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ABSTRACT 

Using computational and mathematical modeling, this study explores the tension between too 

little and too much structure that is shaped by the core tradeoff between efficiency and flexibility 

in dynamic environments. Our aim is to develop a more precise theory of the fundamental 

relationships among structure, performance, and environment. We find that the structure-

performance relationship is unexpectedly asymmetric, in that it is better to err on the side of too 

much structure, and that different environmental dynamism dimensions (i.e., velocity, 

complexity, ambiguity, and unpredictability) have unique effects on performance. Increasing 

unpredictability decreases optimal structure and narrows its range from a wide to a narrow set of 

effective strategies. We also find that a strategy of simple rules, which combines improvisation 

with low-to-moderately structured rules to execute a variety of opportunities, is viable in many 

environments but essential in some. This sharpens the boundary condition between the strategic 

logics of positioning and opportunity. And juxtaposing the structural challenges of adaptation for 

entrepreneurial vs. established organizations, we find that entrepreneurial organizations should 

quickly add structure in all environments, while established organizations are better off seeking 

stable environments unless they can devote sufficient attention to managing a dissipative 

equilibrium of structure (i.e., edge of chaos) in unpredictable environments.
•
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A longstanding question in strategy and organization theory is how the amount of organizational 

structure shapes performance in dynamic environments. Given its fundamental importance, this 

question has been explored in a variety of research traditions, ranging from organizational 

studies (Burns and Stalker, 1961; Hargadon and Sutton, 1997) and competitive strategy (Rindova 

and Kotha, 2001; Rothaermel, Hitt, and Jobe, 2006) to network sociology (Uzzi, 1997; Owen-

Smith and Powell, 2003) and, more broadly, the complexity sciences (Kauffman, 1993; 

Anderson, 1999). Although highly diverse, these literatures nonetheless highlight two 

fundamental arguments. 

 

The first argument is that a balance between too much and too little structure is critical to high 

performance for organizations in dynamic environments. Organizations with too little structure 

lack enough guidance to generate appropriate behaviors efficiently (Weick, 1993; Okhuysen and 

Eisenhardt, 2002; Baker and Nelson, 2005), while organizations with too much structure are too 

constrained and lack flexibility (Miller and Friesen, 1980; Siggelkow, 2001; Martin and 

Eisenhardt, 2010). This tension produces a dilemma for organizations, as high performance in 

dynamic environments demands both efficiency and flexibility. Research shows that high-

performing organizations resolve this tension using a moderate amount of structure to improvise 

a variety of high-performing solutions (Brown and Eisenhardt, 1997, 1998). Overall, this 

suggests an inverted U-shaped relationship between the amount of structure and performance, a 

relationship often observed when tensions are at work. 

 

The second argument is that achieving high performance with moderate structure is influenced 

by the changing nature of environmental opportunities (Adler, Goldoftas, and Levine, 1999; 
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Rindova and Kotha, 2001). Highly dynamic environments require flexibility to cope with a flow 

of opportunities that typically is faster, more complex, more ambiguous, and less predictable 

than in less dynamic environments. Research shows that high-performing organizations cope 

with dynamic environments with less structure (Eisenhardt and Martin, 2000; Rowley, Behrens, 

and Krackhardt, 2000). Conversely, less dynamic environments favor efficiency, and so high-

performing organizations have more structure in these environments (Pisano, 1994; Rivkin and 

Siggelkow, 2003). Overall, this suggests that the optimal amount of structure decreases with 

increasing environmental dynamism, a consistent finding within multiple literatures. 

 

Yet although these arguments are widely understood in general, unresolved issues remain. First, 

the empirical evidence that supports an inverted-U shaped relationship is modest. It primarily 

consists of qualitative case comparisons (Mintzberg and McHugh, 1985; Brown and Eisenhardt, 

1997) and quantitative confirmations such as statistical tests of quadratic relationships and 

interaction effects that are not sufficiently precise to identify a specific functional form (Bradach, 

1997; Gibson and Birkinshaw, 2004; Rothaermel, Hitt, and Jobe, 2006), such as an inverted-U. 

Rather, the evidence simply points to a unimodal shape for the relationship between structure 

and performance that increases on one side and decreases on the other. So the evidence does not 

rule out other shapes (e.g., broad plateau or inverted-V) and related functional forms. The shape 

of the structure-performance relationship has consequential theoretical and managerial 

implications. For instance, if the relationship is a broad plateau with a wide range of optimal 

structures, then balancing between too much and too little structure is easy and unimportant. In 

contrast, if the shape is an inverted-V, in which the optimal structure is a narrow peak, 
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sometimes called an “edge of chaos,” then balancing between too much and too little structure is 

challenging and crucial. 

 

Second, the theory that underlies the relationship between the amount of structure and 

performance is incomplete. As sketched above, the basic theoretical argument is that 

organizations with too much structure are too inflexible, while organizations with too little 

structure are too inefficient. Although appealing, this argument neglects key factors such as 

limited attention, time delays, and the fleeting and varied nature of opportunities that might 

influence this tradeoff. So, for example, the theory does not consider that, although less structure 

enables flexible improvisation, improvisation is an attention-consuming and mistake-prone 

process (Hatch, 1998; Weick, 1998). As a result, the theory fails to clarify precisely how 

structure influences efficiency and flexibility, and thus the exact nature of the efficiency-

flexibility tradeoff, including whether it is advantageous to err toward too much or too little 

structure. 

 

Third, the theory that underlies the argument that environmental dynamism influences the 

optimal structure is imprecise. In particular, environmental dynamism is a multidimensional 

construct (Dess and Beard, 1984), and yet the theory does not unpack how the dimensions of 

dynamism operate. The empirical literature also reflects this imprecision, as studies often mingle 

dimensions such as complexity, velocity, unpredictability, and ambiguity (Eisenhardt, 1989; 

Pisano, 1994) that may have distinct effects. Understanding the influence of different dimensions 

is important because they may have unexpected implications for theory and practice. For 

example, it may be that only one or two dimensions shift optimal structure or that the structure-
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performance relationship has distinct shapes in specific environments, such as highly ambiguous 

nascent markets and high velocity “bubble” markets. 

 

Overall, these unresolved issues suggest a lack of specific understanding in diverse literatures of 

the fundamental relationships among structure, performance, and environment. This is the gap 

that we address by exploring the relationship between structure and performance, the underlying 

tradeoff between efficiency and flexibility, and the influence of environmental dynamism. There 

are many definitions of structure, with varied attributes such as formalization (e.g., rules, 

routines), centralization (e.g., hierarchy, use of authority, verticality), control systems (e.g., span 

of control), coupling and structural embeddedness (e.g., tie strength, tie density), and 

specialization (e.g., role clarity) (Weber, 1946; e.g., Burns and Stalker, 1961; Pugh et al., 1963; 

Galbraith, 1973; Mintzberg, 1979; Granovetter, 1985; Scott, 2003). But although the definitions 

include varied attributes, they all share an emphasis on shaping the actions of organizational 

members. Entities are more structured when they shape more activities of their constituent 

elements and thus constrain more action. Conversely, entities are less structured when their 

constituent elements have more flexibility in their behavior. Thus we define structure broadly as 

constraint on action. 

 

We conducted this research using simulation methods, which are effective for research such as 

ours in which the basic outline of the theory is understood, but its underlying theoretical logic is 

limited (Davis, Eisenhardt, and Bingham, 2007). In this situation, there is enough theory to 

develop a simulation model, yet the theory is also sufficiently incomplete that it warrants 

examination of its internal validity (i.e., the correctness of its theoretical logic) and elaboration of 
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its propositions through experimentation, which are both strengths of simulation (Sastry, 1997; 

Zott, 2003). Simulation is also a particularly useful method for research such as ours when the 

focal phenomenon is nonlinear (Carroll and Burton, 2000; Rudolph and Repenning, 2002; 

Lenox, Rockart, and Lewin, 2006). Though statistical and inductive methods may indicate the 

presence of nonlinearities, they offer less precise identification, particularly of complex ones 

such as tipping points and skews. Simulation is also a particularly useful method when empirical 

data are challenging to obtain (Davis, Eisenhardt, and Bingham, 2007). For example, simulation 

enables us to study mistakes that informants might be reluctant to reveal (Carroll and Burton, 

2000; Finkelstein, 2003) and to unpack environmental dimensions that may be difficult to 

disentangle in actual environments (Dess and Beard, 1984). Finally, simulation is especially 

effective for research such as ours that involves longitudinal and process phenomena because 

such phenomena can be studied over extended time periods that would be difficult to observe 

with empirical data (March, 1991; Zott, 2003). Using these methods, we seek to understand the 

effects of varying amounts of structure on performance in different environments. 

 

ORGANIZATIONAL STRUCTURE AND ENVIRONMENTAL DYNAMISM 

Several research streams focus on the fundamental relationships among structure, performance, 

and environment. One general argument is that organizations with too little structure are too 

confused and lack efficiency, while organizations with too much structure are too constrained 

and lack flexibility. By contrast, moderate structure balances between these two states and so is 

likely to be high performing (Weick, 1976; Brown and Eisenhardt, 1997). Support for this 

general argument emerges in several literatures. Studies in network sociology point to the 

“paradox of embeddedness” wherein moderately connected actors outperform those who are 
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either less or more connected (Uzzi, 1997; Baum, Calabrese, and Silverman, 2000; Owen-Smith 

and Powell, 2003). Uzzi (1997) found that firms in the garment industry that combined more and 

less structured partnerships were more effective than those firms that used only one type. 

Similarly, studies of partially connected technology standards (Garud and Jain, 1996) and 

“leaky” networks in the Boston-area biotechnology field (Owen-Smith and Powell, 2003) 

suggest that balancing too much and too little structure improves industry-level performance. 

 

The argument for structural balance is also supported in areas of organizational studies in which 

loose coupling, ambidexterity, and improvisation are key, including creativity (Amabile, 1996), 

innovation (Davis, 2009), group problem solving (Bigley and Roberts, 2001; Okhuysen and 

Eisenhardt, 2002), organizational change (Tushman and O'Reilly, 1996; Gilbert, 2005), and 

organizational learning (Tripsas, 1997; Hansen, 1999). For example, Brown and Eisenhardt 

(1997) found that high-tech firms with a moderate number of simple rules (i.e., semi-structure) 

are more flexible and efficient—quickly creating high-quality, innovative products while 

responding to market shifts—than firms with more or fewer rules. 

 

In the strategy literature, there is also support for this argument in studies of vertical integration 

(Schilling and Steensma, 2001; Rothaermel, Hitt, and Jobe, 2006), loose internal coupling 

(Galunic and Eisenhardt, 2001; Williams and Mitchell, 2004; Martin and Eisenhardt, 2010), 

innovation (Katila and Ahuja, 2002; Fleming, Sorenson, and Rivkin, 2006), and moderately 

structured capabilities with simple rules (Burgelman, 1996; Bingham, Eisenhardt, and Furr, 

2007). Rindova and Kotha (2001) found that Yahoo’s initially high performance in a dynamic 
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environment was partially due to its simple-rules structure for the critical process capabilities of 

acquisitions and alliances. 

 

More broadly, research in the complexity sciences also examines the tension between too much 

and too little structure. A repeated finding is that moderately structured computational systems 

evolve more effectively than systems with too little or too much structure (Kauffman, 1989; 

Langton, 1992; Gell-Mann, 1994). A related finding is that systems tend to fall away from the 

optimal “edge-of-chaos” amount of structure into catastrophes without constant intervention 

(Anderson, 1999; Eisenhardt and Bhatia, 2001). In the language of nonlinear dynamics (Strogatz, 

2001), the optimal structure is often an unstable or dissipative critical point that is difficult to 

maintain. Overall, these literatures suggest the following well-known proposition: 

 

Proposition (P1): Performance has an inverted-U shaped relationship with the amount of 

structure. 

 

Several streams of research also focus on how environmental dynamism influences the 

relationship between the amount of structure and performance. The general argument is that as 

the environment becomes more dynamic, it becomes advantageous for the organization to be 

more flexible and so less structured. Conversely, as the environment becomes less dynamic, 

greater efficiency and so more structure are preferred. This general argument finds extensive 

support in a number of literatures. Contingency theory (Lawrence and Lorsch, 1967; Thompson, 

1967; Galbraith, 1973) is particularly prominent. In an early study, Burns and Stalker (1961) 

found that a more structured mechanistic organization (e.g., role specialization, centralization, 
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and formalization) is high performing in stable environments because it is highly efficient in 

these routine situations. In contrast, a less structured organic organization (e.g., decentralized 

decision making, broader and more fluid roles, wider span of control) is high performing in 

dynamic markets because it enables flexible action. Similarly, Eisenhardt and Tabrizi (1995) 

found that more structure (e.g., planning, numerous and well-defined process steps, 

specialization) is faster and more effective for innovation processes in the stable mainframe 

computing industry, whereas less structure and more improvised action (e.g., prototyping) is 

better in the dynamic personal computing industry. Pisano (1994) found a similar contrast for 

new process development in the dynamic biotech industry vs. the stable chemical industry. 

 

The argument is supported by strategy research that has found less structured emergent strategies 

to be higher performing in dynamic environments, whereas more structured deliberate strategies 

work better in stable ones (Mintzberg and McHugh, 1985). Similarly, network studies have 

shown that that loosely coupled networks are more effective in highly dynamic industries 

(Tushman and Katz, 1980; Uzzi, 1997; Ozcan and Eisenhardt, 2008). Rowley, Behrens, and 

Krackhardt (2000) observed that the high-performing firms in the dynamic semiconductor 

industry have loosely coupled alliance networks, whereas high-performing firms in the stable 

steel industry have more structured dense networks. Overall, these literatures suggest the 

following well-known proposition: 

 

Proposition 2 (P2): As environmental dynamism increases, the optimal amount of structure 

decreases. 
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Central to the underlying theory of these two propositions is the insight that the amount of 

structure influences both efficiency and flexibility, but in opposite directions (Gibson and 

Birkinshaw, 2004). By efficiency, we mean the rapid, less costly, mistake-free execution of 

opportunities like new products, new market entry, or new acquisitions (Miller and Friesen, 

1980; Adler, Goldoftas, and Levine, 1999). Structure creates the framework that enables reliable, 

rapid, smooth execution in well-grooved routines that is efficient. In contrast, flexibility refers to 

open, fluid execution of these opportunities (Weick, 1993; Sine, Mitsuhashi, and Kirsch, 2006). 

Removing structure creates latitude for improvisation that is flexible. In dynamic environments, 

high performance depends on balancing the tradeoff between flexibility and efficiency. 

 

But though these general theoretical arguments are widely understood, unresolved issues remain. 

First, the empirical evidence for an inverted-U shaped relationship is modest, consisting of 

qualitative case comparisons (Brown and Eisenhardt, 1997; Gilbert, 2005), and quantitative 

statistical tests of quadratic functions or interactions between efficiency and flexibility that are 

not precise enough to determine that the relationship is, in fact, an inverted-U (Hansen, 1999; 

Gibson and Birkinshaw, 2004; Rothaermel, Hitt, and Jobe, 2006). The evidence does not rule out 

other shapes and functional forms that may have critical theoretical and practical consequences. 

For example, if the shape is a broad plateau, such that there are a variety of high-performing 

structures, then it is easy and unimportant to find the optimal structure. Conversely, if the shape 

is an inverted-V, such that there are only a few high-performing structures, then the optimal 

structure is challenging to find and crucial to maintain. An inverted-U relationship also requires 

very specific functional forms, the simplest being that structure has linear relationships (and 
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opposite slopes) with efficiency and flexibility. But there is no clear theory for why these 

relationships would be, for example, linear. 

 

A second unresolved issue is that the theory underlying the relationship between structure and 

performance is incomplete, particularly the theoretical logics tying structure with efficiency and 

flexibility.
1
 Neglected considerations such as attention limits, mistakes, and the fleeting, varied 

nature of opportunities suggest that these relationships are more complex than extant theory 

indicates. For example, structure improves efficiency by constraining the behaviors of 

organizational members within well-established guidelines determined by rules, roles, reporting 

relationships, and other forms of structure (Feldman and Pentland, 2003; Rivkin and Siggelkow, 

2003). Siggelkow’s (2001) study of Liz Claiborne provides an illustration. Here, executives 

created organizational structures (e.g., hierarchies, rules, roles) to address a series of product 

opportunities in the apparel industry. Rules were a particularly key form of structure that guided 

basic decisions. For example, rules about apparel design stipulated that each season’s clothing 

line comprise four to seven concept groups, sizes should be the same across styles, and colors 

should not change across years. Together, these and other structures constrained organizational 

actions and enabled Liz Claiborne to be highly efficient. Moreover, because Liz Claiborne 

executives fit these structures to match specific environmental opportunities focused on a 

growing number of professional women, the firm was able to execute a series of lucrative and 

very related opportunities consistently, quickly, cheaply, and with few mistakes (Siggelkow, 

2001). 

 



 

 

 

11 

 

  

Although greater structure improves efficiency, the rate of improvement often declines, and the 

range of opportunities that can be captured narrows as well. So organizations may be able to 

execute specific opportunities efficiently but not diverse or higher-payoff ones. Brown and 

Eisenhardt (1997) described a highly structured product development process that could rapidly 

and flawlessly capture similar product opportunities but could not flexibly adjust to capture 

highly profitable, new product opportunities. Similarly, Gilbert (2005) described how highly 

structured, traditional newspaper firms were too rigid to execute new Internet opportunities, 

whereas more loosely coupled ones were more successful. The key point is that increasing 

structure can trap organizations in a few or low-payoff opportunities with a declining rate of 

efficiency improvements. Organizational action becomes frozen, approaching a non-adaptive 

state that complexity theorists call a “complexity catastrophe” (Kauffman, 1993; Anderson, 

1999). 

 

Similarly, the relationship between structure and flexibility is likely to be more complicated than 

extant theory suggests. Decreasing structure increases flexibility because it gives executives 

more degrees of freedom to operate (Weick, 1998; Gilbert, 2005). There is greater latitude of 

action and thus a wider range of possible opportunities that can be addressed as managers 

combine some structured actions and some actions improvised in real-time (Miner, Bassoff, and 

Moorman, 2001; Davis, 2008). But in reality, improvised actions consume more attention than 

rule-following actions because they require managers to figure out what actions to take (Hatch, 

1998; Miner, Bassoff, and Moorman, 2001). Likely mistakes pose further demands on attention. 

Because attention is constrained (March and Simon, 1958; Ocasio, 1997), it limits the number of 

possible actions in a given time period. In other words, the benefits of flexibility depend on 
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having enough attention to figure out what to do (Weick, 1998; Okhuysen and Eisenhardt, 2002). 

As an example, Brown and Eisenhardt (1997: 15) described a high-tech firm with few rules, 

priorities, and formal roles that “reveled in the excitement of panicked product development” but 

engendered “enormous time wasting” and many mistakes. Though some participants enjoyed the 

“Silicon Valley organic management,” this firm ultimately generated too many ineffective 

products that were behind schedule. Thus limits of attention complicate the structure-flexibility 

relationship. 

 

Similarly, the fleeting nature of opportunities complicates the structure-flexibility relationship. 

Although organizations could take enough time to engage in extensive trial-and-error actions to 

capture any opportunity, opportunities actually have limited time windows in which they are 

viable (D'Aveni, 1994). Moreover, mistakes during improvisation introduce time delays that are 

particularly damaging because opportunities are fleeting (Tyre and Orlikowski, 1994; Perlow, 

Okhuysen, and Repenning, 2002). Figuring out successful improvised actions becomes 

especially difficult with low structure because so much is changing that it is hard to get 

everything right at once (Moorman and Miner, 1998; Bingham, Eisenhardt, and Davis, 2009). As 

structure decreases, action becomes increasingly chaotic, approaching a non-adaptive state that 

complexity theorists call an “error catastrophe,” in which organizations make too few correct 

actions to succeed (Reynolds, 1987; Kauffman, 1993). 

 

A third unresolved issue is that the theory underlying the argument that more environmental 

dynamism lowers the optimal structure is imprecise. Specifically, environmental dynamism is a 

multidimensional construct. For example, environmental dynamism includes velocity—the speed 
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or rate at which new opportunities emerge (Eisenhardt, 1989). The Internet bubble is a good 

example of a high-velocity environment (Goldfarb, Kirsch, and Miller, 2007). But dynamism 

also includes ambiguity—lack of clarity, such that it is difficult to interpret or distinguish 

opportunities (March and Olsen, 1976). Nascent markets like nanotechnology are examples of 

environments with high ambiguity (Santos and Eisenhardt, 2009). It also refers to 

unpredictability—disorder or turbulence, such that there is no consistent pattern of opportunities. 

Growth markets such as Web 2.0 and wireless services often have unpredictable opportunities. 

Environmental dynamism can also include complexity—the number of opportunity 

contingencies that must addressed successfully. Opportunities within “green” power, for 

example, involve many scientific, regulatory, safety, and commercial aspects and so are highly 

complex (Sine, Haveman, and Tolbert, 2005). 

 

Although environmental dynamism is multidimensional, existing theory does not unpack how 

different dimensions operate. Empirical research reflects this imprecision. Some research focuses 

on specific environmental features such as unpredictability (Lawrence and Lorsch, 1967) and 

ambiguity (March and Olsen, 1976). Other research mixes several dimensions together, such as 

ambiguity and complexity, to describe environmental dynamism in an industry (Pisano, 1994). 

Still other research uses a single term such as velocity but then actually combines multiple 

dimensions such as unpredictability, ambiguity, and velocity (Eisenhardt, 1989). Adding to the 

imprecision, these dimensions are often correlated in many actual environments. For example, 

high-velocity environments can be unpredictable (Eisenhardt, 1989), and complex environments 

can involve multiple ambiguities (Gavetti, Levinthal, and Rivkin, 2005). Unpacking the 
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dimensions of environments, as we do in our simulation study, will provide a better 

understanding of optimal structure in different environments. 

 

METHODS 

We used stochastic process modeling to study the structure-performance relationship in distinct 

environments. This approach enables a custom design of the simulation because it is not 

constrained by an explicit problem structure (e.g., cellular automata) (Davis, Eisenhardt, and 

Bingham, 2007). Rather, it allows the researcher to piece together processes that closely mirror 

the focal theoretical logic, bring in multiple sources of stochasticity (e.g., arrival rates of 

opportunities), and characterize them with a variety of stochastic distributions (e.g., Poisson, 

Gamma) (Law and Kelton, 1991). 

 

Stochastic modeling is an effective choice for our research because the problem structure does 

not fit well with any structured approach. This enables more accurate representation of our 

phenomena rather than force-fitting them into an ill-suited structured approach.
2
  Further, 

because our baseline theory is well established in the empirical literature, we enhance the 

likelihood of realism by building a model from the ground up (Burton and Obel, 1995) and thus 

mitigate a key criticism of simulation. This approach also enabled us to include several sources 

of stochasticity that are theoretically important (e.g., improvisational action, opportunity flow) 

and to experiment flexibly with theoretically relevant environmental dimensions (e.g., velocity, 

ambiguity). Stochastic process modeling also has an influential tradition in our focal literatures, 

such as the garbage can model (Cohen, March, and Olsen, 1972), dynamics of culture (Carroll 

and Harrison, 1998), and exploration versus exploitation (March, 1991)
3
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Modeling Organization Structure and Environment 

Our simulation model includes two primary components: organization structure and 

environment. We modeled organization structure as rules. Though we could have used other 

types of structure (e.g., roles, networks) or other aspects of structure (e.g., centralization, 

verticality), we chose rules in order to create a parsimonious model that captures the fundamental 

features of structure. As Burton and Obel (1995) explained, effective simulation reveals the 

minimal elements of the problem at hand and so uses the least complex conceptualization that 

still captures the essence of the phenomenon. That is, the model’s purpose is to represent the core 

features of the phenomenon (e.g., organization structure), not be a literal replication of the 

phenomenon (Lave and March, 1975; Rivkin and Siggelkow, 2003). As described earlier, rules 

are a particularly important type of structure in dynamic environments (Burgelman, 1994; Brown 

and Eisenhardt, 1997; Rindova and Kotha, 2001; Zott, 2003). They also fit especially well with 

our research because rules directly relate to how structure generates actions to execute (or fail to 

execute) environmental opportunities (Bingham, Eisenhardt, and Furr, 2007; Bingham, 

Eisenhardt, and Davis, 2009). Rules are also very commonly used to represent structure in 

simulations (e.g., Baligh, 2006) because of their direct link to action (March, Schultz, and Zhou, 

2000; Eisenhardt and Sull, 2001). Thus our study follows a long, influential tradition of simple 

yet powerful computational models that rely on rules to represent structure (Nelson and Winter, 

1982; March, 1991; Rivkin, 2000). 

 

We modeled the environment as a flow of heterogeneous opportunities, consistent with our 

earlier discussion that organizational structure constrains action in the capture and execution of 
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varying environmental opportunities (Burgelman, 1996; Eisenhardt and Martin, 2000; Miner, 

Bassoff, and Moorman, 2001). Our focus on heterogeneous opportunities is also consistent with 

the Austrian economics (Hayek, 1945; Kirzner, 1997) and entrepreneurship (Shane, 2000; 

Schoonhoven and Romanelli, 2001) literatures in which environmental dynamism is also a core 

interest. Conceptualizing the environment as a flow of heterogeneous opportunities also permits 

a rich modeling of environmental dimensions. It enables us to unpack and explore environmental 

dynamism more fully, a key theoretical aim of our research. 

 

To capture heterogeneity, we modeled each opportunity as having 10 features that can be either 1 

or 0 (e.g., 0101101101) and included four environmental dynamism dimensions, described 

below. In contrast, many simulation models assume a fixed environment, a single environmental 

jolt, or a single environmental dimension and so preclude the kind of rich exploration of 

environmental dynamism that we seek. Although a parsimonious simulation is important (Burton 

and Obel, 1995), the richness of the simulation should focus on the part of the model in which 

the primary exploration will occur (Burton and Obel, 1995; Davis, Eisenhardt, and Bingham, 

2007). 

 

As in all research, we made several assumptions, some fundamental to our modeling. For 

instance, we assumed that organizations take actions to capture opportunities, actions require 

attention, and attention is limited (Ocasio, 1997). We also assumed that organizations use a 

combination of rule-based and improvised actions and that improvised actions require more 

attention than rule-based ones because they involve real-time sensemaking (Weick, 1993).These 



 

 

 

17 

 

  

assumptions are well grounded in field studies of improvisation (Brown and Eisenhardt, 1997; 

Miner, Bassoff, and Moorman, 2001; Baker and Nelson, 2005). 

 

Other assumptions are less essential to the theory simplify the model. For example, to focus on 

the effects of structure on performance, not learning, we assumed that the rules have already 

been learned and that adaptation to new opportunities occurs through improvised actions in real 

time. This is consistent with empirical research showing that heuristics are learned quickly and 

stabilize rapidly (Bingham, Eisenhardt, and Davis, 2009) and that real-time, improvisational 

learning is often not retained in new heuristics (Weick, 1996; Moorman and Miner, 1998). 

Similarly, to focus on effects of structure, we assumed that all rules are appropriate for at least 

some opportunities. We also assumed that the effects of competitors are realized through the 

flow of opportunities, an assumption that mirrors the Austrian economics argument that market 

dynamism is endogeneously created through competitive interaction and technological 

innovation (Kirzner, 1997). 

 

In our model, the organization has a set of rules to capture opportunities in its environment. In 

each time step, the organization takes a combination of rule-based and improvised actions to 

attempt to execute a given opportunity. When enough of these actions match the opportunity, the 

opportunity is captured, and firm performance increases by the value of the opportunity. Because 

attention is limited, and actions (rule-based and improvised) consume attention, however, the 

organization can take only a limited number of actions in each time step. 

 

Environmental Dynamism 
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We modeled four environmental dynamism dimensions based on our review of the structure-

environment research in the organizational and strategy literatures: velocity, complexity, 

ambiguity, and unpredictability (Burns and Stalker, 1961; Lawrence and Lorsch, 1967; March 

and Olsen, 1976; D'Aveni, 1994; Eisenhardt and Tabrizi, 1995). These four dimensions are 

important, frequently used, and distinct from each other, though some research uses alternative 

terms for them. This is particularly true of unpredictability. For example, instead of 

unpredictability, terms like uncertainty, turbulence, and volatility are also used to capture the 

same notion of disorder or dissimilarity in the environment. Terms like turbulence and volatility 

focus particularly on disorder, while terms like unpredictability and uncertainty focus more on 

the lack of pattern that disorder implies. Finally, though there may be other dimensions of 

environmental dynamism, these four are among the most important. A strength of our model is 

its rich representation of the environment. 

 

Velocity is the speed or rate at which new opportunities emerge. The Internet bubble is an 

example of an environment with a high velocity of opportunities. We operationalized velocity as 

the rate that new opportunities flow into the environment (Eisenhardt, 1989; Eisenhardt and 

Tabrizi, 1995). We used a Poisson distribution to model the stochastic arrival time of 

opportunities into the environment where velocity is lambda, λ. A Poisson distribution, p(k), 

describes the probability of k opportunities arriving in t time steps and is determined by the 

single rate parameter λ: 

 

p(k) = (λt)e-λt
 / k!         (1) 
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Poisson is a well-known probability distribution used to model arrival flow (Cinlar, 1975; Glynn 

and Whitt, 1992). It is attractive here and in many simulations because it makes few assumptions 

about the timing of opportunities (Law and Kelton, 1991). Although lambda can range from 0 to 

infinity, we fixed an upper bound on the rate of execution because bounded rationality and 

limited attention constrain the number of opportunities that can be addressed (March and Simon, 

1958; Shane, 2000). 

 

Complexity was operationalized as the number of features of an opportunity that must be 

correctly executed to capture that opportunity. Complexity increases the difficulty of capturing 

opportunities because organizations have less latitude for errors when there are numerous, 

relevant contingencies (Gavetti, Levinthal, and Rivkin, 2005). Like computational complexity, 

complexity can be conceptualized as the minimum number of correct steps that are needed to 

execute a plan (Simon, 1962; Sipser, 1997). Biotechnology is an example of a high-complexity 

environment because many features of the opportunity must be correct to achieve success (Hill 

and Rothaermel, 2003). Complexity is an integer indicating the number of actions that must be 

correct in order to execute an opportunity successfully. Because each opportunity has 10 

features, complexity ranges from 0 to 10. 

 

Ambiguity was defined as lack of clarity such that it is difficult to interpret or distinguish 

opportunities. Because ambiguity makes the misperception of opportunities more likely (March 

and Olsen, 1976), we operationalized environmental ambiguity as the proportion of perceived 

opportunity features that differ from actual ones. Nascent markets like nanotechnology are 

typically highly ambiguous (Santos and Eisenhardt, 2009). The actual features of an opportunity 



 

 

 

20 

 

  

are represented by a 10-element bit string (i.e., vector) of 1s and 0s—e.g., 0100100110. The 

misperceived features of the same opportunity are also a 10-element bit string of 1s and 0s but 

differ from the actual features by those features for which perception does not match reality—

e.g., 0110100110. Ambiguity was operationalized as the proportion of misperceived opportunity 

features. For example, the actual and perceived features of the two bit strings above differ by one 

element of 10, so the ambiguity = .1. This is an especially useful way to model ambiguity 

because it allows us to capture the difficulty of interpretation that leads to misperception of 

opportunities. Ambiguity ranges from 0 to 1. 

 

Unpredictability was defined as the amount of disorder or turbulence in the flow of opportunities 

such that there is no consistent similarity or pattern. An implication of increasing unpredictability 

is that managers are less able to adjust or “tune” their structures to the environment because there 

is less pattern to match (Galbraith, 1973).
4
  We manipulated unpredictability by changing the 

probability that any opportunity feature will be a 1 or a 0—i.e., p(1) and p(0). Opportunities with 

features that have a higher probability of 1 or 0 are less unpredictable than opportunities with 

features having an equal probability of 1 or 0. This approach has the advantage of stochastically 

generating similar opportunities without the researcher’s bias as to what those patterns should be. 

 

To have a monotonically increasing measure of unpredictability, we converted these probabilities 

using a well-known disorder computation from mathematical information theory (Cover and 

Thomas, 1991). Unpredictability, U, of a flow of opportunities depends on the probability, p, of a 

feature being either a 1 or a 0 and is given by: 
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U = - ∑ p * log2(p)         (2) 

 

To illustrate, when p(1) = .7 and p(0) = .3, then unpredictability is relatively low. There is a 

70/30 split of 1s and 0s in the features vector of each opportunity (making 1s more likely than 

0s) such that U = –.7*log2(.7) + .3*log2(.3) = .88. By contrast, when unpredictability is high 

[p(1) = p(0) = .5 and U = 1], the distribution of 1s and 0s in the opportunity features is random. 

Both opportunities and rules have a 50/50 split of 1s and 0s (making 1s and 0s equally likely), 

and there is no consistent similarity or pattern in the flow of opportunities. Unpredictability 

ranges from 0 to 1. 

 

Organizational Structure as Rules 

We modeled structure as a set of rules for capturing opportunities, with each rule specifying 

particular actions for executing opportunities. Rules as structure are common in our focal 

literatures. For example, Galunic and Eisenhardt (2001) described rules for carrying out 

“patching” opportunities in a high-performing, multi-business corporation, including that new 

product-market charters should always be assigned to business units that (1) have relevant 

product-market experience and (2) are currently assigned charters with shrinking markets or 

fading profit margins. Similarly, Rindova and Kotha (2001) described rules for executing 

alliance opportunities at Yahoo!, such as (1) making the basic service free and (2) having no 

exclusive deals. Overall, rules specify actions for addressing opportunities and are central to 

organizational processes and capabilities such as interfirm collaboration, product development, 

and country entry (Burgelman, 1996; Eisenhardt and Sull, 2001; Rindova and Kotha, 2001; 

Bingham, Eisenhardt, and Furr, 2007; Davis, 2008). 
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Rules were operationalized with a 10-element vector of 1s, 0s, and ?s (e.g., 0?1?10???0). When 

an organization attempts to execute an opportunity with a rule, it generates 10 specific actions. 

That is, each 1 or 0 generates a rule-based action in that position. The proportion of 1s and 0s in 

a rule was set equal to the probability of 1s and 0s in the flow of opportunities. This captures the 

insight noted earlier that organizations can adjust their structures to approximately match 

patterns in the flow of opportunities if they exist (March and Simon, 1958). Additionally, for 

each “?” the organization improvises either a 1 or 0 “improvised action” with a 50/50 likelihood. 

For example, a combination of rule-based and improvised (underlined) actions using the rule 

above could produce the vector 0111100110. The computer program then compares this set of 10 

actions to the opportunity’s 10 features. If the number of actions (both rule-based and 

improvised) that match the actual features of the opportunity equals or exceeds the value of the 

environmental complexity parameter, then the opportunity is executed and the firm gains the 

payoff value of that opportunity. For example, if complexity = 6 and the actions above—

0111100110—are compared to the opportunity 0110101010, then the opportunity is successfully 

executed because 7 of the actions were correct. This operationalization captures the idea that 

structure constrains some actions, while others are left open to improvisation (Brown and 

Eisenhardt, 1997; Miner, Bassoff, and Moorman, 2001). 

 

Amount of structure. We operationalized the amount of structure as simply the number of rule-

based actions specified by each rule (i.e., number of 1s and 0s). For example, the amount of 

structure in the rule 01?0??011? is 6. Thus increasing the amount of structure for an 

organization’s set of rules increases their constraint on action. For ease of exposition, we term 

rules with little to moderate structure (i.e., 3 to 5) simple rules. This operationalization is 



 

 

 

23 

 

  

consistent with theoretical notions of structure such as Simon’s (1962) and Daft’s (1992), in 

which the amount of structure is associated with the number of components. It is in contrast to 

some prior research (Rivkin and Siggelkow, 2003) emphasizing the interactions among structural 

features and putting less emphasis on the number of structural features. By emphasizing the 

number of structural features, we focus on the amount of structure in rules. Structure, however, 

constrains action in both. Thus, for the same research questions, the results should be 

qualitatively consistent. 

 

Performance. Each opportunity is associated with a randomly determined payoff value. 

Performance was operationalized as the sum of all payoffs from every opportunity executed, 

across all time steps. This is particularly appropriate for our research because it is consistent with 

the empirical studies of dynamic environments indicating that performance is derived from a 

series of temporary advantages and related payoffs (D'Aveni, 1994; Roberts, 1999; Rindova and 

Kotha, 2001; Chen et al., 2009). 

 

Simulating the Model 

We implemented this model in Matlab software. The computer program flow is outlined below, 

and the Technical Appendix provides more details. In the beginning, the organization’s structure 

(i.e., its rules) and environment (i.e., flow of heterogeneous opportunities determined by the 

velocity, complexity, ambiguity, and unpredictability parameters) are randomly initialized using 

draws from probability distributions (Law and Kelton, 1991). In each time step, opportunities 

flow into the environment at velocity lambda. When the organization tries to capture an 

opportunity with a rule, the organization generates both rule-based and improvised actions. 
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When the number of these actions that match the opportunity is greater than the environmental 

complexity, the opportunity is executed and performance increases by the payoff value. 

 

As discussed above, the firm’s actions (both rule-based and improvised) require attention, which 

is limited (Cyert and March, 1963; Ocasio, 1997), so the organization has a limited number of 

actions that it can take in any time step. When attention runs out, the organization can take no 

further actions. At the end of t = 200 time steps, the simulation run ends and performance is 

computed. We chose this number of time steps because it is large enough to allow sufficient 

opportunities to flow into the environment such that any initialization effects on the findings are 

mitigated (Law and Kelton, 1991), but we also experimented with multiple values for the amount 

of attention required for improvised action relative to rule-based action, as described further in 

the Technical Appendix. We found no qualitative differences in the findings and so present the 

results for this representative value. 

 

Monte Carlo Simulation Experiments 

We used Monte Carlo simulation techniques. In the Monte Carlo approach, an experiment is a 

simulation with fixed parameter settings that is run multiple times (Law and Kelton, 1991). The 

results are then averaged and confidence intervals calculated (Kalos and Whitlock, 1986). Thus 

for any given experiment, the result is the mean performance (and confidence interval) over 

multiple simulation runs, which better reflects the underlying processes under investigation than 

those produced by a single simulation run. 
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Each experiment consists of 30 or 50 simulation runs. We selected n = 30 as the number of 

simulation runs for all experiments, except those on the basic relationship between structure and 

performance, because exploratory analyses revealed that values of n greater than 30 yielded 

insignificantly small incremental gains on reliability. We used n = 50 for the basic relationship 

between the amount of structure and performance because the larger range of structure values 

adds precision to our illustration of this relationship. These results are representative of the 

findings produced by other construct values during our exploration of the parameter space (see 

the Technical Appendix for more details). 

 

We ran experiments for a wide range of values for each environmental dimension (e.g., velocity). 

Given space limitations, we report only relationships using representative low and high values 

from those experiments. Specifically, we plotted the relationship between the amount of structure 

and performance for these representative values of the environmental dimensions.
5
 Confidence 

intervals in the form of error bars (i.e., the square root of the variance over the number of trials) 

are included to enable more accurate statistical interpretation of the results, as is standard in 

Monte Carlo experiments (Kalos and Whitlock, 1986). 

 

RESULTS 

Amount of Structure and Performance 

[Figure 1 about here] 

We begin by examining the two propositions that form the baseline theory. P1 proposed that the 

amount of structure has an inverted U-shaped relationship with performance. Figure 1 plots the 

relationship between performance and the amount of structure, with each point representing the 
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average over 50 simulations. The results show that organizations with low or high structure rules 

perform worse than those with moderate structure (optimal structure at a value of 3). Optimal 

structure exists, but unexpectedly, the curve is asymmetric. That is, the performance decline 

from the left endpoint to the optimum is steeper than the performance decline from the right 

endpoint to the optimum.
6
 Within the bounds of these simulation experiments, too much 

structure produces a more gradual decline, while too little structure produces a steeper drop in 

performance for all deviations from the optimum. Thus there is an asymmetric relationship, 

which suggests a more complicated theoretical logic than a simple tension between too much and 

too little structure. 

 

Our model offers some insight into this logic. In particular, rule-based actions are relatively 

automatic, and so they conserve attention. This enables more actions in a given time frame to 

capture additional opportunities. So although more structure narrows the range of potential 

opportunities that can be addressed, there is an “attention advantage” of added structure that 

partially compensates. This advantage occurs at relatively high values of structure across a broad 

range of environmental conditions and so favors erring on the side of structure in these 

environments. This suggests the following modified proposition: 

 

Proposition 1a (P1a): Performance has a unimodal, asymmetric right relationship with the 

amount of structure. 

 

Unpacking the Dimensions of Environmental Dynamism 
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P2 proposed an environmental contingency that the optimal amount of structure decreases with 

increasing environmental dynamism. We used four experiments to understand which dimensions 

explain this shifting optimum: we examined P2 by comparing curves with high and low values of 

each dimension of environmental dynamism (i.e., velocity, complexity, ambiguity, and 

unpredictability) while holding the other three constant at moderate values. 

 

Environmental velocity.  Figure 2 depicts the effect of increasing environmental velocity (i.e., 

rate of opportunity flow) on performance by superimposing the resulting curves of two 

representative values. That is, we plotted the results that correspond to low and high values of 

velocity (λ = .6 and 1.4) to examine the effects of velocity. P1a is roughly supported in both 

environments. 

 

[Figure 2 about here] 

 

In contrast, the results do not support P2. Within the precision of this simulation experiment, the 

optimal amount of structure—i.e., the amount of structure producing the highest performance—

is the same for both high- and low-velocity environments. Further, although the optimal amount 

of structure is the same in the two velocity conditions, their performance is not. For a given 

amount of structure, firms in high-velocity environments have higher performance than those in 

low-velocity ones. In fact, increasing velocity appears to amplify performance and shift the 

entire curve upward. Overall, this suggests that the large number of opportunities that emerge in 

high-velocity environments (e.g., Internet bubble, Web 2.0) yields better performance for all 

levels of structure, other things being equal. 
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[Figure 3 about here] 

 

Environmental complexity.  Figure 3 depicts the effects of increasing environmental 

complexity (i.e., the difficulty of capturing opportunities, given numerous relevant 

contingencies) on performance by superimposing the results of representative low and high 

values of complexity (4 and 8). P1a is roughly supported in both high- and low-complexity 

environments by unimodal, asymmetric curves. P2 is again not supported. Within the precision 

of this simulation experiment, the optimal amount of structure is the same for both high and low 

environmental complexity. Performance at the optimal structure differs in the two environments, 

however, with increasing complexity shifting the curve downward. Firms perform worse in high-

complexity environments in which opportunities involve many contingencies (e.g., “green” 

power, biotechnology), in contrast to the velocity findings. 

 

[Figure 4 about here] 

 

Environmental ambiguity. Figure 4 shows the effect of increasing environmental ambiguity 

(i.e., lack of clarity of opportunities) on performance by superimposing the results of the two 

representative cases that correspond to low and high values of ambiguity (0 and 0.2). P1a is 

again roughly supported in both environments: the curves have unimodal, asymmetric shapes. 

 

P2 is again not supported. The optimal amount of structure is the same in both low- and high-

ambiguity environments within the precision of this simulation experiment. Yet both the range of 



 

 

 

29 

 

  

optimal structures and the peak performance at the optimal structure differ in the low- versus the 

high-ambiguity environments. When ambiguity is low, there is a narrow range of optimal 

structures and a higher level of peak performance. This suggests an environment in which it is 

difficult for managers to find and maintain an optimal structure, but they will achieve 

particularly high performance when they do. To the extent that skilled executives more easily 

locate and maintain the optimal structure, this is consistent with a skill-dominated environment. 

In contrast, when ambiguity is high, as in nascent markets, there is a wide range of optimal 

structures and lower peak performance. This suggests an environment in which it is easy for 

managers to find and maintain an optimal structure, but they will not achieve particularly high 

performance. This suggests a chance-dominated environment. 

 

[Figure 5 about here] 

 

Environmental unpredictability.  Figure 5 illustrates the effects of environmental 

unpredictability (i.e., disorder in the flow of opportunities) on performance by superimposing the 

results of two representative cases of low and high unpredictability (U = .72 and 1). Again, a 

unimodal, asymmetric relationship, supporting P1a, is found in both environments. But unlike 

the results for velocity, complexity, and ambiguity, we find a shifting optimum, as predicted by 

P2, as the optimal amount of structure decreases with higher unpredictability. Thus 

unpredictability is the environmental dimension that shifts the optimal amount of structure. 

Moreover, our model offers insight into the logic: the optimal structure decreases with increasing 

unpredictability because managers are less able to adjust structure to fit the environment when 

the presence of consistent patterns in the opportunity flow declines. In these environments, 
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managers must rely more on real-time improvised actions and less on structure because there is 

less pattern in the environment that can be mirrored in organizational structure. This suggests a 

modified proposition: 

 

Proposition 2a (P2a): As environmental unpredictability increases, the optimal amount of 

structure decreases. 

 

There are also unexpected findings related to the range of optimal structures. As figure 5 shows, 

when environments have low unpredictability, the relationship between structure and 

performance forms a broad plateau. This suggests a forgiving environment in which there is a 

wide range of optimal structures with roughly the same performance outcomes. In contrast, when 

environments have high unpredictability, there is an inverted-V relationship between structure 

and performance. This suggests a punishing environment in which there is a narrow range of 

optimal structures, such that it is challenging to find the optimal amount of structure, hard to 

maintain the optimal structure even when perturbations of structure are small, and very low 

performance when the optimal structure is not achieved. Even small changes in structure have 

large effects on performance, consistent with an edge of chaos in which only a narrow range of 

structures leads to superior performance. Thus, in contrast to forgiving low-unpredictability 

environments, high-unpredictability environments are punishing, with a narrow range of optimal 

structures. 

 

Analyzing mistakes.  Because mistakes are likely to be relevant in a more complete theoretical 

logic linking structure, performance, and environment, we next examined mistakes. We define a 
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mistake as an application of any action (rule-based or improvised) to an opportunity feature that 

does not match, and mistake size as the number of mistakes (i.e., count of mismatches of actions 

with opportunity features) committed in an attempt to capture an opportunity. 

 

We computed the frequency distributions of mistake size, focusing on unpredictability because of 

its role in shifting the optimal structure. We ran the simulation at multiple unpredictability and 

structure settings and then tabulated the number of attempts to capture an opportunity for each 

mistake size. As shown in figure 6, we have nine values of structure, from low = 1 to high = 9, 

down the rows (omitting the value of 10 because it produced undefined endpoint values), and 

three values of unpredictability—high, low, and very low (U = 1, .72, and .47)—across the 

columns. The sum of each distribution is normalized to 1 for easy comparison across 

distributions. Each of the resulting 27 distributions is a mini-graph that plots the proportion of 

attempts to capture opportunities at each mistake size for specific values of unpredictability and 

structure. 

 

[Insert Figure 6 about here] 

 

The mistakes analysis sheds light on the theoretical logic for why the range of optimal structures 

decreases (i.e., from a broad plateau to an inverted-V) as unpredictability increases. First, in low-

unpredictability environments (column 2 in figure 6), the analysis indicates that increasing 

structure reduces the mean mistake size and eliminates large mistakes. These trends are 

accentuated in environments with very low unpredictability (column 3 in figure 6). The 

underlying reasoning is as follows. When unpredictability is low, opportunities are more 
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homogeneous and there are recognizable patterns occurring in the opportunities. This 

predictability allows managers to adjust their structures to more closely fit the opportunities. So a 

structured action is more likely to be successful for capturing an opportunity. This means that 

although increasing structure narrows the range of opportunities that can be addressed, the 

elimination of large mistakes and the drop in mean mistake size partially offset this 

disadvantage, such that there is a “mistakes advantage” for structure in less unpredictable 

environments. This suggests a relatively broad range of successful structures (i.e., plateau) in 

low-unpredictable environments, as observed in figure 5. 

 

In contrast, in high-unpredictability environments, the mistakes analysis indicates that 

organizations at all levels of structure are likely to commit multiple mistakes of varying size, 

including some very large mistakes (column 1 in figure 6). When unpredictability is high, 

opportunities are very heterogeneous and there is very little pattern in the flow of opportunities. 

Thus managers cannot adjust their structures to fit environmental opportunities because they do 

not know what those opportunities will be. The result is mistakes of varying sizes (even large 

ones) at all levels of structure, including the optimal structure. So there is no “mistakes 

advantage” for structure that compensates for the loss of flexibility when structure is added. 

Rather, there is a narrow range of optimal structures, making the tradeoff between efficiency and 

flexibility more severe in highly unpredictable environments. 

 

Modeling structure and performance.  To gain added theoretical insights, we next created a 

simple mathematical formalization. This model formulates the theoretical logics of efficiency, 
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flexibility, and unpredictability more precisely in terms of specific functional forms (Davis, 

Eisenhardt, and Bingham, 2007).
7
 

 

Let e(x) and f(x) represent efficiency and flexibility as functions of structure, respectively. Prior 

researchers have argued that efficiency and flexibility have interdependent, non-substitutable 

effects on how structure influences performance (Adler, Goldoftas, and Levine, 1999; Gibson 

and Birkinshaw, 2004) in which the aggregate effect on performance, A(x), is a roughly inverted 

U-shaped curve of the following form: 

 

A(x) = e(x)*f(x).          (3) 

 

Yet not all e(x) and f(x) functions produce a unimodal A(x) curve and shift the optimal structure, 

x’, as unpredictability increases. As shown in the Mathematical Appendix, the requirements for 

such a curve and shifting optimum put strong constraints on the forms of e(x) and f(x).
8
 

 

Consistent with our mistakes analysis and prior research, we assume that increasing structure 

increases efficiency—i.e., e’ (x) > 0 (Brown and Eisenhardt, 1997; Siggelkow, 2001)—such that 

more structure enables faster, more reliable execution of those opportunities for which the 

structure is appropriate. But as structure increases,  the number of opportunities that fit the 

structure decreases, and the gains to efficiency of economizing on attention grow more slowly 

(Donaldson, 2001). So there are likely to be decreasing efficiency returns for added increments 

of structure that we capture with a logarithmic function of efficiency: 
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e(x) = ln(x)          (4) 

 

The logarithmic form of e(x) satisfies the important condition that e’(x) > 0 because e’(x) = 1/x > 

0 for x > 0 and captures the intuition that efficiency increases, albeit at a declining rate, as 

structure increases. 

 

Conversely, the literature suggests that flexibility declines as structure increases—i.e., f’(x) < 0 

(Brown and Eisenhardt, 1997; Miner, Bassoff, and Moorman, 2001). On the one hand, less 

structure enables organizations to use improvised actions to address more different opportunities. 

On the other hand, more structure constrains improvised actions, forces more rule-based actions, 

and limits the heterogeneity of opportunities that can be addressed (Weick, 1993; Baker and 

Nelson, 2005). Empirical studies of structural inertia have found that this decline in flexibility 

occurs most dramatically at low levels of structure, at which even small additions of structure 

can greatly constrain organizational actions (Greve, 1999). This is consistent with the argument 

that the effect of incremental additions of structure is to eliminate successive fractions of 

opportunities that could have been flexibly addressed by less structure. This implies that 

flexibility is rapidly declining and inversely proportional to structure, a relationship that we 

capture as follows: 

 

f(x) = 1/x          (5) 

 

This function satisfies the important condition that f’(x) < 0 because f’(x) = –1/(x^2) < 0 for x > 

0. As described in the Mathematical Appendix, this function is a particularly appropriate choice 
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because it captures the effect of eliminating successive fractions of opportunities with each 

increment of structure. Finally, because efficiency and flexibility are interdependent and non-

substitutable (Gibson and Birkinshaw, 2004), aggregate performance is: 

 

A(x) = ln(x)/x          (6) 

 

Though other functional forms for efficiency and flexibility may be possible, this A(x) produces 

a unimodal, asymmetric right relationship between structure and performance that is consistent 

with our simulation results and theory, as noted in the Mathematical Appendix.
9
  

 

Next, we move to unpredictability. Though researchers have simply argued that flexibility 

becomes more influential than efficiency as environmental dynamism increases, we show in the 

Mathematical Appendix that simply increasing flexibility does not shift the optimal structure. 

Instead, unpredictability, u, has two separate effects on performance that shift the optimum. 

 

First, as unpredictability increases, the heterogeneity of opportunities increases. Organizations 

with less structure can potentially capture at least some of these more varied opportunities 

through improvisation. But executing these additional opportunities critically depends on having 

the greater latitude of action (i.e., flexibility) that less structure provides and so is inversely 

proportional to structure, 1/x. Also, though additional opportunities can be addressed, the number 

of opportunities that can be captured grows increasingly slowly as unpredictability increases. 

The reason is that less structure slows down improvisation and takes more attention because the 

number of opportunity features that must be successfully improvised at once grows. So although 
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there are more opportunities available, the number of additional opportunities that can be 

successfully captured increases at a decreasing rate. We represent this increasing difficulty with a 

logarithmic function of unpredictability, ln(u). Thus we model the added performance 

improvement that occurs with increasing unpredictability by ln(u)/x. Combining this effect with 

A(x) changes performance to A(x) + ln(u)/x  = ln(x)/x + ln(u)/x = ln(ux)/x. 

 

Second, as unpredictability increases, it becomes more challenging to capture opportunities 

regardless of whether improvised or rule-based actions are used. Adding structure is ineffective 

in this environment because there is little predictable pattern in the flow of opportunities that 

managers can use to adjust their organizational structures to the environment. Subtracting 

structure is helpful, as noted above, in terms of adding opportunities that can potentially be 

addressed. But it is also harmful because improvisation is more difficult. Improvisation demands 

more attention, has more degrees of freedom, and generates many mistakes (including large 

ones) and so becomes more challenging as unpredictability increases. We represent this overall 

declining performance with a dampening parameter, 1/u. Adding this second effect of 

unpredictability generates a performance function, P(x,u): 

 

P(x,u) = 1/u [ln(ux)/x] = ln(ux)/ux       (6) 

 

As noted in the Mathematical Appendix, this function satisfies the conditions for P1a, generating 

a unimodal, asymmetric right relationship between structure and performance. It also satisfies the 

conditions for P2a that as unpredictability, u, increases, the optimal structure, x’ = e/u, decreases. 

Overall, the mathematical model is consistent with our simulation results and theory. 
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This mathematical model offers several useful extensions. First, it clarifies the approximate 

functional forms and rates of change of efficiency and flexibility that contribute to the 

asymmetry between structure and performance. Performance is asymmetric because efficiency 

and especially flexibility are changing more rapidly at low structure than at high. When structure 

is low, even small increments in structure create large increases in efficiency, ln(x), and large 

decreases in flexibility, 1/x. Thus there is a severe tradeoff between efficiency and flexibility. In 

contrast, when structure is high, performance is much less sensitive to structure. Efficiency 

improves very gradually with added structure. Flexibility is already so low that increases in 

structure have little effect. Thus there is only a modest tradeoff between efficiency and 

flexibility. Overall, having too little structure is particularly risky because efficiency and 

flexibility are highly sensitive to even small changes in structure when structure is low. 

 

Second, this model clarifies the inverted-V curve and related edge of chaos in highly 

unpredictable environments. According to prior research, less structure is better in highly 

dynamic environments because flexibility is more advantageous than efficiency. In contrast, a 

core insight of our model is that neither efficiency nor flexibility works very well in highly 

unpredictable environments. As expected, extensive structure and so efficiency are ineffective 

because they are overly rigid. But unexpectedly, improvised actions and so flexibility are not 

very effective either. With so little structure, improvisation consumes a lot of attention, is fraught 

with mistakes, and is very slow. As a result, the organization can only capture a few 

opportunities, and risks falling into an “error catastrophe,” in which it lacks enough traction to 

improvise fast enough to capture opportunities before they disappear. So the optimal structure is 
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a narrow range (i.e., at the edge of chaos) of just enough structure to capture at least a few 

opportunities. 

 

DISCUSSION AND CONCLUSION 

[TAB 1] 

Using computational and mathematical modeling, we added to theory on the fundamental 

relationships among structure, performance, and environment. As summarized in table 1, our 

core contribution is a more precise theory of how the locus, asymmetry, and range of optimal 

structures are grounded in the tradeoff between efficiency and flexibility in differing 

environments. First, we clarify this tradeoff between flexibility and efficiency. Prior theory 

focuses on balancing efficiency and flexibility (Tushman and O'Reilly, 1996; Brown and 

Eisenhardt, 1997; Uzzi, 1997; Rowley, Behrens, and Krackhardt, 2000). In contrast, we find that 

this tradeoff is more accurately the flexible capture of widely varying opportunities vs. efficient 

execution of specific opportunities.
10

 Less structure opens up the organization to the possibility 

of addressing a wider range of opportunities that serendipitously occur, but it also hinders the 

rapid, mistake-free execution of those opportunities. Conversely, more structure enables the 

efficient execution of particular opportunities that can be anticipated. But too much structure is 

more than just too rigid. It also narrows the range of possible opportunities, suggesting that 

structure is most valuable when many similar opportunities are available. 

 

Second, the relationship between structure and performance is unexpectedly asymmetric: 

performance gradually fades with too much structure but drops catastrophically with too little. 

Thus structure and performance do not have an inverted-U relationship, as argued previously 
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(Brown and Eisenhardt, 1997; Gibson and Birkinshaw, 2004; Rothaermel, Hitt, and Jobe, 2006). 

Rather, efficiency and flexibility are distinct functions that change increasingly slowly when 

structure is high. In contrast, efficiency and especially flexibility are changing more rapidly 

when structure is low, creating a more acute tradeoff between efficiency and flexibility. The 

consequential implication is that it is safer to err on the side of too much structure (efficiency) 

than on the side of too little (flexibility). 

 

Third, our results show that simple rules and other semi-structures are surprisingly robust across 

multiple environments, in contrast with research arguing that they are best only in highly 

dynamic environments (Burns and Stalker, 1961; Rowley, Behrens, and Krackhardt, 2000; 

Eisenhardt and Sull, 2001).
11

 In predictable environments, there is a broad plateau of optimal 

structures, and so numerous high-performing structures exist. The tension between too much and 

too little structure is easy to manage in this forgiving environment in which many structures are 

roughly equivalent. So executives can rely on simple rules, loose coupling, and other semi-

structures that favor flexibility (albeit with more attention and mistakes) or elaborate structures 

with tight coupling that favor efficiency (albeit with a narrower range of opportunities) without 

sacrificing much performance. For example, executives who need to minimize mistakes (e.g., 

nuclear power plants, aircraft carriers) can design highly reliable organizations that utilize very 

extensive structure (Perrow, 1984; Weick and Roberts, 1993) with little performance penalty. 

 

In contrast, in unpredictable environments, there is an inverted-V relationship between structure 

and performance with only a narrow band of optimal structures. Even minor perturbations in 

structure can be catastrophic in these punishing environments in which performance is precarious 
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and mistakes can be many, large, and fatal. The tension between too much and too little structure 

is challenging and crucial to manage. The mistakes advantage of structure vanishes, and 

improvisation is difficult. Here, only simple rules are high performing. The overall implication is 

that simple rules and other semi-structures are robust across diverse environments—i.e., they are 

viable in predictable environments and essential in unpredictable ones. 

 

Underlying the robustness of simple rules across environments are the dynamics of 

unpredictability that shape the locus and range of optimal structure. Prior research has included 

velocity (Eisenhardt, 1989), complexity (Gavetti, Levinthal, and Rivkin, 2005), and ambiguity 

(March and Olsen, 1976; Rindova and Kotha, 2001) as major dimensions of environmental 

dynamism. But though these dimensions have intriguing implications for strategy and 

performance (see below), only unpredictability influences optimal structure. Underlying this 

finding is the insight that structure is valuable when there are consistent patterns in the flow of 

environmental opportunities and when managers have adjusted their structures to match these 

patterns. But as our simulation suggests, these tuning adjustments need not be exactly accurate. 

Rather, sometimes matches may occur by chance, and sometimes structure helps just by 

diminishing the degrees of freedom in mistake-prone improvisation. The key implication is that 

adding structure when unpredictability decreases can be valuable (or at least not harmful), even 

when it is not completely clear what exactly that structure should be. Thus our results support a 

structural explanation for Weick’s (1990) well-known observation of the success of a European 

army in navigating the Alps based on a map of the Pyrenees (see also Gavetti, Levinthal, and 

Rivkin, 2005). 
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A particularly intriguing optimum in  the structure-performance-environment relationship is 

simple rules in highly unpredictable environments. Prior researchers have argued that favoring 

flexibility leads to high performance (Burns and Stalker, 1961; Brown and Eisenhardt, 1998). 

But though we find that flexibility is helpful, this argument is too simplistic because neither 

structure nor improvisation is very effective in these environments. As a result, the optimal 

structure not only diminishes, but its range unexpectedly shrinks from a broad plateau to an 

inverted-V (i.e., edge of chaos). And more unexpectedly, the number of opportunities that can be 

successfully executed also drops as improvisation becomes more difficult. A consequential 

implication is that the content of a high-performing simple-rules strategy will likely focus on 

capturing a few, high-payoff opportunities – i.e., a small number of rules to quickly select a few 

“home-run” opportunities and to quickly exit those opportunities when they do not pan out. This 

implication also helps explain why heuristics that focus on prioritizing and exiting opportunities 

are particularly high performing in highly dynamic environments (Bingham, Eisenhardt, and 

Furr, 2007). 

 

Finally, we contribute insights into the edge-of-chaos concept from the complexity sciences 

(Kauffman, 1993; Carroll and Burton, 2000). Research has defined the edge-of-chaos as a phase 

transition between order and disorder (Kauffman, 1993), and it is often described more colorfully 

with phrases like “snooze, you lose” and “only the paranoid survive” (Brown and Eisenhardt, 

1998; Burgelman, 2002). Our contribution is theoretical insights into this intriguing construct, 

and its role within our elaborated theory of structure, performance, and the environment. First, 

we identify where the edge of chaos is likely to occur: in highly unpredictable environments. In 

these environments, the relationship between structure and performance is an inverted-V with 
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tipping points on both sides of the optimal structure, consistent with an edge-of-chaos. Second, 

we explain why the edge of chaos occurs—when structure is low, rapidly changing efficiency 

and flexibility with difficult improvisation create a thin range of optimal structures. Third, we 

characterize the distribution of mistakes at the edge of chaos—many errors of widely varying 

size and including some large errors. Managers are likely to experience both small oversights 

and debilitating miscalculations. Note that we did not find an inverse power law distribution of 

many small mistakes and few large ones (Bak, 1996). Rather, the distribution is roughly normal. 

Finally, we provide insight into the energy required to maintain a position at the edge of chaos. 

Researchers have argued that the edge of chaos is a dissipative equilibrium, an unstable critical 

point that requires constant energy to maintain (Prigogine and Stengers, 1984). We extend this 

notion to our focal literatures by clarifying that managerial energy at the edge of chaos centers on 

real-time improvisation of opportunities, recovery from the inevitable mistakes that will occur, 

and continuous monitoring of the amount of structure to avoid drift from the optimum. 

 

Toward a Pluralistic View of Strategies 

More broadly, our work also contributes to strategy and its mandate to develop theoretical logics 

explaining variance in firm performance. First, we contribute to the strategic logic of opportunity 

and the related strategy as simple rules (Eisenhardt and Martin, 2000; Eisenhardt and Sull, 2001). 

According to the logic of opportunity, firms achieve high performance in dynamic markets by 

using a few simple rules to guide the capture of opportunities (e.g., Gersick, 1994; Burgelman, 

1996; Galunic and Eisenhardt, 2001; Miner, Bassoff, and Moorman, 2001; Rindova and Kotha, 

2001; Bingham, Eisenhardt, and Furr, 2007). Our research extends this view with support and 

insights into the core theoretical logic by clarifying the implications of limited attention, 
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mistakes, and the fleeting and varied nature of opportunities. These dynamics place a premium 

on using increasingly simple rules to capture increasingly unpredictable opportunities. Thus, like 

other simulations that provide internal validation of theory (e.g., Sastry, 1997), our simulation 

helps to sharpen the theory that underlies the strategic logic of opportunity. 

 

Second, we contribute insights into the boundary conditions of several strategic logics. In 

positioning logic, executives achieve high performance by building tightly linked activity 

systems in valuable strategic positions, such as low-cost or high-differentiation (Porter, 1985; 

Rivkin, 2000). Our findings add to this view by clarifying that such high-structure strategies are 

effective in predictable markets. Further, our findings contribute to a deeper understanding of 

why tightly linked activity systems are high performing in such predictable markets—i.e., while 

fewer opportunities may fit these highly structured strategies, their tightly linked activity systems 

produce both few and small mistakes. Therefore they efficiently execute a flow of similar 

opportunities. In addition, given that there are many possible high-performing structures in 

predictable markets (i.e., a plateau relationship between structure and performance), our findings 

indicate why executives can achieve good performance with many alternative strategies. These 

numerous optimal strategic alternatives help to explain why multiple differentiated positions are 

often viable in predictable markets (Porter, 1985). Finally, our findings clarify why, once 

achieved, competitive advantage gained through positioning is relatively robust to environmental 

and structural perturbations, creating a foundation for sustainable competitive advantage and 

superior performance. 
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By contrast, in opportunity logic, executives achieve high performance by using a few simple 

rules or heuristics to capture varied opportunities (Eisenhardt and Sull, 2001; Bingham and 

Eisenhardt, 2008). Our findings contribute to this view by indicating that low-structure 

opportunity logic is particularly essential in unpredictable markets, while positioning logic is 

most effective in predictable markets, thereby sketching a boundary condition between these 

strategic logics. Our findings further contribute a subtle insight into the precarious nature of 

competitive advantage (D'Aveni, 1994; Lenox, Rockart, and Lewin, 2006). Though prior 

researchers have argued that firms should seek a series of short-term, competitive advantages in 

dynamic environments (Roberts and Amit, 2003; Chen et al., 2009), our results indicate that 

competitive advantage in these environments is unstable and its duration unforeseeable (but not 

necessarily short-term). Overall, this suggests that firms with a strategic logic of opportunity are 

threatened by internal collapse—i.e., they can fail as a result of having too much or too little 

structure and not just as a result of external competition. This potential for internal collapse 

offers an alternative explanation of intraindustry performance heterogeneity that differs from 

path dependent and competitive explanations (McGahan and Porter, 1997; Bowman and Helfat, 

2001). Thus a key insight is that the managerial challenges of finding and maintaining optimal 

structure at the edge of chaos may contribute to heterogeneous firm performance within dynamic 

industries. 

 

A Richer View of Environments 

Our work also contributes to a better understanding of distinct environments. Prior research tends 

to focus on single environmental dimensions or mix several dimensions together. The result is an 

imprecise understanding of different environments. In contrast, we highlighted four distinct, 



 

 

 

45 

 

  

widely used environmental dynamism dimensions (i.e., velocity, complexity, ambiguity, and 

unpredictability) and developed their unique implications for strategy and performance. We 

covered unpredictability above and now turn to the remaining three dimensions. 

 

High velocity environments are particularly attractive. Because they are opportunity-rich, 

managers can be selective, and so choose many, high-payoff opportunities. In addition, this 

finding offers further insight into why rapid executive actions and processes such as fast strategic 

decision making (Eisenhardt, 1989) and fast product innovation (Eisenhardt and Tabrizi, 1995) 

are so effective in high-velocity environments. In these opportunity-rich environments, there are 

likely to be many high-payoff opportunities. By acting quickly, executives can secure a larger 

number of these superior payoffs for a longer time and so achieve high performance. In contrast, 

by acting slowly, executives are likely to secure fewer opportunities and to exploit them for less 

time, leading to low performance. The attractiveness of high-velocity environments may also 

explain why the Internet era (with its high velocity of opportunities) had a surprisingly low 

failure rate. Although many firms died, the death rate was unusually low when compared with 

the total number of foundings (Goldfarb, Kirsch, and Miller, 2007). Overall, we found that high-

velocity environments are attractive for achieving high performance. 

 

In contrast, complex environments are particularly unattractive. In highly complex environments, 

opportunities have many features that executives must execute correctly. Thus these 

opportunities are challenging to capture, and performance is correspondingly low. This finding 

extends prior research by helping to explain why firms in complex environments such as 

biotechnology (Owen-Smith and Powell, 2003) and “green” power (Sine, Mitsuhashi, and 
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Kirsch, 2006) often perform poorly even when their executives have high domain expertise. In 

these technically and institutionally complex environments, executives must achieve success in 

many areas (e.g., technical, manufacturing, safety, regulatory, marketing) to capture an 

opportunity. When organizations fail to capture some opportunities, attention is wasted that 

could have been used to address other opportunities. Thus organizations in complex 

environments can address relatively few opportunities and are likely to have a low probability of 

success when they do. Overall, we find that high-complexity environments are unattractive for 

gaining high performance. 

 

Our findings for environmental ambiguity are especially intriguing. When ambiguity is high, 

executives are unable to perceive opportunities accurately and have a wide range of reasonably 

optimal structures that produce roughly equivalent, albeit mediocre, performance. By contrast, 

when ambiguity is low, the range of optimal structures narrows and so favors executives who are 

able to locate and maintain optimal structure. Thus performance at the optimal structure 

improves because executives can more accurately perceive opportunities and so more precisely 

match structure to them. 

 

These insights contribute to understanding effective institutional entrepreneurship in nascent 

markets. Research indicates that entrepreneurs in these highly ambiguous markets often excel 

when they shape industry structure to their advantage (Rao, 1994; Rindova and Fombrun, 1999; 

Santos and Eisenhardt, 2009). For example, entrepreneurs succeed when they form portfolios of 

relationships that shape the industry structure to gain a central network position (Ozcan and 

Eisenhardt, 2008) or when they use analogies to provide some unique insight into the 
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opportunity structure of these novel markets that improves opportunity capture (Gavetti, 

Levinthal, and Rivkin, 2005).
12

 We add to institutional entrepreneurship by revealing that these 

actions are successful attempts to reduce ambiguity and so increase the possibility of very high 

performance. Thus successful entrepreneurs seek to change nascent markets from games of luck 

with likely mediocre performance in which the optimal structure is easy to find (high ambiguity) 

to games of skill with potentially high performance in which the optimal structure is challenging 

to find (low ambiguity). 

 

Adaptation in Entrepreneurial vs. Established Organizations 

Finally, our work contributes to organization theory. At the heart of our research is the core 

tradeoff between flexibility and efficiency in dynamic environments. Less structure enables the 

flexible capture of serendipitous opportunities. But with too much improvisation, the 

organization runs the risk of incoherence, confusion, and drift. More structure enables tight focus 

on the efficient execution of expected opportunities. With too much structure, however, the 

organization runs the risk of stagnation and misalignment with fresh opportunities. The essence 

of flexibility is thus the messy capture of the unexpected, while the essence of efficiency is the 

smooth execution of the anticipated. 

 

Our contribution is the insight that this core efficiency-flexibility tradeoff affects types of 

organizations differently. For entrepreneurial organizations that typically have little structure, the 

challenge in any environment is the same: to gain enough structure before failure ensues. 

Legitimation and competition, of course, affect performance. But the key insight here is that 

sufficient structure is also essential. Without sufficient structure, it is impossible to improvise 
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effectively and so to capture opportunities. Thus the well-known liability of newness may mask a 

liability of too little structure. 

 

In contrast, for established organizations that often have extensive structure, such as roles, rules, 

and linkages among units, the imperative varies in different environments. If the environment is 

predictable, this structure can be high-performing because it can take advantage of consistent 

patterns in the environment that can be mirrored in structure. The number and size of mistakes 

decreases with more structure in predictable environments, and only modest executive attention 

is needed to retain an optimal amount of structure. Organizations can gain a stable equilibrium 

that is robust to structural and environmental changes. 

 

But as the environment becomes unpredictable or executives diversify into unpredictable 

environments, our findings indicate major challenges for established organizations. One is 

obviously to decrease the amount of structure. But a second, subtler challenge is the need for a 

dramatically altered mindset. This mindset entails vigilantly managing the amount of structure 

(not just its content), improvising to capture fresh opportunities, and quickly rebounding from 

mistakes - all at the edge of chaos, where firms can at best capture only a few opportunities and 

gain an unstable or dissipative equilibrium. Simply put, managing in unpredictable environments 

is different, harder, and more precarious than in predictable environments. Overall, the irony of 

adaptation is that, as it becomes more crucial for organizations to adapt, it also becomes more 

challenging to do so. Thus the well-known liability of senescence may be as much a cognitive 

phenomenon as an age phenomenon. 
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We began by noting that diverse literatures emphasized that balancing between too much and too 

little structure is essential for high performance in dynamic environments. This consonance led 

us to explore the theoretical logic of efficiency versus flexibility underlying fundamental 

relationships at the heart of the science of organization. By incorporating limits on attention, time 

delays, the inevitability of mistakes, and the fleeting and heterogeneous nature of opportunities, 

we construct a more precise theory that links structure, performance, and environment. This 

theoretical framework reveals the surprisingly wide applicability of a simple-rules strategy and 

semi-structures, an asymmetry that favors more structure, and demanding managerial challenges 

at the edge-of-chaos. Overall, we spotlight a research agenda that places complexity sciences 

reasoning at the nexus of organizational studies, network sociology, and competitive strategy. 
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TECHNICAL APPENDIX: Operationalization and Initialization of Opportunities 

 

Each opportunity is composed of a 10-element vector of perceived features composed of either 

1s or 0s (i.e., a bit string), a 10-element actual features bit string, and a randomly selected payoff 

value. The feature vectors are produced by an algorithm that randomly assigns each element 

either a 1 or 0. The probability of selecting a 1 or 0 is determined by the unpredictability 

parameter. The perceived features vector differs from the actual features vector by a proportion 

of elements as set by the environmental ambiguity parameter. The exact elements that differ are 

randomly chosen. The payoff is drawn from a normal distribution with m = 30 and v = 5, 

although sensitivity analyses showed that the results do not depend on these values. Moreover, 

we assume that unexecuted opportunities stay in the environment for a random amount of time 

drawn from a normal distribution with m = 20 and v = 5; sensitivity analyses showed that the 

results do not depend on these values either. 

 

Operationalization, Initialization, and Use of Rules 

We initialized the rule structure in the computer program in a similar way as for the 

opportunities. The rules are initialized as 10-element vectors but with ?s (elements that can be 

improvised) scattered throughout a string of 1s and 0s. Thus the amount of structure is 

operationalized by the number of 1s and 0s. Similar to the structure of opportunities, the 

probability of selecting a 1 or 0 is determined by the unpredictability parameter. Thus our 

computational model reflects that managers can adjust their structures to fit consistent patterns in 

the flow of opportunities if such patterns exist, consistent with empirical evidence. Also, as in 

actual organizations, there is typically an approximate fit but often not an exact one. Thus the 
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probability of getting a 1 or 0 is the same in both the rules and opportunities and is determined 

by the unpredictability parameter. This assumption could be relaxed in future work to explore the 

impact of misfit between environmental unpredictability and organizational structure, for 

example, in attempting to understand better the role of learning to fit structure to environmental 

patterns. 

 

The exact placement of 1s, 0s, and ?s is randomly assigned. For example, if a rule’s amount of 

structure is set to 6, then 0?0?1?01?0 or any other permutation could result as long as four ?s 

were assigned. After initialization of both rules and opportunities, all available opportunities 

(both those that recently flowed into the environment and those not yet captured but still in the 

pool of opportunities) can be captured in each time step. 

 

Rules are used to capture opportunities by combining rule-based and improvised (described 

below) actions that produce a 10-element bit string (e.g., 0111100110). These bits are compared 

with each opportunity bit string (e.g., 0110101010). An opportunity is captured and its payoff is 

gained when the number of actions that correctly match the opportunity’s features is greater than 

the value of environmental complexity. 

 

Improvisation and Attention 

A key feature of our model is the improvisation of action. Some actions are rule-based and some 

are improvised. When a rule (e.g., 0?1?10???0) is applied to a given opportunity, the 

organization follows the rule for each element as specified by a 0 or a 1. These are the rule-based 

actions. In addition, the organization randomly improvises a 0 or 1 action for each ? placeholder 
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with a p = .5 likelihood of each outcome. Overall, this process produces a set of actions (e.g., 

0111100110 in which the 2nd, 4th, 7th, 8th, and 9th
 
actions are improvised) that can be 

compared with a given opportunity (e.g., 0110101010). When enough of the actions match the 

opportunity features as specified by the environmental complexity parameter, the opportunity is 

captured and the organization gains the opportunity’s payoff. When an insufficient number of 

actions match the opportunity features, the opportunity remains in the environment to be 

potentially captured using other actions. Depending on the attention available (see below), the 

organization continues to try to capture an opportunity using improvisation again and in future 

time steps until it disappears from the environment at a randomly determined time, as described 

above. 

 

In general, our operationalization of improvisation is consistent with existing research showing 

that improvisation involves real-time action and that improvised action is not always correct 

(Weick, 1993, 1998; Miner, Bassoff, and Moorman, 2001). As in actual organizations, only some 

improvised actions are correct. We also found that different amounts of attention and ratios of 

rule-based to improvised attention did not qualitatively change the results. As a manipulation 

check, we also checked that the total number of mistakes decreased with increasing structure as 

expected. We confirmed that, because decreasing structure increases the organization’s capacity 

to improvise flexibly with a larger number of opportunities that potentially fit, there are more 

mistakes. This result is similar for different rates of improvisation. We also conducted an 

analysis of mistakes in figure 6 that normalizes the total number of mistakes to compare these 

distributions across the mini-graphs, as described in the text. Overall, our approach is a 

conservative one that nonetheless captures the fundamental features of improvisation—i.e., 
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improvising requires more attention than following rules and is not always accurate. Our 

modeling of improvisation thus offers a reasonable abstraction of the actual process that is 

appropriate for our research question and the objectives of simulation models (Burton and Obel, 

1995). 

 

Another key feature of the model is attention. As in actual organizations, we assumed that the 

organization has a finite amount of attention. In particular, the organization has a fixed attention 

budget. In each time step, the attention budget is decremented for each application of rules to 

opportunities, each rule-based action, and each improvised action. Consistent with research on 

improvisation (Weick, 1993; Miner, Bassoff, and Moorman, 2001) and the use of rules (Cyert 

and March, 1963), we assumed that an improvised action takes more attention than simply 

checking whether a rule matches an opportunity or a rule-based action, because improvisation 

has enhanced demands for real-time sensemaking and the convergence of figuring out actions 

and executing them (Weick, 1993; Miner, Bassoff, and Moorman, 2001). Thus we set the 

attention required to check the match of a rule with an opportunity or take a rule-based action at 

1 unit of attention and each improvised action at 10 units of attention. Though we chose 10 as a 

representative value, our sensitivity analyses indicated that the findings are robust to a broad 

range of variations in the amount of attention that an improvised action requires. In general, the 

robustness of our findings to a broad range of variations in attention suggests that a more 

discriminate improvisation process (i.e., one requiring more attention or more improvisational 

skill) is likely to yield qualitatively similar results. Similarly, sensitivity analysis indicated that 

our findings are qualitatively robust to different orderings for addressing opportunities. So 

although we address opportunities by their performance payoffs, other orders (such as random) 
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qualitatively produce the same results. In any given time step, the attention budget is 

decremented until the attention budget is depleted or the time step ends. Action stops if the 

attention budget is completely depleted. It is then replenished at the beginning of each new time 

step. We set the attention budget to 2800 attention units. Sensitivity analyses that varied the 

attention budget showed that increasing this budget increases the number of opportunities that 

can be executed in a given time step, as expected, but that these variations (above a minimal 

threshold) do not produce qualitatively different findings. Therefore we chose this representative 

value for our simulation runs. Finally, in any given time step, rules are checked against 

opportunities for a match, and rule-based and improvised actions are taken as long as attention is 

still available. 

 

Performance and Error Constructs in Monte Carlo Experiments 

We used standard Monte Carlo techniques (Law and Kelton, 1991). Each experiment consists of 

30 or 50 simulation runs. We selected n = 30 as the number of simulation runs for all 

experiments, except those on the basic relationship between structure and performance, because 

exploratory analyses revealed that values of n greater than 30 yielded insignificantly small 

incremental gains on reliability. We used n = 50 for the basic relationship between the amount of 

structure and performance because the larger range of structure values adds precision to our 

illustration of this relationship. The results of these simulation experiments are graphed 

consistently across figures 1-5: each point represents the results for one simulation experiment, 

including the mean performance (Y-axis) computed across all simulation runs for a given 

amount of structure (X-axis). A curve is then interpolated between the mean performance values 

by connecting the points with a straight line. 
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As in all stochastic processes and related phenomena (regardless of whether empirical or 

simulated), the results of experiments may typically vary across simulation runs even when the 

construct parameter values are fixed (Law and Kelton, 1991). Therefore we computed not only 

the mean performance for a given experiment but also its variability in terms of error variances. 

We then plotted both a performance mean for each value of the amount of structure and 

associated “error bar” confidence intervals, which indicate the variability of each result, a 

standard graphical method used in Monte Carlo outputs (Kalos and Whitlock, 1986). We 

computed the length of the error bar as the square root of the error variance of each experiment 

over the number of trials (i.e., simulation runs) of these experiments. These error bars provide an 

intuitive and visual display of the confidence intervals surrounding a result. As a rule of thumb, 

if the mean of one result is contained within the error bars of another result, then the two are not 

significantly different. For example, this implies that the peak performance can be generated by a 

range of optimal structural values. These structural values can be characterized by their own 

range intervals (e.g., 3–6) and medians (e.g., 4.5). 

 

Comparing medians is necessary when optimal structure is a range of values. For instance, to 

assess the shifting optimum in P2, we compared median structures when the optimum was a 

range of values. P2 is confirmed when these median optimal structures differ. In addition, to 

assess asymmetry, we compared the slope of the line from the median optimal structure to the 

endpoint on the left side to the slope of the line from optimal structure to the endpoint on the 

right side. Curves are asymmetric right when the absolute value of the left slope is higher than 

the right slope. 
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Sensitivity Analyses 

We performed extensive sensitivity analyses for all of the structure/performance relationships 

reported in the Results section, thoroughly exploring the parameter space to discover if a given 

finding remained when construct values (i.e., parameters) were varied. To ensure the robustness 

of the results, we not only varied the amount of structure measure, but also secondary constructs 

such as the environmental dynamism dimensions. We chose the specific values for presentation 

because they represent extreme values of a parameter or the midpoint values between already 

tested values, as appropriate. Thus we explored the parameter space in a very fine-grained way. 

We paid special attention to exploring the full range of the environmental dimension values—

velocity, complexity, ambiguity, and unpredictability. Because velocity (λ) is unbounded in a 

Poisson distribution, but actual organizations are both cognitively and resource bounded, we 

placed an upper bound on λ at the value for which the number of opportunities is an order of 

magnitude greater than the organization could capture in any time step. We then thoroughly 

explored velocity at a variety of parameter values, including 0, .4, .6, .8, 1.2, 1.4, 1.6, 1.8, 2.0, 

2.2, 2.4, 2.6, 2.8, 3, 4, and 5. All results are consistent with figure 2. We also explored 

complexity, which ranges from 0 to 1, with a variety of parameter values, including 0, .2, .3, .4, 

.5, .6, .7, .8, .85, and .9. All results are consistent with those in figure 3. We tested ambiguity, 

which ranges from 0 to 1, with a variety of parameter values, including 0, .1, .2, .25, .3, .4, .6, .8, 

and 1.0. All results are consistent with those in figure 4. Unpredictability ranges from 0 to1 in 

our tests. We tested the sensitivity of the unpredictability results with a variety of parameter 

values for the proportion of 1s, including 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, and 1.0. All results are 

consistent with those in figure 5. 
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MATHEMATICAL APPENDIX 

 

The mathematical formalization that we constructed sheds light on the logic underlying P1a, P2a, 

and the varying range of optimal structures from our simulation experiments. In this appendix, 

we perform some of the mathematical operations that underlie this logic. We are especially 

grateful to an anonymous reviewer who encouraged our building this interpretive model and 

developing this line of thinking. 

 

Though the literature is mostly silent about the specific functional forms underlying the 

relationship between structure and performance, there is consensus that flexibility and efficiency 

are inversely interdependent and have non-substitutable effects on how structure influences 

performance (e.g., Gibson and Birkinshaw, 2004). Let x be the amount of organizational 

structure. We begin by representing the aggregate effect of structure on performance by A(x) = 

f(x)*e(x), where f(x) and e(x) are the non-negative functions of flexibility and efficiency. 

Broadly, the literature suggests that efficiency increases and flexibility decreases as the amount 

of structure increases, respectively: f’(x) < 0, e’(x) > 0. 

 

This representation allows us to demonstrate that not all flexibility and efficiency functions 

generate a unimodal curve, as predicted in P1a. Specifically, for a unimodal curve to exist, we 

require that [A’(x) > 0 for x < x’] and [A’(x) < 0 for x > x’], where x’ is the optimal amount of 

structure (i.e., at the performance “peak”). 
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Applying the chain rule [A’(x) = (e(x)*f’(x)) + (e’(x)*f(x))] and the absolute value equation [–

f’(x) = |f’(x)| when f’(x) < 0]  yields these two important conditions for unimodal functions of the 

type A(x) = f(x)*e(x): 

 

|f’(x)| < f(x)*e’(x)/e(x) for x < x’       (1) and 

e’(x) < |f’(x)|*e(x)/f(x) for x > x’       (2). 

These constraints on the two underlying functions, f(x) and e(x), are necessary to predict a 

unimodal relationship. 

 

In addition, we can show that the argument that the shifting optimum predicted in P2a is 

generated because of the increasing importance of flexibility is not correct. Let a > 0 represent 

the importance of flexibility in A(x) = a*f(x)*e(x). Then, applying the chain rule again yields 

A’(x) = a[f(x)*e’(x) + f’(x)*e(x)]. Inspecting this A’(x) reveals that simply increasing the 

importance of flexibility by increasing the coefficient a does not affect the position of the 

optimum given that the critical point of A’(x) is independent of a. 

 

Instead, logical argument and empirical literature suggest functional forms that do satisfy the 

conditions underlying P1a and P2a. For instance, the literature suggests an increasing function of 

structure for efficiency such that e’(x) > 0. Examining the impact of adding a marginal amount of 

structure sheds further light on the shape of e(x). One possibility is that each incremental 

application of structure generates a constant improvement, e’(x) = c, where c is a constant. But a 

constant improvement is unlikely over the full range of x. Instead, it is more likely that 

increasing structure has a diminishing marginal effect on efficiency. A marginal improvement in 
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efficiency, de, is derived from a smaller set of opportunities and a smaller efficiency gain from 

economizing on attention. Thus the marginal improvement in efficiency, de , derived from 

applying a marginal amount of structure dx is inversely dependent on the base level of structure, 

x, suggesting an inversely proportional relationship: de  ∝ dx/x  where x > 0. Integrating yields a 

logarithmic efficiency function: 

 

  e(x) = ln(x) 

which satisfies e’(x) > 0 as e’(x) = 1/x > 0 when x > 0. Moreover, this logarithmic efficiency 

function has the important property of being unbounded —increasing structure always increases 

efficiency, although at a diminishing rate. 

 

By contrast, empirical literature and logical argument suggest decreasing flexibility as a function 

of structure such that f’(x) < 0. Flexibility involves using improvisation to capture a variety of 

opportunities that could not be captured by structure-based actions alone. Logic suggests that 

adding structure eliminates successive fractions of opportunities, and so the amount of structure 

is inversely proportional to the fraction of opportunities that could have been captured with 

improvisation. Thus it is most rapidly decreasing at low structure, an argument that is also 

consistent with empirical evidence (Greve, 1999). This suggests the following function: 

 

  f(x) = 1/x 

which satisfies f’(x) < 0 as f’(x) = –1/(x^2) < 0 when x > 0. In our rule-based model, a simple 

interpretation of the effect of increasing structure on flexible opportunity execution is to decrease 

the pool of opportunities available to improvisational execution by successive fractions for each 
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addition of structure. That is, flexibility is the product of these fractional losses of opportunities 

at each level of structure, n: f(x) = ∏ [1 – (1/n)] = ∏[(n – 1)/n] = (x – 1)!/x! = 1/x. A natural 

interpretation, then, is that increasing structure quickly eliminates opportunities from the pool of 

opportunities available for improvised actions. This modeling of flexibility also has the 

important property of approaching a limit of 0 as structure increases. 

 

Returning to an objective for this mathematical formalization, it can be shown that these 

functional forms are consistent with P1a: 

 

Let A(x) = f(x)*e(x) = ln(x)/x. 

Recall that for A(x) to be unimodal, it is required that 

 

|f’(x)| < f(x)*e’(x)/e(x) for x < x’       (1) and 

e’(x) < |f’(x)|*e(x)/f(x) for x > x’       (2). 

 

Substituting f(x), e(x), f’(x), and e’(x) into A’(x) = [e(x)*f’(x)] + [e’(x)*f(x)] generates A’(x) = 

(1 – ln(x))/(x^2), while letting A’(x) = 0 yields x’ = e as the optimum. 

 

Substituting f(x) = 1/x and e(x) = ln(x) into the inequalities above also reveals that these 

functions satisfy the conditions for P1a. For example, after reducing the equations, we find the 

following true inequalities: 

 

1 < ln(x) x < x’         (1) and 
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1 > ln(x) x > x’         (2). 

 

These functions produce a unimodal, asymmetric right curve as predicted by P1a. 

 

It can also be shown that these basic functional shapes are consistent with P2a as well. Consider 

unpredictability, the key dimension of environmental dynamism underlying the logic in P2a. An 

important insight is that unpredictability, u, shapes both flexibility and efficiency by affecting 

how firms use structure to execute opportunities in two ways. One effect of increasing 

unpredictability is that some additional opportunities can occasionally be captured in a more 

unpredictable stream of heterogeneous opportunities. But this increment varies inversely with the 

amount of structure—1/x—and grows increasingly slowly with increasing unpredictability – 

ln(u)—because opportunity capture becomes increasingly difficult at lower levels of structure, 

both of which we represent with ln(u)/x. Combining this with A(x) changes the performance 

function: A(x) + ln(u)/x = ln(x)/x + ln(u)/x = ln(ux)/x. Another important effect of 

unpredictability is to reduce the effectiveness of both structure and improvisation, which is 

represented as a simple dampening parameter reducing the magnitude of performance, 1/u, 

which can be applied to the performance equation above: (1/u)*ln(ux)/x. Although there are 

potentially many ways to represent these effects, the resulting model is a simple one that 

nonetheless captures the dual effects of unpredictability, u: 

 

  P(x,u) = ln(ux)/ux, where u > 0. 

This modification of A(x) to include unpredictability, u, retains its key properties. For instance, 

P(x,u) also satisfies the conditions for P1a: 
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Differentiating yields P’(x,u) = [1-ln(ux)]/ux^2 and setting P’(x,u) = 0 yields x’ = e/u. 

 

Deriving the conditions again yields 

1 > ln(ux) x < e/u         (1) and 

1 < ln(ux) x > e/u         (2) 

which are true for u > 0. 

 

Turning back to P2a, this model is consistent with a shifting optimum because x’ = e/u depends 

on u. Consistent with P2a, as u increases, x’ decreases. Moreover, this P(x,u) also shares other 

important features of our simulation findings, such as the unimodal, asymmetric right shape and 

the shift from a broad plateau to a sharp inverted-V edge of chaos as unpredictability increases. 
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Table 1:  Comparison of Theoretical Frameworks for Structure-Environment-Performance 

Relationships 

 

 

Framework Feature               Prior                      Revised 

Core tradeoff Flexibility vs. Efficiency  

 

Flexible capture of varying opportunities vs. 

efficient execution of specific opportunities. 

 

Relevance of limited attention, mistakes, time 

delays, and fleeting and varied 

opportunities.  

Structure-

performance 

relationship 

Inverted-U  

 

 

Flexibility and efficiency are 

opposing, approximately linear 

processes 

Unimodal, asymmetric right. 

Attention advantage of increasing structure. 

 

 Efficiency increases at a decreasing rate; 

flexibility more rapidly decreases at 

decreasing rate. 

Major environmental 

constructs 

Environmental dynamism shifts locus 

of optimal structure 

Unpredictability shifts the locus and range of 

optimal structure. 

 

High velocity raises performance. 

High complexity lowers performance. 

High ambiguity lowers performance and 

broadens the range of optimal structure.  

Robustness of simple 

rules 

Necessary in highly dynamic 

environments 

Simple rules are robust across a wide range of 

environments. 

 

Viable in predictable environments. 

Necessary in unpredictable environments. 

Range of optimal 

structures 

Constant In predictable environments, plateau of many 

optimal structures. 

In unpredictable environments, inverted-V of 

a few optimal structures, selection and exit 

rules for opportunities. 

Edge-of-chaos Highly dynamic environments 

 

Inverse power law distribution of 

mistakes 

 

 

 

High managerial energy focused on 

staying poised at the optimal 

structure or edge-of-chaos 

Highly unpredictable environments. 

 

Many mistakes of varying sizes, including 

large ones, roughly normal distribution. 

Mistakes advantage of increasing structure in 

less unpredictable environments.  

 

High managerial energy focused on 

improvisation, mistake recovery, and 

staying poised at the optimal structure or 

edge-of-chaos 
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1
 We appreciate the suggestion of an anonymous reviewer to focus on the relationships of 

structure with efficiency and flexibility. 

 

2
 We develop a matching model whose fundamental feature is to allow for varying degrees of 

match between opportunities and rules, something that is not present in other, more constrained 

modeling approaches. We appreciate the comments of an anonymous reviewer in suggesting that 

we make this point in explaining our use of stochastic process modeling. 

 

3
 Stochastic process modeling is more fully described in references such as Burton and Obel 

(1995) and Davis, Eisenhardt, and Bingham (2007). Interested readers can also refer to the 
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exemplars cited in the text, such as March (1991) and Carroll and Harrison (1998). We 

appreciate the comments of an anonymous reviewer that we provide more information about this 

modeling approach. 

 

4
 We appreciate the insightful recommendation of an anonymous reviewer that we clarify the 

meaning of unpredictability and its implications for whether there are patterns in the 

environment that managers can use to adjust or “tune” their organizational structures to better 

match the environment. 

 

5
 Additional results for other values of the environmental dimensions are available from the 

authors. 

 

6
 To assess asymmetry, we compared the slope of the line from optimal structure to the endpoint 

on the left side to the slope of the line from optimal structure to the endpoint on the right side. 

Median values are used if optimal structure is a range of values. Curves are asymmetric right 

when the absolute value of the left slope is higher than the right slope. 

 

7
 This mathematical formalization is not intended to be a formal derivation of our simulation 

results. Rather, its aim is to build an interpretive model that increases understanding of the theory 

and enhances confidence in the simulation results. We appreciate the encouragement and 

guidance of an anonymous reviewer to add this formalization. 

 

8
 We thank an anonymous reviewer for this formulation and other helpful insights. 
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9
 We tried other functional forms for efficiency and flexibility, including linear forms, which do 

not reproduce these results. We chose these two functional forms because they also fit with 

empirical literature and logical argument. More details are in the Mathematical Appendix. 

 

10
 We appreciate the advice of an anonymous reviewer to include this more nuanced 

understanding of the core tradeoff between efficiency and flexibility. 

 

11
 We appreciate the suggestion of an anonymous reviewer to consider the robustness of a 

simple-rules strategy. 

 

12
 We appreciate the observation of an anonymous reviewer that unique insight into the 

opportunity structure can potentially provide large returns in highly ambiguous environments. 

This observation suggests that these managers could use such insights (e.g., as derived from 

analogies) to lower ambiguity. We use this interpretation as part of our explanation of the 

behavior of successful executives in highly ambiguous markets, including nascent markets. In 

addition, this reviewer also noted that such unique insights might also be effective in highly 

unpredictable environments. Here, also, analogies may be a concrete example of the kind of 

unique insights to which this reviewer referred. 

 


