
1

Optimal Subspace Techniques for DOA Estimation
in the Presence of Noise and Model Errors

M. Jansson1, B. Ottersten1, M. Viberg2, A. L. Swindlehurst3

1) Department of Signals, Sensors and Systems
KTH – Royal Institute of Technology, Stockholm, Sweden

2) Department of Signals and Systems
Chalmers University of Technology, Göteborg, Sweden
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Signal parameter estimation and specifically direction of arrival (DOA) es-

timation for sensor array data is encountered in a number of applications

ranging from electronic surveillance to wireless communications. Subspace

based methods have shown to provide computationally as well as statis-

tically efficient algorithms for DOA estimation. Estimator performance is

ultimately limited by model disturbances such as measurement noise and

model errors. Herein, we review a recently proposed framework that allows

the derivation of optimal subspace methods taking both finite sample effects

(noise) and model perturbations into account. We show how this general

estimator reduces to well known techniques for cases when one disturbance

dominates completely over the other.

1.1 Introduction

Subspace based techniques have been shown to be powerful tools in many

signal processing applications where the observed data consist of low rank

signals in noise. Some examples include sensor array signal processing, har-

monic retrieval, factor analysis, timing estimation, frequency offset estima-

tion, image processing, system identification, and blind channel identifica-

tion. By appropriate use of the underlying low rank data model and the

associated signal/noise characteristics, subspace estimation techniques can

often be made computationally and/or statistically efficient.

This chapter focuses on subspace techniques for direction of arrival (DOA)

estimation from data collected by a sensor array. This is quite a mature field

of research by now and many tutorial papers and books have been presented,

some detailing specific aspects and others giving broader views (e.g., [Krim

and Viberg, 1996; Van Trees, 2002], and the references therein). We have no

ambition whatsoever to give a comprehensive account of the development of
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the field of DOA estimation in this chapter. Rather, we will pursue a specific

view of the problem and consider the sensitivity of subspace DOA estimation

methods to noise and errors in the array model. Although this may seem

to be a very narrow view of the field, it will be argued that many existing

DOA estimation techniques can be seen as special cases of the estimator

presented later in this chapter.

An important aspect of high resolution DOA estimation is algorithm sen-

sitivity to noise and model errors. Performance of DOA detection and esti-

mation algorithms is ultimately limited by noise in the array measurements

and errors in the array model. In many cases the array response is not ex-

actly known and the deviations of the true response from that of the model

may severely influence the performance. Indeed, many authors have stud-

ied the quantitative effects of model errors on both DOA and signal wave-

form estimation [Zhu and Wang, 1988; Wong et al., 1988; Swindlehurst and

Kailath, 1990; Friedlander, 1990a,b; Swindlehurst and Kailath, 1992, 1993;

Li and Vaccaro, 1992; Viberg and Swindlehurst, 1994a; Soon and Huang,

1992; Kangas et al., 1994, 1996; Ramsdale and Howerton, 1980; Compton,

1982; Quazi, 1982; Friedlander and Weiss, 1994; Yang and Swindlehurst,

1995].

If the array response is known to be dependent on some unknown factors,

a natural approach is to parameterize the array model not only by the DOA

parameters but also by some additional calibration-dependent parameters.

These parameters can include, for example, sensor element positions, gain

and phase offsets, mutual coupling, element directivity, etc.. Given such a

model, it is natural to attempt to estimate the unknown (nuisance) model

parameters simultaneously with the signal parameters. This approach is

often referred to as auto-calibration [Paulraj and Kailath, 1985; Gustafsson

et al., 1996; Rockah and Schultheiss, 1987a,b; Weiss and Friedlander, 1989;

Wahlberg et al., 1991; Wylie et al., 1994; Viberg and Swindlehurst, 1994b;

Flieller et al., 1995; Swindlehurst, 1996]. Using auto-calibration techniques

may however be problematic in certain cases. One obvious reason is that

the number of unknown parameters that need to be estimated from the data

can be quite large, which may lead to difficulties in numerically calculating

the optimal solution. An even more critical issue to consider when auto-

calibration techniques are employed is whether or not both the DOA and

the model error parameters are simultaneously identifiable. For example, it

is clearly not possible to estimate both DOAs and sensor positions simul-

taneously without the use of additional information [Lo and Marple, 1987;

Weiss and Friedlander, 1989; Ng and Nehorai, 1993; Koerber and Fuhrmann,

1993; Yip and Zhou, 1995; McArthur and Reilly, 1994].
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An alternative to auto-calibration approaches is to use techniques that

assume the model error parameters to be realizations of some underlying

random vector with a known a priori distribution. With this modification of

the problem formulation in a Bayesian framework, difficulties with param-

eter identifiability may be alleviated. It also allows a systematic approach

to estimator design such as, for example, maximum a posteriori approaches

[Viberg and Swindlehurst, 1994b; Wahlberg et al., 1991]. Another way to

exploit the assumption of random model error parameters is to, at least im-

plicitly, consider the random model error as an additional noise term in the

data model. To reduce the sensitivity of the DOA estimator to the model

errors, statistically optimal weighting matrices can then be derived. Meth-

ods that follow this latter approach were presented in [Swindlehurst and

Kailath, 1992, 1993] which studied MUSIC and subspace fitting methods

under the assumption that the estimation errors due to model imperfections

dominated the effects of additive noise.

The best performance is achieved by appropriately taking into account

both noise and model error effects. Optimally weighted methods treating

the combined effects of model errors and noise were presented in [Viberg

and Swindlehurst, 1994a; Jansson et al., 1998]. This may be viewed as

a pragmatic approach even when the model errors cannot be considered

random (which very well may be the typical case) and we will pursue this

approach herein. The perturbation parameter covariance matrix can be seen

as a design variable reflecting the expected level of parameter variability.

The remainder of this chapter is organized as follows. In the next section,

the data model and some fundamental facts are introduced. Section 1.3

presents the general array error model which is used herein along with three

explicit examples of typical model errors. In Section 1.4, DOA estimation

using subspace techniques is formulated in a generalized signal subspace fit-

ting framework. This framework is then utilized in Section 1.5 to present an

optimally weighted DOA estimation method which accounts for both finite

sample effects due to the noise and small array model errors. Section 1.5

then continues with a discussion around the performance of this general

estimator and how it is related to many existing optimal and suboptimal

DOA estimators in different special cases. Finally, the presented results are

illustrated in a numerical example in Section 1.6 and the chapter ends with

some concluding remarks in Section 1.7.
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1.2 Data Model

Assume that the output of an array of m sensors is given by the model

x(t) = A(θ, ρ)s(t) + n(t),

where s(t) ∈ C
d×1 contains the emitted signal waveforms and n(t) ∈ C

m×1

is an additive noise vector which is independent of the signal term. The

array steering matrix is defined as

A(θ, ρ) =
[
a(θ1, ρ) . . . a(θd, ρ)

]
,

where a(θi, ρ) ∈ C
m×1 denotes the array response to a unit waveform as-

sociated with the signal parameter θi ∈ R
p×1. We will refer to θi as the

direction of arrival (DOA) of the ith signal. The vector ρ ∈ R
n×1 contains

all additional parameters of the array steering matrix that may be unknown.

Examples of typical models for the vector ρ will be considered later. When

the array response is a function of the signal parameters only, we simply

omit the dependency on ρ and write A(θ). It is assumed that the array is

unambiguous so that the columns in A(θ) are linearly independent as long

as θi 6= θj , i 6= j.

The signal s(t) and the noise n(t) are modeled as zero-mean circular

(Gaussian) random vectors with covariances

E{s(t)sH(s)} = P δt,s,

E{n(t)nH(s)} = σ2I δt,s,

where (·)H denotes complex conjugate transpose and δt,s is the Kronecker

delta. Let d′ denote the rank of the signal covariance matrix P. Note that

d′ < d when some of the signals are fully correlated or coherent.

Assuming the signals and the noise to be uncorrelated, the array output

covariance matrix is given by

R = E{x(t)xH(t)} = A(θ, ρ)PAH(θ, ρ) + σ2I.

The eigendecomposition of R is

R =
m∑

k=1

λkeke
H
k

where λ1 ≥ · · · ≥ λd′ > λd′+1 = · · · = λm = σ2 are the eigenvalues and

ek the corresponding eigenvectors. Let Es =
[
e1 . . . ed′

]
be the matrix

of the signal eigenvectors and En =
[
ed′+1 . . . em

]
the matrix of noise

eigenvectors. The range of Es is called the signal subspace while the range

of En is the noise subspace.
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From the structure of the covariance matrix model it is clear that

R(Es) ⊆ R(A(θ, ρ)) (1.1)

where R(A) denotes the range of A. For non-coherent cases when d′ = d,

there is equality in (1.1) and we also have

EH
n A(θ, ρ) = 0 (1.2)

but note that this does not hold when d′ < d.

The two geometrical facts (1.1)-(1.2) form the basis for all subspace esti-

mation techniques.

From (1.1) it is clear that there exists a full rank matrix T ∈ C
d×d′ such

that

Es = A(θ, ρ)T. (1.3)

For the parameters to be identifiable when using the subspace approach,

they have to be uniquely determined from the subspace equation (1.3). In

particular, identifiability is guaranteed if

A(θ1)T1 = A(θ2)T2

for any two full rank matrices Ti ∈ C
d×d′ , i = 1, 2, implies θ1 = θ2 (with

some convention for the ordering of the elements in θi) [Wax and Ziskind,

1989]. If the parameters in ρ also need to be estimated, they should naturally

also be included in the identifiability condition above.

1.3 Array model errors

When discussing array model errors we will follow the approach mentioned

in the introduction which assumes ρ to be a random vector drawn from

some distribution. More specifically, the perturbation parameter vector ρ is

modeled as a random vector with mean E{ρ} = ρ0 and covariance

E{(ρ − ρ0)(ρ − ρ0)
T } = Ω. (1.4)

It is assumed that both ρ0 and Ω are known. Similar to [Viberg and Swindle-

hurst, 1994a,b; Jansson et al., 1998], we assume that the elements in Ω are

“small” and, hence, consider only small perturbations in ρ around ρ0 to

allow a first order perturbation analysis.

Some examples of common array perturbation models are outlined below.
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1.3.1 Sensor position errors

Assuming an array composed of identical sensors lying in the same two-

dimensional plane as the signals of interest, a general model for the ith

element of the array response vector is

[a(θk)]i = gi(θk) exp

(
j
2π

λ
[xi cos(θk) + yi sin(θk)

)
,

where λ is the carrier wavelength, gi(·) denotes the gain pattern and (xi, yi)

denote the position coordinates of the ith sensor. If the sensor positions are

not precisely known, then we set

ρ = [x1, y1, · · · , xm, ym]T ,

letting ρ0 represent the nominal (assumed) vector of sensor positions, and

Ω the covariance matrix of the position errors.

1.3.2 Receiver gain and phase variations

The gain and phase of each sensor’s RF receiver front end vary due to a va-

riety of factors, including differences in cable lengths, non-identical compo-

nents, temperature fluctuations, etc. While to some extent these variations

can be calibrated out, there always remain some differences from receiver to

receiver. The following model is a simple way of representing these effects:

A(θ, ρ) = diag(ρ)A(θ) ,

where A(θ) is the nominal (calibrated) array response, and diag(ρ) repre-

sents a diagonal matrix whose non-zero elements are given by ρi exp(jρi+m),

i = 1, 2, . . . , m. Here, the first m elements of ρ model the gain and the re-

maining m elements model the phase. Again, ρ0 contains the nominal gain

and phase values, and Ω models the expected variation in the receiver gain

and phase. Mutual coupling effects can be modeled using a similar approach,

where instead of a diagonal matrix, ρ is used to specify a more complicated

matrix with off-diagonal elements that capture the element-to-element cou-

pling.

1.3.3 Generic array perturbations

In many cases, the causes of the array model errors may be many and too

complex to model using physical reasoning as in the two cases described
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above. One approach that can be employed in such cases is to model ρ

implicitly using

Ã = A(θ, ρ) − A(θ, ρ0) ,

with the statistics of Ã directly quantifying the array perturbation. For ex-

ample, in [Swindlehurst and Kailath, 1993; Viberg and Swindlehurst, 1994a],

Ã is assumed to be zero mean with covariances given by

E{vec(Ã) vecH(Ã)} = Ψ ⊗ Γ (1.5)

E{vec(Ã) vecT (Ã)} = 0. (1.6)

Looking at the ijth block in (1.5), E{ã(θi)ã
H(θj)} = ΨijΓ, it can be seen

that this error model assumes the same spatial error covariance matrix Γ

from sensor to sensor, with a possible DOA dependency modeled via Ψij .

1.4 DOA estimation and subspace fitting

The subspace relations discussed in Section 1.2 can be used in various ways

for the estimation of the model parameters and in particular the DOAs. It

has been shown that most approaches quite conveniently can be put into

a common subspace fitting framework [Viberg and Ottersten, 1991]. The

idea of the signal subspace fitting methods is to minimize a suitable norm of

the error between a sample estimate Ês of the signal eigenvector matrix Es

and the model A(θ, ρ)T. More precisely, the basic signal subspace fitting

criterion is [Viberg and Ottersten, 1991; Ottersten et al., 1993]

V (θ, ρ) = min
T

‖Ês − A(θ, ρ)T‖2
W (1.7)

where W denotes a positive definite Hermitian weighting matrix and ‖X‖2
W

=

Tr(XWXH). The estimates of the parameters are obtained as the minimiz-

ing argument of the criterion; i.e.,

θ̂, ρ̂ = arg min
θ,ρ

V (θ, ρ).

Here, the possibility of including estimation of the array model parameter

vector ρ is explicitly indicated (cf. the discussion about auto-calibration in

Section 1.1). However, in the following the focus will be the estimation of

the DOA parameters only.

For certain error models, the above weighted norm (1.7) needs to be gen-

eralized so that each residual element gets its own weight relative to all the
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others. This can be achieved with the more general criterion

V (θ) = min
T

ε̄H(θ)Wε̄(θ) (1.8)

ε̄ =

[
ε

ε∗

]
, ε = vec(Ês − A(θ)T)

where W is a positive definite weighting matrix (we use W as a generic

notation for weighting matrices). Above, an extended residual vector ε̄ is

obtained by combining the residual ε and its complex conjugate ε∗. Alter-

natively, the extended residual vector could have been formed from the real

and imaginary parts of ε. Clearly, these two representations yield equiva-

lent results (with appropriate W) since there is an invertible transformation

between them.

An alternative DOA estimation criterion can be formulated by utilizing

the geometrical relation (1.1) as follows. Let B(θ) ∈ C
m×(m−d) be a full

rank matrix whose columns span the null-space of AH(θ). This implies that

BH(θ)A(θ) = 0 and BH(θ0)Es = 0 where θ0 denotes the true DOA. Hence,

assuming parameter identifiability, the equations BH(θ)Es = 0 determine

the true DOA uniquely. Given an estimate Ês of Es, these equations will not

be fulfilled exactly for any θ and it is reasonable to consider the minimization

of a suitable norm of BH(θ)Ês. Similar to the above, consider

V (θ) = ε̄H(θ)Wε̄(θ), (1.9)

ε̄ =

[
ε

ε∗

]
, ε = vec(BH(θ)Ês).

It can be shown that the estimates obtained by the minimization of the

above subspace fitting criteria (1.8) and (1.9) are asymptotically equivalent

[Stoica et al., 1997] (cf. [Cardoso and Moulines, 2000]). In other words, for

each subspace fitting weighting matrix in (1.8) there is a weighting matrix

in (1.9) leading to asymptotically equivalent DOA estimates and vice versa.

For this reason, when studying asymptotic equivalence, it is sufficient to

study one of these formulations.

However, when attempting to minimize these criteria, some parameter-

izations can lead to efficient optimization algorithms. Also, the weighting

matrices are often parameter as well as data dependent and must be es-

timated. Estimating the weighting matrices is not equivalent for the two

formulations.

Henceforth, we will refer to the above as the generalized weighted subspace

fitting (GWSF) method and in particular focus on the second formulation

(1.9).
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1.5 Special cases of GWSF

The GWSF formulation is in fact very general and many existing subspace

DOA estimation methods can be related to GWSF by a proper choice of the

weighting matrix.

1.5.1 GWSF for combined noise and array errors

It is well known that, within the class of estimators based on ε̄ in (1.9),

the optimal choice of the weighting in terms of minimizing the parameter

estimation error variance is

W = C−1
ε̄ (1.10)

where Cε̄ is the asymptotic covariance matrix of the residual vector ε̄ at the

true DOA θ0.

For the combined noise and small array perturbation case (1.4), Cε̄ can

be shown to be [Jansson et al., 1998]

Cε̄ = L̄ + ḠḠH , (1.11)

where

L̄ =

[
L 0

0 L∗

]
, L =

(
σ2Λ̃

−2
Λs ⊗ BHB

)
,

Ḡ =

[
G

G∗

]
, G =

(
TT ⊗ BH

)
DρΩ̄

1/2
. (1.12)

Here, Λs is a diagonal matrix containing the d′ largest signal eigenvalues of

R, Λ̃ = Λs−σ2I, Ω̄
1/2

is a (symmetric) square root of Ω̄ = NΩ, T = A†Es

where (·)† denotes the Moore-Penrose pseudoinverse and

Dρ =
[

∂ vec(A(θ,ρ))
∂ρ

1

. . . ∂ vec(A(θ,ρ))
∂ρn

]∣∣∣
θ0,ρ0

.

The covariance matrix (1.11) contains two terms, one due to the noise and

another which accounts for the array perturbations. Thus, with some knowl-

edge of the relation between errors due to measurement noise and pertur-

bations in the array model, an optimal trade-off is obtained when forming

the weighting matrix. Also, note that the weighting matrix depends on the

unknown parameters in B and Dρ. Fortunately, it is possible to replace the

weighting matrix with an estimate thereof without affecting the asymptotic

properties of the DOA estimate. More details regarding GWSF for the com-

bined effects of noise and model errors including implementation issues can

be found in [Jansson et al., 1998].
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In [Wahlberg et al., 1991; Viberg and Swindlehurst, 1994b; Zhu and Wang,

1988] an asymptotically valid Cramér Rao lower bound (CRB) is derived for

the problem of interest herein. Below we give the lower bound on the signal

parameters only. Assuming that θ̂ is an asymptotically unbiased estimate

of θ0 and that ρ is Gaussian, then for large N and small Ω,

E{(θ̂ − θ0)(θ̂ − θ0)
T } ≥ CRBθ ,

σ2

2N

[
C − FT

θ Υ−1Fθ

]−1
, (1.13)

where

C = Re{DH
θ MDθ},

M = UT ⊗ Π⊥
A,

U = A†EsΛ̃
2
Λ−1

s EH
s A†H

Dθ =
[

∂ vec(A(θ,ρ))
∂θ1

. . . ∂ vec(A(θ,ρ))
∂θd

]
,

Fθ = Re{DH
ρ MDθ},

Υ = Re{DH
ρ MDρ +

σ2

2
Ω̄

−1
}

and Π⊥
A

= I−ΠA where ΠA = AA†. The above expressions are evaluated

at θ0 and ρ0.

It is interesting to notice that the CRB for the case with only measurement

noise and no calibration errors is σ2C−1/2N and clearly is a lower bound

for the combined CRB in (1.13) since FT
θ Υ−1Fθ is positive semidefinite.

As shown in [Jansson et al., 1998], the optimally weighted GWSF DOA

estimator is consistent and has a limiting zero mean Gaussian distribution

with a covariance equal to the CRB matrix in (1.13). Hence, GWSF is

a statistically efficient estimator for this quite general estimation problem.

The MAP-NSF [Viberg and Swindlehurst, 1994b] and MAPprox [Wahlberg

et al., 1991; Jansson et al., 1998] estimators also attain the CRB above.

However, GWSF has some advantages compared to those methods, espe-

cially for scenarios with coherent or highly correlated emitters. GWSF also

allows an efficient polynomial rooting based implementation similar to that

of IQML [Bresler and Macovski, 1986] and MODE [Stoica and Sharman,

1990b] for the estimation of the DOAs when the nominal array is uniform

and linear (see [Jansson et al., 1998] for details).

In the following sections, two special cases will be studied, namely when

either the measurement noise or the model errors dominate. It will be shown

that this general estimator will reduce to well known methods in these cases.
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1.5.2 GWSF for model errors only

In the previous section, it was assumed that the DOA estimation errors are

significantly influenced by both noise effects and array model perturbations.

Next we study GWSF for the case when the model errors dominate and

neglect the noise effects. In other words, we will study the GWSF criterion

when σ2 → 0 (or when N → ∞).

In particular we will study GWSF for the generic array perturbation

model discussed in Section 1.3. In the notation from Section 1.5.1, (1.5)-

(1.6) become

DρΩ̄DH
ρ = Ψ ⊗ Γ

DρΩ̄DT
ρ = 0

and the GWSF optimal weighting matrix (1.10),(1.11) reduces to

W =

[
GGH 0

0 (GGH)∗

]−1

where G =
(
TT ⊗ BH

)
DρΩ̄

1/2
. Hence, the GWSF criterion (1.9),(1.10)

simplifies to

V (θ) = 2 vecH(BHÊs)[
(
TTΨT∗ ⊗ BHΓB

)
]−1 vec(BHÊs)

= 2 Tr{ÊH
s B(BHΓB)−1BHÊs(T

HΨTT)−1}

= 2 Tr{Π⊥

Γ
−1/2

A
Γ−1/2Ês(T

HΨTT)−1ÊH
s Γ−1/2}

where in the last equality we used the fact that BHΓ1/2Γ−1/2A = 0 and

hence that

Π
Γ

1/2
B

= Π⊥

Γ
−1/2

A
.

The above simplified expression of the GWSF criterion function corresponds

exactly to the criterion function used by the robust subspace fitting (RSF)

method in [Swindlehurst and Kailath, 1993]. As shown in [Swindlehurst and

Kailath, 1993], RSF is an optimally weighted subspace fitting method for

the studied generic array response error model.

The RSF perturbation model is in a sense “non-parametric,” and is prob-

ably most suitable for a case where the array response is measured by a

calibration procedure. The GWSF formulation on the other hand allows

for general parameterizations of the model error, e.g., in terms of physical

quantities.
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1.5.3 GWSF with no model errors

Here it is shown that the optimally weighted GWSF simplifies to the WSF

method [Viberg and Ottersten, 1991] when no model errors are taken into ac-

count. For this case, in (1.12) Ω̄ = 0 and the GWSF criterion (1.9),(1.10),(1.11)

can be re-written as

V (θ) = ε̄H(θ)

[
L−1 0

0 L−∗

]
ε̄(θ) = 2 vecH(BHÊs)L

−1 vec(BHÊs)

= 2 vecH(BHÊs)
(
σ−2Λ̃

2
Λ−1

s ⊗ (BHB)−1
)

vec(BHÊs)

= 2 vecH(BHÊs) vec((BHB)−1BHÊsσ
−2Λ̃

2
Λ−1

s )

= 2 Tr(ÊH
s B(BHB)−1BHÊsσ

−2Λ̃
2
Λ−1

s )

=
2

σ2
Tr(Π⊥

AÊsWWSFÊH
s ) (1.14)

where WWSF = Λ̃
2
Λ−1

s . Above, we again used the fact that B spans the

nullspace of A and, hence, B(BHB)−1BH = ΠB = Π⊥
A

. Equation (1.14)

is exactly 2/σ2 times the WSF criterion as introduced in [Viberg and Ot-

tersten, 1991]. It is known that WSF is asymptotically statistically efficient

and, hence, GWSF will also be efficient.

In the WSF paper [Viberg and Ottersten, 1991] it was shown that several

known methods can be viewed as special cases of the subspace fitting formu-

lation. In particular, it was shown that DML [Böhme, 1984], MD-MUSIC

[Schmidt, 1981; Roy, 1987; Cadzow, 1988], TLS-ESPRIT [Roy et al., 1986;

Paulraj et al., 1986; Roy and Kailath, 1989], and ML-ESPRIT [Roy, 1987]

all have the same asymptotic performance as certain members of the signal

subspace fitting (SSF) family of methods (obtained by choosing different

weighting matrices in the SSF criterion (1.7)). Since SSF is a special case of

GWSF, weighting matrices can be chosen so that GWSF is asymptotically

equivalent to the above mentioned methods as well.

To see the connection between (one-dimensional spectral) MUSIC [Schmidt,

1979, 1981] and subspace fitting, consider the following subspace fitting cri-

terion

V (θ) = min
T

‖Ês − a(θ)T‖2
F = Tr{(I − a(aHa)−1aH)ÊsÊ

H
s }

where the dependence on θ was omitted for simplicity and where ‖X‖2
F =
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Tr{XXH} is the squared Frobenius norm. Next notice that

min
θ

Tr{(I − a(aHa)−1aH)ÊsÊ
H
s }

= max
θ

Tr{a(aHa)−1aHÊsÊ
H
s } = min

θ
Tr{a(aHa)−1aHÊnÊ

H
n }

= min
θ

aHÊnÊ
H
n a

aHa
= max

θ

aHa

aHÊnÊH
n a

since ÊsÊ
H
s = I − ÊnÊ

H
n . The last expression involves the well known

MUSIC pseudo-spectrum. Clearly, MUSIC can be viewed as a (un-weighted)

one-dimensional subspace fitting method where the different DOAs are found

by locating the d smallest local minima.

1.6 Numerical simulation example

In this section, the performance of different DOA estimators are illustrated

by means of a simulation example involving DOA estimation errors due to

both noise and array model imperfections. Consider a uniform linear array

of m = 6 sensors separated by a half wavelength. Two signals impinge from

the directions 0◦ and 10◦ relative to broadside. The signals are uncorrelated

and of equal power. The sample size is fixed to N = 200 while the signal to

noise ratio (SNR) is varied. The nominal unit gain sensors are perturbed by

additive Gaussian random variables with a standard deviation of 5%. The

nominal phases of the sensors are also perturbed by adding uncorrelated

Gaussian random variables with standard deviations 0.05. This phase error

corresponds approximately to a direction error of 1◦ around broadside.

Fig. 1.1 shows the root-mean-square (RMS) errors versus the SNR. Only

the RMS errors for θ1 are displayed; the results corresponding to θ2 are

similar. The empirical RMS values are computed from 1000 independent

Monte Carlo trials. The DOA estimators included in the comparison are:

Root-MUSIC [Barabell, 1983; Schmidt, 1979], ESPRIT (using maximum

overlap sub-arrays) [Roy et al., 1986; Paulraj et al., 1986; Roy and Kailath,

1989], WSF [Viberg and Ottersten, 1991] and GWSF [Jansson et al., 1998]

(see Section 1.5.1). The WSF and GWSF methods are implemented in their

“rooting versions” [Jansson et al., 1998; Stoica and Sharman, 1990b].

The approximate CRB given by (1.13) that accounts both for array model

errors and the noise is denoted MAP-CRB in Fig. 1.1. The CRB for the

ideal nominal case without array model errors is denoted NOM-CRB (i.e.,

the CRB accounting only for the additive noise, see e.g. [Stoica and Nehorai,

1990]). Also included in Fig. 1.1 is a curve resulting from a theoretical
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Fig. 1.1. The RMS errors for θ1 versus the SNR.

performance analysis of WSF for the case under study (i.e., for small model

errors and large N or high SNR) [Viberg and Swindlehurst, 1994b; Jansson

et al., 1998].

In Fig. 1.1 it can be seen that for lower SNRs, when the measurement

noise is the dominating error source, all methods have a very similar perfor-

mance in this scenario since the emitter signals are uncorrelated. For higher

SNRs, the gain and phase errors dominate and, as expected, the GWSF

method outperforms the other methods that do not take the model errors

into account. It can also be seen that the RMS error of GWSF attains the

MAP-CRB as predicted by theory. Similarly, the theoretical RMS curve for

WSF predicts the corresponding empirical RMS values very well.

1.7 Concluding remarks

The subspace approach to signal parameter estimation has been successful

in providing high accuracy at a reasonable cost. This chapter has reviewed
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a class of optimal subspace methods, which maintains the asymptotic per-

formance of maximum likelihood and similar techniques. The price for the

statistical efficiency is generally that the complexity approaches that of max-

imum likelihood. However, in special cases computationally more attractive

implementations are available, see e.g. [Stoica and Sharman, 1990a; Jansson

et al., 1998]. We have also shown how the original MUSIC algorithm can be

obtained from the general GWSF formulation. The GWSF framework can

therefore be said to provide a clear link between classical statistical estima-

tion and a wide class of practically useful subspace-based methods. Similar

ideas as those presented here for the direction estimation problem can also

be used in other related applications, e.g., frequency estimation [Eriksson

et al., 1994; Kristensson et al., 2001], subspace based system identification

[Van Overschee and De Moor, 1996; Verhaegen, 1994; Viberg et al., 1997],

and blind channel identification [Moulines et al., 1995; Kristensson and Ot-

tersten, 1998].
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