAm−1,dwop,m

− YAm−1,dm
|Lm, Am−1

]
.

Note , from their definitions, E
[
Y |LK , AK

]
= E

[
YAK−1,AK

|LK , AK
]

equals

γd,d
∗

mod

(
LK , AK

)
−γd,d

∗

mod

(
LK , AK−1, dK

(
LK , AK−1

))
+E

[
YAK−1,dK

|LK , AK
]
.

Hence E
[
YAK−1,dK

|LK , AK
]
is identified. Further

dwop,K (WK) = argmax
aK

E
[
YAK−1,aK

− YAK−1,dK
|WK

]

= argmax
aK

E
[
q
(
LK , AK−1, aK

)
|WK

]
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But q
(
LK , AK−1, aK

)
is identified by

q
(
LK , AK−1, aK

)
(7.7)

= γd,d
∗

mod

(
LK , AK−1, aK

)
− γd,d

∗

mod

(
LK , AK−1, dK

(
LK , AK−1

))
−

{
1− f

(
aK |LK , AK−1

)}
gd

w
op,d
(
LK , AK−1, aK

)
.

Thus dwop,K (WK) , j
(
LK , AK−1

)
, and

E
[
YAK−1,dwop,K

|LK , AK−1

]
= E

[
YAK−1,dK

|LK , AK
]
+j
(
LK , AK−1

)
are iden-

tified.
We now proceed by reverse induction. Specifically we show that if j

(
Lm+1, Am

)

is identified then E
[
YAm−1,am,dwop,m+1

− YAm−1,dm
|Lm, Am−1, Am = am

]
is

identified and hence q
(
Lm, Am−1, am

)
,

dwop,m (Wm) = argmax
am

E
[
q
(
Lm, Am−1, am

)
|Wm

]
(7.8)

and j
(
Lm, Am−1

)
= q
(
Lm, Am−1, d

w
op,m

(
Lm, Am−1

))
are identified. Write

E
[
YAm−1,am,dwop,m+1

− YAm−1,dm
|Lm, Am−1, Am = am

]

= E
[
YAm−1,am,dwop,m+1

− YAm−1,am,dm+1
|Lm, Am−1, Am = am

]
+

E
[
YAm−1,am,dm+1

− YAm−1,dm
|Lm, Am−1, Am = am

]

= E

{
E
[
YAm−1,am,dwop,m+1

− YAm−1,am,dm+1
|Lm+1, Am−1, Am = am

]
|

Lm, Am−1, Am = am

}
+

γd,d
∗

mod

(
Lm, Am−1, am

)
− γd,d

∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))

= E
{
j
(
Lm+1, Am−1, am

)
|Lm, Am−1, Am = am

}
+

γd,d
∗

mod

(
Lm, Am−1, am

)
− γd,d

∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))

Thus, in particular, by (7.6),

q
(
Lm, Am−1, am

)
= E

{
j
(
Lm+1, Am−1, am

)
|Lm, Am−1, Am = am

}
+

γd,d
∗

mod

(
Lm, Am−1, am

)
− γd,d

∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))
− (7.9a)

{
1− f

(
am|Lm, Am−1

)}
gd

w
op,d
(
Lm, Am−1, am

)
=

E
[
q
(
Lm+1,

(
Am−1, am

)
, dwop,m+1

(
Lm+1,

{
Am−1, am

}))
|Lm, Am−1, Am = am

]
+

γd,d
∗

mod

(
Lm, Am−1, am

)
− γd,d

∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))
− (7.9b)

{
1− f

(
am|Lm, Am−1

)}
gd

w
op,d
(
Lm, Am−1, am

)

Finally since identification of q
(
Lm, Am−1, am

)
andE

[
YAm−1,dm

|Lm, Am−1

]

implies identification of E
[
YAm−1,am,dwop,m+1

|Lm, Am−1

]
, to complete the
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proof it suffices to prove that if E
[
YAm,dm+1

|Lm+1, Am+1

]
is identified, then

E
[
YAm−1,dm

|Lm, Am
]
is identified. This implication follows from the fact

that, by definition,

E
[
YAm−1,dm

|Lm, Am
]

= E
[
YAm,dm+1

|Lm, Am
]
− γd,d

∗

mod

(
Lm+1, Am+1

)
+

γd,d
∗

mod

(
Lm+1, Am, dm+1

(
Lm+1, Am

))
.

The following corollary is an immediate consequence of corollary 7.3.

Corollary 7.6 :Given the non-identifiable functions gd
w
op,d
(
Lm, Am−1, am

)

and md,d
∗ (
Lm, Am

)
, we have that γd,d

∗

mod

(
Lm, Am

)
is identified and thus the

conclusions of Theorem 7.6 hold.

Using Theorem 7.6 and Corollary 7.6 to Estimate d
w

opin Various

Settings:

Our basic approach will be to estimate the unknown quantities in Eq (7.7)
and then for m = K, ...., 0, to alternate estimating the unknown quantities in
Eqs (7.8) and Eq (7.9a) (or equivalently Eq (7.9b)). Here are some specific
examples.

(1):To generalize estimation of optimal drSNMMs to the setting where we
do not assume sequential randomization butWm =

(
Lm, Am−1

)
so there is no

information loss, we would typically choose (i) d = dop which implies that a)

from its definition, gd
w
op,d

w
op
(
Lm, Am−1, am

)
equals rd

w
op,d

w
op
(
Lm, Am−1, am

)
),

b) by Eq. (7.6), for all m, j
(
Lm+1, Am−1, am

)
≡ 0, and c), by Eq. (7.9a),

q
(
Lm, Am−1, am

)
= γd,d

∗

mod

(
Lm, Am−1, am

)
− γd,d

∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))

−
{
1− f

(
am|Lm, Am−1

)}
rd

w
op,d
(
Lm, Am−1, am

)
, (7.10)

and (ii) choose d
∗
to be the regime that is identically zero. Thus to esti-

mate the optimal treatment regime d
w

op, we treat gd
w
op,d
(
Lm, Am−1, am

)
as

known (but vary it in a sensitivity analysis), specify and fit a model for
f
(
am|Lm, Am−1

)
, and finally carry out doubly robust estimation, as described

in the last subsection, of a drSNMM model γd
∗ (
lm, am;ψ

)
for γd,d

∗

mod

(
Lm, Am

)

either by assuming md,d
∗ (
Lm, Am

)
is a known function (to be varied in a

sensitivity analysis) or, if Am has two components
(
Apm, Adm

)
, possibly, by

assuming partial sequential randomization. Note that although based on The-
orem 3.4 and its extensions discussed in the last subsection we can obtain
doubly robust estimators of ψ† and thus of γd,d

∗

mod

(
Lm, Am

)
, we cannot obtain

doubly robust estimators of d
w

op when gd
w
op,d
(
Lm, Am−1, am

)
is not assumed
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to be identically zero, since consistent estimation of f
(
am|Lm, Am−1

)
is then

required.
Remark : Because j

(
Lm+1, Am−1, am

)
≡ 0 when d = dop, we did not

have to specify and fitDP−like regressionmodels for E
{
j
(
Lm+1, Am

)
|Lm, Am

}

in Eq (7.9a).
(2): To generalize estimation of DP-regression srSNMMs with the single

regime being the identically zero treatment regime to the setting where we
do not assume sequential randomization but assume Wm =

(
Lm, Am−1

)
, we

would typically choose d
∗
= d to be the zero regime 0 and proceed as in

(1) just above except now we would have to fit DP− regression models for
E
{
j
(
Lm+1, Am

)
|Lm, Am

}
in Eq (7.9a). Inference can proceed as described

under the DP- srSNMM fitting algorithm of Section 6 except as modified
below under (3).

Remark: The only simplifications due to choosing d
∗

= d are that

γd,d
∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))
= 0 in Eq (7.9a) and that γd,d

∗

mod

(
Lm, Am

)
=

γd,d
∗ (
Lm, Am

)

(3):For estimation of DP-regression drSNMMs with Wm =
(
Lm, Am−1

)

we proceed as under (2), except now γd,d
∗

mod

(
Lm, Am−1, dm

(
Lm, Am−1

))
�= 0

and we make the appropriate substitutions of regimes d, d
∗
for the regimes

0, 0 in the DP- srSNMM fitting algorithm of Section 6. Specifically now

QK

(
ψ̂, aK

)
= (7.11)

γd,d
∗

mod

(
LK , AK−1, aK , ψ̂

)
− γd,d

∗

mod

(
LK , A

,

K−1, dK
(
LK , AK−1

)
, ψ̂
)
−

{
1− f

(
aK |LK , AK−1, α̂

)}
gd

w
op,d
(
LK , AK−1, aK

)
,

Qm−1

(
ψ̂, am−1, β̂m

)
= (7.12)

r
{
Lm−1, Am−2, am−1; β̂m, ψ̂, β̂m+1

}
+ γd,d

∗

mod

(
Lm−1, Am−2, am−1; ψ̂

)
−

γd,d
∗

mod

(
Lm−1, Am−2, dm

(
Lm−1, Am−2

)
; ψ̂
)
−

{
1− f

(
am−1|Lm−1, Am−2

)}
gd

w
op,d
(
Lm−1, Am−2, am−1

)

(4): Consider again Murphy’s regret model um
(
lm, am, β

†)

= E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lam−1,m = lm

]
where

um
(
lm, am, β

)
= ηm

(
lm, am−1, βscale

)
f
(
am − dop,m

(
lm, am−1, βregime

))
,

β = (βscale, βregime) is a finite dimensional parameter vector, f (·) is a known
non-negative function satisfying f (0) = 0, and ηm

(
lm, am−1, βscale

)
is a

known non-negative scale function. Suppose Wm =
(
Lm, Am−1

)
so there is

no information loss. Murphy only considered her regret model in the case of
sequential randomization. Since under sequential randomization
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E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lam−1,m = lm

]
(7.13)

= E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1

]

= E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1, Am = am

]
,

Murphy’s regret model is also a model for

E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1

]
and for

E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1, Am = am

]
. In the ab-

sence of sequential randomization, none of the equalities in Eq.(7.13) neces-
sarily hold and we must choose which quantity um

(
lm, am, β

)
to model.

We now argue that the appropriate generalization of Murphy’s regret
model to the setting without sequential randomization is as a model

um
(
lm, am, β

)
forE

[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1

]
. The

reason is that we would like to be able to determine the optimal treatment
strategy beginning at tm for a new subject who has data on Lm, Am−1 avail-
able and who is exchangeable with the subjects in our study, but on whom we
are unable to intervene with an optimal strategy prior to time tm (say, because
we did not have the ability to apply our optimal strategy prior to time tm).
It follows from Theorem 7.4 that given the the backward induction feasibility
assumption holds, we can succeed in achieving this goal if we can successfully

model the quantity E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1

]
.

Consider then the model

um
(
lm, am, β

†) = E
[
Yam−1,dop,m

− Yam,dop,m+1
|Lm = lm, Am−1 = am−1

]
.

(7.14)
Recall um

(
lm, am, β

)
attains its minimum of 0 at am = dop,m

(
lm, am−1, βregime

)
.

Further, from our definitions, we have γ
d
w
op,d

w
op

mod

(
Lm, Am

)
= γd

w
op,d

w
op
(
Lm, Am

)

is given by

γd
w
op,d

w
op
(
Lm, Am

)

= −um
(
Lm, Am, β

†)− rd,d
∗ (
Lm, Am−1, Am

) {
1− f

(
Am|Lm, Am−1

)}
.

Thus γd
w
op,d

w
op
(
Lm, Am

)
may not be either maximized or minimized at Am =

dop,m
(
Lm, Am−1

)
. To estimate the model um

(
lm, am, β

)
, we put d

∗
= d =

d
w

op , and note our model γd
w
op,d

w
op
(
Lm, Am, ψ

)
is given by −um

(
Lm, Am, β

)
−

rd
w
op,d

w
op
(
Lm, Am−1, Am

) {
1− f

(
Am|Lm, Am−1;α

)}
for ψ = (β, α) . We then

regard rd
w
op,d

w
op
(
Lm, Am−1, Am

)
as known (but vary it in a sensitivity analy-

sis), estimate α with the maximum partial likelihood estimator α̂, and finally
estimate the remaining component β of ψ as in (1) above. The remarks found
under both (1) and (2) apply in this setting. Furthermore the maximiza-
tion in Eq (7.8) need not be explicitly carried out, as it will always return
dop,m

(
Lm, Am−1, βregime

)
for the current value of βregime.
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(5) When Wm �=
(
Lm, Am−1

)
so there is information loss, we pro-

ceed as described in (1)-(4), except now, for each m, we estimate the
unknown random function B (am) = E

[
q
(
Lm, Am−1, am

)
|Wm

]
of am in

Eq.(7.8) by specifying a multivariate parametric regression model for the
mean of the vector {B (am) ; am ∈ Am} givenWm.We then regress the vector
{B (am) ; am ∈ Am} (or an estimate thereof) on Wm under this model. Note
that am is fixed rather than random in the regression so a regression model for
B (am) givenWm would be a function of am,Wm, and a regression parameter.

7.3 Optimal Marginal drSNMMs vs. Optimal drSNMMs for
Estimation of Optimal w-compatible treatment regimes:

Suppose the sequential randomization assumption (2.5) holds and we want
to estimate d

w

op for an increasing w with Wm �=
(
Lm, Am−1

)
, so there is

information loss. In this section we will compare the approach described in

the last subsection of specifying a optimal drSNMM model γd
w
op,0
(
Lm, Am, ψ

)

for γd
w
op,0
(
Lm, Am

)
= E

[
YAm−1,Am,dwop,m+1

− YAm−1,0m,dwop,m+1
|Lm, Am−1

]

versus modelling γd
w
op,0 (Wm) = E

[
YAm−1,Am,dwop,m+1

− YAm−1,0m,dwop,m+1
|Wm

]

directly with a drSNMM model γd
w
op,0 (Wm, Am, ω ) with parameter ω, say,

and thus avoiding the need to specify a multivariate regression model for

B (am) = E
[
q
(
Lm, Am−1, am

)
|Wm

]
= E

[
γd

w
op,0
(
Lm, Am−1, am

)
|Wm

]
−

γd
w
op,0
(
Lm, Am−1, dm

(
Lm, Am−1

))
in order to evaluate

dwop,m (Wm) = argmaxam E
[
q
(
Lm, Am−1, am

)
|Wm

]
in (7.8). Note, however,

that if γd
w
op,0
(
Lm, Am, ψ

)
has the functional form Amr

(
Lm, Am−1, ψ

)
for

some given function r
(
Lm, Am−1, ψ

)
, then γd

w
op,0
(
Lm, Am, ψ

)
is linear in Am,

and

dwop,m (Wm) = max {am ∈ Am} I
{
E
[
r
(
Lm, Am−1, ψ

†) |Wm

]
> 0
}
+

min {am ∈ Am} I
{
E
[
r
(
Lm, Am−1, ψ

†) |Wm

]
≤ 0
}
.

It then follows that we only need to specify a univariate regression model for
E
[
r
(
Lm, Am−1, ψ

†) |Wm

]
in order to estimate dwop,m (Wm) even though Am

might be an uncountable set.
Under (2.5), using ideas in van der Laan, Murphy, and Robins (2003)

summarized in van der Laan and Robins (2002, Chapter 6), we could esti-

mate the model γd
w
op,0 (Wm, Am, ω ) (which, by an extension of their nomen-

clature should be referred to a optimal marginal drSNMM) directly by
(i) creating a pseudo-data set with WTi copies of each subject i, where

WT =

K∏

m=0

1/f
(
Am|Lm, Am−1

)
if f
(
Am|Lm, Am−1

)
is known or with ŴT i
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copies where ŴT =

K∏

m=0

1/f
(
Am|Lm, Am−1; α̂

)
if f

(
Am|Lm, Am−1

)
is un-

known and must be modelled, (ii) retaining in the pseudo -data set only
the data (WK , AK , Y ) =

(
V K , AK , Y

)
where Vm = Wm\ (Am−1 ∪Wm−1)

are the non-treatment components of Wm that were not in Wm−1 (since
by w increasing, Am−1 is a function of Wm and (Wm, Am) can be writ-
ten as

(
V m, Am

)
), and (iii) fitting the optimal marginal drSNMM model

γd
w
op,0 (Wm, Am, ω ) = γd

w
op,0
(
V m, Am, ω

)
to the retained part of the pseudo

-data set as in Section 4 except with V m replacing Lm and ω replacing ψ.
This approach succeeds because (2.5) holding in the actual population implies
that, in the pseudo-poulation based on weighting by WTi, (2.5) holds with L
replaced by V and VK+1 ≡ Y.

However when f
(
Am|Lm, Am−1

)
is unknown and must be modelled, the

approach based on modelling γd
w
op,0
(
Lm, Am

)
may be preferred to that based

on modelling γd
w
op,0 (Wm) directly, because the former approach has robust-

ness properties under the g-null mean hypothesis not shared by the latter. To
see this sharply, imagine the Lm are discrete with only a moderate number of
levels and the Am are continuous. Then, even with f

(
Am|Lm, Am−1

)
totally

unrestricted , an asymptotically distribution-free test of ψ† = 0 (and thus of g-

null mean hypothesis ) exists based on the model γd
w
op,0
(
Lm, Am, ψ

)
, but, be-

cause of the curse of dimensionality, not based on the model γd
w
op,0
(
V m, Am, ω

)
.

Specifically, suppose in the interest of robustness to misspecification, we use
model (a.3) that regards f

(
Am|Lm, Am−1

)
as completely unknown and also

use the empirical conditional distribution of f
(
Am|Lm, Am−1

)
as its estima-

tor. Then our test of the hypothesis ψ† = 0 reduces to a nonparametric test
of independence of Y and A0 within strata (where each l0 ∈ L0 defines a
separate stratum), because at times other than t0 no two subjects have the

same history Lm, Am−1 so S (Am) − Ê
[
S (Am) |Lm, Am−1

]
will be zero for

m > 0. This test will have some, although limited, power to detect alternatives
with ψ† �= 0. In contrast, as discussed in Robins (1999), a test of ω† = 0 will
have the correct α − level even asymptotically only if WT can be uniformly
consistently estimated which requires we can uniformly consistently estimate
f
(
Am|Lm, Am−1

)
for all m which is not possible under model (a.3). Quite

generally when estimating ψ† we can trade off efficiency in return for protec-
tion against bias caused by possible model misspecification in a way that is
not available when we are estimating ω†.

On the other hand, the approach based on modelling γd
w
op,0 (Wm) may

be preferred to that based on modelling γd
w
op,0
(
Lm, Am

)
if it is important

that we succeed in specifying a correct or nearly correct blip model because
the dimension of

(
Lm, Am

)
vastly exceeds that of Wm. For example if based

on prior beliefs we are essentially certain γd
w
op,0 (Wm) only depends on on

Wm = wm
(
Lm, Am−1

)
through the few components ofWm that are functions
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of the data (Lj, Aj−1) obtained at times for j = m,m − 1,m− 2 and Wm is
discrete, it is possible we could fit a model saturated in those few components
of Wm, thus avoiding major worries about model misspecification. See the
Remark on Marginal drSNMMs in Section 9.1 below.

7.4 Bayesian Decision Making in the Prescence of Unmeasured
Confounding:

In this section we go beyond sensitivity analysis and consider optimal Bayes
decision making in the presence of unmeasured confounding, although we only
consider the single occasion setting.

The Single Decision Problem:

Consider again the setting in which we have a single time-independent treat-
ment (K = 0) . Thus assume the data are L = L0, A = A0, Y = L1 with
A dichotomous, L multivariate with continuous components and Y continu-
ous. Suppose we have a known correct linear model γ (l, a, ψ) = ar (l, ψ) =
aψTw (L) = aψTW with true value ψ† for γ (l, a) = E [Ya − Y0|L = l, A = a]
and for simplicity assume that it is known that E [Ya − Y0|L = l, A = a] =

E [Ya − Y0|L = l, A �= a] so rd,0 (l, a) of (7.1) is identically 0. Then dop (l) =
argmaxa γ (l, a, ψ) = I {r (l, ψ) > 0} . Further supppose that there may be un-

measured confounding with vd,0 (l, a) = E [Y0|L = l, A = a]−E [Y0|L = l, A = 0]
= aδ†,TW with δ†unknown. Then if we define θ = ψ+ δ, H (θ) = Y −AθTW,
we have that

E
[
H
(
θ†
)
|L,A

]
= E

[
H
(
θ†
)
|L
]
, θ† = ψ† + δ† (7.15)

It follows from (7.15) if we define Ẑ◦
t

(
θ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)
exactly as we

did Ẑt

(
ψ, ŝeff , c

ŝeff , α̂, ς̂ , κ̂, ζ̂
)

except with θ everywhere replacing ψ, we

obtain an asymptotic approximation πpost
(
θ†
)
to the posterior for θ† given

the stochastic process Ẑ◦
t

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
indexed by θ given by

πpost
(
θ†
)

(7.16)

=
I
{
θ†;
∣∣∣
∣∣∣Ẑ◦
t

(
θ†
)∣∣∣
∣∣∣ < t dim

(
θ†
)1/2}

exp
(
−Ẑ◦

t

(
θ†
)T

Ẑ◦
t

(
θ†
)
/2
)
π
(
θ†
)

∫
{θ†;||Ẑ◦

t (θ†)||<tdim(θ†)1/2} exp
(
−Ẑ◦

t (θ
†)
T
Ẑ◦
t (θ

†) /2
)
π (θ†) dθ†

.

Thus since ψ† is independent of Ẑ◦
t

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
given θ†, we have

that

πpost
(
ψ†) =

∫
πpost

(
θ†
)
π
(
ψ†|θ†

)
dθ†
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where π
(
ψ†|θ†

)
is the conditonal prior of ψ† given θ† = ψ† + δ†. The optimal

Bayes decison rule is, of course,

dbayes (l) = arg max
a∈A={0,1}

∫
ar
(
l, ψ†)πpost

(
ψ†) dψ†

Assume a correct model for either E
[
H
(
θ†
)
|L
]
or f(A|L) , so that θ† is esti-

mated at rate n1/2. Then πpost
(
θ†
)
charges a volume with radius O

(
n−1/2

)
.

It follows that if π
(
ψ†|θ†

)
charges a volume of radius O (1) [as would be the

case if ψ† and δ† were apriori independent with priors charging a volume of
radius O (1)] πpost

(
ψ†) /π

(
ψ†|θ†

)
is approximately 1 . If ψ† and δ† were apri-

ori independent with π
(
ψ†) charging a volume of radius O

(
n−1/2

)
and π

(
δ†
)

charging a volume of radius O (1) , then πpost
(
ψ†) /π

(
ψ†) is approximately

1. A limitation of the above analysis is that we assumed vd,0 (l, a) = aδ†,TW
and γ (l, a, ψ) = aψ†,TW had the same functional form so that the approx-

imate distribution of Ẑ◦
t

(
·, ŝeff , cŝeff , α̂, ς̂ , κ̂, ζ̂

)
depended on

(
δ†, ψ†) only

through their sum θ†. This limitation is more apparent than real as it can be
modified by appropriate specification of the joint prior π

(
δ†, ψ†) . For exam-

ple suppose suppose that W was 20 dimensional and one believed that γ (l, a)

only depended on the first 2 components of W but vd,0 (l, a) depended on all
20. Then one could take π

(
ψ†) to place all its mass on the last 18 components

of ψ† being 0. Note that in such a case, since θ† is estimated at rate n1/2, we
obtain n1/2 − consistent estimates of the last 18 components of δ†.

8 Continuous Time Optimal drSNMMs

Continuous Time drSNMMs: To extend some of our results to continuous
time, letA (u) and L (u) be recorded treatment and covariates at time u, where
in this section we use parentheses rather than subscripts to denote the time of
an event. We shall assume that a subject’s observed data O =

(
L (K) , A (K)

)

with L (t) = {L (u) ; 0 ≤ u ≤ t} and A (t) = {A (u) ; 0 ≤ u ≤ t} are generated
by a marked point process such that (i) L (t) and A (t) have sample paths
that are CADLAG step functions, i.e. they are right-continuous with left-
hand limits and we write

(
A (t−) , L (t−)

)
for a subject’s history up to but

not including t ; (ii) the L (t) and A (t) process do not jump simultaneously or
both in an interval of time o (1) ; and (iii) both processes have continuous time
bounded intensities so the total number of jumps K∗ of the joint

(
A (t) , L (t)

)

process in [0,K] is random and finite, occurring at random times T1, . . . , TK∗ .
That is we assume λA

(
t | A (t−) , L (t−)

)
= lim

δ t→0
pr[A (t+ δt) �= A (t−) |

A (t−) , L (t−)]/δt and λL
(
t | A (t−) , L (t−)

)
= lim

δ t→0
pr[L (t+ δt) �= L (t−) |

A (t−) , L (t−)]/δt are bounded and measurable on [0,K] where, for example,
A (t−) = limu↑tA (u) is well defined because the sample path have left hand
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limits. We choose this restricted class of sample paths because their statistical
properties are well understood.

We only consider the case of sequential randomization. Generalizations
similar to those in Section 7 are straightforward. The assumption (2.5) of
sequential randomization becomes

λA
[
t | L

(
t−
)
, A
(
t−
)
, {La; a ∈ A}

]
= λA

[
t | L

(
t−
)
, A
(
t−
)]

(8.1)

and

f [A (t) | L
(
t−
)
, A
(
t−
)
, A (t) �= A

(
t−
)
, {La; a ∈ A}] = (8.2)

f
[
A (t) | L

(
t−
)
, A
(
t−
)
, A (t) �= A

(
t−
)]
.

Eq. (8.1) says that given past treatment and confounder history, the probabil-
ity that the A process jumps at t does not depend on the joint counterfactual
histories La = {La (u) ; 0 ≤ u ≤ K} corresponding to the non-dynamic treat-
ment histories a = {a (u) ; 0 ≤ u ≤ K} ∈ A. Eq. (8.2) says that given that
the treatment process did jump at t, the probability it jumped to a particular
value of A (t) does not depend on the counterfactual histories.

A regime d =
{
d
(
t, l (t−) , a (t−)

)
; t ∈ [0,K]

}
is a collection of functions

d
(
t, l (t−) , a (t−)

)
indexed by t mapping

(
l (t−) , a (t−)

)
∈ L (t−)×A (t−) into

the support A (t) of A (t) such that the law fres (o) ftr,d (o) that replaces the
observed treatment process ftr,pobswith the deterministic process ftr,d (o) has
sample paths satisfying (i)-(iii) above with probability one. This is a limitation
on the collection of functions that can constitute a valid regime d. Let D
denote the collection of all such regimes. We assume all regimes are feasible
in the sense that f

[
a (t) | L (t−) , A (t−) , A (t) �= A (t−)

]
is non-zero w.p.1 for

all a (t) ∈ A (t) \ {A (t−)}.
Example 8.1: Suppose A(t) is Bernoulli and consider d

(
t, L (t−) , A (t−)

)
=

I [A (t− δ) < 1/2] = 1 − A (t− δ) for a given known δ > 0 where A (t) = 0
w.p.1 for t < 0. Then a subject starts treatment at time 0 and is to take treat-
ment until time δ, to take no treatment from δ to 2δ, to again take treatment
from 2δ to 3δ and continue alternating thereafter. Suppose we tried to replace
A (t− δ) by A (t−) = limδ↑t A (δ) but kept the same parameter values. We
will call such a replacement the case δ = 0. Then we have a contradiction
as the regime for a subject starting from time zero is not defined, because
treatment cannot alternate infinitely quickly at all t. So the regime δ = 0 is
not in D.

Given a treatment regime d, let d(u) =
{
d
(
t, l (t−) , a (t−)

)
; t ∈ [u,K]

}
.

Then, given h ≥ 0, d and a (t−) , and a define (a (t−) , a, d (t+ h)) to be
the regime in which the nondynamic regime a (t−) is followed on [0, t), the
constant dose a is given on [t, t+ h)and d is followed from t+ h.

Let Y = y
(
L (K) , A (K)

)
be a utility and Yd be its counterfactual version

under a regime d. Let V d,0 (t, h, a)

= E
[
Y(A(t−),a,d(t+h)) − Y(A(t−),0,d(t+h)) | L (t) , A (t−)

]
be the mean causal
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effect on subjects with observed history
(
L (t) , A (t−)

)
of a final blip of con-

stant treatment a in the interval [t, t + h) compared to no treatment before

changing to the regime d at t + h. Note V d,0 (t, h, 0) = 0. We restrict atten-
tion to treatments for which an instantaneously brief bit of treatment has a
negligible effect on Y . We formalize this as follows.

Assumption Of Negligible Instantaneous Effects: We assume

that, for all d ∈ D, (i) V d,0 (t, h, a) is continuous in h and Md,0 (t, a) ≡
lim
h↓0

V d,0 (t, h, a) /h exists for all t ∈ [0,K) and (ii) with probability one,

Md,0 (t, a) = ∂V d,0 (t, 0, a) /∂h is continuous in t (uniformly over d ∈ D, a ∈
A (t) and t ∈ [0,K)) for all t ∈ [Tm, Tm+1),m = 0, . . . ,K∗ + 1 where
T0 ≡ 0, TK∗+1 ≡ K.

V d,0 (t, h, a) and Md,0 (t, a) may be discontinuous in t at the jump times

Tm because of the abrupt change in the conditioning event defining V d,0 (t, h, a)

at t = Tm. Note Md,0 (t, a) dt is the effect on the mean of Y of a last blip
of treatment a compared to no treatment both sustained for “instantaneous”

time dt before resorting to regime d. Hence,Md,0 (t, A(t)) ≡ md,0
(
t, L (t) , A (t)

)

is the instantaneous version of the function γd,0
(
Lm, Am

)
of Sec. 3.

DefineHd,0 (u) = Y+
∫K
u

[
Md,0

{
t, d
(
t, L (t−) , A (t−)

)}
)−Md,0 {t, A(t)}

]
dt

and define Hd,0 to be Hd,0 (0). Then our main result is the following which is
proved exactly like it analogue in the appendix of Robins (1998).

Theorem 8.1: Under sequential randomization (8.1)-(8.2) and the As-
sumption of negligible instantaneous effects, if d ∈ D, then
E
[
Hd,0 (t) | L (t) , A (t)

]
= E

[
Y(A(t−),d(t)) | L (t) , A (t)

]
and

E
[
Y(A(t−),d(t)) | L (t) , A (t)

]
is not a function of A (t) . In particular,

E
(
Hd,0 (0)

)
= E

[
Yd
]
.

We say the data follows a continuous-time drSNMM Md,0 (t, a, ψ) if

Md,0 (t, a) ≡ md,0
(
t, L (t) , A (t−) , a

)
equals

Md,0
(
t, a, ψ†) ≡ md,0

(
t, L (t) , A (t−) , a, ψ†) where ψ† is an unknown param-

eter to be estimated andMd,0 (t, a, ψ) is a known random function continuous

in t on [Tm, Tm+1) satisfying M
d,0 (t, a, ψ) = 0 if ψ = 0 or a = 0.

First suppose that A (t) is Bernoulli and let Hd,0 (t, ψ) be Hd,0 (t) with

Md,0 (t, a, ψ) replacing Md,0 (t, a). Given a Cox model for jumps in the treat-
ment process

λA
(
t | L

(
t−
)
, A
(
t−
))

= λ0 (t) exp [α
′W (t)] (8.3)

where W (t) is a vector function of
{
L (t−) , A (t−)

}
, α is an unknown vector

parameter, and λ0 (t) is an unrestricted baseline hazard function, we obtain a

G-estimate of the parameter ψ of the continuous-time drSNMM Md,0 (t, a, ψ)

by adding the term θ′Hd,0 (t, ψ) b
(
t, L (t−) , A (t−)

)
to model (8.3) where
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b
(
t, l (t−) , a (t−)

)
is a known vector function of the dimension of ψ chosen by

the investigator. Specifically, the G-estimate ψ̂ge is the value of ψ for which

the Cox partial likelihood estimator θ̂ = θ̂ (ψ) of θ in the expanded model

λA
(
t | L

(
t−
)
, A
(
t−
))

(8.4)

= λ0 (t)
{
exp [α′W (t)] + θ′Hd,0 (t, ψ) b

(
t, L
(
t−
)
, A
(
t−
))}

is zero. Then, under sequential randomization, Theorem 8.1 can be used to

show that ψ̂ge and n
−1
∑

iHi

(
0, ψ̂ge

)
will be n

1
2 -consistent for ψ† and E

[
Yd
]

provided the drSNMM Md,0 (t, a, ψ) and the Cox model (8.3) are correctly
specified. It is also possible to construct doubly robust estimators of ψ† . In
addition, confidence intervals for ψ† and E

[
Yd
]
can also be obtained . Futher-

more, if A (t) is not a dichotomous random variable, then we can obtain more
efficient estimators of ψ† and E

[
Yd
]
by exploiting (8.2). Technical details will

be presented elsewhere.
Example 8.1 (cont): Suppose again d

(
t, L (t−) , A (t−)

)
= 1−A (t− δ)

. Further Md,0 (t, a, ψ) = ar
(
t, L (t) , A (t−) , ψ

)
with

r
(
t, L (t) , A

(
t−
)
, ψ
)
= (1, A (t− δ))ψ = ψ1 + ψ3A (t− δ)

where δ is the same known non-negative number. Then Hd,0 (t, ψ) = Y +
ψ1cum1,δ (A (t)) − (ψ1 + ψ3) cum2,δ (A (t− δ)) where cum1,δ (A (t)) is the
measure of the set {u;u ∈ [t,K] andA (u) = A (u− δ) = 0} and cum2,δ (A (t− δ))
is the measure of the set {u;u ∈ [t,K] and A (u) = A (u− δ) = 1}.

Extension to Continuous Time Optimal drSNMMs: The proof
of the existence of an optimal regime under our assumptions is subtle and
will be given elsewhere. Here we will simply suppose there exists an optimal

regime dop i.e. a regime dop ∈ D satisfying E
[
YA(t−),dop(t)

| L (t−) , A (t−)
]
≥

E
[
YA(t−),d(t) | L (t−) , A (t−)

]
for all d ∈ D.

Remark: To see why it is not completely trivial to prove the existence

of an optimal regime, given a regime d, define zop

(
t, L (t) , A (t−) , d

∗)
=

argmaxam
d
∗
,0
(
t, L (t) , A (t−) , a

)
. Define

dop

(
t, L
(
t−
)
, A
(
t−
)
, d

∗)

= argmax
a

E
[
md

∗
,0
(
t, a, L (t) , A

(
t−
))
|L
(
t−
)
, A
(
t−
)]

= zop

(
t, L
(
t−
)
, L (t) = L

(
t−
)
, d

∗)

where the last equality follows from the fact that the event L (t) = L (t−)
has probability one (because the probability the covariate process jumps at
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any given t is zero). Informally dop

(
t, L (t−) , A (t−) , d

∗)
is the optimal treat-

ment decision at t given the information in L (t−) , A (t−) if one is to follow

d
∗
from t+ h onwards for h sufficiently small. But since the number of times

t are now uncountable we cannot use simple backward induction to define

dop
(
t, L (t−) , A (t−)

)
in terms of the dop

(
t, L (t−) , A (t−) , d

∗)
. The smooth-

ness assumptions embedded in the Assumption of negligible instantaneous
effects will be needed.

We now consider an optimal drSNMM model

Mdop,0 (t, a, ψ) = mdop,0
(
t, L (t) , A (t−) , a, ψ

)
for Mdop,0 (t, a) . Then, we de-

fine

Hdop,0 (u, ψ) = Y+

∫ K

u

[
Mdop,0

{
t, dop

(
t, L
(
t−
)
, A
(
t−
)
, ψ
)}

−Mdop,0 {t, A(t), ψ}
]

where

dop
(
t, L
(
t−
)
, A
(
t−
)
, ψ
)
= argmax

a
E
[
mdop,0

(
t, L (t) , A

(
t−
)
, a, ψ

)
|L
(
t−
)
, A
(
t−
)]

= zop(t, L
(
t−
)
, L (t) = L

(
t−
)
, ψ)

and zop(t, L (t−) , L (t) , ψ) = argmaxam
dop,0

(
t, a, L (t) , A (t−) , ψ

)
. We esti-

mate ψ† and E
[
Ydop

]
by g-estimation as in the paragraph above.

Example 8.1 (cont): Consider the modelMdop,0 (t, a, ψ) = ar
(
t, L (t) , A (t−) , ψ

)

with r
(
t, L (t) , A (t−) , ψ

)
= (1, L (t) , A (t− δ))ψ where δ is the same non-

negative number. Then

dop
(
t, L
(
t−
)
, A
(
t−
)
, ψ
)
= I
(
r
(
t, L
(
t−
)
, L (t) = L

(
t−
)
, A
(
t−
)
, ψ
)
> 0
)

= I
((
1, L

(
t−
)
, A (t− δ)

)
ψ > 0

)
.

Thus dop
(
t, L (t−) , A (t−) , ψ

)
= I [A (t− δ) < {ψ1 + ψ2L (t)} /ψ3] if ψ3 < 0.

Suppose that ψ†
3 = 2 ψ†

1 < 0 and ψ†
2 = 0 so dop

(
t, L (t−) , A (t−) , ψ†) =

I [A (t− δ) < 1/2] . Then the optimal regime for a subject starting at time
0 is to take treatment until time δ, to take no treatment from δ to 2δ, to
again take treatment from 2δ to 3δ and continue alternating thereafter as we
saw before. Suppose we tried to replace A (t− δ) by A (t−) = limδ↑t A (δ)
but kept the same parameter values. Then as above, we have a contradiction
as the optimal regime for a subject starting from time zero is not defined,
because treatment cannot alternate infinitely quickly.

9 Some Important Alternative Approaches:

Results in Sections 1-8 rely on two assumptions that will never be strictly
correct: the first that our optimal drSNMM is correct and the second that
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either (but not necessarily both) a low dimensional model for the conditional
law of treatment or a low dimensional model for the mean of the counterfactual
utility given the past is correct. In this section, we relax both assumptions,
although not simultaneously. To accomplish this, we use recent results of van
der Laan and Dudoit (2003) on model selection via cross-validation and of
Robins and van der Vaart (2003,2004) on adaptive non-parametric confidence
intervals and inference based on higher order influence functions. Robins and
van der Vaart (2004) consider simultaneously relaxing both assumptions.

Selection of a Candidate Optimal Treatment Regime by Cross-
Validation

In this section we study a frequentist approach to selecting a single best
candidate for the optimal treatment regime using cross-validation regime. The
motivation for the method relies heavily on recent work by Wegkamp (2003)
and, more particularly and crucially, van der Laan and Dudoit (2003) on model
selection by cross-validation. For the remainder of this subsection we assume
sequential randomization (i.e. no unmeasured confounders). A major limita-
tion of the methods we proposed in sections 1-5 is the assumption that we have

a correctly specified parametric dr SNMM model γd
∗ (
lm, am;ψ

)
with true pa-

rameter ψ† for the very high dimensional function γd,d
∗ (
lm, am

)
determining

the optimal regime. Here rather than assuming a single correct model we will
assume a large list of candidate models γj

(
lm, am;ψ

j
)
, j = 1, ..., J for the

optimal regime where we have dropped the d
∗
from the notation and ψj de-

notes the parameter vector corresponding to the jth model. Further, we will
no longer assume that any of the J models are true. Rather our approach will
be as follows. We will randomly split the n study subjects into two subsam-
ples - the estimation subsample and the validation subsample. We will obtain
estimates ψ̂jby fitting each of the J models to the estimation subsample. We
will use the validation subsample to select among the candidates.

The Single Decision Problem:

We begin with the single occassion problem. Thus suppose we have n iid copies
of data O = (A,L, Y ) . Then dop (l) = argmaxa∈A γ (l, a) where γ (l, a) =
E (Ya|L = l)−E (Ya=0|L = l) . We assume sequential randomization but now
leave γ (l, a) unspecified. In terms of the distribution FO of the observables
randomization implies that

E (Y |A = a, L = l)− E (Y |A = 0, L = l) = γ (l, a) (9.1)

and thus thatE [Y − γ (L,A) |A,L] = E {Y − γ (L,A) |L} = E (Y |A = 0, L = l)
= E (Ya=0|L = l) , i.e., E [H |A,L] = E [H |L] = with H = Y − γ (L,A) .

A First Risk Function:

The key to the first approach employed in this section is the following char-
acterization theorem for γ (l, a) of (9.1). Let E [·] denote expectation with
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respect to the distribution FO generating the data and let E∗ [·] denote an
expectation with respect to an arbitary distribution F ∗ . Then we have the
following.

Theorem 9.1:(i): If E∗ [Y − γ (L,A) |L] = E [Y − γ (L,A) |L] , then, for
any g (l) such that g (L) �= 0 w.p.1, γ (l, a) of (9.1) is the unique function
c (L,A) minimizing

E
[
g2 (L) {Y − c (L,A)− E∗ [Y − c (L,A) |L]}2

]
(9.2)

subject to c (L, 0) = 0;
(ii): For all functions b (l) and g (l) such that g (L) �= 0 w.p.1, γ (l, a) of

(9.1) is the unique function c (L,A) minimizing

E
[
g2 (L) {Y − c (L,A) + E [c (L,A) |L]− b (L)}2

]
(9.3)

subject to c (L, 0) = 0
Proof: To prove (ii), write {Y − c (L,A)} g (L)−g (L) b (L)+E [g (L) c (L,A) |L]

as R+S (c) , where R = {Y − γ (L,A)} g (L)−g (L) b (L)+E [g (L)γ (L,A) |L]
and S (c) = {γ (L,A)− c (L,A)} g (L)−E [g (L)γ (L,A) |L]+E [g (L) c (L,A) |L] .
Then (9.3) is E

[
R2
]
+ 2E [RS (c)] + E

[
S2 (c)

]
. Thus c (L,A) minimiz-

ing (9.3) is the minimizer of 2E [RS (c)] + E
[
S2 (c)

]
. But E [RS (c)] = 0

because E [S (c) |L] = 0 so E [RS (c)] = E [{Y − γ (L,A)} g (L)S (c)] =
E [E {Y − γ (L,A) |L,A} g (L)S (c)]

= E [E (Y |A = 0, L) g (L)E [S (c) |L]] = 0. Finally E
[
S2 (c)

]
takes it min-

imum at 0 when γ (L,A) = c (L,A) .
To prove (i) , write {Y − c (L,A)} g (L) − g (L)E∗ [Y − c (L,A) |L] as

R∗ + S∗ (c) where R∗ = {Y − γ (L,A)} g (L)− g (L)E∗ [Y − γ (L,A) |L] and
S∗ (c) = {γ (L,A)− c (L,A)} g (L) − g (L)E∗ [γ (L,A)− c (L,A) |L] . Note
R∗ = {Y − γ (L,A)} g (L)− g (L)E [Y − γ (L,A) |L] under the supposition of
the theorem. Thus c (L,A) minimizing (9.2) is the minimizer of 2E [R∗S∗ (c)]+
E
[
S∗2 (c)

]
. But E [R∗S∗ (c)] = 0 because E [R∗|A,L] = 0. Finally E

[
S∗2 (c)

]

takes it minimum at 0 when γ (L,A) = c (L,A) .
Corollary 9.1: Doubly Robust Minimizer of Risk:

If E∗ [Y − γ (L,A) |L] = E [Y − γ (L,A) |L] orE∗ [c (L,A) |L] = E [c (L,A) |L]
for all c (L,A) , then for all functions g (l) such that g (L) �= 0 w.p.1,
γ (l, a) of (9.1) is the unique function c (L,A) minimizing risk (c, F ∗, g) =
E [Loss (c, F ∗, g)] with Loss (c, F ∗, g) = loss (O, c, F ∗, g) =

g2 (L) {[Y − c (L,A)]− E∗ [Y − c (L,A) |L]}2
(9.4)

subject to c (L, 0) = 0.
Proof: If E∗ [Y − γ (L,A) |L] = E [Y − γ (L,A) |L] this follows immedi-

ately from Theorem 9.1(i). If E∗ [c (L,A) |L] = E [c (L,A) |L] , the corollary
follows from Theorem 9.1(ii) upon writing risk (c, F ∗, g) as

E
[
{[Y − c (L,A)] g (L) + g (L)E∗ [c (L,A) |L]− g (L) b (L)}2

]
with b (L) =

E∗ [Y |L] .
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Corollary 9.1 provides a characterization of γ (L,A) as the minimizer over
functions c (L,A) of the particular risk function risk (c, F ∗, g) . Suppose we
have data from a randomized trial with known randomization probabilities
p (a|l) , say p (a|l) = 1/2, and choose F ∗ such that F ∗

A|L is FA|L generating

the data and E∗ (Y |L) is set to a fixed function b (L) . We use FA|L, b as

shorthand for this F ∗ and so write risk (c, F ∗, g) as risk
(
c, FA|L, b, g

)
.

Suppose one is given J candidates models γj
(
L,A, ψj

)
, j = 1, ..., J,

for γ (L,A) where the dimension of ψj and the function γj (., ., .) can vary
with j, and, based only on the estimation (i.e training) sample data, lo-

cally efficient estimators ψ̂jof ψj and thus γ̂j (L,A) = γj
(
L,A, ψ̂j

)
of

γj
(
L,A, ψj

)
are obtained as in Sections 3 and 4 . Then given user-supplied

functions b (l) and g (l) we select the index ĵ minimizing r̂isk
(
γ̂j, FA|L, b, g

)
=

P val
nval

[
Loss

(
γ̂j , FA|L, b, g

)]
=

P val
nval

[
g2 (L)

{
Y − γ̂j (L,A)− b (L) + E

[
γ̂j (L,A) |L

]}2
]
over the J can-

didates functions γ̂j where P val
nval [·] is the sample average over the validation

sample. Let joracle be the j minimizing risk
(
γ̂j, FA|L, b, g

)

= E
[
g2 (L)

{
Y − γ̂j (L,A)− b (L) + E

[
γ̂j (L,A) |L

]}2
]
. If our goal were to

minimize risk
(
γ̂j , FA|L, b, g

)
over our J candidiates, γ̂joracle (L,A) is the opti-

mal but unobtainable solution. However van der Laan and Dudoit (1993) show
that, with high probability, provided the number of models J is not too large

compared to n, risk
(
γ̂ ĵ , FA|L, b, g

)
is very close to risk

(
γ̂joracle , FA|L, b, g

)

even though ĵ only minimized r̂isk
(
γ̂j, FA|L, b, g

)
. Indeed, the number of can-

didates J can increase as e(n
α) with α < 1 and yet, under regularity conditions,

risk
(
γ̂ ĵ, FA|L, b, g

)
/risk

(
γ̂joracle , FA|L, b, g

)
will still approach 1 as n→∞.

One might reasonably wonder why, if we are nearly certain that model j is
misspecified, we use the locally efficient estimator ψ̂jto estimate the parameter
ψj , since the desirable properties of ψ̂j described above only hold if model j
is correctly specified. Our justification is (i) ψ̂j should perform well if model j
is correct or nearly correct and (ii) if model j is far wrong our cross validation
procedure will appropriately eliminate model j from consideration.

Remark on Marginal drSNMMs: The usefulness of having ψ̂j correct
or nearly correct suggests one might use as candidates at least some optimal
marginal drSNMMs with discrete Wm for the reasons described in the final
paragraph of Section 7.3.

Minus Expected Utility As A Better Risk Function:

Given these encouraging results for our cross-validated selected model, the
question becomes: Is minimizing risk

(
γ̂j , FA|L, b, g

)
over our J candidates

really the optimization criteria we wish to use when the true optimal function
of interest γ = γ (A,L) is unknown. Now, of course, our goal is not to mini-
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mize risk
(
γ̂j , FA|L, b, g

)
over our J available candidates but rather to maxi-

mize expected utility E
[
Yd̂jop

]
(i.e to minimize the risk E

[
−Yd̂jop

]
of the loss

−Yd̂jop) over the J candidates γ̂j where, we write d̂jop (or sometimes even djop)

as short-hand for dγ̂
j

op and, as usual, dγ̂
j

op = dγ̂
j

op (l) = argmaxa γ̂
j (a, l) . To be

explict about the distinction, suppose that we have a dichotomous treatment
only taking the values 1 or 0 so γ (A,L) can be written Aγ (L)for some func-
tion γ (L) . Then any candidate function c (a, l) = ac (l) for γ (a, l) is associ-
ated with a candidate optimal regime dcop (l) = argmaxa c (a, l) = I {c (l) > 0}
while the true optimal regime dop (l)=d

γ
op (l) is I {γ (l) > 0} . Now the expected

utility of c is E
[
Ydcop

]
= E [I {c (L) > 0}Ya=1] + E [I {c (L) ≤ 0}Ya=0] =

E [I {c (L) > 0} γ (L)] + E [Ya=0] while E
[
Ydop

]
= E [I {γ (L) > 0} γ (L)] +

E [Ya=0] . Thus it is clear that supcE
[
Ydcop

]
= E

[
Ydop

]
and that the supre-

mum is attained not only at γ but at any c∗ for which the sets {l; c∗ (l) > 0} =
{l; γ (l) > 0} on which c∗ and γ are positive are equal. Thus one also can char-
acterize the optimal regime(s) as the maximizer over c of
E [I {c (L) > 0} c∗ (L)]+E [Ya=0] as well as the oracle maximizer γ̂jutil−orac of
the expected utility E [I {c (L) > 0} γ (L)]+E [Ya=0] . However this last result
does not imply that, if one has only J candidates γ̂j (a, l) available (none of
which typically includes any optimal regime), the oracle γ̂j

∗

that maximizes

E
[
I
{
γ̂j (L) > 0

}
c∗ (L)

]
will have expected utility E

[
Y
d̂j

∗

op

]
close to the ex-

pected utility E
[
Y
d̂
jutil−orac
op

]
of the oracle maximizer γ̂jutil−orac of expected

utility E
[
I
{
γ̂j (L) > 0

}
γ (L)

]
+ E [Ya=0] over j = 1, ...., J.

Likewise, the maximizer γ̂joracle of risk
(
γ̂j, FA|L, b, g

)
over the J candi-

dates may have expected utility E
[
Y
d̂
joracle
op

]
much less than E

[
Y
d̂
jutil−orac
op

]
,

even though risk
(
c, FA|L, b, g

)
, E [I {c (L) > 0} c∗ (L)] and

E [I {c (L) > 0} γ (L)] are all maximized over all c by γ. The result in the
preceding clause is only useful in an asymptopia which, with realistic sized
samples and L high dimesional, we can never reach.

Remark A: The point being made here is different from the equally valid
point that even if we are fortunate and one of the J models γj

(
L,A, ψj

)

happens to be correctly specifed, i.e., γjcorrect
(
·, ·, ψ†jcorrect

)
= γ (·, ·) for

some jcorrect and some parameter value ψ†jcorrect , if ψ†jcorrect is sufficiently
high dimensional, the huge variability of ψ̂jcorrect compared to the smaller
variablity of the ψ̂j of incorrectly specified lower dimensional models may
mean that, with high probability, γ̂jcorrect does much worse with respect to
risk

(
c, FA|L, b, g

)
, E [I {c (L) > 0} c∗ (L)] and E [I {c (L) > 0} γ (L)] than the

corresponding aforementioned oracles.
If we had an unbiased estimator of expected utility

E
[
Ydcop

]
= E [I {c (L) > 0} γ (L)] + E [Ya=0] or E [I {c (L) > 0} γ (L)] we

could use cross validation, as we did with risk
(
c, FA|L, b, g

)
, to obtain an
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estimator whose expected utility was close to that of the oracle maximizer
γ̂jutil−orac and all would seem well.

Now for any d = d (l) an unbiased estimator of E [Yd] under sequential
randomization with p (a|l) known and A discrete is the Horvitz-Thompson-
like estimator Pn [Y I {A = d (L)} /p (A|L)] . Thus for any candidate c (a, l) for
γ (a, l) with associated candidate optimal regime
dcop (l) = argmaxa c (a, l), Pn

[
Y I
{
A = dcop (L)

}
/p (A|L)

]
is an unbiased esti-

mator of E
[
Ydcop

]
. Thus, under van der Laan and Dudoit’s regularity condi-

tions, the γ̂ ĵutil maximizing P val
nval

[
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

]
has expected

utility E

[
Y
d
̂jutil
op

]
close to expected utility E

[
Y
d̂
jutil−orac
op

]
of the utility or-

acle, provided J is not too large. Thus it appears, at least in the one oc-
cassion problem, we have developed a quite reasonable approach that selects

d
̂jutil
op (l) = argmaxa γ

ĵutil
(
a, l, ψ̂ĵutil

)
as the estimated optimal regime with

which to treat new patients.

Remaining philosophical and practical difficulties:

But there are remaining philosophical and practical difficulties. For example
consider using the data from a study of a population with distribution F to
determine the optimal regime for a new and different population in which
Ya has the same conditional distribution given L as the study poulation but
fnew (l) �= f (l) . The expected utility of a candidate optimal regime c (l, a)
in the new population is then E

[{
Y I
{
A = dcop (L)

}
/p (A|L)

}
w (L)

]
with

weight function w (L) = fnew (L) /f (L) which is still maximized over all c
at c = γ but is no longer necessarily maximixed over the J candidates γ̂j

at γ̂jutil−orac because of the weight function w (L) = fnew (L) /f (L) . Thus,
all would agree that cross validation of the γ̂jshould be done by maximizing

P val
nval

[{
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

}
w (L)

]
if reasonable smooth and reliable

estimates of the densities fnew (L) and f (L) can be obtained.
The Single Patient Problem : But now consider a single new patient

with Lnew = l for whom a physician needs to select a treatment.The pa-
tient certainly constitutes a population with a point mass at L = l. Now
even if there were a validation sample member with L = l, the above max-
imization would be based on just that one validation sample member, and
thus is too variable to be useful. But why should the physician be interested

in the loss −E
[
Y
dγ̂
j
op

]
for a candidate regime γ̂j rather than, for example,

−E
[
Y
dγ̂
j
op
|L ∈ rel

]
where rel is a subset of covariate values that includes

his patient’s l, excludes values of l the physician believes irrelevant for de-
termining treatment for his patient, and that contains a sufficiently large
fraction of the validation sample so that the expected utility of the γ̂j se-
lected by cross-validation restricted to validations member with L ∈ rel will
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be close to the oracle maximizer over the γ̂jof E
[
Y
dγ̂
j
op
|L ∈ rel

]
. For exam-

ple in an AIDS study suppose the CD4 count of the patient was 100. Then
the physician might include in rel only the 60%, say, of validation subjects
with CD4 counts less than 250. The use of rel is a special case of a more

general strategy wherein the physician would use dĵwop with ĵw the j that

maximizes P val
nval

[{
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

}
w (L)

]
for a weight function

w (l) supplied by the physician that attains its maximum height at his pa-
tient’s l, and has relatively less height at those l′s the physician believes
less relevant to his patient. Determining how quickly w (l) plummets from its
maximum is a classic variance bias trade off since the more peaked is w (l)
(i) the greater is the probability (owing to sampling variability) that the w-

risk E
[{
Y I
{
A = dĵwop (L)

}
/p (A|L)

}
w (L)

]
of the selected model γ̂ ĵw differs

greatly from the w− risk E
[{
Y I
{
A = d

jw,util−orac
op (L)

}
/p (A|L)

}
w (L)

]
of

the w−oracle regime γ̂jw,util−orac that maximizes

E
[{
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

}
w (L)

]
, but (ii) the less the ( doctor’s sub-

jective) probability of large bias where we measure bias as the absolute dif-
ference between the oracle w−risk and the oracle patient-risk

maxj E
[{
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

}
wpatient (L)

]
and the patient-risk

E
[{
Y I
{
A = d

jw,util−orac

op (L)
}
/p (A|L)

}
wpatient (L)

]
of the w−oracle regime

γ̂jw,util−orac , where wpatient (l) = 0 for all l other than the patient’s. To help
understand the doctor’s subjective probability of bias suppose, after defin-
ing the subset rel based on his own knowledge base, the doctor was per-
suaded by others that the (i) some of the proposers of the optimal regime
SNNMs γj

(
a, l, ψj

)
had an understanding of the relevant biology superior

to his and, therefore, (ii) to the extent their models γj (a, l, ψ) borrow in-
formation from subjects with l /∈ rel to estimate the effect of treatment
at his patient’s l ∈ rel (say, by assuming γj

(
a, l, ψj

)
= aγj

(
l, ψj

)
had

a quadratic dependence ψj1CD4 + ψj2CD42 over the entire CD4 range),
this decison to borrow is based on sound biological knowledge. In that
case the physician might assume that the oracle w−risk even for w (l)
constant would not differ greatly from the oracle patient-risk so to de-
crease variability the doctor would choose treatment simply by maximizing

P val
nval

[{
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

}]
. But if the doctor could not be so per-

suaded he would use a non-constant weight function. Software to allow the
doctor to input a his preferred weight function and to select among the J
offered treatment by cross-validation could be implemented. Clearly it would
be important to derive the distribution of and confidence intervals for the

difference between the w-risk E
[{
Y I
{
A = d

̂jw

op (L)
}
/p (A|L)

}
w (L)

]
of the

randomly selected model γ̂jw and the oracle w − risk
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E
[{
Y I
{
A = d

jw,util−orac
op (L)

}
/p (A|L)

}
w (L)

]
, as a function of J, n, w (·) ,

and various other parameters. This is an open statistical problem.
Adding Regimes by Voting : When one is given a collection of J

candidate regimes dγ̂
j

op (l) it is natural to add one or more regimes to the
collection before choosing among them using the above methods. Specifically

we add the ”vote regime” dvoteop (l) that selects argmaxa

(∑
j I
(
dγ̂

j

op (l) = a
))

that selects the most recommended regime. If several values of a tie at a given
l then add both regimes, unless the combinatorics from ties at different values
of l would add a prohibitively large numer of vote regimes; in that case, one
can select randomly among ties.

Continuous Treatment: Suppose now that the treatment A is contin-
uous with conditional density given L absolutely continuous wrt Lebesgue
measure rather than binary. For example A may represent the number
of milligrams of a drug that one takes and all take some, but differing
amounts of the drug. In that case even when p (A|L) is known, there ex-
ists no unbiased estimator of E [Yd] = E [E{Y |A = d (L) , L}]. For example
P val
nval [Y I {A = d (L)} /p (A|L)] is undefined since the event I {A = d (L)} is

0 with probability one. Nonetheless P val
nval

[
Loss

(
c, FA|L, b, g

)]
remains an un-

biased estimate of risk
(
c, FA|L, b, g

)
= E

[
Loss

(
c, FA|L, b, g

)]
so we can con-

tinue to estimate the less desirable risk function risk
(
c, FA|L, b, g

)
. An al-

ternative, perhaps preferred, approach based on ideas in Murphy, van der
Laan, and Robins (1998) and Gill and Robins (2001) is given a candidate
c (a, l) to convert dcop to a random regime pc in which when L = l we
treat with A drawn from pc (a|l), where, say, pc (a|l) could be a uniform
distribution with support on

(
dcop (l)− σ, dcop (l) + σ

)
or more precisely on(

min
{
dcop (l)− σ, amin

}
,min

{
dcop (l) + σ, amax

})
where amin and amax are

the extremes of ethically allowed doses and σ is a positive constant. Let-
ting Ypc represent the counterfactual response under the random regime, the
expected utility E [Ypc ] under p

c (a|l) is
∫
E{Y |A = a, L}pc (a|L) dadF (l) =

E [pc (A|L)Y/p (A|L)] which admits the unbiased estimator
P val
nval [p

c (A|L)Y/p (A|L)] since pc (a|l) is absoutely continuous with respect

to p (a|l) . Now we would wish to choose σ very small so that the E
[
Ypγ̂j

]

approximate the E
[
Ydγ̂j

]
, our utilities of interest. However this is not gener-

ally possible since σ must be chosen large enough for the expected utility of

the random regime pγ̂
̂j

maximizing P val
nval

[
Y pγ̂

j

(A|L) /p (A|L)
]
over J to be

close to oracle utility maxjE
[
Y pγ̂

j

(A|L) /p (A|L)
]
. Having selected γ̂ ĵ the

question then remains whether to treat randomly with pγ̂
̂j

or deterministically

with dγ̂
̂j

op I would opt for the latter but with no strong justification.
Attempts to Acheive Double Robustness : Assume again A is binary

and w (L) = 1, but now suppose that, as in an observational study, p (A|L) is
unknown. Then, following van der Laan and Dudoit, we might try to construct
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doubly robust estimators of the risk E
[
Ydcop

]
of a candidate regime c (a, l) =

ac (l) based on the following double robust identity (9.5).
Theorem (9.2): Let F ∗ be an arbitrary distribution. Then, under the

assumption of no unmeasured confounders, if
p∗ (A|L) = p (A|L) or E∗ [Y |A = dcop (L) , L

]
= E

[
Y |A = dcop (L) , L

]
then

E
[
Ydcop

]
is given by

E
[
Ydcop

]
(9.5a)

= E

[
Y I
(
A = dcop (L)

)

p∗ (A|L) − E∗ [Y |A = dcop (L) , L
]
(
I
(
A = dcop (L)

)

p∗ (A|L) − 1

)]

= E

[
I
(
A = dcop (L)

) {
Y − E∗ [Y |A = dcop (L) , L

]}

p∗ (A|L) + E∗ [Y |A = dcop (L) , L
]
]

(9.5b)

It follows that the cross validated estimate of expected utility

P val
nval[
Y I
{
A = dcop (L)

}

p (A|L; α̂) − E
[
Y |A = dcop (L) , L; ; η̂

]
(
I
(
A = dcop (L)

)

p (A|L; α̂) − 1

)]

will be a n1/2 CAN estimator of E
[
Ydcop

]
if we have estimated from es-

timation sample or validation sample data parametric models E [Y |A,L; η]
and p (A|L;α) for E [Y |A,L] and p (A|L) and either (but not necessarily
both) are correct. But note that E [Y |A,L] = {γ (A,L) + E [Y |A = 0, L]} .
Now given a correct model γ (A,L;ψ) for γ (A,L) , we are familiar from Sec-
tions 3 and 4 of having to model p (A|L) or E [Y |A = 0, L] correctly to ob-
tain CAN estimates of the parameter ψ and thus of γ (A,L) and dop (l) .
But now we find, that if our model for E [Y |A = 0, L] is correct and our
model for p (A|L) is mispecified, we must still model γ (A,L) correctly to ob-

tain CAN estimates of the expected utilities E
[
Ydcop

]
of candidate regimes

dcop (l) = argmaxa c (a, l). One might suppose this is of no help for if we

could specify a correct model γjcorrect
(
A,L, ψjcorrect

)
for γ (A,L) and a cor-

rect model for E [Y |A = 0, L], we could immediately obtain a CAN estimate

dop (L) , namely argmaxa γ
(
A,L; ψ̂

)
, where ψ̂ is theDR estimator of sections

3 and 4 without needing to resort to cross-validation. However, as discussed
in Remark A just above, since our goal is to minimize expected utility based
on a sample of size n if ψjcorrect is high dimesional so that ψ̂jcorrect is highly
variable, the model jutil−orac that maximizes expected utility might not be
the model jcorrect and thus our cross validation procedure would correctly
and usefully fail to select model jcorrect. Thus there is a meaningful, sense in
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which we can obtain useful cross-validated DR estimators of E
[
Ydcop

]
that are

robust to misspecification of the model for p (A|L) .
The situation appears to be different if we decide to use risk (c, F ∗, g) =

E [Loss (c, F ∗, g)] as a criterion, where we recall that

Loss (c, F ∗, g) = loss (O, c, F ∗, g) = g2 (L) {[Y − c (L,A)]− E∗ [Y − c (L,A) |L]}2

and that, by Corollary (9.1), γ (L,A) is the minimizer of risk (c, F ∗, g) over all
c if (i) either E∗ [Y − γ (L,A) |L] = E [Y − γ (L,A) |L] or (ii) E∗ [c (L,A) |L] =
E [c (L,A) |L] for all c (L,A) . Thus if we have estimated, from the estimation
sample or validation sample data, a correct parametric model p (A|L;α) for
p (A|L) , then
r̂isk

(
c, F̂A|L, b, g

)
= P val

nval

[
g2 (L) {Y − c (L,A)− b (L) + E [c (L,A) |L; α̂]}2

]

is a CAN estimator of
risk (c, F ∗, g) where F ∗ =

(
FA|L, b

)
satisifies (ii). If, separately for each can-

didate c (L,A) ,we obtain, from estimation sample data or validation sample
data, an estimate ς̂ (c) of the fit of a correct parametric model b (L; ς) for
E [Y |A = 0, L] based on regressing Y − c (L,A) on L wiith regression function

b (L; ς) , then r̂isk
(
c, F̂Y |A=0,L, g

)
= P val

nval

[
g2 (L) {Y − c (L,A)− b (L; ς̂ (c))}2

]

is a CAN estimator of risk (c, F ∗ (c) , g) where F ∗ (c) =
(
F ∗
Y |A=0,L (c)

)
satisi-

fies (i) (since F ∗
Y |A=0,L (γ) = FY |A=0,L). Thus, we see that, unlike when we

used expected utility as a criterion, we can obtain a CAN estimator of a risk
function risk (c, F ∗ (c) , g) that is minimized over c at γ (L,A) if we have a
correct model for E [Y |A = 0, L] . However in contrast to the spirit of the dou-
bly robust estimators of γ (L,A) studied in Sections 3 and 4, we cannot obtain
a CAN estimator of a risk function risk (c, F ∗ (c) , g) that is minimized over
c at γ (L,A) when either (but not necessarily both) of the parametric models
b (L; ς) and p (A|L;α) for E [Y |A = 0, L] and p (A|L) are correct. Thus a true
double robustness property is lacking.

Beyond Double Robustness:

Heretofore we have assumed that we have been able to correctly specify ei-
ther (but not necessarily both) models for the law of treatment Am given
the past or a model for the mean of Hm

(
ψ†) . With high dimensional data

such an assumption will never be exactly true and so the question arises as
to whether we can obtain additional robustness to misspecification beyond
double robustness and if so what will be the cost in terms of variance. We
investigate that question in this section using a new theory of higher dimen-
sional influence functions based on U− statistics due to Robins and van der
Vaart (2004). We consider the simplest example in order to make the ideas
clear. For more general examples see Robins and van der Vaart (2004). We
do not consider the estimation of nonparametric γ (A,L) as above but rather
assume γ (A,L) = ψA and focus on estimating ψ.

Consider the analysis of the normal semiparametric regression model based
on n iid observations Oi = (Yi, Ai, Xi)
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Y = ψ†A+ b
(
X ; η†

)
+ e (9.6)

where e˜N (0, 1) , b
(
X ; η†

)
is an unknown function, and A is dichotomous.

For simplicity we will assume the law of e is known. The law F
(
a|X ;α†)

of A|X is unknown as is the law F
(
x;ω†) of X. We consider first the case

with X discrete with either finite or countable support. All quantities will be
allowed to depend on the sample size n, including the support of X and the
true parameters generating the data. We suppress the dependence on n in the
notation except for emphasis.

The likelihood with respect to a dominating measure for one observation
is

f (O; θ = (ψ, η, α, ω)) (9.7)

= φ {Y − ψA− b (X ; η)} f (A|X ;α) f (X ;ω) ; θ ∈ Θ = Ψ ×N × Å×Ω

The following argument suggests that there should exist estimators that are
superior to our doubly robust estimators. Our doubly robust estimators of ψ†

are (i) n1/2− consistent estimators if we succeed in specifiying a correct lower
dimensional model for either b

(
X ; η†

)
or f

(
A|X ;α†) but (ii) our estimators

are inconsistent if both models are incorrect. It seems logical to suppose that
by specifying larger models for b

(
X ; η†

)
and/or f

(
A|X ;α†) we should be

able to obtain doubly robust confidence intervals and point estimators whose
length and standard deviation are n−α for α < 1/2, thus allowing us to give up
efficiency for further protection against bias. We shall see that this is indeed
possible. Indeed this approach can result in triply robust or even infinitely
robust (i.e. exactly unbiased) estimating functions in certain settings.

We will analyze this model using a new theory of higher order influence
functions due to Robins and van der Vaart (2004) that extends the first order
semiparametric efficiency theory of Bickel et al. (1993) and van der Vaart
(1991) by incorporating the theory of higher order scores and Bhattacharrya
bases due to McLeish and Small (1994) and Lindsay and Waterman (1996).
The following follows the development in McLeish and Small (1994) in many
aspects.

A Theory of Higher Order Influence Functions :
Suppose we observe n iid observations Oi,i = 1, ..., n, from a model

M (Θ) = {F (o; θ) , θ ∈ Θ} and we wish to make inference on a particular

functional ψ̃ (F ) ∈ Rp
∗

or equivalently ψ (θ) = ψ̃ (F (θ)). In general the func-

tional ψ̃ (F ) can infinite dimensional but here for simplicity we only consider
consider the finite dimensional case.

Given a possibly vector valued function b (ς) , ς = {ς1, ..., ςp}T , define
for m = 0, 1, 2, b\i1...im (ς) = ∂mb (ς) /∂ςi1...∂ςim with is ∈ {1, ..., p} , for
s = 1, 2, ...,m where the \ symbol denotes differentiation by the variables oc-
curring to its right. Given a sufficiently smooth p − dimensional parametric
submodel θ̃ (ς) mapping ς ∈ Rp injectively into Θ, define ψ\i1...im (θ) to be
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(
ψ ◦ θ̃

)
\i1...im

(ς) |ς=θ̃−1{θ} and f\i1...im (O; θ) to be
(
f ◦ θ̃

)
\i1...im

(ς) |ς=θ̃−1{θ}

where f (O; θ) �
∏n
i=1 f (Oi; θ) and each is ∈ {1, ..., p} .

Definition of a kth order estimation influence function: A vector
U-statistic Uk (θ) = uk (O;θ) of order k, dimension of p∗ of ψ (θ) and finite
variance is said to be an kth order estimation influence function for ψ (θ) if (i)
Eθ [Uk (θ)] = 0, θ ∈ Θ and (ii) for m = 1, 2, ... , k, and every suitably smooth

p dimensional parametric submodel θ̃ (ς) , p = 1, 2, ...,

ψ\i1...im (θ) = Eθ [Uk (θ)Si1...im (θ)]

where Si1...im (θ) � f\i1...im (O; θ) /f (O; θ) . We refer to Si1...im (θ) as an mth

order score associated with the model θ̃ (ς) . If ψ\i1...im (θ) = 0, we refer to
Si1...im (θ) as an estimation nuisance score.

Remark: The scores Si1...im (θ) are U statistics of order m. For later
use it will be useful here to collect formula for the an arbitrary score
Si1...is (θ) of order s in terms of the subject specific scores Si1...im,j (θ) =
f/i1...im,j (Oj ; θ) /fj (Oj ; θ) , j = 1, ..., n for s = 1, 2, 3. Resullts in Waterman
and Lindsay (1996) imply

Si1 =
∑

j

Si1,j (9.8a)

Si1i2 =
∑

j

Si1i2,j +
∑

l �=j
Si1,jSi2,l (9.8b)

Si1i2i3 =
∑

j

Si1i2i3,j+
∑

l �=j
Si1i2,jSi3,l+Si3i2,jSi1,l+Si1i3,jSi2,l+

∑

l �=j �=t
Si1,jSi2,lSi3,t

(9.8c)
Note these formulae are examples of the following canonical representation

of an arbitrary sth order U statistic.

Um =
m=s∑

m=1

Dm (9.9)

Dm (θ) =
∑

{i1 �=i2 �=... �=im;il∈{1,2,...,n},l∈=1,...,m}
dm (Oi1 , Oi2 , ..., Oim) ,

For all m and l, 1 ≤ l ≤ m, with O−il =
(
Oi1 , ...Oil−2

, Oil−1
, Oil+1

, Oil+2
..., Oim

)

E [dm (Oi1 , Oi2 , ..., Oim) |O−il ] = 0,

dm (Oi1 , Oi2 , ..., Oim) need not be symmetric in Oi1 , Oi2 , ..., Oim

We also consider a U statistic of order m < s to also be a U statistic of
order s with dj

(
Oi1 , Oi2 , ..., Oij

)
= 0 for s ≥ j > m.

Estimation influence functions will be useful for deriving point estimators
of ψ with small bias and for deriving interval estimators centered on an esti-
mate of ψ. We also define testing influence functions both to test hypotheses
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about ψ and to form confidence intervals for ψ whose expected length may be
less than that of intervals based on an estimation influence function.

Definition of a kth order testing influence function: A U-statistic
Uk (θ) = uk (O;θ) of order k, dimension p∗, and finite variance is said to
be an kth order testing influence function for testing ψ (θ) = ψ† if in the

restricted model M
(
Θ
(
ψ†)) = M (Θ) ∩

{
F ; ψ̃ (F ) = ψ†

}
(i.e the submodel

with parameter space Θ
(
ψ†) = Θ ∩

{
θ;ψ (θ) = ψ†}) (i) Eθ [Uk (θ)] = 0, θ ∈

Θ
(
ψ†) and (ii) for m = 1, 2, ..., k, and every suitably smooth p dimensional

parametric submodel θ̃ (ς) with range Θ
(
ψ†) , p = 1, 2, ..., ψ\i1...im (θ) =

Eθ [Uk (θ)Si1...im (θ)] where Si1...im (θ) � f\i1...im (O; θ) /f (O; θ) . Since in

model M
(
Θ
(
ψ†)) , ψ\i1...im (θ) = 0 for all Si1...im (θ) , all scores are nuisance

scores.
Remark: Suppose that ψ (θ) = ψ† and Uk (θ) is a kth order estimation

influence function, then it is a kth order testing influence function, since ev-
ery smooth submodel through θ in model M

(
Θ
(
ψ†)) is a smooth submodel

through θ in model M (Θ) . Further the set of estimation nuisance scores in-
cludes the set of testing scores. The converses need not be true.

Remark: Henceforth, in any statement in which we do not mention
whether the parameter space under consideration is M

(
Θ
(
ψ†)) or M (Θ) ,

our results hold for for both. When we wish to distinguish the 2 cases we use
’est’ and ’test’ to discriminate.

Definition of the Bias Function of a kth order influence function:
We call Bk

[
θ†, θ

]
= Eθ† [Uk (θ)] the bias function of Uk (θ) .

Given a parametric submodel θ̃ (ς) , define Bk,i∗1 ...i∗mim+1,...is [θ, θ]

= ∂sBk

[
θ̃ (ς∗) , θ̃ (ς)

]
/∂ς∗i1...∂ς

∗
im∂ςim+1...∂ςis |ς∗=θ̃−1{θ},ς=θ̃−1{θ} where we re-

serve ∗ for differentiation with respect to the first argument of Bk [·, ·] . Thus,
under regularity conditions, by the definition of a kth order influence function
Uk (θ) , Bk,i∗1 ...i∗s [θ, θ] = ψ\i1...is (θ) .

The following Theorem is closely analagous to related results in McLeish
and Small (1994).

Extended Information Equality Theorem: Given a kth order influ-
ence function Uk (θ) , for all smooth submodels θ̃ (ς) and all i∗1...i

∗
mim+1...is,

s ≤ k, (i)Bk,i∗1 ...i∗mim+1,...is [θ, θ] = 0 if s > m > 0, but (ii)Bk,i∗1 ...i∗mim+1,...is [θ, θ]
≡ Bk,i1...is [θ, θ] = −ψ\i1...is (θ) if m = 0

Proof: See Robins and van der Vaart (2004).
Let Vm (θ) = Si1...im (θ) denote a generic mth order score at θ in model

. Let {Vm (θ)} be the set of mth order scores at θ as we vary over both

the parametric submodels θ̃ (ς) of our model and the indices i1...im. Let
∪l=ml=1 {Vl (θ)} be the collection of scores of order m or less and Bm (θ) be the
closed linear span of ∪l=ml=1 {Vl (θ)} in the Hilbert space Um composed of all
U−statistics of order m with mean zero and finite variance and dimension of
p∗ of ψ with inner product defined by covariances with respect to the product
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measure Fn (·; θ).. We refer to Bm (θ) as the mth order tangent space for the
model. Bm (θ) is parametrization invariant and thus a ”geometric quantity.”

Repeating the above for the estimation nuisance scores V est,nuis
m (θ) in

the ’estimation’ model with parameter space M (Θ) , we refer to the closed
linear span Λm (θ) of ∪l=ml=1

{
V est,nuis
m (θ)

}
to be the mth order estimation

nuisance tangent space. We write Bestm (θ) and Λ
est

m (θ) for the tangent space

and nuisance tangent space in modelM (Θ) ..We write Btestm (θ) for the tangent

space in model M
(
Θ
(
ψ†)) . Note Btestm (θ) ⊆ Λ

est

m (θ) ⊆ Bestm (θ) .
Given any kth order estimation influence function Uest

k (θ) , define IF est
k (θ) =

Πθ

[
Uk (θ) |B

est

k (θ)
]
where the projection operator Πθ [·|·] is the projection

operator in the Hilbert space Uk (θ). .
Efficient Influence Function Theorem : (i)IF est

k (θ) is unique in the

sense that for any two kth order influence functions Πθ

[
U
est(1)
k (θ) |Bestk (θ)

]

and Πθ

[
U
est(2)
k (θ) |Bestk (θ)

]
are equal almost surely.

(ii) IF est
k (θ) is a kth order estimation influence function and has variance

less than or equal to any other kth order estimation influence function.
(iii)Uk (θ) is a kth order estimation influence function if and only if Uk (θ) ∈{

IF est
k (θ) +B

est,⊥
k (θ) ;B

est,⊥
k (θ) ∈ Best,⊥k (θ)

}
where Best,⊥k (θ) is the ortho-

complement of Bestk (θ)

(iv) For m < k,Π
[
IF est

k (θ) |Bestm (θ)
]
= IF est

m (θ)

Proof: See Robins and van der Vaart (2004):
Definition of the kth order efficient influence function and vari-

ance: IF est
k (θ) is referred to as the the kth order efficient estimation influence

function and its variance as the kth order efficient estimation variance.
Consider again model M (Θ) with parameter space Θ. When the pa-

rameter space Θ =
∏r=R
r=1 Θr is a cartesian product of sets Θr, so θ =

(θ1, ...θR) , θr ∈ Θr,we say a parametric submodel θ̃ (ς) , ς ∈ Z, is variation

independent wrt the Θr if ς = (ς1, ..., ςR) , ςr ∈ Zr,Z =
∏r=R
r=1 Zr, and θ̃ (ς) =(

θ̃1 (ς) , ..., θ̃R (ς)
)

=
(
θ̃1 (ς1) , ..., θ̃R (ςR)

)
with θ̃r (ςr) ∈ Θr. An m dimen-

sional score Si1...im (θ) of a variation independent submodel is a member of a
particular set of scores Bmtm with generic member V

θ
tm1
1 ,...,θ

tmR
R

where the tmr

are components of an R−vector tm = (tm1, ..., tmR) satisfying
∑R

r=1 tmr = m
with tmr determined by Si1...im (θ) via tmr =

∑m
j=1 I

(
ςij ∈ Zr

)
. The compo-

nents tmr tell how many of the m derivatives in Si1...im (θ) were with respect

to components of ς that lay in Zr. We let Bmtm =
{
V
θ
tm1
1 ,...,θ

tmR
R

}
denote

the set of all order m scores of variation independent parametric submodels
with a given value of tm. Then in general Bk is the closed linear span of the
union ∪km=1 ∪{tm} Bmtm of variation independent scores where ∪{tm}refers
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to the union over all vectors of length R with nonnegative integer components
whose components sum to m.

Example: If m = 2 and R = 4, the number of sets B2t2 is 10 as there are
10 vectors of length 4 with nonnegative integer components whose components
sum to 2.

Suppose the model can be parametrized as θ = (ψ, γ), ψ ∈ Ψ ,γ ∈ Γ,Θ =

Ψ × Γ (at least locally). That is, in the above notation, with Θ =
∏r=2
r=1Θr ,

we can then take Θ1 = Ψ and Θ2 = Γ. We refer to the 1st order (m = 1)
scores Vγ = Vγ1 as (pure) nuisance scores and Vψ = Vψ1 as the score for ψ. For
m > 1, we refer to generic scores (i) Vγmas mth order pure nuisance scores
; (ii) Vψm as mth order scores for ψ and (iii) Vψcγm−c ,m > c > 0 as mth
order mixed scores. The closed linear span of ∪km=1 {Vγm} of all pure nuisance
scores of order k or less is Btestk . The closed linear span

[
∪km=1 {Vγm}

]
∪[

∪km=2Vψm
]
∪ [∪km=1 ∪c=m−1

c=1

{
Vψcγm−c

}
] of all scores excepting the 1st order

(m = 1) score Vψ for ψ is the estimation nuisance tangent space Λ
est

k (θ) .

Finally the estimation tangent space Bestk (θ) is the closed linear span of all

the scores of order k or less. Note if Θ =
∏r=R
r=1 Θr and the likelihood for

one observation factors as f (O; θ) =
∏r=R
r=1 Lr (θr) and Si1...iR,j (θ) is a mixed

score Vθ1θ2···θR , then Si1...iR,j =
∏r=R
r=1 Sir,j .

Definition of the kth order efficient testing and estimation scores
and information: Suppose θ = (ψ, γ), ψ ∈ Ψ ,γ ∈ Γ,Θ = Ψ × Γ (at
least locally). We define the kth order efficient testing score EStestk (θ) =

Πθ

[
Vψ (θ) |Btest,⊥k

]
to be the projection of the first order score Vψ (θ) on the

orthogonal complement in Uk (θ) of the kth order testing tangent space. We de-

fine the kth order efficient estimation score ESestk (θ) = Πθ

[
Vψ (θ) |Λest⊥k (θ)

]

to be the projection of the first order score Vψ (θ) on the orthogonal com-
plement in Uk (θ) of the kth order estimation nuisance tangent space. We

call the variances Eθ

[
EStestk (θ)EStestk (θ)

T
]
and Eθ

[
ESestk (θ)ESestk (θ)

T
]

of the kth order efficient scores the kth order testing and estimation efficient
informations.

Remark:Note that Eθ

[
EStestk (θ)EStestk (θ)

T
]
≥ Eθ

[
ESestk (θ)ESestk (θ)

T
]

since Λ
est⊥
k ⊆ Btest,⊥k so the efficient testing information is greater than or

equal to the efficient estimation information. For k = 1, Λ
est⊥
k = Btest,⊥k , so

EStest1 (θ) = ESest1 (θ)
Efficient Score Lemma: Suppose the model can be parametrized as

θ = (ψ, γ), ψ ∈ Ψ ,γ ∈ Γ,Θ = Ψ × Γ (at least locally), then IFk (θ) ={
Eθ

[
ESestk (θ)ESestk (θ)

T
]}−1

ESestk (θ) , so the kth order estimation efficient

variance is the inverse
{
Eθ

[
ESestk (θ)ESestk (θ)

T
]}−1

of the kth order esti-

mation information.
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Proof: see Robins and van der Vaart (2004).
The main ideas: Here are the main ideas behind using higher order

influence functions in models in which they exist. [In models which are so
large that higher order influence functions do not exist, we will consider a lower
dimensional working model that admits higher order influence functions and
allow the dimension of the working model (the sieve) to increase with sample

size. A worked example is given later.] Consider the estimator ψ̂k = ψ
(
θ̂
)
+

Uk

(
θ̂
)
based on a sample size n where θ̂ is an initial estimator of θ from a

separate sample (based on random sample splitting) that perhaps obtains the
optimal rate of convergence for θ and Uk (θ) is a kth order estimation influence
function. It would be optimal to choose Uk (θ) equal to IF

est
k (θ) . Expanding

and evaluating conditonally on θ̂, we have

ψ̂k − ψ (θ) =
{
ψ
(
θ̂
)
− ψ (θ) + Uk

(
θ̂
)
− Uk (θ)

}
+ Uk (θ)

= Uk (θ) +
{
Uk

(
θ̂
)
− Uk (θ)− Eθ

[
Uk

(
θ̂
)
− Uk (θ) |θ̂

]}
+

{
ψ
(
θ̂
)
− ψ (θ) + Eθ

[
Uk

(
θ̂
)
|θ̂
]}

Now under weak conditions var
{
Uk

(
θ̂
)
− Uk (θ) |θ̂

}
/var [Uk (θ)] = op(1)

unconditonally since we assume, with unconditional probability approaching

one,
∣∣∣
∣∣∣θ̂ − θ

∣∣∣
∣∣∣→ 0 as n→∞ for a norm on Θ for which

var
{
Uk

(
θ̂
)
− Uk (θ) |θ̂

}
/var [Uk (θ)] is continuous in θ̂ at θ. Thus given θ̂,

the distance
d
(
ψ̂k − ψ (θ) , Uk (θ) +

{
ψ
(
θ̂
)
− ψ (θ) + Eθ

[
Uk

(
θ̂
)]})

is converging to 0

where d (·, ·) is a distance that metrizes weak convergence. If ψ
(
θ̂
)
− ψ (θ) +

Eθ

[
Uk

(
θ̂
)]

has k+1 Frechet derivatives in θ̂ in a neighborhood of θ̂ = θ, then

by part (ii) of the extended information equality theorem, we expect that the
multilinear operator ofm arguments corresponding to the mth Frechet deriva-

tive at θ̂ = θ would be zero form = 1, ..., k. Hence ψ
(
θ̂
)
−ψ (θ)+Eθ

[
Uk

(
θ̂
)]

[and thus the bias of ψ̂k − ψ (θ)] will be Op

(∣∣∣
∣∣∣θ̂ − θ

∣∣∣
∣∣∣
k+1
)
, which decreases

with k for fixed n. On the other hand, in view of part (iv) of the efficient
influence function theorem, we know the variance var [Uk (θ)] increases with

k. Thus the rate of convergence of ψ̂k to ψ (θ) is minimized at k (n) equal
to kbalance = kbalance (n) at which the squared bias and the variance are of
the same order. Further the shortest conservative uniform asymptotic confi-

dence intervals will be based on ψ̂kconf ± var
[
Ukconf

(
θ̂
)
|θ̂
]1/2

zαcest where

kconf = kconf (n) is the smallest value of k such that var [Uk (θ)] is of higher
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order than the squared bias and cest, cest ≥ 1, is an appropriate constant cho-

sen to guarantee coverage 1− α, as Uk

(
θ̂
)
may not be normal and we might

use a tail bound based on, say, Markov’s inequality.
In this same setting if the model can be parametrized as θ = (ψ, γ) , then,

for an appropriate choice of k, conservative uniform asymptotic confidence
intervals can be constructed as{
ψ;
∣∣∣EStestk (ψ, γ̂ (ψ)) /v̂ar [EStestk (ψ, γ̂ (ψ)) |γ̂ (ψ)]1/2

∣∣∣ < zαctest

}

where v̂ar [EStestk (ψ, γ̂ (ψ)) |γ̂ (ψ)] is an appropriate variance estimator and
ctest is similiar to cest. Because ES

test
k (ψ, γ) is not orthogonal to the higher or-

der scores for ψ and the mixed ψ−γ scores, in an expansion ofEStestk (ψ∗, γ̂ (ψ∗))
around ψ†, the ψ−derivative EStestk,ψ

(†, γ̂
(
ψ†)) will typically be of the same

order as the mixed derivatives EStestk,ψcγm−c

(
ψ†, γ̂

(
ψ†)) and the higher order

ψ−derivatives EStestk,ψm

(
ψ†, γ̂

(
ψ†)) . Nonetheless, because in the expansion

EStestk,ψcγm−c

(
ψ†, γ̂

(
ψ†)) is multiplied by

(
ψ∗ − ψ†)c (γ̂ (ψ∗)− γ̂

(
ψ†))m−c

and

EStestk,ψm

(
ψ†, γ̂

(
ψ†)) is multiplied by

(
ψ∗ − ψ†)m ,m > 1, but

EStestk,ψ

(
ψ†, γ̂

(
ψ†)) is only multiplied by

(
ψ∗ − ψ†) , the asymptotic distribu-

tion of the solution ψ̂testeff,kto ES
test
k (ψ, γ) = 0 will often be unaffected by the

fact that EStestk (ψ, γ) is not orthogonal to the higher order scores for ψ and

the mixed ψ − γ scores. Thus ψ̂testeff,kconf
may have smaller limiting variance

than the solution ψ̂esteff,kconf
to ESestk (ψ, γ̂ (ψ)) = 0 without incurring greater

bias. Under further regularity conditions, for an appropriate choice of k, ψ̂testeff,k

will typically have ’limiting’ variance
{
var(ψ,γ) [ES

test
k (ψ, γ)]

}−1
. Note, for

m ≤ k,

{
var(ψ,γ)

[
EStestk (ψ, γ)

]}−1
= τ−1

kmvar(ψ,γ)

[
EStestk (ψ, γ)

]
τ−1,T
km

τkm = E(ψ,γ)

[
EStestk (ψ, γ)EStestm (ψ, γ)T

]

.
The lesson here is that for a given functional ψ (θ) the optimal procedure

is not necessarily based on IF est
k (θ) for any k as one only needs to consider

those components of θ that can make the bias exceed the variance. As an
example we have just seen that when θ = (ψ, γ) it is often not important to
be orthogonal to the nuisance scores corresponding to the higher order scores
for ψ and the mixed ψ − γ scores, even though it may be important to be
orthogonal to higher order scores for some or all components of γ (depending
on the rate at which particular components are estimable).

We now apply this methodology to our semiparametric regression model.
In Robins and van der Vaart (2003, 2004) we used this methodology (i) to
obtain an alternative derivation of some results due to Ritov and Bickel (1988),
Laurent and Massart (2000), and Laurent (1996) concerning the estimation of∫
f2 (x) dx,(ii) to construct conditonal interval estimates for the functionals
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∫ [
f̂ (x)− f (x)

]2
dx and

∫ [
Ê [Y |X = x]− E [Y |X = x]

]2
dx, obtaining as a

by-product improved adaptive confidence intervals for f (x) and E [Y |X = x]
compared to those of Lepski and Hoffmann (2002), and (iii) to construct point
and interval estimators for finite dimensional parameters in complex missing
and censored data models that improve on the doubly robust estimators of
Robins, Rotnitzky and van der Laan (2000) and van der Laan and Robins
(2002).

Application To Semiparametric Regression: We are now ready to
return to the semiparametric regression example. Θ =

∏r=4
r=1Θr = Ψ × N ×

Å × Ω. Let ∆ (α) = A − Eα (A|X) , e (ψ, η) = Y − ψA − b (X ; η) .Then the
generic subject -specific first order scores for Ψ,N , Å, and Ω are Vψi (ψ, η) =
Aei (ψ, η), Vηi (ψ, η, gη) = gη (Xi) ei (ψ, η) , Vαi (α, gα)
= gα (Xi)∆i (α) , Vωi (ω, gω) = gω (Xi) ,where Eω [gω (Xi)] = 0. Thus the set
of composite first order scores evaluated at the truth θ† are

{∑

i

Vψi

}
=

{∑

i

Aei

}
(9.10a)

{∑

i

Vηi (gη)

}
=

{∑

i

gη (Xi) ei; g (.) unrestricted

}
(9.10b)

{∑

i

Vαi (gα)

}
=

{∑

i

gα (Xi)∆i;∆ = A− Eα† (A|X) , ga (.)unrestricted

}

(9.10c)
{∑

i

Vωi (gω)

}
= {gω (Xi) ;Eω† [gω (Xi)] = 0} (9.10d)

The first order estimation and testing tangent space Best1 is the closed linear
span (cls) of the union of the sets (9.10a)-(9.10d). The first order estimation

nuisance tangent space Btest1 and the first order testing nuisance tangent space

Λ
est

1 equal the cls of (9.10b)-(9.10d) The second order estimation tangent Best2

space is the cls of the union of Best1 and the 10 sets of second order scores.

{Vψψ} =
{∑

i VψiVψi −A2
i +
∑∑

i�=j VψiVψj
}

{Vψη (gη)} =
{∑

i VψiVηi (gη)− gη (Xi)Ai +
∑∑

i�=j VψiVηj (gη)
}

{Vψω (gω)} =
{∑

i VψiVωi (gω) +
∑∑

i�=j VψiVωj (gω)
}

{Vαψ (gα)} =
{∑

i Vαi (gα)Vψi +
∑∑

i�=j Vαi (gα) Vψj
}

=
{∑

i gα (Xi)∆ieiAi +
∑∑

i�=j gα (Xi)∆iejAj

}

{Vηω (gη, gω)} =
{∑

i Vηi (gη)Vωi (gω) +
∑∑

i�=j Vηi (gη)Vωj (gω)
}
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{Vαω (gα, gω)} =
{∑

i Vαi (gα)Vωi (gω) +
∑∑

i�=j Vαi (gα)Vωj (gω)
}

{Vαη ((gη, gα))} =
{∑

i Vαi (gα)Vηi (gη) +
∑∑

i�=j Vαi (gα)Vηj (gη)
}

{
Vηη
(
gη, g

∗
η, g

∗∗
η

)}

=
{∑

i

[
e2i − 1]gη (Xi) g

∗
η (Xi) + eig

∗∗
η (Xi)

]
+
∑∑

i�=j gη (Xi) eiejg
∗
η (Xj)

}

{Vαα (gα, g∗α, g∗∗α )} =
{∑

i∆ig
∗∗
α (Xi) +

∑∑
i�=j gα (Xi) g

∗
α (Xi)∆i∆j

}

{Vωω (gω, g∗ω, g∗∗ω )} =
{∑

i g
∗∗
ω (Xi) +

∑∑
i�=j gω (Xi) g

∗
ω (Xi)

}
,

with g∗∗ω (Xi) , gω (Xi) , and g
∗
ω (Xi) having mean zero. The second estima-

tion nuisance tangent Λ
est

2 space is the cls of the union of Λ
est

1 and the 10 sets
of second order scores. The second order testing tangent space is the cls of

the union of Btest1 and the 6 sets of second order scores that do not involve ψ.
The first order efficient (testing and estimation) score ES1 for ψ is easily

seen to be Π
[
Vψ |Λ⊥

1

]
=
∑

i∆iei. The following Lemma proved in Robins and
van der Vaart (2004) gives EStest2 . Recall X is discrete.

Lemma: Let c∗ (Xi) = {1 + (n− 1) f (Xi)}−1 , v (Xi) = var (Ai|Xi)

EStest2 = ES1 −Π
[
ES1|{Vαη}

]
(9.11)

=
∑

i

∆iei {(n− 1) f (Xi)} c∗ (Xi)−
∑∑

i�=j
∆iejI (Xi = Xj) c

∗ (Xi)

Remark: EStest2 differs from ES1 because ES1 is not orthogonal to the
scores {Vαη} . Robins and van der Vaart also show that EStest2 differs from
ESest2 because EStest2 is not orthogonal to the mixed scores {Vαψ} and the
use of ESest2 may result in a loss of efficiency. ES1 and EStest2 are the same
whether the marginal distribution X is known, known to lie in a low dimen-
sional model, or completely unknown. Recall ES1 (ψ, α, η) is doubly robust in
the sense E(ψ†,α†,η†,ω†)

[
ES1

(
ψ†, α†, η

)]
= E(ψ†,α†,η†,ω†)

[
ES1

(
ψ†, α, η†

)]
.

Strikingly EStest2 is triply robust in that it has mean 0 if one of the three
nuisance parameters

(
α†, η†, ω†) are correct. That is,

E(ψ†,α†,η†,ω†)

[
EStest2

(
ψ†, α†, η, ω

)]
= E(ψ†,α†,η†,ω†)

[
EStest2

(
ψ†, α, η†, ω

)]

(9.12)

= E(ψ†,α†,η†,ω†)

[
EStest2

(
ψ†, α, η, ω†)] = 0

EStest2 has variance

E

[
v (X) f2 (X)

{
b
∗

(Xi)
}2

(n− 1)
2
n+ f (Xi) v (X)

{
b
∗

(Xi)
}2

(n− 1)n

]

= E

[
(n− 1) f (Xi)

{1 + (n− 1) f (Xi)}
n [v (X)]

]

while ES1 has the greater variance E [v (X)n] . It is interesting to consider

the case where Xi has n
ρ levels and f (Xi) = n−ρ. Then {var [ES1]}−1

is al-

waysO
(
n−1
)
while var [EStest2 ] is O

(
min

{
n, n2/nρ

})
and {var [EStest2 ]}−1

is
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O
(
max

{
n−1, nρ/n2

})
.On the other hand the conditional bias ofES1 (ψ, η̂, α̂)

(i.e., E [ES1 (ψ, η̂, α̂) |η̂, α̂]), where (η̂, α̂) is obtained from an independent

sample, is n
∑

l

{
p
(
l, α†

l

)
− p (l, α̂l)

}{
b
(
l, η†l

)
− b (l, η̂l)

}
. If ρ < 1 and

b (l, η̂l) is the empirical mean of Y −ψA in statum l and p (l, α̂l) is the empir-
ical mean of A in stratum l, the conditional bias is approximated by

n
{
E
[
var {p (L, α̂L) |L}1/2 var {b (L, η̂L) |L}1/2

]}
= nO

([{
n−(1−ρ)}1/2

]2)
=

O (nρ) . Now to be able to set conditional confidence intervals given (α̂, η̂)
based on ES1 (ψ, η̂, α̂) we need the bias squared of O

(
n2ρ
)

to be less
than the variance of O (n) ,thus requiring ρ < 1/2. In contrast the bias
of EStest2

(
ψ, η̂, α̂, ω†) is always zero when ω† is known and has variance

O
(
min

{
n, n2/nρ

})
. In fact EStest2

(
ψ, η̂, α̂, ω†) has variance converging to

the first order efficient information E [v (X)n] for ρ < 1. Let ψ̂1 (η̂, α̂) be the

solution to ES1 (ψ, η̂, α̂) = 0. Conditional on (η̂, α̂) , the estimator ψ̂test2 (η̂, α̂)
solving EStest2

(
ψ, η̂, α̂, ω†) = 0, with ω† assumed known, is semiparametric

efficent for ρ < 1, n1/2 − consistent for ρ = 1, converges at rate n1−ρ/2 for
2>ρ ≥ 1, and is inconsistent for 2>ρ.

In summary, conditional on (η̂, α̂) , our 2nd order U−statistic is necessary
to obtain first order semiparametric efficiency for 1/2 ≤ ρ < 1, because the

bias of our usual doubly robust estimator ψ̂1 (η̂, α̂) is too large. Our second
order estimator corrects the bias without adding to the limiting variability
of ψ̂1 (η̂, α̂) for 1/2 ≤ ρ < 1. Results exactly analogous to ours have been
obtained for other quadratic functions by a number of other investigators
such as Bickel and Ritov (1988) and Laurent and Massart (2000).

The reason that it is not possible to obtain a consistent estimator if ρ > 2
is that to control bias, it was necessary that in the ”degenerate” part of the
U-statistic, the pair i and j only contribute if they have the same value of X.
When we toss n subjects randomly onto a grid with nρ, ρ > 1, compartments,
one can show that the number of compartments containing more than one sub-
ject goes as n(2−ρ) and thus we will obtain an infinite amount of information
as n→∞ only if ρ ≤ 2.

Suppose now we do not know the law of X apriori. When f (X) (i.e., ψ†)

is known EStest2 is uncorrelated with Btestk for k ≥ 2, since
E(ψ†,α†,η†,ω†)

[
EStest2

(
ψ†, α, η, ω†)] = 0 for all (α, η) . However when ω† is

unknown, the third order scores
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Vαηω (gω, gα, gη)

=
∑

i

gω (Xi) gα (Xi) gη (Xi)∆iei +
∑∑

i�=j
gω (Xi) gα (Xi) gη (Xj)∆iej+

∑∑

i�=j
gω (Xi) gα (Xj) gη (Xj)∆jej + gω (Xj) gα (Xi) gη (Xj)∆iej+

∑∑ ∑

i�=j �=s
gω (Xs) gα (Xi)∆iejgη (Xj)

are correlated with EStest2 , i.e., E [EStest2 Vαηω (gω, gα, gη)] �= 0, imply-
ing third order bias. We could elimate the third order bias by calculating

EStest3 = Π
[
EStest2 |Btest,⊥3

]
. However rather than take this approach define

EStest2 (c) =
∑

i∆iei {(n− 1) f (Xi)} c (Xi)−
∑∑

i�=j ∆iejI (Xi = Xj) c (Xi)

for any c (Xi) . Note f (Xi) appears only at one place in EStest2 (c) . Let
EStest2 (ψ, η̂, α̂, ω̂−; c) be EStest2

(
ψ, η̂, α̂, ω†) with c replacing c∗ and with

f (Xi) replaced by

f̂−i (Xi) =
∑

{j;j �=i}
I (Xj = Xi) / (n− 1) .

Define H (ψ) = Y − ψA, ei (ψ, η̂) = H (ψ) − b (X, η̂) , and ∆i (α̂) = Ai −
Eα̂ [A|Xi] . Then

EStest2 (ψ, η̂, α̂, ω̂−; c)

=
∑

i

∆i (α̂) ei (ψ, η̂) f̂−i (Xi) c (Xi) (n− 1)−
∑∑

i�=j
c (Xi) I (Xi = Xj)∆i (α̂) ej (ψ, η̂) (9.13a)

= EStest2

(
ψ, η̂, α̂, ω†; c

)
+
∑∑

i�=j
{I (Xi = Xj)− f (Xi)} c (Xi)∆i (α̂) ei (ψ, η̂)

(9.13b)

=
∑∑

i�=j
I (Xi = Xj) c (Xi)Hi (ψ) (Ai −Aj) (9.13c)

where |X | is the cardinality of the support X of X. Note that (9.13b)
shows that EStest2 (ψ, η̂, α̂, ω̂−; c) has mean zero and (9.13c) shows that
EStest2 (ψ, η̂, α̂, ω̂−; c) = EStest2 (ψ, ω̂−; c) does not depend on the nuisance

parameters (η, ω, α) and thus is orthogonal to Btestk regardless of the order
k. That is, EStest2 (ψ, ω̂−; c) is exactly unbiased for 0. [This would not be the

case had we estimated f (Xi) by f̂ (Xi) =
n∑
j=1

I (Xj = Xi) /n]. However even

though EStest2 (ψ, ω̂−; c) is orthogonal to the 3rd order testing nuisance tan-

gent space Btest3 , nonetheless EStest2 (ψ, ω̂−; c) with c (Xi) = c∗ (Xi) is not the
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residual from the projection of EStest2 on Btest3 , so it is not fully third order
efficient.

Remark: Define Zx =
∑

i ZiI (Xi = x) /
∑

i I (Xi = x) for any Zi and
Zx,−j =

∑
{i;i�=j} ZiI (Xi = x) /

∑
{i;i�=j} I (Xi = x) . Let η̃ (x) = Hx (ψ) , α̃ (x) =

Ax. Note that the statistic
EStest2 (ψ, ω̂−; c) =

∑|X |
x=1

∑
i I (Xi = x) c (x)Hi (ψ) (n− 1)

(
Ai −Ax,−i

)
. Hence,

it is closely related to the statisitic ES1 (ψ, η̃, α̃) =

|X |∑

x=1

∑

i

I (Xi = x)
(
Hi (ψ)−Hx (ψ)

) (
Ai −Ax

)

=

{
n− 1

n

}2 |X |∑

x=1

∑

i

I (Xi = x)
(
Hi (ψ)−Hx,−i (ψ)

) (
Ai −Ax,−i

)

=

{
n− 1

n2

}
EStest2 (ψ, ω̂−; c)−

{
n− 1

n

}2 |X |∑

x=1

∑

i

I (Xi = x)Hx,−i (ψ)
(
Ai −Ax,−i

)

that uses the same sample rather than a different sample to estimate (η, α) .

ES1 (ψ, η̃, α̃) is thus also orthogonal to all Btestk and is unbiased for 0 (Donald
and Newey, 1994). EStest2 (ψ, ω̂−; c) and EStest2 (ψ, ω̂−; c) are asymptotically
normal under weak conditions. To see this let
R (x) =

∑
i I (Xi = x)

(
Hi −Hx

) (
Ai −Ax

)
and N (x) =

∑
i I (Xi = x).

Then, given

X = {X1, ..., Xn} , ES1 (ψ, η̃, α̃) =
∑|X |

x=1R (x) =
∑|X |

x=1 I {N (x) ≥ 2}R (x) is

a sum of IS =
∑|X |

x=1 I {N (x) ≥ 2} independent mean zero random variables
I {N (x) ≥ 2}R (x) with IS → ∞ as n → ∞ provided |X | = O (nρ) , 0 <
ρ < 2. The ability to substitute an ’own’ sample estimate of η and α into
ES1 (ψ, η, α) without incurring bias results from our assuming that H

(
ψ†)

and A are (mean) independent given X and will not happen in most models.

For example, suppose we had defined ψ† = E {V ar [A|X ]}−1
E {Cov [Y,A|X ]}

to be the unique solution to

E [{Y −Aψ − E [Y −Aψ|X ]} {A− E [A|X ]}] = 0

in the nonparametric model that does not assume E
[
Y −Aψ†|A,X

]
=

E
[
Y −Aψ†|X

]
. In this nonparametric model, ES1 (ψ, η, α) is still the first

order efficient score for ψ and EStest2 (ψ, ω̂−; c) is still an unbiased estimating
function. But, if E

[
Y −Aψ†|A,X

]
= E

[
Y −Aψ†|X

]
is false, then, owing to

the terms I (Xi = x)Hx,−i (ψ)
(
Ai −Ax,−i

)
, ES1 (ψ, η̃, α̃) will not be unbi-

ased for 0 and will have second order bias if the number of levels of X exceed
n1/2. An analogous remark applies to the continuous covariate case discussed
below.

The ability to obtain an unbiased estimator in our semiparametric regres-
sion model by estimating the nuisance parameters in ES1 using ”own”sample

robins
The second half od this sentence is incorrect.
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estimates is not only unusual but obscures the fundamental connection of the
inference problem to the need for orthogonality with higher order nuisance
scores. By using ”independent” sample estimates of nuisance parameters and
considering inference conditional on these, the underlying general structure of
the inference problem is revealed.

Continuous Covariates: Consider the analysis of the semiparametric
regression model

Y = ψ†A+ b† (X) + e

with e˜N (0, 1) having a known distribution, X absolutely continuous wrt
Lesbegue measure on [0, 1] , and A dichotomous based on n iid observations
Oi = (Yi, Ai, Li) . Let FX

(
X ;ω†) be the marginal of X

Consider the model with likelihood with respect to a dominating measure

f (O; θ = (ψ, η, α, ω))

= φstd−n {e (ψ, η, ω)} p (X ;α, ω)
A {1− p (X ;α, ω)}1−A

f (X ;ω)

= θ ∈ Θ = Ψ ×N × Å×Ω

with e (ψ, η, ω) = Y − ψA− b (X, η, ω) ,

p (X ;α, ω) = E [A|X ;α, ω]

where we use the model

b (x, η, ω) = b∗ (x, η) /f (x;ω) , b∗ (x, η) ∈





kη∑

r=1

ηrϕr (x)



 , (9.14a)

p (x;α, ω) = p∗ (x;α) /f (x;ω) , p∗ (x;α) ∈
{

kα∑

r=1

αrϕr (x)

}
, (9.14b)

∫
ϕr (x)ϕj (x) dx = I (r = j) , {ϕr (x) , a complete orthonormal basis for L2 (µ)}

We assume kη and kα are known functions of n that may be infinite for all n.
When kη and kα are infinite we consider 2 kinds of models

mod el (i) :
∞∑

r=1

η2
r < Cη,

∞∑

r=1

α2
r < Cα (9.14c)

mod el (ii) : p = 1,

∞∑

r=1

η2
rr

2βη < Cη,

∞∑

r=1

α2
rr

2βα < Cα (9.14d)

If we let kη = kα = ∞, and chose model (i) so the only restriction is
that h∗

(
x; η†

)
and p∗ (x;α) are in L2 balls, ψ† is not a kth order pathwise

differentiable parameter except for the case k = 1 and this case is misleading
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in the sense that the first order asymptotic bound (the Cramer Rao bound) is
not attainable. In fact no uniformly consistent estimators of ψ† exist ( Ritov
and Bickel,1990). Thus we use model (ii) for some apriori choice of (βη, Cη) and
(βα, Cα) . In model (ii), ψ† still does not have a kth order influence function
with finite variance for k > 1. But we can make progress by considering a
sequence of (misspecified) working models (sieves) changing with n with finite
kη (n) and kα (n) in such a way that the bias due to setting coefficients past
kη (n) and kα (n) to 0 is properly controlled. Thus we first study models with
a finite kη (n) and kα (n) . These models have kth order influence functions
with finite variance for k > 1.

Here we only give detailed results for the case where the marginal of X
(i.e., ω† is known). leaving the general case to Robins and van der Vaart
(2004). Robins and van der Vaart show that U test

1 (θ) =
∑

i ei∆i is a 1st
order testing influence function and that it equals EStest1 when kα ≤ kη.
Further with k∗ = min (kα, kη) ,

U test
2 (ψ, η, α, ω) =

∑

i

∆i (α, ω) ei (ψ, η, ω) f (Xi;ω) (n− 1)−

k∗∑

l=1

∑∑

i�=j
ei (ψ, η, ω)ϕl (Xi)∆j (α, ω)ϕl (Xj)

is a 2nd order testing influence function under law (ψ, η, α, ω) with ω known.
Further U test

2 (ψ, η, α, ω) is strongly doubly robust in the sense that

E(ψ†,α†,η†,ω†)

[
U test

2

(
ψ†, α, η, ω†)] = 0, (9.15)

but only for p∗ (x;α) and h∗ (x; η) in model (9.14a− 9.14b) . That is,
U test

2

(
ψ†, α, η, ω†) has mean zero even if both α and η are incorrect.

Sketch of proof: Note that, with ω† known, double robustness in
the sense of (9.15) implies U test

2 is a 2nd order testing influence func-
tion as it implies orthogonality to {Vαη} , {Vα} , and {Vη} . Now suppress-
ing dependence on the true parameter values and setting H = Y − ψ†A,
E
[
U test

2

(
ψ†, α, η, ω†)] =

nE
[
(n− 1)

{
H − b

(
X, η, ω†)} f

(
X ;ω†){A− p

(
X,α, ω†)}]−

n (n− 1)

k∗∑

l=1

E
[{
H − b

(
X, η, ω†)}ϕl (X)

]
E
[{
A− p

(
X,α, ω†)}ϕl (X)

]

Now
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E
[{
H − b

(
X, η, ω†)} f

(
X ;ω†) {A− p

(
X,α, ω†)}]

= E
[{
b
(
X, η†, ω†)− b

(
X, η, ω†)} f

(
X ;ω†) {p

(
X,α†, ω†)− p

(
X,α, ω†)}]

= E

[{∑∞
r=1

(
η†r − ηrI (r < kη)

)
ϕr (X) /f

(
X ;ω†)} f

(
X ;ω†)×{∑∞

r=1 I (r < kα)
(
α†
r − αrI (r < kα)

)
ϕr (X) /f

(
X ;ω†)}

]

=
∞∑

r=1

(
η†r − ηrI (r < kη)

) (
α†
r − αrI (r < kα)

)
=

min(kη ,kα)∑

r=1

(
η†r − ηr

) (
α†
r − αr

)
+

∞∑

min(kη ,kα)+1

η†rα
†
r− (9.16)

kα∑

min(kη ,kα)+1

η†rαr −
kη∑

min(kη ,kα)+1

ηrα
†
r

When η†r = ηr = 0 for r > kη and α†
r = αr = 0 for r > kα, (9.16)

equals
∑min(kη ,kα)

r=1

(
η†r − ηr

) (
α†
r − αr

)
. The following calculation completes

the proof.

k∗∑

l=1

E
[{
H − b

(
X, η, ω†)}ϕl (X)

]
E
[{
A− p

(
X,α, ω†)}ϕl (X)

]

=
k∗∑

l=1

E

[{ ∞∑

r=1

(
η†r − ηrI (r < kη)

)
ϕr (X) /f

(
X ;ω†)

}
ϕl (X)

]
×

E

[{ ∞∑

r=1

(
α†
r − αrI (r < kα)

)
ϕr (X) /f

(
X ;ω†)

}
ϕl (X)

]

=

k∗∑

l=1

(
η†l − ηlI (l < kη)

)(
α†
l − αlI (l < kα)

)
(9.17)

When η†r = ηr = 0 for r > kη and α†
r = αr = 0 for r > kα, (9.17) equals∑min(kη,kα)

r=1

(
η†r − ηr

) (
α†
r − αr

)
for k∗ = min (kα, kη) .

Thus since the variance of the estimator solving 0 = U test
2

(
ψ†, α, η, ω†) is

O
(
n−1 + k∗/n2

)
it has rate of convergence n1/2 if min (kα, kη) is O (n) and

convergence rate n1−ρ/2 if min (kα, kη) = nρ, 1 < ρ < 2.
We now turn our attention to model (9.14d) which allows η†r and α†

r

to exceed 0 for all r. Suppose βη ≤ βα. We shall still choose a ”work-
ing ” model of the form (9.14a− 9.14b) in which ηr = 0 and αr = 0 for

r > k∗ = kη = kα. Then (9.17) equals
∑k∗

r=1

(
η†r − ηr

) (
α†
r − αr

)
and (9.16)

equals
∑∞

r=1

(
η†r − ηrI (r < kη)

) (
α†
r − αrI (r < kα)

)
so the squared bias is(∑∞

k∗+1 η
†
rα

†
r

)2
which is less than or equal to

∑∞
k∗+1

(
η†r
)2∑∞

k∗+1

(
α†
r

)2
<

(k∗)−2(βη+βα)
. Thus the maximum squared bias of U test

2

(
ψ†, α, η, ω†) is

{n (n− 1)}2 (k∗)−2(βη+βα) . Since the variance of U test
2

(
ψ†, α, η, ω†) is O (n+ k∗) ,
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the maximum bias squared and variance are balanced for k∗balance = O
[
n1/( 1

2+βη+βα).
]
.

To construct confidence intervals we would choose k∗ slightly larger. The or-
der of the length of those confidence intervals would just exceed

O
[{
κ−2var

(
U test

2

(
ψ†, α, η, ω†))}1/2

]
= O

[
min

(
n−1/2,

{
k∗balance/n

2
}1/2

)]
=

O
[
min

(
n−1/2, n−2(βη+βα)/1+2(βη+βα)

)]
where κ =

E
[
∂U test

2

(
ψ†, α, η, ω†) /∂ψ

]

= E
[
U test

2

(
ψ†, α, η, ω†)ES1

]

= E
[
U test

2

(
ψ†, α, η, ω†)EStest2

]

Remark: If we do not wish to assume βη and βα are known apriori we can
use the data itself to choose these parameters and thereby obtain adaptive
estimators of ψ†. See Robins and van der Vaart (2004). However, although
one can obtain adaptive point estimators, it is not possible to obtain adaptive
confidence intervals for ψ†.

The theory of higher order influence functions and their associated U-
statistics can, in certain cases, be used to improve upon the cross-validation
results of van der Laan and Dudoit (2003) by replacing their loss functions,
which are first order U-statistics, by loss functions that are higher order U-
statistics, thereby decreasing sensitivity to the bias in estimators of the un-
known parameters in the loss function. This will be true even when van der
Laan and Dudoit’s loss functions are doubly robust. Indeed van der Laan and
Dudoit’s results for first order U-statistic loss functions can be fairly straight-
forwardly generalized to higher order U-statistics by replacing the maximal
inequalities used in their proofs by maximal inequalities for higher order U-
statistics.

In addition our theory of inference based on higher order U statistics can
be applied to data generated under exceptional laws at which the parameter
ψ (θ) is not differentiable by using a higher order generalization of Theorem
5.1.

Unknown marginal for X : When the marginal ofX is unknown, Robins
and van der Vaart (2004) show that when βη+βα > 1/2, root-n estimation of
ψ† is possible with no assumptions on the rate at which rate the density f (x)
is estimable ( a result previously obtained by Donald and Newey (1994)).
However if βη + βα < 1/2, the optimal rate of estimation of ψ† depends
not only on βη + βα, but also on the rate at which the density f (x) can be
estimated. Thus for valid confidence interval construction, we require that,
in addition to βη and βα, we be given βω specifying the maximum apriori
complexity of f (x).

Confidence Intervals After Selection:

Intervals based on Negative Utility as A Loss Function and d
ĵ
util
op (l)

as Input : Suppose again that A is binary, sequential randomization holds,

robins
This statement is not correct.. The optimal rate does not depend on the rate the density of  X can be estimated, although the next sentence is correct because the order of the U-statistic needed to control bias does depend on the smoothness of  the density for X.
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and p (a|l) is known. Recall that of the J candidate regimes γ̂j, γ̂ĵutil

maximizes P val
nval

[
Y I
{
A = dγ̂

j

op (L)
}
/p (A|L)

]
and will have expected utility

E

[
Y
d
̂j
util
op

]
close to expected utility E

[
Y
d
jutil−orac
op

]
of the utility oracle, pro-

vided J is not too large. Suppose rather than using d
ĵ
util
op (l) to determine our

treatment choice, we wish to use d
ĵ
util
op (l) to ’center’ in some sense a (1− α)

confidence set for the unknown dop = dγop = argmaxa γ (l, a) , under the theory
that (i) one should report confidence intervals to show the regimes compat-
ible with the data and (ii) one’s ’best’ estimate should be used to center a
confidence interval.

We shall see go in this direction and shall fail. But the failure will point us
in a better direction. We assume that we have available a third group of sub-
jects the confidence group, for which we assume no unmeasured confounders.
We will construct confidence intervals for this group’s optimal regime dγop (l)
which will be a confidence interval for the estimation and validation sample’s
dγop (l) as well if γ (l, a) for the confidence group equals the common γ (l, a)
in the other groups. [Most often the confidence group will have arisen by
a random division of the original study into the three groups - estimation,
validation, and confidence.]

To begin we shall be satisfied with constructing a confidence interval for
dγop (l) only at the nconf values of l in the set OLC = {li; i ∈ confidence group}
corresponding to the observed values of l in the confidence group, where we
have assumed no ties. [Thus, for the present, we view L as having support
OLC and a regime d (l) is a nconf vector of 0′s and 1′s corresponding to
whether on not to treat at each l ∈ OLC.] To do so we will use a new
construction due to Robins and van der Vaart (2003) to form conservative
uniform (1− α) large sample confidence region for dγop (l) for l ∈ OLC . In the
following expectations and probabilities are wrt the distribtion of the confi-

dence population. First note that since E
[
Y I
{
A = d

ĵ
util
op (L)

}
/p (A|L) |L

]
=

γ (L)d
ĵ
util
op (L) + E [Y |L,A = 0] where γ (L) = γ (L, 1) , we have that

n
1/2
confP

conf
nconf


Y

[
I {A = 0} − I

{
A = d

ĵ
util
op (L)

}]

p (A|L) + γ (L) d
ĵ
util
op (L)}




= n
1/2
confP

conf
nconf

[
Y
{1− 2A}dĵutilop (L)

p (A|L) + γ (L) d
ĵ
util
op (L)

]

is conditionally asymptotically normal with mean 0 conditional on the
estimation, and validation sample and the the set OLC of confidence sample
L′s (so the support of L is OLC.) The conditional variance

τ2 = P conf
nconf

{
V ar

[
Y

{1−2A}d
̂j
util
op (L)

p(A|L) |L
]}

is Op(1). Thus
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Cγ (1− α) =

{
γ∗ (L) ;P conf

nconf

[
−γ∗ (L) dĵutilop (L)

]

< n−1/2τzα + P conf
nconf

[
Y

{1−2A}d
̂j
util
op (L)

p(A|L)

]}

is a uniform 1 − α asymptotic confidence for the true γ (L) , where zα is the
upper α quantile of a standard normal so z.05 = 1.64. Thus

Cdop (1− α) = {d∗ (L) = I {γ∗ (L) > 0} ; γ∗ (L) ∈ Cγ (1− α)}

is a uniform 1−α asymptotic confidence for the true dop (L) = I {γ (L) > 0} .
We shall see this confidence set has terrible power properties, failing

to exclude d∗ (L) that are far from dop. To understand what the con-
fidence set Cdop (1− α) looks like note that it follows from above that

P conf
nconf

[
Y

{1−2A}d
̂j
util
op (L)

p∗(A|L)

]
= P conf

nconf

[
−γ (L) dγ̂ ĵutilop (L)

]
+τn−1/2Z+op

(
n−1/2

)

where Z is independent standard normal.
Thus

Cγ (1− α)

=
{
γ∗ (L) ;P conf

nconf

[
(γ (L)− γ∗ (L)) d

ĵ
util
op (L)}

]
< n−1/2τ (zα + Z) + op

(
n−1/2

)}

Now consider the extreme ”perfect ” case in which d
ĵ
util
op (L) = dop (L) .

Suppose the subset POS = {l1, ..., l100} of OLC on which γ (L) > 0
contains 100 points and at each such point γ (L) = 100. Consider now
γ∗ (L) such that γ∗ (l1) = 105 and γ∗ (lk) = −101 for the remaining

99 lk in POS. Then P conf
nconf

[
(γ (L)− γ∗ (L)) d

ĵ
util
op (L)}

]
will be less than

−7 × 104 so γ∗ (L) will be in Cγ (1− α) and thus d∗ (L) = I (γ∗ (L) > 0)
in Cdop (1− α) even though d∗ (L) incorrectly withholds treatment at all but

one lk in POS. Part of the problem is the input d
ĵ
util
op (L) , even when opti-

mal, does not contain enough information to sufficiently constrain the pos-
sible γ∗ (L) that could have generated the data. That is although dop (L) =
I (γ (L) > 0) solves (i) argmaxc(L)E [I (c (L) > 0)γ (L)] , γ (L) does not solve
(ii) argmaxc(L)E [I (γ (L) > 0) c (L)] , and indeed a c (L) that, with high
probability, differs in sign from γ (L) can have E [I (γ (L) > 0) c (L)] >>

E [I (γ (L) > 0) γ (L)] . The good properties of γ̂ĵutil derives from the fact
that it approximately solves (i). The bad properties of the above confidence
interval derives from the fact that it is based on ’approximately solving’ (ii).

Intervals based on Loss
(
c, FA|L, b, g

)
as A Loss Function and an

Estimate of γ as Input :
The Fixed L Case: One lesson of the last subsection is that if we wish

our confidence regions to be sufficiently small that they have the power to
exclude implausible candidates d∗ (l) for dop (l) , we at least need a confidence
procedure that uses as input the full information contained in a cross-validated
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selected approximation, such as γ̂ĵutil (l) , to γ (l) rather than the lesser infor-

mation contained in, say, d
ĵ
util
op (l) = I

[
γ̂ĵutil (l) > 0

]
. To do so we consider

intervals based based on

Loss
(
γ̂, FA|L, b, g

)
=
[
g2 (L) {Y − γ̂ (L,A)− b (L) + E [γ̂ (L,A) |L]}2

]

where γ̂ is some cross-validated selected estimate such as γ̂ĵutil (l) or γ̂ ĵ that
we hope might be a good approximation to the true γ. We will use the con-
struction due to Robins and van der Vaart (2003) to form conservative uniform
(1− α) large sample confidence region for γ and thus dγop (l) for l ∈ OLC. We
will see that the size is adaptive in the sense that the set of regimes contained
in the confidence set for dγopwill be few if γ̂ is a good estimate of γ but will be
many if the estimate γ̂ is poor. Recall that

R = g (L) [{Y − γ (L,A)} − b (L) + E [γ (L,A) |L]]
= g (L) [{Y − γ (L,A)} − E [{Y − γ (L,A)} |L]] + g (L) {E [Y |L]− b (L)}

and

S (c) = g (L) [{γ (L,A)− c (L,A)} − E [γ (L,A)− c (L,A) |L]]
= g (L) [{γ (L)− c (L)} {A− E [A|L]}] .

Therefore E
[
S2 (c) |L

]
= g2 (L) {γ (L)− c (L)}2

var [A|L] and

E
[
R2|L

]
= g2 (L)

[
{var [Y − γ (L,A) |L]}+ {E [Y |L]− b (L)}2

]
.

We know from our prior results that

n
1/2
confP

conf
nconf

[
Loss

(
γ̂, FA|L, b, g

)
−
{
E
[
R2|L

]
+ E

[
S2 (γ̂) |L

]}]

is conditionally asymptotically normal with mean 0 conditional on the
estimation, and validation sample and the the set OLC of confidence sample
L′s (so the support of L is OLC) because Loss

(
γ̂, FA|L, b, g

)
has conditional

mean E
[
R2|L

]
+ E

[
S2 (c) |L

]
. The conditional variance

τ2 = τ2 (γ∗) = P conf
nconf

{
V ar

[
Loss

(
γ̂, FA|L, b, g

)
|L
]}

is Op(1). Thus

Cγ (1− α) =

{
γ∗ (L) ;P conf

nconf

[
g2 (L)

[
{γ̂ (L)− γ∗ (L)}2

var [A|L]
]]

< n−1/2τzα + P conf
nconf

[
Loss

(
γ̂, FA|L, b, g

)
− E

[
R2|L

]]}

(9.18)
is a uniform 1 − α asymptotic confidence for the true γ (L) , where zα is the
upper α quantile of a standard normal so z.05 = 1.64. Thus

Cdop (1− α) = {d∗ (L) = I {γ∗ (L) > 0} ; γ∗ (L) ∈ Cγ (1− α)}
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is a uniform 1−α asymptotic confidence for the true dop (L) = I {γ (L) > 0} .
To understand what the confidence set Cγ (1− α) looks like note that it

follows from the above normal distributional result that
P conf
nconf

[
Loss

(
γ̂, FA|L, b, g

)
− E

[
R2|L

]]

= P conf
nconf

[
g2 (L)

[
{γ̂ (L)− γ (L)}2 var [A|L]

]]
+ τn−1/2Z + op

(
n−1/2

)

where Z is independent standard normal.
Thus our interval (9.18) has the asymptotic expansion

Cγ (1− α) (9.19a)

=




γ∗ (L) ;P conf

nconf

{
g2 (L)

[
{γ̂ (L)− γ∗ (L)}2

var [A|L]
]}

< n−1/2τ (zα + Z)

+P conf
nconf

{
g2 (L)

[
{γ̂ (L)− γ (L)}2

var [A|L]
]}





=

{
γ∗ (L) ;P conf

nconf

[
var [A|L] g2 (L) {γ∗ (L)− γ (L)}2

+ 2 {γ (L)− γ̂ (L)}
]

< n−1/2τ (zα + Z) + op
(
n−1/2

)
}

(9.19b)

¿From (9.19a) we see that if we choose g2 (L) = {var [A|L]}−1
, then

Cγ (1− α) =




γ∗ (L) ;P conf

nconf

[
{γ̂ (L)− γ∗ (L)}2

]
< n−1/2τ (zα + Z)+

P conf
nconf

[
{γ̂ (L)− γ (L)}2

]


 .

If P conf
nconf

[
{γ̂ (L)− γ (L)}2

]
= Op

(
n−1/2

)
then our confidence regionCγ (1− α)

is contained in a ball centered on γ̂ (L) of radius n−1/4 and we cannot

obtain a smaller radius even if P conf
nconf

[
{γ̂ (L)− γ (L)}2

]
is smaller than

Op
(
n−1/2

)
.[The proof that our confidence region is contained in a ball of ra-

dius n−1/4 uses the fact that the dependence of τ on γ∗ is negligible.] Li (1988)
shows that no uniform 1−α asymptotic confidence ball for the γ (L) can have
radius less than n−1/4. An n−1/4 rate rather than the usual n−1/2 rate is the
price we pay for admitting that we cannot be certain that we have specified a
correct finite dimensional parametric model for γ (A,L) = Aγ (L) . The radius
of our interval depends on how good an estimator γ̂ (L) is of the true γ (L) . If

Op
(
n−1/2

)
< P conf

nconf

[
{γ̂ (L)− γ (L)}2

]
= Op

(
n−β) for 0 < β < 1/2, our in-

tervals have radius n−β/2, while if op (1) < P conf
nconf

[
{γ̂ (L)− γ (L)}2

]
= Op (1)

so that γ̂ (L) was so poor an estimate that it was inconsistent, our intervals
have radius O (1) .

A better choice of the user suppied function g (L) can be made. Recall
that we can chose g (L) after knowing our candidate γ̂ (L) since γ̂ (L) is re-
garded as fixed in the analysis. Now to obtain a precise interval for dop (L) =
I (γ (L) > 0) , we only need to provide a very narrow interval for γ (L) at
values of L where it is near zero. Thus we can choose g (L) large at those L
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where our candidate γ̂ (L) is near zero, although we cannot go too far in this
direction without inflating τ, which, by inflating the overall interval length
will counteract the benefits of sharpening g (L) .

The above approach however is not altogether satisfactory. Not only does
the serious problem of extrapolating our confidence interval for dop (L) to
values of l not realized in the confidence group remain, but, in addition, we
have swept one important difficulty under the rug. To compute the interval
(9.18) requires that we know σ2 (L) = var [Y − γ (L,A) |L] to be able to
calculate the term E

(
R2 | L

)
Otherwise, we require an n1/2 − consistent of

estimator of σ2 (L), say computed from the validation sample, for our interval
to have the above stated properties (Baraud, 2000). This requirement is a
prohibitive limitation since σ2 (L) cannot be estimated without an estimate
of the residual Y −γ (L,A) ; but γ (L,A) is unknown and is in fact the quantity
we are constructing an interval for. In the next subsection we show how one
can attack both these problems at once.

The Random L Case:We once again take L to be random with full sup-
port. Again we follow Robins and van der Vaart (2003). We assume p (a|l) and
f(l) are known. The case where these are unknown is considered in Robins
and van der Vaart (2004). We first assume we can specify a linear model

θ∗,TW ∗ =
∑S∗

s=1 θ
∗
sW

∗
s for ξ (L) = ξ (L, γ) = g (L)γ (L) var [A|L]1/2 with

g (L) a user chosen function and with user chosen regressors W ∗
s = w∗

s (L)
where S∗ is sufficiently large that the approximation bias

infθ∗=(θ∗s ;s=1,...S∗)E

[{
ξ (L)−∑S∗

s=1 θ
∗
sw

∗
s (L)

}2
]
will be small compared to

the width of any confidence region for ξ (L) and thus for γ (L). By the popu-
lation version of Gram-Schmidt orthogonalization we can replace γ∗ (L; θ∗) ≡
θ∗,TW ∗ by γ (L; θ) ≡ θTW =

∑S
s=1 θsWs for S ≤ S∗ such that E [WsWp] = 0

for p �= s, E [WsWs] = 1 for p = s and for each θ∗ there exists a θ such that
γ (L; θ) = γ∗ (L; θ∗) for all L. With γ̂ (L) again our cross-validated selected

estimator of γ (L) and ξ̂ (L) = g (L) γ̂ (L) {var (A|L)}1/2
, let

ξ
(
L; θ̂
)
= θ̂TW =

∑S
s=1 θ̂sWs = E

[
ξ̂ (L)W

]
E
[
WWT

]−1
W and ξ

(
L; θ†

)
=

θ†TW =
∑S

s=1 θ
†
sWs = E [ξ (L)W ]E

[
WWT

]−1
W be the population least

squares projections onto our model. Note θ†s = E [ξ (L)Ws], E
[
WWT

]−1
is

the identity, and
ξ
(
L; θ†

)
= θ∗,†TW ∗, where

θ∗,† = argminθ∗=(θ∗s ;s=1,...S∗) E

[{
ξ (L)−∑S∗

s=1 θ
∗
sw

∗
s (L)

}2
]
. We only con-

sider the functions
γ (L; θ) = ξ (L; θ) /

[
g (L) {var (A|L)}1/2

]
as candidates for γ (L) based on

our assumption, that S∗ was chosen large enough to control approximation
bias. Our approach to constructing a (1− α) confidence interval for θ† and
thus for γ

(
L; θ†

)
is as follows.
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We will find a conservative uniform asymptotic (1− α) confidence interval

of the form Cθ† (1− α) =

{
θ;
∑S

s=1

(
θ̂s − θs

)2

< Q2

}
for θ† where the ran-

dom variable Q2 is chosen as described below. By orthonormality of the Ws,
∑S

s=1

(
θ̂s − θs

)2

= E

[{
ξ (L; θ)− ξ

(
L; θ̂
)}2
]
=

E[g2 (L)
[
γ (L; θ)− γ

(
L; θ̂
)]2

{var (A|L)}] so our confidence interval can

also be written as the set

C
γ(·;θ†) (1− α) =

{
γ (·; θ) ;E[g2 (L)

[
γ (L; θ)− γ

(
L; θ̂
)]2

{var (A|L)}] < Q2

}
.

Finally we obtain the interval

Cdop (1− α) =
{
d∗ (L) = I {γ (L; θ) > 0} ; γ (·; θ) ∈ C

γ(·;θ†) (1− α)
}

We next describe how we obtain Q.

Let M = M
(
g, FA|L

)
= g (L) {Y {A− E [A|L]}} {var (A|L)}−1/2 . Note

the estimator θ̃s = P conf
nconf [MWs] has meanE

[
g (L)γ (L) {var (A|L)}1/2

Ws

]
=

θ†s.
Further the estimator

Rs

(
θ̂
)
=
∑∑

{i�=j,i,j=1,...,nconf}
∑S

s=1

(
MiWs,i − θ̂s

)(
MjWs,j − θ̂s

)
has mean

∑S
s=1

(
θ̂s − θ†s

)2

conditional on the estimation and validation sample data

(Laurent, 1996). Robins and van der Vaart show that we can take Q2 =

Rs

(
θ̂
)
− c
(
S/ (1− α)n2

conf

)1/2

for α < 1/2 where the constant c is explicit

and given in Robins and van der Vaart.

Remark: Conditional on θ̂, Rs

(
θ̂
)
−

S∑
s=1

(
θ̂s − θ†s

)2

is the second order

estimation influence function IF est
2 for the functional

S∑
s=1

(
θ̂s − θ†s

)2

in the

model satisfying the sole restrictions that f (l) and f (a | l) are known (Robins
and van der Vaart, 2004).

Sequential Decisions:

We now generalize some of the above results on using cross validation to
select the optimal treatment regime to the sequential decision problem. We
only cover areas where the natural generalization from single to sequential
decisions is either non apparent or somewhat suprising.

Voting Rule Additions: A natural additional candidate, the ”vote
regime”, exists in the sequential problem as in the single decision problem if we
have available the candidate functions γ̂j

(
Lm, Am

)
for the optimal function

γ
(
Lm, Am

)
= γdop,d

∗ (
Lm, Am

)
rather than simply the associated candidate
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regimes dγ̂
j

op. Specifically given J candidates γ̂j
(
Lm, Am

)
the ”vote regime”

dvoteop is defined recursively as follows :

dvoteop,0 (l0) = argmaxa∗0

(∑
j I
(
argmaxa0 γ̂

j
(
l0, a0

)
= a∗0

))
,

dvoteop,m

(
lm, am−1 = dvoteop,m−1

(
lm−1

))

= argmaxa∗m

(∑
j I
(
argmaxam γ̂j

(
lm, am−1 = dvoteop,m−1

(
lm−1

)
, am
)
= a∗m

))

that selects the most recommended treatment given your value of lm and
that you have followed the vote regime through lm−1. Here, for simplicity, we
have discounted the possibility of ties.

Unbiased Estimation of Expected Utility in Sequential Decision
Problems:

Suppose that each Am is binary but the number of time periodsK is large,
say 400, as would not be untypical in many epidemiologic settings. Now, un-
der sequential randomization, for any candidate optimal regime d

c

op based on

a candidate optimal blip function c
(
lm, am

)
, m = 0, ...,K, an unbiased esti-

mator of E
[
Ydcop

]
with the p

(
am|lm, am−1

)
known is

P val
nval

[
Y I
{
AK = d

c

op (LK−1)
}
/
∏K
m=0 p

(
Am|Lm, Am−1

)]
with

I
{
AK = d

c

op

(
L̄K−1

)}
the indicator that a subject followed the regime d

c

op

through the end of the study. But for almost all regimes d
c

op, there will be at
most a few subjects and often none who followed the regime through K and
thus the variance of the estimator is so large as to be useless. Again we might
consider replacing the deterministic regime d

c

op with a random regime pc in

which given Lm = lm Am−1 = am−1, we treat with am drawn from a condi-
tional density pcm with pcm

(
am|lm, am−1

)
equal to 1−σ if am = d

c

op

(
lm, am−1

)

and to σ otherwise for σ small and then estimate E [Ypc ] with the unbiased esti-

mator Ê [Ypc ] = P val
nval

[
Y
∏K
m=0 p

c
m

(
Am|Lm, Am−1

)
/
∏K
m=0 p

(
Am|Lm, Am−1

)]
.

We must not choose σ too small in order to prevent Ê [Ypc ] from being a
highly variable estimate of E [Ypc ] . Now consider the case where c

(
lm, am

)
is

γ̂j
(
lm, am

)
= γj

(
lm, am, ψ̂

j
)
based on a fit of the model γj

(
lm, am, ψ

j
)
to

the estimation sample data so d
γ̂j

op

(
lm, am−1

)
= argmaxam γj

(
lm, am, ψ̂

j
)
.

It seems wise to choose σ = σj
(
lm, am−1

)
as a function of

(
lm, am−1

)
and j.

Specifically if the lower confidence limit for the absolute value
|γ̂j
(
lm, am−1, am = 1

)
| is far from 0 we could choose σj

(
lm, am−1

)
to be 0 (or

very nearly 0) and (ii) if it includes 0 we choose σj
(
lm, am−1

)
to be large (but

less than 1/2). We then treat a new subject beginning at time of HIV infection

t0 with the regime pγ̂
̂j0

that maximizes Ê
[
Y
pγ̂
j

]
over the J candidates.

However for a subject who receives care in the community until the time
tk from infection with HIV and who presents to our optimal treatment clinic

at that time with history
(
Lk, Ak−1

)
, we would treat with the regime pγ̂

̂jk

k
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that maximizes the unbiased estimator
P val
nval

[
Y
∏K
m=k p

c
m

(
Am|Lm, Am−1

)
/
∏K
m=k p

(
Am|Lm, Am−1

)]
of

E

[
YAk−1,pγ̂

j

k

]
= E

{
E

[
YAk−1,pγ̂

j

k

|Lk, Ak−1

]}
. The reason that the regime

pγ̂
̂jk

k
can differ from the regime pγ̂

̂j0

k
is that (i) the observed (i.e. community)

data distribution of
(
Lk, Ak−1

)
differs from the distribution of the counter-

factual variables
(
L
pγ̂

̂j0 ,k
, A

pγ̂
̂j0 ,k−1

)
that would obtain upon following the

regime pγ̂
̂j0

from time t0 and (ii) because none of the candidate regimes pγ̂
j

are considered optimal for each value of
(
Lk, Ak−1

)
, the best choice among

them from time k onwards will appropriately depend on the distribution of(
Lk, Ak−1

)
that will exist at time k. However there is a philosophical conun-

drum associated with this argument. Consider a subject i who receives care in
the community until the time tk and then presents to our optimal treatment
clinic with history

(
lk,i, ak−1,i

)
that is strongly compatible with following

regime pγ̂
̂j0

in the sense am,i = d
γ̂
̂j0

op,m

(
lm,i, am−1,i

)
for m = 0, ..., k − 1. That

is the patient would have the same data
(
lk,i, ak−1,i

)
had he been treated

deterministically with d
γ̂
̂j0

op beginning at time t0. In that case why should the
subject be viewed as a random member of a population that has the observed
data distribution of

(
Lk, Ak−1

)
rather than as a random member of a popula-

tion that has
(
Lk, Ak−1

)
distributed as

(
L
pγ̂

̂j0 ,k
, A

pγ̂
̂j0 ,k−1

)
. This conundrum

is very analogous to the conundrum of the individual patient treatment de-
cison discussed above and is a well recognized difficulty that arises in many
guises in any frequentist theory of inference.

A Problem in the Generalization of Corollary 9.1:We first provide
a partial generalization of Corollary (9.1) to the setting of optimal regime es-
timation in a sequential decision problem under the assumption of no unmea-
sured confounders. We then discuss problems with the partial generalization.

We first define the quantity H
dop,m,d

∗
m

mod,m (cm) in analogy to Eq. (3.19) except

we substitute cm
(
Lm, Am

)
for γdop,d

∗ (
Lm, Am, ψ

)
and do not specify a model

for γdop,d
∗ (
Lj , Aj

)
:

H
dop,m,d

∗
m

mod,m (cm) = Y − cm
(
Lm, Am

)
− (9.20)

K∑

j=m+1

{
γdop,d

∗ (
Lj , Aj−1,dop,j

(
Lj , Aj−1

))
− γdop,d

∗ (
Lj , Aj

)}
,

where dop,m
(
Lm, Am−1

)
= arg max

am∈Am

γdop,d
∗ (
Lm, Am−1, am

)
.

LetH
dop,m,d

∗
m

mod,m

(
γ
dop,d

∗

m

)
beH

dop,m,d
∗
m

mod,m (cm) with γ
dop,d

∗ (
Lm, Am

)
replacing

cm
(
Lm, Am

)
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Corollary 9.2: Assume (2.5) holds. Then recursively for m = K,K −
1, ..., 0, we have the following: if E∗

[
H
dop,m,d

∗
m

mod,m

(
γ
dop,d

∗

m

)
|Lm, Am−1

]

= E
[
H
dop,m,d

∗
m

mod,m

(
γ
dop,d

∗

m

)
|Lm, Am−1

]
or

E∗ [c
(
Lm, Am

)
|Lm, Am−1

]
= E

[
c
(
Lm, Am

)
|Lm, Am−1

]
for all c

(
Lm, Am

)
,

then given any function g
(
Lm, Am−1

)
that is non-zero w.p1, γdop,d

∗ (
Lm, Am

)

is the unique function c
(
Lm, Am

)
minimizing

E

[
g2
(
Lm, Am−1

){
H
dop,m,d

∗
m

mod,m (cm)− E∗
[
H
dop,m,d

∗
m

mod,m (cm) |Lm, Am−1

]}2
]

(9.21)
subject to c

(
Lm, Am

)
= 0 if Am = 0.

The proof is completely analogous to that of Corollary 9.1 and thus is
omitted. Further it holds if we replace dop by any other regime d. Now in

practice one can see that to use this result to find γdop,d
∗ (
Lm, Am

)
one must

precede recursively and have already found γdop,d
∗ (
Lm+1, Am+1

)
. One might

wonder whether a simultaneous minimization might work. For example, define

Hd,d
∗

(c) to be the vector with components

Hd,d
∗

m (cm) = Y − cm
(
Lm, Am

)
−

K∑

j=m+1

{
cj
(
Lj , Aj−1,d

cj
op,j

(
Lj , Aj−1

))
− cj

(
Lj , Aj

)}

and V (c) to be the vector with components

Vm (cm) = g
(
Lm, Am−1

){
Hd,d

∗

m (cm)− E
[
Hd,d

∗

m (cm) |Lm, Am−1

]}

Note one might have hoped that it would be the case that V (c)T BV (c) is

minimzed at cm
(
Lm, Am

)
= γdop,d

∗ (
Lm, Am

)
for m = 0, 1, ..,K for some

positive definite matrix B. However a straightforward calculation shows this
is not the case.

The inability to do simultaneous minimization has some very unpleasant
implications when we acknowledge that none of our models γj

(
lm, am;ψ

j
m

)
, j =

1, ..., J, m = K, ..., 0 for the optimal regimen are correct, where we assume the
ψjm are variation independent as m varies to facilitate sequential fitting.). At

each time m we will consider the J candidates γ̂jm
(
lm, am

)
= γj

(
lm, am; ψ̂

j
m

)

for γj
(
lm, am

)
. Suppose, for subjects who receive care in the community until

the time tK from infection and who presents to our optimal treatment clinic

with history
(
LK , AK−1

)
, we chose γ̂ ĵK

(
lK , aK

)
minimizing, at m = K,

P val
nval

[
g2
(
Lm, Am−1

){
H
dop,m,d

∗
m

mod,m

(
γ̂jm
)
− E∗

[
H
dop,m,d

∗
m

mod,m

(
γ̂jm
)
|Lm, Am−1

]}2
]
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for an agreed upon function g
(
LK , AK−1

)
. Then for subjects who begin fol-

lowing our final estimate d̂op of the optimal regime beginning at t0 we would of-

ten wish to chose γ̂ ĵ0
(
lK , aK

)
minimizing, at m = K,P val

nval [g
2
(
Lm, Am−1

)
×

{
H
dop,m,d

∗
m

mod,m

(
γ̂jm
)
− E∗

[
H
dop,m,d

∗
m

mod,m

(
γ̂jm
)
|Lm, Am−1

]}2

w
(
Lm, Am−1

)
]

with w
(
lK , aK−1

)
= fL

̂dop,K
,A

̂dop,K−1

(
lK , aK−1

)
/fLK ,AK−1

(
lK , aK−1

)
. But

our final estimate d̂op, much less an estimate of fL
̂dop,K

,A
̂dop,K−1

(
lK , aK−1

)
, is

unknown to us at the time we are estimating γ̂ ĵ0
(
lK , aK

)
since we estimate d̂op

beginning with occassion K. Thus it is not at all straightforward to estimate
an optimal regime using Corollary 9.2, suggesting that, in practice, we should
use the cross-validation methods described in the previous subsection.

10 Appendix 1:

A1.1: Exceptional Laws:
In this Appendix we prove that under certain exceptional laws FO (i) no

regular estimators of the parameter ψ† of an drSNMM γ0
(
lm, am, ψ

†) for

γdop
(
lm, am

)
exists and (ii) although n1/2-consistent non-regular estimators

exist, they will generally be asymptotically biased. As a consequence our es-

timators of E
[
Ydop

]
may also be non-regular and asymptotically biased.

In the interest of concreteness and with essentially no loss of general-
ity, we will consider example 1 in the main text with K = 1, and L0 = 0
wp1 (so we can disregard L0), A0, A1, L1 all Bernoulli, and Y = L2 con-
tinuous. Thus we observe O = (A0, A1, L1, Y ) . Hence, dropping the 0 su-

perscript from γ0, we have the model γ
(
l1, a1, ψ

)
= a1 (1, l1, a0)ψ1 =

a1 (ψ11 + ψ21l1 + ψ31a0) , γ
(
l0, a0, ψ

)
= ψ0a0, where we note l1 = l1. We as-

sume sequential randomization and that f
(
am|lm, am−1

)
is known. Let F

denote all laws FO with compact support and consistent with these assump-
tions. Then, by Eq. 3.8, we have that

ψ†
0 = (A1.1)

[var {A0}]−1
E
[
{A0 − E[A0]}

{
Y +

(
I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)ψ

†
1

}]
.

We will prove that their is no regular estimator of ψ†
0 when

pr
[
(1, L1, A0)ψ

†
1 = 0

]
�= 0, where before doing so it will be pedagogically

useful to study the simplest example of the phenomenon.
A simple normal theory example: Consider estimation of the parame-

ter ψ† = ψ
(
µ†) = µ†I

(
µ† > 0

)
from n i.i.d. observations Xi from a N

(
µ†, 1

)
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distribution. By definition, a necessary condition for the existence of a regular
estimator of ψ

(
µ†) at µ† is that ψ (µ) be differentiable at µ†. As ψ (µ) is not

differentiable at µ = 0, no regular estimator of ψ† exists at µ† = 0 and we say
that ψ† is a non-regular parameter.

The MLE I (Xav > 0)Xav with X av = Pn (X) is an efficient RAL es-
timator of ψ† at any non-zero µ†. To see explicitly that I (Xav > 0)Xav

is non-regular at µ† = 0, we compute its limiting distribution under the
local data generating process (LDGP) µ = kn−1/2. Now regularity would
mean that the limiting distribution of V (k) does not depend on k where
V (k) = n1/2

{
I (Xav > 0)Xav − ψ

(
kn−1/2

)}

= n1/2
{
I (Xav > 0)Xav − I

[
kn−1/2 > 0

]
kn−1/2

}

= I
(
n1/2

(
Xav − kn−1/2

)
> −k

)
n1/2

(
Xav − kn−1/2

)
+

I
(
n1/2

(
Xav − kn−1/2

)
> −k

)
k − I [k > 0] k

= I (Z > −k)Z + I (Z > −k)k − I [k > 0] k where Z is a standard normal
deviate. Thus V (k) converges to the N (0, 1) distribution as k → ∞, to a
degenerate random variable with mass 1 at 0 as k → −∞, and to the law of
I (Z > 0)Z for k = 0. The asymptotic bias asybias (k) of I (Xav > 0)Xav as
an estimator of ψ

(
kn−1/2

)
is

asybias (k) = {E [Z|Z > −k] + k} pr [Z > −k]− I [k > 0] k

so
asybias (0) = E [Z|Z > 0] pr [Z > 0] = 1/

√
2π = .707

(√
π
)−1

.

Note the asymptotic bias is bounded for all k. Standard attempts at
bias correction such as bootstrapping do not result in an asymptotically
unbiased estimator. The exact bias of the MLE I (Xav > 0)Xav is also∫∞
−n1/2µ

(
z + n1/2µ

)
φ (z) dz− µI (µ > 0) . The parametric bootstrap estimate

(i.e. MLE) of bias is thus∫∞
−n1/2Xav

(
z + n1/2Xav

)
φ (z) dz − XavI (Xav > 0) so the bootstrap biased

corrected estimator of µI (µ > 0) is
2XavI (Xav > 0)−

∫∞
−n1/2Xav

(
z + n1/2Xav

)
φ (z) dz which itself has bias

2
∫∞
−n1/2µ

(
z + n1/2µ

)
φ (z)dz−µI (µ > 0)−E

[∫∞
−n1/2Xav

(
z + n1/2Xav

)
φ (z)dz

]
.

Thus the asymptotic and exact bias of the bias corrected estimator at µ = 0
is

2

∫ ∞

0

zφ (z)dz −
∫ ∞

−∞

∫ ∞

−x
{z + x}φ (z)φ (x) dzdx

=
(√

π
)−1
(√

2− 1
)
= .41

(√
π
)−1

which is positive although less than the MLE’s exact and asymptotic bias of
.707 (

√
π)

−1
.

Consider next the submodel of our previous normal model in which we
know that µ† > 0. Then for every value of µ† in the parameter space (0,∞) ,
both the MLE I (Xav > 0)Xav and the estimator Xav of the now regular
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parameter ψ† = ψ
(
µ†) = µ†I

(
µ† > 0

)
= µ† are RAL estimators with

asymptotic variance 1 i.e. both n1/2
{
I (Xav > 0)Xav − ψ

(
µ† + kn−1/2

)}
and

n1/2
{
Xav − ψ

(
µ† + kn−1/2

)}
converge in distribution to N (0, 1) random

variable under the LDGP µ = µ† + kn−1/2. However the MLE Wald interval
I (Xav > 0)Xav ± zα/2n

−1/2, in contrast to the interval Xav ± zα/2n
−1/2, is

neither an exact nor a uniform asymptotic (1− α) conservative confidence
interval for µ†, although it is a non-uniform asymptotic (1− α) confidence
interval where we have used the following definitions.

Some Definitions: Suppose we observe n i.i.d copies of a random vari-
able O whose distribution FO lies in a set F = {F (ψ, ρ) ; (ψ, ρ) ∈ Ψ ×R} of
distributions indexed by a finite dimesional parameter of interest ψ and, a
possibly infinite-dimesional, variation-independent nuisance parameter ρ. We
shall need the following from Robins and Ritov (1997). Below, we abbreviate

sup
(ψ,ρ)∈Ψ×R

by sup
(ψ,ρ)

.

Definition: An estimator ψ̂n (with n indexing sample size) is uniformly reg-
ular Gaussian (URG) with uniform asymptotic variance σ2 (ψ, ρ) if

sup
(ψ,ρ)

| Pr(ψ,ρ)
[
n

1
2

(
ψ̂n − ψ

)
< t
]
− Φ

(
t;σ2 (ψ, ρ)

)
|→ 0 as n→∞ (A1.2)

where Φ
(
t;σ2

)
is the cumulative distribution function of a normal random

variable with mean zero and variance σ2. If ψ̂n is a uniformly asymptotic
linear estimator of ψ (i.e. the op (1) term in the definition of an asymptotically

linear estimator is uniformly op (1) over all laws in Ψ ×R), then ψ̂n is URG.

However, ψ̂n, a regular asymptotic linear (RAL) estimator, does not imply

ψ̂n is URG.
Definition: The estimator ψ̂n is uniformly asymptotically normal and unbi-
ased (UANU) for ψ if there exists a sequence σ2

n (ψ, ρ) such that the z-statistic

n
1
2

(
ψ̂n − ψ

)
/σn (ψ, ρ) converges uniformly to a N (0, 1) random variable, i.e.

sup
(ψ,ρ)

| Pr(ψ,ρ)
[
n

1
2

(
ψ̂n − ψ

)
/σn (ψ, ρ) < t

]
− Φ (t; 1) |→ 0 as n→∞ .

(A1.3)

ψ̂n URG implies ψ̂n UANU but the converse is false. However, if ψ̂n is
UANU and σn (ψ, ρ) converges uniformly to σ (ψ, ρ) i.e.

sup
(ψ,ρ)

| σ (ψ, ρ) /σn (ψ, ρ)− 1 |→ 0 as n→∞ (A1.4)

the ψ̂n is URG. Furthermore, if ψ̂n is UANU and there exists an estimator σ̂n
of σn (ψ, ρ) such that σn (ψ, ρ) /σ̂n converges to one uniformly in probability,
i.e. for all ε > 0

sup
(ψ,ρ)

Pr(ψ,ρ) [ | 1− σn (ψ, ρ) /σ̂n |> ε] → 0 as n→∞ (A1.5)
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then, by the uniform version of Slutzky’s Theorem, the t-statistic n
1
2

(
ψ̂n − ψ

)
/

σ̂n converges uniformly to a N (0, 1) random variable, and thus the “Wald”

interval Cn ≡ ψ̂n ± zα/2σ̂n/
√
n is a uniform asymptotic 1 − α confidence in-

terval for ψ where zα/2 is the α/2 quantile of a standard normal distribution,
and we have the following definition.
Definition: Cn is a uniform asymptotic 1 − α confidence interval for ψ if
sup
(ψ,ρ)

| Pr(ψ,ρ) [ψ ∈ Cn]− (1− α) |→ 0 as n→∞.

Definiton: Cn is a conservative uniform asymptotic 1 − α confidence
interval for ψ if

lim inf
n

inf
(ψ,ρ)

{
Pr(ψ,ρ) [ψ ∈ Cn]− (1− α)

}
≥ 0 as n→∞

.
Note a uniform asymptotic 1−α confidence interval is a conservative uni-

form asymptotic 1 − α confidence interval. We required uniformity in our
definition of an asymptotic confidence interval to be consistent with the usual
definition of a non-asymptotic confidence interval. Specifically, by definition,
for each sample size n, a conservative 1 − α (non-asymptotic) confidence in-
terval Cn satisfies that for all (ψ, ρ) ∈ Ψ ×R,

Pr(ψ,ρ) [ψ ∈ Cn] ≥ 1− α.

Our definition of a uniform asymptotic confidence interval satisfies the follow-
ing consistency condition: if there is no conservative (non-asymptotic) 1 − α
confidence interval for ψ whose length converges to 0 in probability as n→∞,
then no conservative uniform asymptotic 1−α confidence interval for ψ exists
whose length converges to 0 in probability as n→∞; in contrast, there may
still exist a conservative asymptotic 1 − α confidence interval for ψ whose
length converges to 0 in probability as n→∞, where we have the following.

Definition: Cn is a conservative asymptotic 1−α confidence interval for ψ
if for all (ψ, ρ) ∈ Ψ ×R , lim infn

{
Pr(ψ,ρ) [ψ ∈ Cn]− (1− α)

}
≥ 0 as n→∞

If ψ̂ is UANU and σn (ψ, ρ) /σ̂n converges uniformly to one, then the

ψ̂n ± zα/2σ̂n/
√
n will be a uniform asymptotic (1− α) confidence interval

for ψ , even if ψ̂n is not URG. If ψ̂n is UANU but not URG, then even
if σn (ψ, ρ) → σ (ψ, ρ) as n → ∞ for all (ψ, ρ), this convergence cannot be

uniform. Further, under mild regularity conditions, when ψ̂n is UANU, the

non-parametric bootstrap estimator σ̂n of the standard error of n
1
2

(
ψ̂n − ψ

)

will satisfy (A1.5). Hence, if ψ̂n is UANU, then a Wald interval centered on

ψ̂n and using a bootstrap estimate of the standard error will be an asymptotic
uniform (1− α) Wald confidence interval for ψ

The simple normal example continued: Returning to the simple
normal example with µ† ∈ (0,∞), the Wald interval I (Xav > 0)Xav ±
zα/2n

−1/2 is not a uniform asymptotic (1− α) conservative confidence inter-

val for µ† because I (Xav > 0)Xav , in contrast to Xav, is not URG. Indeed
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I (Xav > 0)Xav is not even UANU and thus cannot center a uniform asymp-
totic (1− α) confidence interval even were its standard error estimated with
the bootstrap. The reason that I (Xav > 0)Xav is not UANU is that, at each
sample size n, there exists a µ† ∈ (0,∞) depending on n that is sufficiently
close to 0 that I (Xav > 0)Xav is significantly biased upwards as an estimator
of ψ† = µ†. However, if we took the parameter space for µ† to be (σ,∞) for a
fixed σ > 0, then I (Xav > 0)Xav is UANU and can center a uniform asymp-
totic (1− α) confidence interval. Returning to the case where the parameter
space for µ† is the entire real line so no UANU estimator of ψ† exists, we
can nonetheless construct a conservative non-asymptotic (1− α) confidence
interval for ψ† that is also a conservative uniform asymptotic (1− α) confi-
dence interval by intersecting the usual interval Xav ± zα/2n

−1/2for µ† with

the non-negative real line to obtain
{
Xav ± zα/2n

−1/2
}
∩ [0,∞).

Return to our optimal-regime SNMM example. In this example,
the data distribution can be parametrized as follows: f

(
Y, L1, A1;ψ1, θ

)
=

f
(
δ (ψ1, θ1) |L1, A1; θ2

)
f
(
A1|L1, A0

)
f (L1|A0; θ3) f (A0) , where θ =

(θ1, θ2, θ3) , δ (ψ1, θ1) = Y − A1 (1, L1, A0)ψ1−{
q (L1, A0; θ1)−

∫
q (L1, A0; θ1) dF (L1|A0; θ3)

}
and θ1 indexes all functions

q (L1, A0; θ1) of (L1, A0) that satisfy q (0, A0; θ1) = 0, θ2 indexes all condi-
tional densities f

(
u|L1, A1; θ2

)
satisfying the conditional mean zero restriction∫

uf
(
u|L1, A1; θ2

)
= 0, and θ3 indexes all conditional densities f (L1|A0; θ3) .

In this parametrization we view ψ†
0 as a function of

(
ψ†

1, θ
†
)
determined by

equation (A1.1). In the following discussion ψ†
0 and ψ†

1 are analogous to ψ†

and µ† respectively in our normal example. Consider a regular parametric
submodel with θ fixed at its true value θ† and ψ1 a free parameter with true
value ψ†

1. Then ψ0 (ψ1) = [var {A0}]−1×
Eψ1,θ† [{A0 − E[A0]} {YK+1 + (I [(1, L1, A0)ψ1 > 0]−A1) (1, L1, A0)ψ1}] and
ψ0 (ψ1) is a differentiable function of ψ1 at the truth

(
ψ†

1, θ
†
)
w.p.1. if and only

if the event (1, L1, A0)ψ
†
1 = 0 has probability 0 under f

(
Y, L1, A1;ψ

†
1, θ

†
)
.

It follows that if prψ†
1,θ

†

[
(1, L1, A0)ψ

†
1 = 0

]
�= 0, then ψ0 is not a pathwise

differentiable parameter and thus no regular estimator of ψ0 exists under the

data generating process
(
ψ†

1, θ
†
)
. If prψ†

1,θ
†

[
(1, L1, A0)ψ

†
1 = 0

]
= 0 the closed

form estimator estimator ψ̃0 of Sec. 4.2 is regular at
(
ψ†

1, θ
†
)
.

This raises the question as to the asymptotic distribution and asymptotic
mean of ψ̃0 when

prψ†
1,θ

†

[
(1, L1, A0)ψ

†
1 = 0

]
�= 0, i.e. under an exceptional law. [Analagous

results apply to the non-closed form estimators of ψ†
0 discussed earlier; the

advantage of considering the simpler ψ̃0 is that its behavior is relatively trans-

parent.] Abbreviate U
dop,0
mod,m of Section 4.2 to Um.

Recall
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ψ̃0 = Ĩ−1
0

Pn

[
{s0 (A0)− E[s0 (A0)]}

{
Y +

(
I
[
(1, L1, A0) ψ̃1 > 0

]
−A1

)
(1, L1, A0) ψ̃1

}]

with Ĩ0 = Pn [{s0 (A0)− E[s0 (A0)]}A0] . Recall ψ̃0 solves

0 = n1/2Pn

[
U0

(
ψ0, s0, ψ̃1

)]

where

U0

(
ψ0, s0, ψ̃1

)
(A1.6)

= {s0 (A0)− E[s0 (A0)]}×{
Y − ψ0A0 +

(
I
[
(1, L1, A0) ψ̃1 > 0

]
−A1

)
(1, L1, A0) ψ̃1

}
.

Now

n1/2Pn

[
U0

(
ψ0, s0, ψ̃1

)]

= n1/2Pn

[
U0

(
ψ0, s0, ψ

†
1

)]
+ n1/2Pn

[
∆0

(
s0, ψ̃1, ψ

†
1

)]
,

where
∆0

(
s0, ψ̃1, ψ

†
1

)
= I
[
(1, L1, A0)ψ

†
1 = 0

]
{s0 (A0)− E[s0 (A0)]}×(

I
[
(1, L1, A0)

(
ψ̃1 − ψ†

1

)
> 0
]
−A1

)
(1, L1, A0)

(
ψ̃1 − ψ†

1

)
+

I
[
(1, L1, A0)ψ

†
1 �= 0

]
{s0 (A0)− E[s0 (A0)]}×



(
I
[
(1, L1, A0) ψ̃1 > 0

]
−A1

)
(1, L1, A0) ψ̃1−(

I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)ψ

†
1


 .

To be concrete suppose that
∑3

j=1 ψ
†
j1 = 0, but none of the ψ†

j1 are zero so

(1, L1, A0)ψ
†
1 = 0 ⇐⇒ L1 = A0 = 1 which we assume happens with positive

probability so the law is exceptional. Then, we have n1/2Pn

[
∆0

(
s0, ψ̃1, ψ

†
1

)]
=

n1/2Pn


 I

[
(1, L1, A0)ψ

†
1 = 0

]
{s0 (A0)− E[s0 (A0)]}×(

I
[∑3

j=1

(
ψ̃j1 − ψ†

j1

)
> 0
]
−A1

)∑3
j=1

(
ψ̃j1 − ψ†

j1

)

+

n1/2Pn


 I

[
(1, L1, A0)ψ

†
1 �= 0

]
{s0 (A0)− E[s0 (A0)]}×(

I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

(
ψ̃1 − ψ†

1

)

+ op (1) .
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To obtain this result we used the fact that, conditional on
{(A0i, L1i) ; i = 1, ..., n}, when
(1, l1, a0)ψ

†
1 �= 0, I

[
(1, l1, a0) ψ̃1 > 0

]
= I

[
(1, l1, a0)ψ

†
1 > 0

]
+ op (1) under

any FO ∈ F . To prove this fact we reasoned as follows. Because, as argued
below, with probability going to one, ψ̃1 is n1/2 − consistent for ψ†

1 condi-

tional on {(A0i, L1i) ; i = 1, ..., n}, it follows that whenever (1, l1, a0)ψ
†
1 �= 0,

(1, l1, a0) ψ̃1 and (1, l1, a0)ψ
†
1 will have the same sign except on a set C (l1, a0)

with conditional probability given {(A0i, L1i) ; i = 1, ..., n} converging to 0.
That is

for all
{
FO;FO ∈ F , (1, l1, a0)ψ

†
1 (FO) �= 0

}
, (A1.7)

prFO [{Oi, i = 1, ..., n} ∈ C (l1, a0) | {(A0i, L1i) ; i = 1, ..., n}]→ 0 as n→∞.

However it is important to note for later reference that this convergence is
not uniform, i.e.,

sup
FO∈Q̃

pr [{Oi, i = 1, ..., n} ∈ C (l1, a0) | {(A0i, L1i) ; i = 1, ..., n}] (A1.8)

� 0 as n→∞,

Q̃ =
{
FO;FO ∈ F , (1, l1, a0)ψ

†
1 (FO) �= 0

}
, because for each sample size n

and each (l1, a0) , there exists a FO ∈ F with (1, l1, a0)ψ
†
1 �= 0 but (1, l1, a0)ψ

†
1

within O
(
n−1/2

)
of 0. It follows that due to the O

(
n−1/2

)
fluctuations in

ψ̃1, (1, l1, a0) ψ̃1 and (1, l1, a0)ψ
†
1 will have different signs with probability

substantially greater than 0.
To proceed in our analysis of ψ̃0, we need to analyze ψ̃1. By a Taylor

expansion ψ̃1 is a RAL estimator so that

n1/2
(
ψ̃1 − ψ†

1

)
= n1/2Pn [IF1] + op (1) ,

where

IF1 = (IF11, IF21, IF31)
T

= I−1
1 (s1)U1

(
ψ†

1, s1

)
,

I1 (s1) = −∂E
[
U1

(
ψ†

1, s1

)]
/∂ψ1

Thus, by another Taylor expansion of around ψ̃1 around ψ†
1,

n1/2Pn

[
∆0

(
s0, ψ̃1, ψ

†
1

)]
= E [A0L1 {s0 (A0)− E[s0 (A0)]}]×

I
[
n1/2Pn

[∑3
j=1 IFj1

]
> 0
]
n1/2Pn

[∑3
j=1 IFj1

]
−

E [A1A0L1 {s0 (A0)− E[s0 (A0)]}]n1/2Pn

[∑3
j=1 IFj1

]
+

E
[
I
[
(1, L1, A0)ψ

†
1 �= 0

]
{s0 (A0)− E[s0 (A0)]} ×
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(
I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

]
n1/2Pn [IF1]+op (1) . Note in terms

of the estimation of ψ†
1, {(A0i, L1i) ; i = 1, ..., n} is ancillary, so ψ̃1 is n1/2 −

consistent for ψ†
1 conditional on {(A0i, L1i) ; i = 1, ..., n} .

Let Z =
(
Z0, Z

T
1

)T
= (Z0, Z11, Z21, Z31)

T
be MVN with mean 0 and

variance equal to that of
(
U0, IF

T
1

)T
= (U0, IF11, IF21, IF31)

T
with U0 =

U0

(
ψ†

0, s0, ψ
†
1

)
. Let Z1+ = Z11 + Z21 + Z31. Then it follows from the expan-

sion above that, under our assumption that for the FO generating the data

A0L1 = 1 ⇔ I
[
(1, L1, A0)ψ

†
1 = 0

]
, n1/2

(
ψ̃0 − ψ†

0

)
converges in law to the

distribution of I−1
0 (s0)×

Z0 + E [A0L1 {s0 (A0)− E[s0 (A0)]}] I [Z1+ > 0]Z1+−
{E [A1A0L1 {s0 (A0)− E[s0 (A0)]}]Z1+}+

E
[
{1−A0L1} {s0 (A0)− E[s0 (A0)]}

(
I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

]
Z1

where

I0 (s0) = −∂E
[
U0

(
ψ0, s0, ψ

†
1

)]
/∂ψ0 = E [{s0 (A0)− E[s0 (A0)]}A0] .

Because of the term E [A0L1 {s0 (A0)− E[s0 (A0)]}] I [Z1+ > 0]Z1+, ψ̃0, al-
though n1/2-consistent, is neither asymptotically normal nor asymptotically
unbiased. The asymptotic bias asybias (0) is
I−1
0 (s0) {E [A0L1 {s0 (A0)− E[s0 (A0)]}]}E [Z1+|Z1+ > 0] pr [Z1+ > 0] .Thus

asybias (0) = I−1
0 (s0)E [A0L1 {s0 (A0)− E[s0 (A0)]}] {var [Z1+]}1/2

/
√
2π .

To see that the estimator ψ̃0 is non-regular when ψ†
11+ ψ†

21 + ψ†
31 = 0,

(implied by our assumption I
[
(1, L1, A0)ψ

†
1 = 0

]
⇐⇒ L1 = A0 = 1), con-

sider the local data generating process
(
ψT1 , θ

†) =
(
ψ11, ψ

†
21, ψ

†
31, θ

†
)

with

ψ11 = ψ†
11 + kn−1/2. Then

n1/2Pn

[
U0

(
ψ0, s0, ψ̃1

)]
= n1/2Pn [U0 (ψ0, s0, ψ1)]+n

1/2Pn

[
∆0

(
s0, ψ̃1, ψ1

)]
,

∆0

(
s0, ψ̃1, ψ1

)
= I
[
(1, L1, A0)ψ

†
1 = 0

]
{s0 (A0)− E[s0 (A0)]}×(

I
[
(1, L1, A0)

(
ψ̃1 − ψ†

1

)
> 0
]
−A1

)
(1, L1, A0)

(
ψ̃1 − ψ†

1

)
ψ̃1

−I
[
(1, L1, A0)ψ

†
1 = 0

]
{s0 (A0)− E[s0 (A0)]}

(
I
[
kn−1/2 > 0

]
−A1

)
kn−1/2+

I
[
(1, L1, A0)ψ

†
1 �= 0

]
{s0 (A0)− E[s0 (A0)]}

[(
I
[
(1, L1, A0) ψ̃1 > 0

]
−A1

)
×

(1, L1, A0) ψ̃1 − (I [(1, L1, A0)ψ1 > 0]−A1) (1, L1, A0)ψ1

]
.

Thus n1/2Pn

[
∆0

(
s0, ψ̃1, ψ1

)]
=

n1/2Pn

[
A0L1 {s0 (A0)− E[s0 (A0)]}×(

I
[∑3

j=1

(
ψ̃1j − ψ†

1j

)
> 0
]
−A1

)∑3
j=1

(
ψ̃1j − ψ†

1j

)
]
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−n1/2Pn

[
I
[
(1, L1, A0)ψ

†
1 = 0

]
{s0 (A0)− E[s0 (A0)]} (I [k > 0]−A1) kn

−1/2
]
+

n1/2Pn


 I

[
(1, L1, A0)ψ

†
1 �= 0

]
{s0 (A0)− E[s0 (A0)]}×(

I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

(
ψ̃1 − ψ1

)



+op (1).

Now ψ̃1 is a RAL estimator so that n1/2
(
ψ̃1 − ψ1

)
has the same limiting

distribution under
(
ψ1, θ

†
1

)
as n1/2

(
ψ̃1 − ψ†

1

)
under

(
ψ†

1, θ
†
1

)
. Therefore not-

ing(
I
[∑3

j=1

(
ψ̃1j − ψ†

1j

)
> 0
]
−A1

)∑3
j=1

(
ψ̃1j − ψ†

1j

)
=

(
I
[∑3

j=1

(
ψ̃1j − ψ1j

)
> −kn−1/2

]
−A1

) [∑3
j=1

(
ψ̃1j − ψ1j

)
+ kn−1/2

]
, let

Z =
(
Z0, Z

T
1

)T
= (Z0, Z11, Z12, Z13)

T
have the same distribution as above.

Then n1/2
(
ψ̃0 − ψ0

(
ψT1 , θ

†)) converges in law to the distribution of

I−1
0 (s0)×


Z0 + E [A0L1 {s0 (A0)− E[s0 (A0)]}] I [Z1+ > −k] [Z1+ + k]
−E [A1A0L1 {s0 (A0)− E[s0 (A0)]}] [Z1+ + k]

+E
[
I
[
(1, L1, A0)ψ

†
1 = 0

]
{s0 (A0)− E[s0 (A0)]} (I [k > 0]−A1)

]
k + Z1×

E
[
I
[
(1, L1, A0)ψ

†
1 �= 0

]
{s0 (A0)− E[s0 (A0)]}×(

I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

]




which can be written I−1
0 (s0)×



Z0 + E [A0L1 {s0 (A0)− E[s0 (A0)]}] I [Z1+ > −k] [Z1+ + k]
−E [A1A0L1 {s0 (A0)− E[s0 (A0)]}]Z1+

+E [A0L1 {s0 (A0)− E[s0 (A0)]}] k (I [k > 0]) + Z1×
E
[
{1−A0L1} {s0 (A0)− E[s0 (A0)]}

(
I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

]
.




Thus, the mean of the limiting distribution [ i.e the asymptotic bias, asybias (k) ,

of ψ̃0] is

I−1
0 (s0)

{
E [A0L1 {s0 (A0)− E[s0 (A0)]}]E [Z1+ + k|Z1+ > −k] pr [Z1+ > −k]

+E [A0L1 {s0 (A0)− E[s0 (A0)]}] k (I [k > 0])

}

Since the limiting distribution depends on k, ψ̃0 is not regular at excep-
tional laws. It follows that the nominal (1−α) Wald interval centered on ψ̃0 is
not a conservative (1−α) uniform asymptotic confidence interval. Appropriate
alternative methods for construction of uniform asymptotic confidence inter-
vals for the entire vector ψ† are discussed in Section 4.3 and for subvectors
such as ψ†

0 in section 5.1.
Now suppose one objected to the above example by arguing that it is

apriori unlikely that
∑3

j=1 ψ
†
j1 = 0, when none of the ψ†

j1 are zero as such
a fortuitous cancellation of parameter values would be apriori unlikely. If we
apriori excluded such unlikely laws from our model then the only remaining
exceptional laws would be those corresponding to the null hypothesis ψ†

j1 = 0
for j = 1, 2, 3 that says treatment at time 1 has no effect. Suppose, however,
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that it was known from other considerations that this null hypothesis was
false. Then we are led to consider the submodel of our original model in
which we impose the additional apriori assumption that (1, l1, a0)ψ

†
1 �= 0 for

any (l1, a0) . This model has no exceptional laws. In this setting, ψ†
0 is a regular

parameter and ψ̃0 is a RAL estimator at all laws in the model. However we now
argue that ψ̃0 is not UANU. Thus a nominal (1− α) Wald interval centered

on ψ̃0 is not a conservative (1 − α) uniform asymptotic confidence interval,
although it is a (1− α) non-uniform asymptotic interval.

To see why we revisit our derivation of the large sample distribution of ψ̃0

except now I
[
(1, L1, A0)ψ

†
1 = 0

]
takes the value zero with probability one.

Recall that in our derivation we proved that, asymptotically,

n1/2Pn

[
∆0

(
s0, ψ̃1, ψ

†
1

)]
= n1/2Pn [{s0 (A0)− E[s0 (A0)]}×

{(
I
[
(1, L1, A0) ψ̃1 > 0

]
−A1

)
(1, L1, A0) ψ̃1−

(
I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)ψ

†
1

}
]

did not have the random ψ̃1 within an indicator function by using the fact

that I
[
(1, l1, a0) ψ̃1 > 0

]
= I

[
(1, l1, a0)ψ

†
1 > 0

]
+ op (1) under any FO ∈ F

leading to n1/2Pn

[
∆0

(
s0, ψ̃1, ψ

†
1

)]
=

n1/2Pn

[
{s0 (A0)− E[s0 (A0)]}

(
I
[
(1, L1, A0)ψ

†
1 > 0

]
−A1

)
(1, L1, A0)

(
ψ̃1 − ψ†

1

)]

+op (1). But in (A1.8), we showed that these op (1) terms were not uniform

because for each n there exist FO ∈ F with (1, l1, a0)ψ
†
1 �= 0 but (1, l1, a0)ψ

†
1

within O
(
n−1/2

)
of 0. As a consequence n1/2Pn

[
∆0

(
s0, ψ̃1, ψ

†
1

)]
and thus

n1/2
(
ψ̃0 − ψ†

0

)
, although asymptotically normal, are not UANU because we

cannot uniformly remove ψ̃1 from within an indicator function. However, if

we further reduced our model by assuming
∣∣∣(1, l1, a0)ψ

†
1

∣∣∣ > σ > 0 for some

fixed σ and all (l1, a0) , then n1/2
(
ψ̃0 − ψ†

0

)
would be UANU and a nominal

(1 − α) Wald interval centered on ψ̃0 would be (1 − α) uniform asymptotic
confidence interval.

What does all this asymptotics imply for practical finite sample inference in
non toy examples? I believe the take home message is roughly as follows. (The
task of backing up the statements in this paragraph through further theoretical
work and simulation experiments remains to be done.) Consider the uniform
asymptotic confidence interval Cop (1− α) for the entire vector ψ† discussed
in Section 4.3. Let Hm,i = card

{
dop,m

(
Lm,i, Am−1,i, ψ

)
;ψ ∈ Cop (1− α)

}
be



130 James M. Robins

the number of potential optimal treatment strategies at time m for subject
i based on his observed data

(
Lm,i, Am−1,i

)
that are consistent with his ob-

served data. If the fraction pop of the Hm,i in the set
{Hm,i; i = 1, ..., n, m = 1, ...,K} that exceed 1 is moderate to large (say,
pop > .05) then inferences based on ordinaryWald point and interval estimates
are unreliable for frequentist inference and the methods of sections 4.3 and 5.1
should be used instead. In terms of our toy model, the fraction of the Hm,i ex-

ceeding 1 is an informal upper bound on how often I
[
(1, l1, a0) ψ̃1 > 0

]
might

differ from I
[
(1, l1, a0)ψ

†
1 > 0

]
over the set of ψ†

1 consistent with the observed

data (as determined via the confidence interval Cop (1− α)). If pop is small
our finite sample inferences should agree with those based on an asymptotics

that assumes
∣∣∣(1, l1, a0)ψ

†
1

∣∣∣ > σ > 0 and thus inference based on Wald inter-

vals and asymptotic normality should be trustworthy. The governing idea is
that we not worry about values of ψ† that are incompatible with the data.

Indeed I believe a successful strategy with a potential for enormous sav-
ings in computing time is as follows. Compute the closed form estimate ψ̃
and then the locally efficient one step update ψ̃(1) of Section 4.2 and use
ψ̃(1) to center a Wald intervsal CWald−onestep (1− α). Compute the fraction
pWald−onestep of the Hm,i that exceed 1 but now using the easy to compute
CWald−onestep (1− α) in place of the hard to compute Cop (1− α) . Then base
inferences on usual Wald statistics under the assumption of joint multivariate
normality if pWald−onestep is small. If pWald−onestep is not small use the meth-
ods in Secs 4.3 and 5.1. Since CWald−onestep (1− α) differs from Cop (1− α) by
at most O

(
n−1/2

)
the hope is that the qualitative sizes of pWald−onestep and

pop will be the same even when pop is large and thus quantitative inferences
based on CWald−onestep (1− α) are inappropriate. Here is an example where
I believe this strategy would save lots of effort.

Suppose we modify our toy model such that L1 is continuous and real-
valued with distribution that is absolutely continuous wrt Lesbegue measure
and approximately uniform on (−5, 5) . Suppose the true but unknown values

of ψ†
21 and ψ†

11 are 1 and ψ†
31 = 0 is known to be 0. Then the unknown pa-

rameters of our drSNMM model are
(
ψ†

11, ψ
†
21, ψ

†
0

)
. Thus (1, L1, A0)ψ

†
1 = 0

if and only if ψ†
11 + ψ†

21L1 = 0 . Now the event L1 = −ψ†
11/ψ

†
21 = −1 has

probability zero. Further the event that
∣∣∣ψ†

11 + ψ†
21L1

∣∣∣ < O
(
n−1/2

)
has prob-

ability O
(
n−1/2

)
. Since

(
ψ̃1 − ψ†

1

)
= O

(
n−1/2

)
, I
[
(1, l1, a0) ψ̃1 > 0

]
will dif-

fer from I
[
(1, l1, a0)ψ

†
1 > 0

]
with probability O

(
n−1/2

)
and as O

(
n−1/2

)
is

also the radius of CWald−onestep (1− α), we will find that pWald−onestep is
also O

(
n−1/2

)
. Thus, with sample size n sufficiently large that the preceding

calculations (which depended only on rates and not on constants) are valid
approximations, Wald inferences centered on the one step estimator are valid
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and our diagnostic pWald−onestep will have revealed this, preventing the need
for a more difficult analysis.

A1.2: Locally Degenerate Distribution of a Stochastic Process in
Our Toy Example :

Our goal is to show that for
(
ψ − ψ†) ofO

(
n−1/2

)
, n1/2Pn [U0 (ψ0, s0, ψ1)] =

n1/2Pn

[
U0

(
ψ†

0, s0, ψ
†
1

)]
+ κ

(
ψ, ψ†, FO

)
+ op (1) where the op (1) is uniform

in FO. and κ
(
ψ, ψ†, FO

)
is non-random. First note that if (1, L1, A0)ψ1 and

(1, L1, A0)ψ
†
1 are not both positive or both negative, then, by continuity, the

function (1, L1, A0)ψ1 of ψ1 has a zero at some point, say ψ∗
1

(
L1, A0, ψ1, ψ

†
1

)
,

on the line connecting ψ1 and ψ†
1. Further by

(
ψ − ψ†)=O

(
n−1/2

)
, ψ −

ψ∗
1

(
L1, A0, ψ1, ψ

†
1

)
and ψ∗

1

(
L1, A0, ψ1, ψ

†
1

)
− ψ† are Op

(
n−1/2

)
Now from

A1.6 we have

n1/2Pn [U0 (ψ0, s0, ψ1)]− n1/2Pn

[
U0

(
ψ†

0, s0, ψ
†
1

)]

= n1/2
(
ψ0 − ψ†

0

)
Pn [A0 {s0 (A0)− E[s0 (A0)]}] +

n1/2Pn

[
∆0

(
s0, ψ1, ψ

†
1

)]

But

n1/2Pn

[
∆0

(
s0, ψ1, ψ

†
1

)]

= −n1/2Pn [{s0 (A0)− E[s0 (A0)]}A1 (1, L1, A0)]
(
ψ1 − ψ†

1

)

+ n1/2Pn

[
∆∗

0

(
s0, ψ1, ψ

†
1

)]

where n1/2∆∗
0

(
s0, ψ1, ψ

†
1

)
=

n1/2
[
(I [(1, L1, A0)ψ1 > 0]) (1, L1, A0)ψ1 −

(
I
[
(1, L1, A0)ψ

†
1 > 0

])
(1, L1, A0)ψ

†
1

]
} =

I [(1, L1, A0)ψ1 > 0] I
[
(1, L1, A0)ψ

†
1 > 0

]
(1, L1, A0)n

1/2
{
ψ1 − ψ†

1

}
+

I [(1, L1, A0)ψ1 > 0] I
[
(1, L1, A0)ψ

†
1 ≤ 0

]
(1, L1, A0)n

1/2
{
ψ1 − ψ∗

1

(
L1, A0, ψ1, ψ

†
1

)}
+

I [(1, L1, A0)ψ1 ≤ 0] I
[
(1, L1, A0)ψ

†
1 > 0

]
(1, L1, A0)n

1/2
{
ψ∗

1

(
L1, A0, ψ1, ψ

†
1

)
− ψ†

1

}

is Op (1) .

Thus Pn

[
n1/2∆∗

0

(
s0, ψ1, ψ

†
1

)]
= E

[
n1/2∆∗

0

(
s0, ψ1, ψ

†
1

)]
+ op (1) by the

uniform law of large numbers.

Thus we have proved the claimed result with κ
(
ψ, ψ†, FO

)
= E

[
n1/2∆∗

0

(
s0, ψ1, ψ

†
1

)]

+E [A0 {s0 (A0)− E[s0 (A0)]}]n1/2
(
ψ0 − ψ†

0

)
−

E [{s0 (A0)− E[s0 (A0)]}A1 (1, L1, A0)]n
1/2
(
ψ1 − ψ†

1

)
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Consider the special case where FO is an exceptional law so (1, L1, A0)ψ
†
1 =

0.Assume as above, (1, L1, A0)ψ
†
1 = 0⇔ L1 = A0 = 1.ThenE

[
n1/2∆∗

0

(
s0, ψ1, ψ

†
1

)]
=

E





I
[∑

j ψj1 > 0
]
E [L1A0 (1, L1, A0)] +

E
[
{ 1− L1A0} I

[
( 1, L1, A0) ψ†

1 > 0
]
( 1, L1, A0)

]


n1/2

{
ψ1 − ψ†

1

}
.

Thus ∂E [U0 (ψ0, s0, ψ1)] /∂ψ
T
1 = DER01 (ψ) =

E





I
[∑

j ψj1 > 0
]
E [L1A0 (1, L1, A0)] +

E
[
{ 1− L1A0} I

[
( 1, L1, A0) ψ†

1 > 0
]
( 1, L1, A0)

]




−E [{s0 (A0)− E[s0 (A0)]}A1 (1, L1, A0)]
which converges to different limits depending on whether

∑
j ψj1 decreases

from above or increases from below to
∑

j ψ
†
j1 = 0 soDER01

(
ψ†) is undefined.

Note ∂E
[
U0

(
ψ0, s0, ψ̃1

)]
/∂ψT1 will have variance O (1) since

∑
j ψ̃j1 takes

on both positive and negative values with positive probability as n→∞.
Even when the data are not generated under an exceptional law so

DER01

(
ψ†) exists, the convergence of DER01 (ψ) to DER01

(
ψ†) is non-

uniform since, given any sequence kn−1/2, there exists at each sample size
n, ψ and ψ† with

∑
j ψ

†
j1 sufficiently close to 0 and |

∣∣ψ − ψ†∣∣ | = kn−1/2,

such that DER01 (ψ) − DER01

(
ψ†) = O (1) because

∑
j ψj1 and

∑
j ψ

†
j1

have different signs. However the Lebesgue measure of the set of ψ† that has
this property will decrease as n increases so that posterior associated with a
smooth prior (that does not change with sample size) will be quadratic for n
large.

11 Appendix 2:

Proof of Lemma 5.1:For some ψ∗
2 ∈
[
ψ2, ψ̂2

]

n1/2Pn

[
Ua

(
ψ1, ψ̂2

)]

= n1/2Pn [Ua (ψ1, ψ2)] + n1/2Pn [∂Ua (ψ1, ψ2) /∂ψ2]
(
ψ̂2 − ψ2

)
+

n1/2Pn
[
∂2Ua (ψ1, ψ

∗
2) /∂

2ψ2

] (
ψ̂2 − ψ2

)2

= n1/2Pn [Ua (ψ1, ψ2)] + n1/2Pn [∂Ua (ψ1, ψ2) /∂ψ2]
(
ψ̂2 − ψ2

)
+ op (1)

Similiarly

n1/2Pn

[
Ub

(
ψ1, ψ̂2

)]
= n1/2Pn [Ub (ψ1, ψ2)] +

n1/2Pn [∂Ub (ψ1, ψ2) /∂ψ2]
(
ψ̂2 − ψ2

)
+ op (1)
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Also

Pn

[
∂Ua

(
ψ1, ψ̂2

)
/∂ψ2

]{
Pn

[
∂Ub

(
ψ1, ψ̂2

)
/∂ψ2

]}−1

n1/2Pn [Ub (ψ1, ψ2)]

= Pn [∂Ua (ψ1, ψ2) /∂ψ2] {Pn [∂Ub (ψ1, ψ2) /∂ψ2]}−1 n1/2Pn [Ub (ψ1, ψ2)] + op (1)

Hence,

n1/2Pn

[
U1

(
ψ1, ψ̂2

)]
− n1/2Pn [U1 (ψ1, ψ2)]

= n1/2Pn [∂Ua (ψ1, ψ2) /∂ψ2]
(
ψ̂2 − ψ2

)
−

Pn

[
∂Ua

(
ψ1, ψ̂2

)
/∂ψ2

]{
Pn

[
∂Ub

(
ψ1, ψ̂2

)
/∂ψ2

]}−1

n1/2×

Pn [∂Ub (ψ1, ψ2) /∂ψ2]
(
ψ̂2 − ψ2

)
+ op (1)

= n1/2Pn [∂Ua (ψ1, ψ2) /∂ψ2]
(
ψ̂2 − ψ2

)

− Pn [∂Ua (ψ1, ψ2) /∂ψ2] {Pn [∂Ub (ψ1, ψ2) /∂ψ2]}−1 n1/2×
Pn [∂Ub (ψ1, ψ2) /∂ψ2]

(
ψ̂2 − ψ2

)
+ op (1)

= op (1)

12 Appendix 3:

Proof of Theorem 7.1: ⇐ By induction in reverse time order.

Case 1:m = K. Let aK = dK
(
LK , AK−1

)
.ThenE

[
YAK−1,aK

|LK , AK−1

]
=

E
[
YAK−1,aK

|LK , AK−1, AK = aK

]
f
(
aK |LK , AK−1

)
+

{
1− f

(
aK |LK , AK−1

)}
E
[
YAK−1,aK

|LK , AK−1, Ak �= aK

]

=
{
E
[
YAK−1,d∗K

|LK , AK−1, AK = aK

]
+ γd,d

∗ (
LK , AK−1,aK

)}
×

f
(
aK |LK , AK−1

)
+
{
1− f

(
aK |LK , AK−1

)}
×{

E
[
YAK−1,d∗K

|LK , AK−1, AK �= aK

]
+ γd,d

∗ (
LK , AK−1,aK

)
− rdK ,d

∗
K

(
LK , AK−1

)}

= E
[
YAK−1,d∗K

|LK , AK−1

]
+ γd,d

∗ (
LK , AK−1,aK

)
−

{
1− f

(
aK |LK , AK−1

)}
rdK ,d

∗
K

(
LK , AK−1

)

= E
{
E
[
YAK−1,AK

− γd,d
∗ (
LK , AK

)
|LK , AK−1, AK

]
|LK , AK−1

}
−

{
1− f

(
aK |LK , AK−1

)}
rdK ,d

∗
K

(
LK , AK−1

)
= E

[
HK

(
γd,d

∗
)
|LK , AK−1

]

where the first equality is by the law of total probability, the second by the

definition of γd,d
∗ (
LK , AK−1,aK

)
and rdm,d

∗
m

(
LK , AK−1

)
, the third by the
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law of total probability, the fourth by the definition of γd,d
∗ (
LK , AK

)
, and

the 5th by the definition of HK

(
γd,d

∗
)
.

Case 2: m < K. Let am = dm
(
Lm, Am−1

)
.

Then E
[
YAm−1,am,dm+1

|Lm, Am−1

]

= E
[
YAm−1,am,dm+1

|Lm, Am−1, Am = am

]
f
(
am|Lm, Am−1

)

+
{
1− f

(
am|Lm, Am−1

)}
E
[
YAm−1,am,dm+1

|Lm, Am−1, Am �= am

]

=
{
E
[
YAm−1,d∗m,dm+1

|Lm, Am−1, Am = am

]
+ γd,d

∗ (
Lm, Am−1,am

)}
×

f
(
am|Lm, Am−1

)
+
{
1− f

(
am|Lm, Am−1

)}
×{

E
[
YAm−1,d∗m,dm+1

|Lm, Am−1, Am �= am

]
+ γd,d

∗ (
Lm, Am−1,am

)

− rdm,d
∗
m

(
Lm, Am−1

)}

= E
[
YAm−1,d∗m,dm+1

|Lm, Am−1

]
+ γd,d

∗ (
Lm, Am−1, am

)
−

{
1− f

(
am|Lm, Am−1

)}
rdm,d

∗
m

(
Lm, Am−1

)
=

E
{
E
[
YAm−1,Am,dm+1

− γd,d
∗ (
Lm, Am

)
|Lm, Am−1, Am

]
|Lm, Am−1

}

(A3.1)

−
{
1− f

(
am|Lm, Am−1

)}
rdm,d

∗
m
(
Lm, Am−1

)

where the first equality is by the law of total probability, the second by the

definition of γd,d
∗ (
Lm, Am−1,am

)
and rdm,d

∗
m

(
Lm, Am−1

)
, and the third by

the law of total probability, the fourth by the definition of γd,d
∗ (
Lm, Am

)
.

But E
[
YAm−1,Am,dm+1

− γd,d
∗ (
Lm, Am

)
|Lm, Am−1, Am

]

=
∫
E
[
YAm−1,Am,dm+1

|Lm+1, Am−1, Am

]
dF
(
Lm+1|Lm, Am

)
−γd,d∗

(
Lm, Am

)

=
∫
E
[
H
dm+1

m+1

(
γd,d

∗
)
|Lm+1, Am

]
dF
(
Lm+1|Lm, Am,

)
− γd,d

∗ (
Lm, Am

)

= E
[
H
dm+1

m+1

(
γd,d

∗
)
|Lm, Am

]
− γd,d

∗ (
Lm, Am

)
where the first equality

is by the law of total probability, the second by the induction hypothesis,

and the last by the definition of H
dm+1

m+1

(
γd,d

∗
)
. We complete the proof by

plugging this last expression back into (A3.1)
⇒ By contradiction. Letm∗ be the largest value ofm such that∆

(
Lm, Am

)
≡

γd
∗∗ (Lm, Am

)
− γd,d

∗ (
Lm, Am

)
is a function of Am with positive probabil-

ity. By the assumption that γd
∗∗ (Lm, Am

)
= 0 if Am = 0, we are guar-

anteed that m∗ ≥ 0. It follows that 0 = E
[
H
dm∗

m∗

(
γd,d

∗
)
|Lm∗ , Am∗

]
but

E
[
H
dm∗

m∗

(
γd

∗∗
)
|Lm∗ , Am∗

]
= γd

∗∗ (Lm∗ , Am∗

)
−γd,d∗

(
Lm∗ , Am∗

)
�= 0 w.p1.

Corollary A3.1: E
[
H
dm
m

(
γd,d

∗
)
− γd,d

∗ (
Lm−1, Am−1

)
|Lm−1, Am−1

]
=

E
[
YAm−2,d∗m,dm

|Lm−1, Am−1

]
.
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Proof: E
[
H
dm
m

(
γd,d

∗
)
− γd,d

∗ (
Lm−1, Am−1

)
|Lm−1, Am−1

]

= E
[
E
[
YAm−1,dm

|Lm, Am−1

]
− γd,d

∗ (
Lm−1, Am−1

)
|Lm−1, Am−1

]

= E
[
YAm−1,dm

− γd,d
∗ (
Lm−1, Am−1

)
|Lm−1, Am−1

]

= E
[
YAm−2,d∗m,dm

|Lm−1, Am−1

]

where the 1st equality is by theorem 7.1, the second by the law of total

probability, and the third by the definition of γd,d
∗ (
Lm−1, Am−1

)
.

Proof of Theorem 7.2:
⇐ E

[
H
dm
m

(
γd,d

∗
)
− γd,d

∗ (
Lm−1, Am−1

)
− qd,d

∗ (
Lm−1, Am−1

)
|Lm−1, Am−1

]

= E
[
YAm−2,d∗m,dm

− qd,d
∗ (
Lm−1, Am−1

)
|Lm−1, Am−1

]
=

E
[
YAm−2,d∗m,dm

|Lm−1, Am−2, Am−1 = 0
]
where the 1st equality is by Corol-

lary A.1 and the second by the definition of qd,d
∗ (
Lm−1, Am−1

)
.

⇒trivial
Proof of Theorem 7.4:⇐By induction
Case 1: m = K : Trivial since YAm−1,am,dm+1

does not depend on dm+1.

Case 2: Assume it is true for m + 1 and we shall prove it for m. By the
induction hypothesis for dm+1 ∈ Dm+1

E
[
YAm−1,am,dop,m+1

− YAm−1,am,dm+1
|Lm+1, Am−1, Am = am

]
≥ 0

Thus E
[
YAm−1,am,dop,m+1

− YAm−1,am,dm+1
|Lm, Am−1, Am = am

]
≥ 0 after

integrating over Lm+1. By the backward induction feasibility assumption this

implies E
[
YAm−1,am,dop,m+1

− YAm−1,am,dm+1
|Lm, Am−1

]
≥ 0. Hence since

dop,m
(
Lm, Am−1

)
= argmaxam∈Am E

[
YAm−1,am,dop,m+1

|Lm, Am−1

]
, we con-

clude that dop,m maximizes E
[
YAm−1,dm

|Lm, Am−1

]
over all regimes dm ∈

Dm. The proof in the other direction is trivial.
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