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Given the need for quantitative measurement and 3D visualisation of brain tumours, more and more attention has been paid to
the automatic segmentation of tumour regions from brain tumour magnetic resonance (MR) images. In view of the uneven grey
distribution of MR images and the fuzzy boundaries of brain tumours, a representation model based on the joint constraints of
kernel low-rank and sparsity (KLRR-SR) is proposed to mine the characteristics and structural prior knowledge of brain tumour
image in the spectral kernel space. In addition, the optimal kernel based on superpixel uniform regions and multikernel learning
(MKL) is constructed to improve the accuracy of the pairwise similarity measurement of pixels in the kernel space. By introducing
the optimal kernel into KLRR-SR, the coe�cient matrix can be solved, which allows brain tumour segmentation results to
conform with the spatial information of the image. e experimental results demonstrate that the segmentation accuracy of the
proposed method is superior to several existing methods under di�erent indicators and that the sparsity constraint for the
coe�cient matrix in the kernel space, which is integrated into the kernel low-rankmodel, has certain e�ects in preserving the local
structure and details of brain tumours.

1. Introduction

Segmenting tumour regions accurately from brain tumour
MR images is conducive to the quantitative measurement
and 3D visualisation of the tumours, which is of great
signi�cance for clinical treatment and medical research [1].
e goal of segmentation is to separate the lesion regions
from the normal brain tissues and divide tumour regions
such as edema, necrosis, and active tumours into spatially
continuous regions which meet predetermined rules [2].
Since manual segmentation of 3D images by the doctor is
time-consuming and unrepeatable, automatic or semiau-
tomatic brain tumour segmentation methods are necessary.

Based on the information provided by MR images, many
pixel-by-pixel classi�cation methods have been applied to
the segmentation and classi�cation of brain images [3–10],
such as multinomial logistic regression (MLR), support
vector machines (SVM), and arti�cial neural networks

(ANNs). However, classi�cation methods that only use the
grey information of the pixels obtain lower segmentation
accuracy due to the in�uence of the noise and bias in MR
images and the uncertainty of the brain tumours, while
hybrid methods and kernel-based methods combining
spatial and clinical information are more e�ective. Viru-
pakshappa and Amarapur [11] proposed a tumour seg-
mentation model by using FCM clustering, multiple feature
extraction using Gabor Wavelets and ANN classi�er, by
which the proposed system accuracy increased to 85%, as
evaluated on a medical MRI dataset of 40 training images
and 60 test images. Kernel-based methods attempt to map
linearly inseparable data to a high-dimensional feature space
through a nonlinear function to make the data separable.
Compared to single-kernel methods, classi�cation methods
based on multikernel strategies and MKL are more con-
ducive to enhancing the interpretability of the decision
function and expressing the attributes of the original sample
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space. Boughattas et al. [12] proposed a segmentation
method based on multimodal MR images, in which MKL
was used to associate one or more kernels with each feature
and select the most relevant features to segment the edema
and tumour regions. Arun and Singaravelan [13] designed a
composite kernel function and applied it to the training of
SVM to realise the automatic detection of brain tumours; the
detection accuracy reached 93%. As classic representation
learning theories, low-rank representation (LRR) and
sparsity representation (SR), which mine the prior knowl-
edge of the image by using low-rank or sparsity attributes,
have been introduced into brain tumour image segmenta-
tion [14]. Due to the low-rank or sparsity constraint for the
representation coefficient under the given training sample
set, the structural characteristics of the image are maintained
in the classification process. However, their classification
performance is not satisfactory when applied to linear in-
separable data as linear classifiers. For this reason, a class of
classification methods based on kernel LRR (KLRR) or
kernel SR (KSR) under the framework of the kernel method
has emerged and achieved good results [15–20]. Such
methods perform the classification by modelling the high-
dimensional feature space of the image induced by the kernel
function with a low-rank or sparse representation.

Superpixel segmentation clusters pixels with similar
characteristics into the same region so that the local features
and structural information of the image can be expressed as
a whole. Compared with pixel-based image representation,
superpixel-based representation is more in line with human
visual cognition and involves less data redundancy. More-
over, it also provides support for extracting spatial infor-
mation from an image. In order to match the spatial
distribution of brain tissues and tumours, the shape of the
homogeneous region should be adjusted adaptively in brain
tumour segmentation. +erefore, using image features and
superpixels to select homogeneous regions is a good way to
overcome the drawbacks of the fixed square windows. Ge
et al. [21] designed an image classifier based on multiscale
superpixels and multikernel collaborative representation, in
which the original grey information and the multiscale
spatial features based on superpixels were combined to
classify the brain tumour images.

Inspired by the above work, in this paper, we propose a
segmentation approach based on the optimal superpixel
kernel and KLRR-SR (OSK-KLRR-SR) for brain tumour MR
images. First, the multimodal brain tumour MR images are
fused, and the T1-c image is segmented by ERS [22] to
generate the adaptive superpixel homogeneous regions.
Second, spatial features based on the superpixels are
extracted to construct the superpixel kernel, and the optimal
superpixel kernel is selected by representative MKL [23].
Finally, the brain tumour image is modelled by KLRR-SR, in
which the coefficient matrix is solved by introducing the
optimal superpixel kernel so as to extract the regions of
necrosis, enhanced tumours, and edema, respectively. +e
advantages of the proposed method are as follows: (1) In
addition to taking advantage of kernel methods, the pro-
posed KLRR-SR model preserves both the overall structure
and local details in the high-dimensional feature space of the

image through the joint constraints of LRR and SR, thereby
improving the representation accuracy of the image. (2) By
considering spatial features based on the superpixel ho-
mogeneous region, the superpixel kernel adaptively learns
the high-dimensional manifold features of each class of
samples in brain tumour images, which measures the
pairwise similarity of samples more accurately. (3) +eMKL
method resolves the difficulties of multiscale feature learning
and adaptive parameter determination in traditional kernel
methods. Experiments onMICCAI BraTS 2013 dataset show
that the segmentation results of the proposed method are
close to the standard results, and the isolated region, the
slender topology, and the boundaries of tumour are well
preserved due to the sparsity constraints incorporated into
the KLRR model. +e quantitative comparison of the seg-
mentation accuracy for the regions of necrosis and enhanced
tumours under different indicators shows that the proposed
method has certain advantages in brain tumour segmen-
tation compared with several existing methods.

2. Materials and Methods

2.1. Superpixel Segmentation. To accurately extract the
spatial structure features of brain tumours and brain tissues,
superpixel segmentation is adopted to adaptively obtain the
uniform regions in the image. Here, we use the entropy rate
superpixel method (ERS) [22], which is based on graph
partitioning and entropy rate, to perform image
segmentation.

We first map the input image X � x1, x2, . . . , xN  to an
undirected graph G � (V, E), where V is the vertex set
consisting of all the pixels in the image and E is the edge set.
Further, eij ∈ E represents the edge connecting adjacent
pixels xi and xj, and ωij is the corresponding weight, which
is used to reflect the similarity between xi and xj. +e
superpixel segmentation for X can then be obtained by
dividing the graph G, that is, selecting a subset A ⊂ E to form
an undirected graph G′ � (V, A), which contains P sub-
graphs. +e objective function of ERS is

max
A

H(A) + λB(A)

s.t. A⊆E, NA ≥P,
(1)

where A is the selected edge set and λ is the weight factor.
H(A) is the entropy rate of a random walk on the graph,
which is used to prefer the formation of compact and ho-
mogeneous clusters, and B(A) is the balancing term, which
is used to induce clusters with similar sizes. It is proven that
both the entropy rate and the balancing term are mono-
tonically increasing submodular functions under the pro-
posed graph construction; therefore, the objective function
is also submodular and monotonically increasing. Fur-
thermore, by introducing a matroid for optimisation, the
solution of equation (1) presents an effective greedy
algorithm.

+e ERS algorithm is stable, and the generated super-
pixels are not only controllable in number but also have a
good boundary fit, which helps to maintain the target
structures in the image.
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2.2. Optimal Superpixel Kernel Based on MKL. Let
X � x1, x2, . . . , xN  ∈ RL×N represent the fusion data of
multimodal brain tumour MR images, in which xi ∈ RL

represents the i-th pixel feature, and N is the total number of
pixels. Use ERS to perform superpixel segmentation on the
T1-c image, and let X1, X2, . . . , XP  be the segmentation
results of X, in which Xi is the i-th superpixel, and P is the
number of superpixels. Suppose there exists a nonlinear
function ϕ that maps the pixel feature (i.e., a testing sample
or a training sample) to the high-dimensional Hilbert space.
Set x

(i)
k as the k-th pixel in Xi. Its spatial feature is given by

the superpixel-based mean filtering form as
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where κ(x(i)
m , x

(j)
n ) is the basic kernel function and is taken to

be the Gaussian RBF kernel, which is given as

κ x
(i)
m , x

(j)
n  � exp −

x
(i)
m − x

(j)
n

�����

�����
2

2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, σ > 0. (4)

Considering the complex structures and fuzzy bound-
aries in the brain tumour MR images, multiscale kernels are
used to measure the similarity between samples from dif-
ferent categories. Select M kernel scales
σmin � σ1 < σ2 < · · · < σM � σmax within the range
[σmin, σmax]. Based on equation (3), the Gram matrixes Gi

under the scale σi is as follows:
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, i � 1, 2, . . . , M.

(5)

Let v(Gi) ∈ RN2 denote the column vector generated by
vectorizing the matrix Gi in a fixed order, and we can obtain
a new expression in the form of M kernel matrixes GSP �

[v(G1), v(G2), . . . , v(GM)]T � [g1, g2, . . . , gN2] ∈ RM×N2 , in
which gi is an M-dimensional column vector,
i � 1, 2, . . . , N2. In order to find the low-dimensional linear

subspace in the kernel matrix group, we construct the fol-
lowing loss function [23]:

L(W, Z) � GSP − WZ
����

����
2
F

� 
N2

i�1


p

j�1
gij − 

p

t�1
witztj

⎛⎝ ⎞⎠

2

,
(6)

where W � (w1, w2, . . . , wp) ∈ RM×p is the projection ma-
trix whose columns w1, w2, . . . , wp are the bases of a
p-dimensional linear subspace, Z ∈ Rp×N2 is the projected
matrix onto the linear subspace spanned by W, and gij, wij,
and zij are the elements of GSP, W, and Z, respectively.
According to the projection theorem, equation (6) will be
minimized by setting Z � WTGSP, and its dual problem is as
follows:
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(7)

where  GSP � GSPGT
SP and Ip is the p × p identity matrix.

By setting p � 1 and solving equation (7) by singular value
decomposition, we can obtain the projection vector W∗ �

[w∗11, w∗21, . . . , w∗M1]
T with maximum variance direction,

which is just the optimal weight vector of the kernel
function. As a result, the optimal kernel function is given by

K
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Referring to equation (3), the optimal superpixel kernel
can be written as
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+e steps to generate the optimal superpixel kernel based
on MKL are given by Algorithm 1.

2.3. OSK-KLRR-SR Classifier. +e greyscale distribution of
the MR image is not uniform due to factors in the imaging
process such as the offset field. When the variation range of
the pixel grayscale is close to the image contrast, the accuracy
of classification methods based on the statistical charac-
teristics of the greyscale will be reduced. For this reason, it is
necessary to mine the image features in the spectral kernel
space and to build a more robust classification model by
using the structure prior of the image. Classification
methods based on KLRR or KSR combine the linear sepa-
rability of the high-dimensional feature space induced by the
kernel function with the advantage of LRR or SR in pre-
serving the structural features of the data under the
framework of the kernel method. Note that the high-di-
mensional features used in KLRR and KSR for image
classification are only based on disordered pixels without
considering the spatial information. In this paper, we pro-
pose a brain tumour image classification model based on the
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joint representation of KLRR and KSR, in which the optimal
superpixel kernel is introduced to solve the coefficient
matrix so that the classification process can be integrated
with the image spatial features. +e optimal superpixel
kernel generation from the superpixel homogeneous region
and MKL improves the similarity measurement accuracy of
samples.+e joint constraints of KLRR-SR preserve the local
features in the image as well as the overall structure, which is
helpful to improve the image representation accuracy.
+erefore, the performance of the proposed method in
promoting the segmentation accuracy of brain tumour re-
gions can be expected.

Let D � [d1, d2, . . . , dT] be the dictionary constructed by
the training samples, in which di with i � 1, 2, . . . T repre-
sents the i-th training sample. By defining the mapping
function Φ(X) � ϕ(x1), ϕ(x2), . . . ,ϕ(xN)  and
Φ(D) � ϕ(d1), ϕ(d2), . . . , ϕ(dT) , the classification model
based on the joint representation of KLRR-SR can be
constructed as follows:

min
A

1
2
‖Φ(X) − AΦ(D)‖

2
F + λ‖A‖∗ + α‖A‖1, (10)

where A is the coefficient matrix and λ and α are the reg-
ulatory factors that adjust the weights of the low-rank and
sparse term, respectively. +e larger their values, the
stronger the low-rank and sparse constraints on A.

After solving for the optimal solutions A∗ corresponding
to A in equation (10), the classification function is
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∗
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2
F
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where c � 1, 2, . . . , C{ } is the class label set and a∗i is the i-th
column vector of A∗. δc(a∗i ) represents an indicator oper-
ation that zeroes out all elements of a∗i that do not belong to
the class c.

By introducing the optimal superpixel kernel in equation
(9), equation (10) can be transformed into the following
inner-product form

min
A

1
2

tr A
T
VA  − tr A

T
U  + λ‖A‖∗ + α‖A‖1 + C, (12)

where C represents a constant term. V and U are the ma-
trixes with elements Vij � K∗SP(di, dj) and Uij � K∗SP(di, xj),
respectively. +us, the classification function can be re-
written as follows:

class xi(  � argmin
c�1,2,...C

δT
C a
∗
i( Vδc a

∗
i(  − 2δT

C a
∗
i( U. (13)

Equation (12) is a convex problem, which can be solved
by the alternating direction method of multipliers (ADMM)
[24]. To make the objective function separable, we introduce
auxiliary variables E and F, such that equation (12) can be
rewritten as

min
A

1
2

tr A
T
VA  − tr A

T
U  + λ‖E‖∗ + α‖F‖1,

s.t. E � A,

F � A.
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(14)

+e augmented Lagrange function is

Lμ(A, E, F, μ) �
1
2

tr A
T
VA  − tr A

T
U  + λ‖E‖∗ + α‖F‖1

+ tr Y
T
1 (A − E)  + tr Y

T
2 (A − F)  +

μ
2

‖A − E‖
2
F +‖A − F‖

2
F ,

(15)

where Y1 and Y2 are Lagrange multipliers and μ is a
penalty factor. When solving the above-unconstrained
optimisation problem, ADMM uses a strategy of

alternately updating one variable while fixing the
remaining variables. +e variable updating strategy is
given as

Input : Training sample set and corresponding label set; kernel scale range [σmin, σmax].
Output : Optimal superpixel kernel.

Step 1: Select M kernel scales σmin � σ1 < σ2 < · · · < σM � σmax.
Step 2: Compute the Gram matrixes Gi with i � 1, 2, . . . , M using equation (3).
Step 3: Vectorize Gi and construct the matrix GSP.
Step 4: Compute the optimal weight vector W∗ � [w∗11, w∗12, . . . , w∗1M] by solving equation (7).
Step 5: Compute the optimal kernel function using equation (8).
Step 6: Compute the optimal superpixel kernel using equation (9).

ALGORITHM 1: Optimal superpixel kernel generation based on MKL.
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+e optimal solutions of equations (15) through (17) are
as follows:

E
∗

� Tλ/μ
A + Y1

μ
  � PΘλ/μ(Σ)QT

,

F
∗

� Θα/μ
A + Y2

μ
 ,

A
∗

� (V + 2μI)
− 1

U + μ E + F −
Y1 + Y2

μ
   ,

(19)

where P(Σ)QT is the singular value decomposition
result of A + Y1/μ and Θ is the soft thresholding
operator.

In summary, the general algorithm for the OSK-KLRR-
SR classifier for brain tumour segmentation is given as
Algorithm 2.

3. Results and Discussion

To evaluate the effectiveness of the proposed method, we
performed experiments on the BraTS 2013 dataset [25, 26]
to extract the three brain tumour regions of necrosis,
enhanced brain tumours, and edema, respectively. +e
proposed segmentation model was built upon the training
dataset provided by BraTS 2013, which consists of the MR
images from 30 brain glioma cases (20 high-grade glioma
cases and 10 low-grade glioma cases) with standard
segmentation results available. +e standard segmenta-
tion results were annotated by a trained team of radiol-
ogists, altogether comprising seven radiographers in Bern,
Debrecen, and Boston and containing four marked tu-
mour regions of necrosis, enhancing core, nonenhancing
solid core, and edema. As shown in Figure 1, the blue area
is necrosis, the pink area is enhanced tumours, and the
green area is edema. All the images in the dataset include

Input : Multimodal brain tumour MR fusion data X � x1, x2, . . . , xN ; training sample set and corresponding label set.
Output :Label set of the testing samples class(x1), class(x2), . . . , class(xN) .

Step 1: Initialize k � 0, A0 � E0 � F0 � 0, Y0
1 � Y0

2 � 0, μ0 � 10− 6, ρ � 1.1.
Step 2: Compute the optimal superpixel kernel using Algorithm 1.
Step 3: Compute the matrixes V with elements Vij � K∗SP(di, dj) and U with elements Uij � K∗SP(di, xj).
Step 4: While (μk+1 max ‖Ak+1 − Ak‖, ‖Ek+1 − Ek‖, ‖Fk+1 − Fk‖ ≥ ε1 or ‖Ak+1 − Ek+1‖≥ ε2 or ‖Ak+1 − Fk+1‖≥ ε2) do
Step 5: Update Ek+1 � Tλ/μk (Ak + Yk

1/μ
k) � PkΘλ/μk (Σk)(Qk)T.

Step 6: Update Fk+1 � Θα/μk (Ak + Yk
2/μk).

Step 7: Update Ak+1 � (V + 2μkI)− 1(U + μk(Ek+1 + Fk+1 − (Yk
1 + Yk

2)/μk)).
Step 8: Update Y1, Y2 Yk+1

1 � Yk
1 + μk(Ak+1 − Ek+1), Yk+1

2 � Yk
2 + μk(Ak+1 − Fk+1)

Step 9: Update μk+1 �
ρμk if μk max ‖A

k+1
− A

k
‖, ‖E

k+1
− E

k
‖, ‖F

k+1
− F

k
‖ ≤ ε1

μk otherwise

⎧⎨

⎩ , where ρ≥ 1 and 0≤ ε1 ≤ 1.

Step 10: Update k � k + 1.
Step 11: End while
Step 12: Compute the residuals of the sample belonging to each category rc(xi) � δT

c (a∗i )Vδc(a∗i ) − 2δT
c (a∗i )U, where

c � 1, 2, · · · , C{ }.
Step 13: Determine the category of the sample class(xi) � argminc�1,2,...Crc(xi).

ALGORITHM 2: +e algorithm of the OSK-KLRR-SR classifier.
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four modalities of T1, T2, T1-c, and Flair and have been
registered and shelled in advance.

3.1. Parameter Analysis

3.1.1. >e Number of Superpixels. In order to study the
influence of the number of superpixels on brain tumour
segmentation accuracy, the Jaccard Similarity (JS) of the
brain tumour regions obtained by the proposedmethod with
different numbers of superpixels is given in Figure 2. +e
segmentation performance is not satisfactory when the
number is too large or too small. +e reason is that the
regional uniformity will become larger when the number of
superpixels is too large, which may cause the pixels con-
tained in a single superpixel to come from different cate-
gories. On the other hand, the performance of the spatial
constraints will be reduced when the number of superpixels
is too small, resulting in a decrease in the classification
accuracy. +e proposed method achieves better segmenta-
tion performance when the number of superpixels is in the
range [800, 1200].

3.1.2. Parameter λ. +e parameter λ is the weight to adjust the
low-rank term in equation (10). Figure 3 shows the segmen-
tation accuracy with different values of λ. From the results, we
see that JS performs better when the value is in the range of
[0.001, 0.007] and decreases rapidly when the value exceeds
0.007. +is is because the larger the value of λ, the stronger the
constraint effect of the low-rank term. An overly strong low-
rank constraint forces pixels belonging to different categories to
be classified into the same class, which will reduce the clas-
sification performance of the first item in equation (10). In our
experiments, the value of λ is set to 0.005.

3.1.3. Parameter α. +e parameter α refers to the weight of
the sparse term in equation (10). +e correlation diagram
between its different values and the segmentation accuracy is
drawn in Figure 4. We see that JS is satisfactory when the
value of α is in the range of [0.001, 0.009] and drops rapidly
when its value exceeds 0.009.+is is because a larger value of

α will enhance the sparsity constraint, and an excessively
strong sparsity constraint will lead to more isolated points in
the segmentation results. In our experiments, the value of α
is set to 0.002.

3.1.4. >e Number of Training Samples. +e image dictionary
required in the proposed method is constructed by randomly
selectingmarked pixels from each category, with the remaining
unselected pixels used as testing samples to evaluate the seg-
mentation performance of the method. Different numbers of
training samples are adopted to study its influence on the
segmentation accuracy of the proposed method in Figure 5.
From the results, the segmentation accuracy on the testing
samples is high and is relatively stable when 3% of the total
pixels in the image are selected as training samples, which
demonstrates that the proposed method can achieve better
classification results under the small training set.

3.2. Segmentation Results on Brain Tumour Regions. Two
groups of segmentation results, on a high-grade case and a
low-grade glioma case, are shown in Figures 6 and 7, re-
spectively. Among these images, the first line gives the
original brain tumour images of different slices in T1-c
modality, the second line gives the standard manual seg-
mentation results, the third line gives the segmentation
results obtained by the optimal superpixel kernel-based
KLRR (OSK-KLRR) classifier, and the fourth line gives the
segmentation results obtained by OSK-KLRR-SR. It can be
seen from the figures that both segmentation results ob-
tained by OSK-KLRR and OSK-KLRR-SR are close to the
standard manual segmentation results. In addition, OSK-
KLRR-SR is superior to OSK-KLRR in maintaining the local
structures and details of the image, such as the isolated area
and slender topology inside the brain tumour and the tu-
mour boundaries due to the sparsity constraints for the
coefficient matrix. As such, the segmentation results ob-
tained by OSK-KLRR-SR are closer to the standard seg-
mentation results.

For quantitative analysis, Table 1 lists the segmentation
accuracy for the lesion regions of necrosis and enhanced

Figure 1: Standard manual segmentation result.
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Figure 3: Correlation between the segmentation accuracy and the parameter λ.
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Figure 2: Correlation between the segmentation accuracy and the number of superpixels.
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Figure 4: Correlation between the segmentation accuracy and the parameter α.
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(a)

(b)

(c)

(d)

Figure 6: Segmentation results of a high-grade glioma case. (a) Original brain tumour images of different slices in T1-c modality. (b)
Standard manual segmentation results. (c) Segmentation results obtained by OSK-KLRR. (d) Segmentation results obtained by OSK-KLRR-
SR.
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(d)

Figure 7: Segmentation results of a low-grade glioma case. (a) Original brain tumour images of different slices in T1-c modality.
(b) Standard manual segmentation results. (c) Segmentation results obtained by OSK-KLRR. (d) Segmentation results obtained by
OSK-KLRR-SR.
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tumours under different indicators obtained by the proposed
method and other methods. From the results, we see that the
segmentation accuracy obtained by OSK-KLRR-SR ranks first
in the two types of lesion regions, indicating that the proposed
method has certain advantages in the field of brain tumour
segmentation. Note that OSK-KLRR-SR achieves higher per-
formance than OSK-KLRR, which verifies that the sparsity
constraint for the coefficient matrix in the kernel space helps
preserve the local structure and details of brain tumours.

4. Conclusion

In this paper, a segmentation method based on the optimal
superpixel kernel and KLRR-SR for brain tumour MR im-
ages is proposed. First, the T1-c image is segmented by ERS
to generate uniform regions, and the superpixel kernel is
constructed based on image spatial features. +en, MKL is
used to learn the optimal weight vector for generating the
optimal superpixel kernel. Finally, KLRR-SR is adopted to
model the brain tumour image, and the representation
coefficient matrix is solved by introducing the optimal
superpixel kernel so as to realise the extraction of regions of
necrosis, enhanced tumours, and edema, respectively. By
combining the linear separability of the high-dimensional
space with the advantages of LRR and SR in preserving the
structural features of the image, the representation accuracy
of the brain tumour image is improved. In addition, the
optimal superpixel kernel based on the image spatial in-
formation and MKL adaptively learns the high-dimensional
manifold features of each class of samples in brain tumour
image, thus improving the accuracy of feature extraction.
Quantitative comparison of segmentation accuracy under
different indicators indicates that the proposed OSK-KLRR-
SR classifier provides improved performance over several
existing methods and shows certain advantages in pre-
serving the boundary and detail features of brain tumours as
well as the overall structures of the image.
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