
Optimal Supervisory Control of Discrete Event

Dynamical Systems 1,2

Ratnesh Kumar
Department of Electrical Engineering

University of Kentucky
Lexington, KY 40506-0046

Email: kumar@engr.uky.edu

Vijay K. Garg
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712-1084

Email: vijay@pine.ece.utexas.edu

1This research was supported in part by the Center for Robotics and Manufacturing, University
of Kentucky, in part by the National Science Foundation under Grant NSF-CCR-9110605, and in
part by a TRW faculty assistantship award.

2A preliminary version of this paper appeared in [10].

Abstract

We formalize the notion of optimal supervisory control of discrete event dynamical sys-
tems (DEDS’s) in the framework of Ramadge and Wonham. A DEDS is modeled as a state
machine, and is controlled by disabling some of its transitions. We define two types of cost
functions: a cost of control function corresponding to disabling transitions in the state ma-
chine, and a penalty of control function corresponding to reaching some undesired states, or
not reaching some desired states in the controlled system. The control objective is to design
an optimal control mechanism, if it exists, so that the net cost is minimized. Since a DEDS
is represented as a state machine—a directed graph—network flow techniques are naturally
applied for designing optimal supervisors. We also show that our techniques can be used
for solving supervisory control problems under complete as well as partial observation. In
particular, we obtain, for the first time, techniques for computing the supremal controllable
and normal sublanguage, and the infimal controllable and normal/observable superlanguage
without having to perform alternate computations of controllable and normal/observable
languages.

Keywords: Discrete Event Dynamical Systems, Supervisory Control, Automata Theory,
Optimal Control, Max-flow Min-cut.

AMS (MOS) Subject Classification: 93

1 Introduction

Research on supervisory control of discrete event dynamical system was pioneered by
Ramadge and Wonham [22]. In [22], a DEDS, also called plant, is modeled as a state
machine (SM), and the behavior of a DEDS is described by the language accepted by the
corresponding SM. A controller or a supervisor, based on its observation of the past behavior
of the plant, determines the transitions to be disabled in the plant, so that some desired
qualitative control objective is achieved. Usually, the control objective is to restrict the plant
behavior such that it remains confined within a specific range [23]. In some other cases, the
control objective is to design a supervisor so that the closed loop behavior eventually remains
confined to a prescribed range [3, 18, 12]. Recently, there has also been some work in which
the control objective is to restrict the plant behavior so that a certain cost function defined
along the trajectory of the system is optimized [20, 19, 2, 25, 10].

In [20, 19], a cost function is defined on the set of transitions, and the control objective
is to restrict the plant behavior in such a way that after starting from a given initial state
the plant reaches one of the accepting states along a trajectory of optimal cost. Authors
provide an efficient heuristic search based algorithm for solving the problem. In [2] also, a
cost function is defined on the set of transitions and the control objective is to restrict the
plant behavior so that after starting from any state the plant reaches one of the accepting
states along a trajectory of optimal cost. In [25], two types of costs, a control cost and a path
cost, are defined on the graph representing a plant. The control objective is to determine
that subgraph of the plant graph for which the maximum of the total cost along all its
trajectories is minimum. The notions of cost of control and penalty of control considered in
this paper are some what similar to that of control cost and path cost in [25]. However, our
control objective is to determine a state-feedback supervisor so that the net cost of disabling
transitions, that of reaching undesired states, and that of not reaching desired states is
minimized. Thus our control objective is different from that considered in [25].

In this paper, we consider two types of cost functions: (i) A positive cost of control

function is defined on the set of transitions corresponding to the cost of disabling a transition.
If a certain transition such as arrival of a customer in a queue is disabled by a supervisor at
a certain point, then its cost of control is added to the net cost, otherwise—if the transition
is not disabled—no cost is added to the net cost; (ii) A penalty of control function is defined
on the set of states corresponding to their reachability in the controlled system. The penalty
of control takes a negative or a positive value depending on whether the state is desired or
undesired. If a state is desired—e.g. working or idle state of a machine, then a negative
penalty is associated with it. If such a state remains unreachable in the controlled plant,
then a positive cost equal in magnitude to its penalty of control is added to the net cost,
otherwise—if the state is reachable—no cost is added to the net cost. On the other hand, if a
state is undesired—e.g. over/underflow of a buffer, then a positive penalty is associated with
it. If such a state can be reached in the controlled plant, then a cost equal to its penalty of
control is added to the net cost, otherwise—if it remains unreachable—no cost is added to the
net cost. The optimal control problem is to determine a state-feedback supervisor for which

1

the net cost is minimized. State-feedback supervisors [8, 21, 13, 6], exercise control based
on the state of the plant rather than the sequence of events executed by it. However, this
does not result in any loss of generality, since a “string-feedback” supervision is equivalent
to a state-feedback supervision on a suitably refined [7] model of a plant.

Example 1 Consider for example a machine P shown in Figure 1. (For clarity, the state
labels have been omitted.) Initially P is in the “first idle” state (i.e. idle and unused state).

start stop start stop start stop

replace

replace

maintain/replace maintain

maintain

failfailfail

replace/
repair

repair repair

replace

replace

Figure 1: Diagram for Machine P of Example 1 with N = 4

When event “start” is executed, it goes to the “first working” state. In the “kth working”
state, where 1 ≤ k < N , the machine may either “fail”, in which case it goes to the “kth
broken” state; or it may complete its operation, execute “stop”, and go to the “(k + 1)th
idle” state. In the “kth broken” state, machine is either “repaired”, in which case it goes
back to the “kth idle” state; or it is “replaced”, in which case it goes to the “first idle” state.
In the “kth idle” state, either the event “start” is executed which sends the machine to the
“kth working” state; or “replace” is executed which sends the machine to the “first idle”
state; or “maintain” is executed which sends the machine to the “(max{1, 2k − N})th idle”
state. Thus, in the “Nth idle” state, execution of the “maintain” event does not result in a
change in state. Note that the function max{1, 2k − N} is chosen only for an illustration,
in general it is an increasing function of k taking values smaller than k except at k = 1 and
k = N , where it equals k. An optimal control policy is needed to decide (i) whether to repair
or replace the machine in a broken state, and (ii) whether to operate or maintain or replace
the machine in an idle state. An optimal control policy evidently depends on the cost of
replacement of machine, cost of repair in the kth broken state, cost of maintenance in the
kth idle state, payoff of operating the machine in the kth idle state, penalty of being in a
broken state, payoff of being in an idle or a working state etc.

2

Our setting is similar to that considered in [26], in which, appropriate cost and penalty
functions were defined on a suitably refined model of a given plant, and the dynamic pro-
gramming algorithm was used to determine the existence of a supervisor for a given control
problem. The computational complexity of the dynamic programming algorithm was used
to determine the computational complexity of the supervisory control problem thus solved.
However, no technique for the synthesis of a supervisor, if it exists, was given in that refer-
ence. Our approach to optimal supervisory control differs from that considered in [26] in two
ways. Firstly, we show that an optimal supervisory control problem of the type described
above can be solved using network flow algorithms. Thus a more general algorithm such as
dynamic programming can also be used, although this will result in an increase in compu-
tational complexity. Secondly, we show that our techniques are equally applicable for the
synthesis of supervisors, whenever they exist.

The motivation of formulating an optimal supervisory control problem is twofold: firstly,
to introduce a formal framework for optimal supervisory control in which the control ob-
jective is to optimize a suitably defined cost and penalty of exercising controls; secondly,
to present a unified technique for supervisory synthesis under complete as well as partial
observation. In particular we obtain techniques for computing the supremal controllable and
normal sublanguage [27, 16, 1, 11, 4], the infimal controllable and normal superlanguage [14],
the infimal controllable and observable superlanguage [16, 5, 24, 9], without having to per-
form alternate computations of controllable and normal/observable languages as is done in
[4] (also refer to Remark 3). Our techniques also illustrate that a supervisory control problem
under complete or partial observation can be solved using a state-feedback type of control
on a suitably refined state machine representation of the plant. We provide techniques to
obtain the the appropriate refinements.

In Section 2, we introduce our notation and formally describe the optimal supervisory
control problem under complete as well as partial state observation. In Section 3, we show
how the network flow algorithms can be used to solve the optimal supervisory control prob-
lems. In Section 4, we show that by appropriately defining the cost and penalty functions,
our techniques can be used for solving supervisory control problem under complete as well
as partial observation.

2 Notation and Problem Formulation

A discrete event dynamical system to be controlled, called plant, is modeled as a state
machine [7], denoted as a four tuple G := (X, Σ, δ, x0), where X denotes the set of states,
Σ denotes the finite set of events, δ : X × Σ → X denotes the partial deterministic state
transition function, and x0 ∈ X denotes the initial state. A triple (x1, σ, x2) ∈ X × Σ × X,
such that δ(x1, σ) = x2 is called a transition in G. The behavior of G is described by the
language L(G):

L(G) := {s ∈ Σ⋆ | δ(x0, s) is defined},

3

where Σ⋆ denotes the set of finite sequences of events belonging to Σ, including the zero
length sequence ǫ; the transition function is extended in a natural way to δ : X × Σ⋆ → X.

In general, a supervisor or a controller determines the set of events to be disabled after
each transition, based on the record of observed states and events. We consider a supervisor,
denoted S, to be a map S : X → 2Σ that determines the set of events S(x) ⊆ Σ to be
disabled at each state x ∈ X. Events not belonging to the set S(x) remain enabled at x.
A supervisor as defined above is called a state-feedback [21, 13, 12], as it exercises control
based on the state of G (and not based on the record of observed states and events). As
is shown below, this does not result in any loss of generality, as a more general supervisor,
which exercises control based on the observed sequence of events, can equivalently be viewed
as a state-feedback supervisor on a suitably refined model of the plant. Readers are referred
to [23] for a more general definition of a supervisor. The controlled plant, denoted GS, is
another state machine given as the 4-tuple GS := (X, Σ, δS, x0), where X, Σ, x0 are as defined
above, and δS denotes the state transition function of the controlled plant GS:

∀x ∈ X, σ ∈ Σ : δS(x, σ) :=

{

δ(x, σ) if σ 6∈ S(x)
undefined otherwise

The behavior of the closed-loop system is described by the language L(GS) generated by the
controlled plant. It is clear that L(GS) ⊆ L(G).

Next we formally describe the problem of optimal supervisory control. Let c : X × Σ →
R+ denote a cost of control function, where R+ denotes the set of strictly positive reals,
including infinity. The cost c(x, σ) represents the cost of disabling the event σ ∈ Σ at the
state x ∈ X.

We assume for simplicity that the cost of control is a “one-time” cost. A justification for
this simplifying assumption is the following: In GS, a certain state may be visited either only
once (if it is not a node on any cycle in the graph of GS), or an unbounded number of times
(otherwise). If a state is visited only once, then the corresponding transitions are controlled
only once. Hence, in this case, the cost of control ought to be one-time. On the other
hand, if a state is visited an unbounded number of times, then the corresponding transitions
are controlled each time the state is visited. However, due to the state-feedback nature of
supervision, the same control is exercised on each occasion. Hence, in this case, the cost
of controlling such transitions can be associated with the first time the control is exercised.
The one-time cost of control assumption can also be interpreted as follows: A transition once
disabled/enabled at the corresponding state remains disabled/enabled in that state so that
on subsequent visits to that state no cost is incurred in disabling/enabling that transition.
Alternatively, the cost of control is primarily of setting up a control mechanism—a switch
for example—and the cost of engaging or disengaging the switch is small compared to its
one time set up cost. In each case, the assumption of state-feedback supervision is crucial.

Next, a penalty of control function p : X → R, is defined on the state set, where
R denotes the set of reals, including positive and negative infinity. It corresponds to the
penalty associated with reachability of a certain state in the controlled plant. The penalty
function may take a positive or a negative value depending on whether the corresponding

4

state is undesired or desired. Given a state x ∈ X, if p(x) < 0, then x is a desired state, and
it should remain reachable in the controlled plant. In case x is unreachable in the controlled
plant, a positive cost equal to −p(x) is added to the net cost as a penalty, else no cost is
added to the net cost. Similarly, if p(x) > 0 for some x ∈ X, then x is an undesired state, and
it should remain unreachable in the controlled plant. In case x is reachable in the controlled
plant, a cost equal to p(x) is added to the net cost as a penalty, else no cost is added to the
net cost.

We assume for simplicity, as above for the cost of control, that the penalty of control
is a one-time penalty, i.e. the penalty of reaching an undesired state does not depend on
the number of times that state is visited. The justification for this simplified assumption is
similar to that given above for the one-time cost of control assumption.

Remark 1 If c(·, σ) = ∞ for an event σ ∈ Σ, then σ should not be disabled by any
supervisor at any state of G. Thus an infinite cost of control of an event captures the notion
of uncontrollable events [22, 23]. The notion of desired or target behavior can be captured by
defining the penalty function to be infinity for those states that are reachable by the strings
in the undesired behavior, and any fixed negative real for those states that are reachable
by strings in the desired behavior. However, this requires that the state machine G be
refined [7, 11] with respect to the given target behavior, so that the states corresponding to
the desired and undesired behavior can be uniquely identified, and the penalty function is
unambiguously defined. This is explained formally in Section 4.

With the above definitions of the cost and penalty of control functions we can define the
optimal supervisory control problem.

Definition 1 For any supervisor S : X → 2Σ, the net cost of using S, denoted C(S), is
defined to be:

C(S) :=
∑

x∈Re(GS)

∑

σ∈S(x)

c(x, σ)

 +
∑

x∈Re(GS),

p(x)>0

p(x) +
∑

x 6∈Re(GS),

p(x)<0

−p(x),

where Re(GS) is the set of reachable states1 in GS.

Thus the net cost of control of using S consists of sum of three terms: (i) The first term
corresponds to the cost of disabling the events by S.

∑

σ∈S(x) c(x, σ) is the total cost of
disabling events at state x ∈ X. Thus

∑

x∈Re(GS)

∑

σ∈S(x) c(x, σ) is the total cost of disabling
the events by S. (ii) The second term,

∑

x∈Re(GS),p(x)>0 p(x), denotes the penalty of reaching
undesired states. (iii) Finally, the third term

∑

x 6∈Re(GS),p(x)<0 −p(x), denotes the penalty of
not reaching the desired states.

Optimal Supervisory Control Problem 1 (OSCP1): Let a plant G := (X, Σ, δ, x0), a

1Given a state machine V := (Q,Σ, ρ, q0), the set of reachable states Re(V) is recursively defined as: (i)
q0 ∈ Re(V), and (ii) q ∈ Re(V),∃σ ∈ Σ : ρ(q, σ) is defined ⇒ ρ(q, σ) ∈ Re(V).

5

cost of control function c : X × Σ → R+, and a penalty of control function p : X → R be
given. Design a supervisor S : X → 2Σ such that the net cost is minimized, i.e. determine

arg
{

min
S

C(S)
}

.

2.1 Partial State Observation

In OSCP1, a supervisor while deciding its control actions assumes that a complete state
information of G is available. We pose another optimal supervisory control problem in which
a complete state information is not available, and there exists a mask Ψ : X → Y defined
from the state space X to an observation space Y such that for each x ∈ X, Ψ(x) ∈ Y is the
state value observed by a supervisor. A supervisor in this case is given by a map S ′ : Y → 2Σ.
Since a supervisor takes a control action based on observing a state y ∈ Y , given any y ∈ Y ,
the same control action is taken at all states in the set Ψ−1(y) := {x ∈ X | Ψ(x) = y}.
Thus corresponding to a supervisor S ′ : Y → 2Σ, we can equivalently define a supervisor
S : X → 2Σ with the constraint C1:

C1: ∀x1, x2 ∈ X : Ψ(x1) = Ψ(x2) ⇒ S(x1) = S(x2).

Optimal Supervisory Control Problem 2 (OSCP2): Let a plant G := (X, Σ, δ, x0),
a cost of control function c : X × Σ → R+, a penalty of control function p : X → R, and
a mask Ψ : X → Y be given. Design a supervisor S ′ : Y → 2Σ (equivalently a supervisor
S : X → 2Σ satisfying C1) such that the net cost is minimized, i.e. determine

arg
{

min
S: C1 holds

C(S)
}

.

Remark 2 The difference between OSCP1 and OSCP2 is that, in OSCP2, the minimization
is performed over all supervisors that also satisfy the constraint C1, whereas no such con-
straint exists in OSCP1. It is easily seen that given an instance of OSCP1, it can be reduced
to an instance of OSCP2 by setting the mask function to be the identity function. We show
in the next section that given an instance of OSCP2, it can be reduced to an instance of
OSCP1 by suitably modifying the the cost of control function and the graph representing
the plant. Thus the two formulations are reducible to each other.

In the formulation of OSCP2, a state based mask function is used. This is in contrast
to the setting of supervisory control, where usually an event based mask is used. However,
an event based mask can be used to obtain a state based mask by first constructing a state
estimator, as in [17], and next identifying all the states with identical state estimates to have
equal mask value. Thus it is possible to reduce an optimal control problem under partial
observation of events to one under partial observation of states.

3 Solution using Network Flow Algorithm

In this section we provide a solution to the optimal supervisory control problems intro-
duced in section 2. The problem is to determine for each transition in the state machine

6

G whether to disable or enable it, so that the net cost is minimized. We show that this
problem is equivalent to determining an optimal partition of the state space X into the set
of states that remain reachable in the controlled plant, and the set of remaining unreachable
states. The desired optimal partition is determined using the max-flow min-cut theorem
[15], a technique for optimal partitioning of directed graphs.

3.1 Max-Flow Min-Cut Theorem

Interested readers are referred to [15] for a formal and elaborate description of the max-
flow min-cut theorem. Informally described, in its simplest form, a flow network is repre-
sented as a weighted directed graph having a single source node, from where the flow starts,
and a single terminal node where the flow terminates. The weights on the directed edges of
the graph represent the maximum flow capacities of the corresponding edges (the minimum
capacity is zero unless specified). Formally,

Definition 2 A flow network N is a weighted directed graph described by a triple N =
(V,E, u), where V denotes the set of vertices or nodes of N ; E ⊆ V 2—subset of ordered

pairs of V 2—denotes the set of directed edges or links of N ; and u : E → R+ denotes the
maximum capacity function of links. V contains two special nodes s and t, the source node
and the terminal node.

The basic flow optimization problem is to determine for a given flow network a flow of
maximum value between its source and terminal nodes subject to the edge capacity con-
straints, where a flow and its value is defined as follows:

Definition 3 A flow for a network N is a map f : E → R+ such that

1. ∀e ∈ E : f(e) ≤ u(e), and

2.
∑

v∈V :(s,v)∈E f((s, v)) =
∑

v′∈V :(v′,t)∈E f((v′, t)), and

3. ∀v ∈ V, v 6= s, v 6= t :
∑

v′∈V :(v,v′)∈E f((v, v′)) =
∑

v′′∈V :(v′′,v)∈E f((v′′, v)).

∑

v∈V :(s,v)∈E f((s, v)) =
∑

v′∈V :(v′,t)∈E f((v′, t)) is called the value of f . A max-flow is a flow
of maximum (flow) value.

Thus a flow is an assignment of a positive number to each edge in the flow network which
corresponds to the amount of flow on that edge, satisfying three constraints. Firstly, amount
of flow through each edge is no greater than its capacity; secondly, the net flow out of source
node equals the net flow into the terminal node; and finally, the net flow out of intermediate
nodes is zero. The value of a flow equals the net flow out of the source node (equivalently,
the net flow into the terminal node).

7

Definition 4 A cut of a network N is a partition of V such that s and t are in different
partitions. Let Vs ⊆ V and Vt := V − Vs denote the partitions of a cut such that s ∈ Vs and
t ∈ Vt. Then the capacity of this cut is defined as:

∑

(i,j)∈(Vs×Vt)∩E

u((i, j))

A min-cut is a cut of minimum capacity.

Thus any partition of the nodes in N such that the source node and the terminal node belong
to different partitions is called a cut. The capacity of a cut equals the sum of capacity of
those edges that emerge out of a node contained in the partition containing the source node,
and terminate at a node contained in the partition containing the terminal node.

Theorem 1 (Max-flow Min-cut) [15]: The value of a max-flow of a flow network equals
the capacity of a min-cut of that network.

Algorithms for computing a max-flow can be found in [15]. In this paper, we are interested
in computing a cost minimizing supervisor. This is shown to be equivalent to determining a
min-cut for a suitably defined flow network, which in view of Theorem 1 can be computed
using any of the max-flow computations.

3.2 Solution of OSCP1

In this subsection we provide a solution for the OSCP1 using the network flow technique
discussed in the previous subsection. It is clear that each supervisor S : X → 2Σ partitions
the state space X into Re(GS)∪ (X −Re(GS)), the sets of reachable and unreachable states
in the controlled plant GS. We define a supervisor to be parsimonious if and only if it
disables those transitions that are defined from a state in Re(GS) to a state in X −Re(GS).
Formally,

Definition 5 A supervisor S : X → 2Σ is said to be parsimonious if and only if for each
state x ∈ X and event σ ∈ Σ:

σ ∈ S(x) ⇔ [x ∈ Re(GS), δ(x, σ) 6∈ Re(GS)].

We prove that parsimonicity is a necessary condition for optimality of a supervisor.

Lemma 1 If S is an optimal supervisor, then S is parsimonious.

Proof: Assume for contradiction that S is optimal but not parsimonious. Then there exist an
event σ ∈ Σ, states x1, x2 ∈ Re(GS) such that δ(x1, σ) = x2 and σ ∈ S(x1), i.e. σ is disabled
at x1. Consider a supervisor S ′ that exercises same control action as S does, except that at
state x1 it does not disable the event σ, i.e. σ 6∈ S ′(x1). Then C(S ′) = C(S)−c(x1, σ) < C(S),
for c(x1, σ) > 0. Thus we obtain a contradiction to the optimality of S.

The following is an immediate Corollary of Lemma 1.

8

Corollary 1 OSCP1 is equivalent to determining

arg
{

min
S:S parsimonious

C(S)
}

.

Proof: Follows from the fact that parsimonicity is a necessary condition for optimality, and
the definition of OSCP1.

In the next Theorem we provide a technique for solving the OSCP1 using the max-flow
min-cut theorem. First we define a flow network NG corresponding to the state machine G,
the cost of control function c, and the penalty of control function p as follows:

Definition 6 Given a SM G := (X, Σ, δ, x0) with cost of control function c : X × Σ → R+,
and penalty of control function p : X → R, a flow network, denoted NG, is defined to be
NG := (VG, EG, uG), where

1. VG := X ∪ {s, t} with s, t 6∈ X

2. EG :={(x1, x2) ∈ X × X | ∃σ ∈ Σ s.t. δ(x1, σ) = x2}
∪{(x, t) ∈ X × {t} | p(x) > 0}
∪{(s, x) ∈ {s} × X | p(x) < 0}

3. ∀(x1, x2) ∈ EG ∩ (X × X) : uG((x1, x2)) :=
∑

σ∈Σ:δ(x1,σ)=x2
c(x1, σ)

∀x ∈ X s.t. p(x) > 0 : uG((x, t)) := p(x)
∀x ∈ X s.t. p(x) < 0 : uG((s, x)) := −p(x)

Thus the node set of NG is obtained by adding, to the state set X of G, two extra nodes
s and t—the source and the terminal node, respectively. The edge set of NG consists of: (i)
An edge from x1 ∈ X to x2 ∈ X if there exists a transition from x1 to x2 in G. The capacity
of such an edge equals the sum of cost of disabling each transition from x1 to x2. (ii) An
edge from each x ∈ X for which p(x) > 0 to the terminal node t, with capacity p(x). (iii)
An edge from the source node s to each x ∈ X for which p(x) < 0, with capacity −p(x).

Example 2 Consider the plant G shown in Figure 2, with the state set X = {1, 2}, the
event set Σ = {a, b}, the initial state x0 = 1, and the transition function δ(1, a) = 2, δ(2, a) =
δ(2, b) = 2. Then L(G) = a(a + b)⋆. Let the cost of control function be defined as c(a) = 10
and c(b) = 5, and the penalty of control function be defined as p(1) = −10 and p(2) = 5.
Then the flow network NG, corresponding to the plant G, obtained using Definition 6 is
shown in Figure 2.

Definition 7 Given a supervisor S : X → 2Σ, the cut of flow network NG induced by S is
defined to be: [Re(GS)∪{s}]∪ [(X−Re(GS))∪{t}]. Given a cut Vs∪(VG−Vs) of NG, where
Vs ⊆ VG, s ∈ Vs and t 6∈ Vs, the parsimonious supervisor S : X → 2Σ induced by the cut is
defined to be: for each x ∈ X and σ ∈ Σ, σ ∈ S(x) if and only if x ∈ Vs and δ(x, σ) 6∈ Vs.

Theorem 2 (Solution of OSCP1) The supervisor induced by a min-cut of NG is a solution
of OSCP1.

9

1 2

a,b

a 10 10

15

5

1 2 ts

SM, G Flow network, N
G

c(a) = 10, c(b) = 5, p(1) = -10, p(2) = 5

Figure 2: Diagram illustrating Construction of NG

We prove a Lemma before proving Theorem 2.

Lemma 2 If S is a parsimonious supervisor, then C(S) equals the capacity of the cut of
NG induced by S.

Proof: Consider the cut [Re(GS)∪{s}]∪ [(X−Re(GS))∪{t}) induced by S. Then capacity
of this cut is given by the sum of capacities of all the edges that originate from a node in
the set Re(GS) ∪ {s}, and terminate at a node in the set (X − Re(GS)) ∪ {t}. Let the set
of such edges be denoted as ES, i.e.,

ES := {(x1, x2) ∈ EG | x1 ∈ Re(GS) ∪ {s} and x2 ∈ (X − Re(GS)) ∪ {t}}

Then the capacity of the cut of NG induced by S equals
∑

e∈ES
uG(e). We note that

ES = {(x1, x2) ∈ Re(GS) × (X − Re(GS)) | ∃σ ∈ Σ s.t. δ(x1, σ) = x2}

∪{(x, t) | x ∈ Re(GS), p(x) > 0}

∪{(s, x) | x 6∈ Re(GS), p(x) < 0}

Hence

∑

e∈ES

uG(e) =
∑

x∈Re(GS)

∑

σ∈Σ:δ(x,σ)∈X−Re(GS)

c(x, σ)

+
∑

x∈Re(GS):p(x)>0

p(x)+
∑

x 6∈Re(GS):p(x)<0

−p(x).

Since S is parsimonious, for each x ∈ Re(GS), the set {σ ∈ Σ | δ(x, σ) ∈ X − Re(GS)} =
{σ ∈ Σ | σ ∈ S(x)}. Hence

∑

e∈ES
uG(e) = C(S).

Proof (of Theorem 2): Consider the parsimonious supervisor S induced by a min-cut of
NG. Then, from the result of Lemma 2, we obtain that C(S) equals capacity of min-cut of
NG. In view of Corollary 1, in order to prove the optimality of S it suffices to show that if
S ′ is any other parsimonious supervisor, then C(S ′) ≥ C(S). Since S ′ is also parsimonious,
it follows from Lemma 2 that C(S ′) equals the capacity of cut of NG induced by S ′ which is
greater than or equal to the capacity of the min-cut (by definition of min-cut). Since C(S)
equals the capacity of the min-cut (by construction of S), we obtain the desired inequality:
C(S ′) ≥ C(S).

10

3.3 Solution of OSCP2

In this subsection we provide a solution for the OSCP2. In this setting, given a plant
G, a cost of control function c, a penalty of control function p, and an observation mask
Ψ, the control objective is to determine an optimal supervisor S : X → 2Σ satisfying the
constraint C1. The constraint C1 can be satisfied by making a few modifications in G, and
in the cost of control function c as described below. Firstly, we modify the state machine G;
the modified state machine is denoted as G′.

Definition 8 Given G = (X, Σ, δ, x0), the modified state machine G′ corresponding to the
constraint C1 is the quadruple G′ = (X, Σ′, δ′, x0), where

1. Σ′ := Σ ∪ {θ} with θ 6∈ Σ

2. ∀x ∈ X,∀σ′ ∈ Σ′ : δ′(x, σ′) := δ(x, σ′) if σ′ 6= θ

3. ∀σ ∈ Σ, x1, x2 ∈ X s.t. Ψ(x1) = Ψ(x2), δ(x1, σ) 6= δ(x2, σ):
δ′(δ(x1, σ), θ) := δ(x2, σ) and δ′(δ(x2, σ), θ) := δ(x1, σ).

Thus G′ is obtained by adding in G, an oppositely directed pair of transitions labeled θ,
between the pair of states reached by executing a common event from a pair of states that
look alike under Ψ. No such transition is added if the same state is reached after executing
a common event from a pair of states that look alike under Ψ.

Next, the cost of control function c : X × Σ → R+ is extended to c′ : X × Σ′ → R+ as:

∀x ∈ X, σ′ ∈ Σ′ : c′(x, σ′) :=

{

c(x, σ′) if σ′ ∈ Σ
∞ if σ′ = θ

Thus the cost of control function c′ is the extension of c obtained by assigning the cost of
disabling the event θ to be infinity. For simplicity of notation, Let OSCP1 with respect to
G′, with cost of control c′, and penalty of control p be denoted as OSCP1′.

Theorem 3 (Solution of OSCP2) OSCP2 is equivalent to OSCP1′.

We prove a few Lemmas before proving Theorem 3.

Lemma 3 If S is parsimonious, then S disables a transitions leading from states in Re(GS)
into a state x ∈ X if and only if it disables all transitions from states in Re(GS) leading into
x.

Proof: If S disables some transitions, but not all transitions from states in Re(GS) leading
into a state x ∈ X, then x remains reachable in GS, i.e. x ∈ Re(GS), which contradicts that
S is parsimonious.

Lemma 4 There exists a solution S : X → 2Σ′

of OSCP1′ such that

1. S never disables the event θ.

11

2. S satisfies constraint C1.

Proof: 1. Let S : X → 2Σ′

be a solution of OSCP1′. If C(S) < ∞, then it is clear that S
never disables the event θ. Next consider the case when C(S) = ∞. If S ever disables the
event θ, then consider a supervisor S ′ which takes the same control action as S does, except
that it never disables the event θ. Then by optimality of S, C(S ′) ≥ C(S) = ∞, which
implies that C(S ′) = ∞. Hence S ′ is optimal, and it never disables the event θ.

2. Let S : X → 2Σ′

be a solution of OSCP1′. We show that if x1, x2 ∈ Re(GS) are such
that Ψ(x1) = Ψ(x2), then S(x1) = S(x2). In other words, if an event σ ∈ Σ is defined at
such a pair of states x1, x2 ∈ Re(GS), then either σ is disabled at both x1 and x2, or it is
disabled at neither of x1 and x2. Consider such a pair of states x1, x2 ∈ Re(GS) and an
event σ ∈ Σ. Then either δ(x1, σ) = δ(x2, σ), or δ(x1, σ) 6= δ(x2, σ). If δ(x1, σ) = δ(x2, σ),
then S disables the event σ at both the states, or at neither of the states. This follows from
the fact that any optimal supervisor is also parsimonious (Lemma 1), and any parsimonious
supervisor disables either all transition leading into a state, or none of them (Lemma 3).
Thus constraint C1 is satisfied in this case. If δ(x1, σ) 6= δ(x2, σ), then according to the
construction of G′, these states are connected by a pair of oppositely directed transitions
labeled θ. Since S never disables the event θ (from part 1 above), the states δ(x1, σ) and
δ(x2, σ) do not belong to separate partitions induced by S. Suppose that they both are in
Re(GS), then due to parsimonicity of S, σ is enabled at both x1 and x2. On the other hand,
if they both are in X − Re(GS), then clearly, σ is disabled at x1 and x2.

Proof (of Theorem 3): We first show that if S : X → 2Σ′

is a solution of OSCP1′, then
it is also a solution for OSCP2. In view of Lemma 4, it can be assumed, without loss of
generality, that S never disables the event θ and satisfies C1. Since S never disables the
event θ and satisfies C1, it can be viewed as a map S : X → 2Σ satisfying C1, and hence it
can also be used as a supervisor under partial state observation. Assume for contradiction
that S is not a solution of OSCP2. Let S ′ : X → 2Σ with S ′ 6= S be a solution of OSCP2,
then we must have C(S ′) < C(S), where S, S ′ are treated as feasible solutions of OSCP2.
Let C ′(S), C ′(S ′) denote the net costs of using S and S ′ respectively, when S, S ′ are treated
as feasible solutions of OSCP1′. Since (i) S and S ′ do not disable the event θ, and (ii) for
each x ∈ X and σ ∈ Σ, c′(x, σ) = c(x, σ), we have C ′(S) = C(S) and C ′(S ′) = C(S ′). Since
C(S ′) < C(S), we obtain C ′(S ′) < C ′(S). This contradicts the optimality of S (treated as a
solution of OSCP1′).

Next we show that if S : X → 2Σ is a solution of OSCP2, then it is also a solution
of OSCP1′. It is clear that S can also be viewed as a map S : X → 2Σ′

. Assume for
contradiction that S is not a solution for OSCP1′. Let S ′ : X → 2Σ′

with S ′ 6= S be a
solution of OSCP1′, then we must have C ′(S ′) < C ′(S). Also, from Lemma 4, S ′ never
disables the event θ and satisfies C1. Thus S ′ can be used as a supervisor under partial state
observation. As above, C ′(S) = C(S) and C ′(S ′) = C(S ′). However, since C ′(S ′) < C ′(S),
we obtain C(S ′) < C(S). This is a contradiction to the optimality of S (treated as a solution
of OSCP2).

12

4 Applications to Supervisory Control

It is clear from Theorem 3 that an instance of OSCP2 can be reduced to an instance
of OSCP1 by suitably modifying the graph of the plant and the cost of control function.
We show in this section that supervisory control problems under complete as well as partial
observation can also be reduced to instances of OSCP1. We begin with the problem of com-
puting the supervisors under complete observation, which requires computation of supremal
controllable sublanguage, and infimal controllable superlanguage.

4.1 Computations related to Controllability of DEDS’s

We first consider the computation of supremal controllable sublanguage: Given a desired
prefix closed behavior K ⊆ L(G), compute the supremal sublanguage K↑ ⊆ K such that
it is controllable [22], i.e. K↑Σu ∩ L(G) ⊆ K↑, where Σu ⊆ Σ denotes the set of uncontrol-
lable events. A closed form expression for K↑ is given in [1], and an optimal algorithm for
computing K↑ is given in [11].

In order to reduce the problem of computing K↑ to an instance of OSCP1, we refine G
with respect to K so that the states corresponding to strings in K are uniquely identified.
This is done as follows. Let V := (Q, Σ, ρ, q0) be a trim deterministic state machine that
generates K. The graph of V is made “complete” by adding a dump state d to its state set.
If a certain event σ is not defined at some state q ∈ Q, then a transition labeled σ from
the state q to the dump state d is added. Also, execution of any event in the dump state,
leaves the system in that state. Formally, the completion of V is another state machine
V ′ := (Q′, Σ, ρ′, q0), where Q′ := Q ∪ {d} with d 6∈ Q, and

∀q′ ∈ Q′, σ ∈ Σ : ρ′(q′, σ) :=

{

ρ(q′, σ) if q′ ∈ Q and ρ(q′, σ) is defined
d otherwise

It is clear that L(V ′) = Σ⋆. Consider the synchronous composition [8, 11] of G and V ′:
G2V ′ := (X × Q′, Σ, α, (x0, q0)), where

∀x ∈ X, q′ ∈ Q′, σ ∈ Σ : α((x, q′), σ) :=

{

(δ(x, σ), ρ′(q′, σ)) if δ(x, σ), ρ′(q′, σ) are defined
undefined otherwise

It is easily shown that L(G2V ′) = L(G) ∩ L(V ′) = L(G) ∩ Σ⋆ = L(G). G2V ′ is called
refinement of G with respect to K. Note that the the first coordinate of a state in G2V ′

corresponds to a state of G, and the second coordinate to a state of V ′.

Example 3 Let G be the plant as in Example 2, and the target language K be given by
K = (ab)⋆ ⊆ L(G) = a(a + b)⋆. The generator V for the language K is shown in Figure
3, with the state set Q = {1′, 2′}, the initial state q0 = 1′, and the transition function
ρ(1′, a) = 2′, ρ(2′, b) = a. The state machine V ′ obtained by completing the graph of V , and
the state machine G2V ′ obtained by synchronous composition of G and V ′ are both shown
in Figure 3. Note that L(V ′) = (a + b)⋆ = Σ∗, and L(G2V ′) = a(a + b)⋆ = L(G).

13

a

b

a

b

ab

a,b

1’ 2’1’ 2’ (1,1’)

(2,1’)

(2,d)d

b

a

(2,2’)

a

a b

a,b

SM, V SM, V’ SM, G V’

Figure 3: Diagram illustrating construction of G2V ′

Lemma 5 Given a string s ∈ Σ⋆, s ∈ L(G) − K if and only if the second coordinate of the
state reached by executing s in G2V ′ is d.

Proof: Straightforward.

Example 4 Consider the state machine G2V ′ of Example 3. Then the strings, execution
of which take to the state (2, d), belong to L(G) − K = a(a + b)∗ − (ab)∗. Also, the strings,
execution of which take to states (1, 1′) or (2, 2′) or (2, 1′) belong to the language K = (ab)∗.

The result of Lemma 5 can be used to unambiguously identify the desired and the unde-
sired states in G2V ′. The next Lemma proves that it is also possible to obtain the generator
for K↑ by partitioning the graph of G2V ′ into sets of reachable and unreachable states.

Lemma 6 [11, Proposition 3.6] Let s, t ∈ K be such that α((x0, q0), s) = α((x0, q), t), then
s ∈ K↑ if and only if t ∈ K↑.

Based on the result of Lemma 5, we define a penalty of control function p : X ×Q′ → R
for G2V ′ as:

∀(x, q′) ∈ X × Q′ : p((x, q′)) :=

{

∞ if q′ = d
−p0 otherwise,

(1)

where p0 ∈ R+ is any positive real. Since the penalty of control of a state in G2V ′ with
second coordinate d is infinity, it should remain unreachable in an optimally controlled plant,
and since the penalty of control of all other states is −p0, as many such states as possible
should remain reachable in an optimally controlled plant.

Example 5 Consider the state machine G2V ′ of Example 3. Then in order to compute the
supremal controllable sublanguage of K = (ab)∗ with respect to G of Example 2, we define
the penalty of control function as: p[(2, d)] = ∞, p[(1, 1′)] = p[(2, 2′)] = p[(2, 1′)] = −p0.

Next we define a cost of control function c : X × Σ → R+ as:

∀x ∈ X, σ ∈ Σ : c(x, σ) :=

{

∞ if σ ∈ Σu
p0

|e|+1
otherwise,

(2)

14

where |e| denotes the total number of transitions in the graph of G2V ′. Since the cost
of control of an uncontrollable event is infinity, it should not be disabled by an optimal
supervisor, and since the cost of control of a controllable event is p0

|e|+1
, as few such events

as possible should be disabled. With the above definitions of cost and penalty of control
functions, we prove in the following Theorem that the computation of K↑ can be posed as
an instance of OSCP1.

Theorem 4 If K↑ 6= ∅, then K↑ equals the language generated by G2V ′ under the control
of a solution of OSCP1 with respect to G2V ′, with cost of control of function as in Equation
2, and penalty of control function as in Equation 1.

Proof: Let S : X × Q′ → 2Σ be the parsimonious supervisor induced by the partition of
G2V ′ into the set of states that correspond to the supremal controllable sublanguage, and
the set of remaining states, i.e., S disables those transitions that are defined from states
corresponding to the supremal controllable sublanguage to the set of remaining states. That
such a partition exists follows from Lemma 6 and the fact that K↑ 6= ∅. It is clear that S
does not disable any uncontrollable events (otherwise the controlled system behavior is not
a controllable language), and no state with second coordinate d remains reachable under the
control of S (otherwise the controlled system behavior is not a sublanguage of K). Hence
C(S) < ∞. Let S ′ : X × Q′ → 2Σ be a solution of OSCP1. Then it follows from the
optimality of S ′ that C(S ′) ≤ C(S) < ∞. Thus S ′ does not disable any uncontrollable
event and no state with second coordinate d remains reachable in the controlled system
(otherwise C(S ′) = ∞). Since S ′ does not disable any of the uncontrollable events, the
controlled system behavior under its control is controllable [11, Lemma 2.7]. Also, since
no state with second coordinate d remains reachable under the control of S ′, the controlled
system behavior under the control of S ′ is a sublanguage of K. Assume for contradiction
that the controlled system behavior under the control of S ′ is not the supremal controllable
sublanguage of K. So, there exists at least one state with second coordinate unequal to d
such that it is reachable under the control of S, and it is unreachable under the control of
S ′. Hence C(S ′) − C(S) ≥ p0 − n p0

|e|+1
, where n is the difference between the number of

controllable transitions disabled by S and the number of controllable transition disabled by
S ′. Since n ≤ |e|, the total number of transitions in G2V ′, n p0

|e|+1
< p0. In other words,

C(S ′) − C(S) > 0. This is a contradiction to the optimality of S ′.
Next we consider the problem of computing the infimal controllable superlanguage: Given

a desired prefix closed behavior K ⊆ L(G), compute the infimal superlanguage K↓ ⊇ K such
that it is controllable. A closed form expression for K↓ and an algorithm for computing it is
given in [14]. We use the same notations as above. The following modification is made to
the penalty of control function.

∀(x, q′) ∈ X × Q′ : p((x, q′)) :=

{

p0 if q′ = d
−∞ otherwise

(3)

Since penalty of control of a state with second coordinate d is p0, as few such states as
possible should remain reachable in the controlled system, and since the penalty of control

15

of a state with second coordinate unequal to d is −∞, all such states should remain reachable
in the controlled system.

Example 6 Consider the state machine G2V ′ of Example 3. Then in order to compute the
infimal controllable superlanguage of K = (ab)∗ with respect to G of Example 2, we define the
penalty of control function as follows: p[(2, d)] = p0, p[(1, 1′)] = p[(2, 2′)] = p[(2, 1′)] = −∞.

With the above modification in the penalty function, we prove in the following Theorem
that the computation of K↓ can be posed as an instance of OSCP1.

Theorem 5 K↓ equals the language generated by G2V ′ under the control of a solution of
OSCP1 with respect to G2V ′, with cost of control function as in Equation 2, and penalty
of control function as in Equation 3.

Proof: Similar to that of Theorem 4.

4.2 Computations related to Observability of DEDS’s

Suppose that the supervisor’s observation of events is filtered through a mask of the type
M : Σ → Λ ∪ {ǫ}. Computation of a supervisor under such a partial observation requires
computation of languages such as supremal normal sublanguage, infimal normal/observable
superlanguage, supremal controllable and normal sublanguage, infimal controllable and nor-
mal/observable superlanguage etc. We show that each of these computations can be reduced
to instances of OSCP1. Our techniques illustrate how supervisory control under partial ob-
servation can be solved using a state-feedback type control on a suitably refined state machine
representation of the plant.

We first consider the problem of computing the supremal normal sublanguage: Given a
desired prefix closed language K ⊆ L(G), compute the supremal sublanguage K◦ ⊆ K, such
that it is normal, i.e. M−1(M(K◦))∩L(G) ⊆ K◦. The existence of K◦ is shown in [16], and
a closed form expression for K◦ is given in [1, 11]. We first refine the state machine G with
respect to V (the generator for K), and mask function M , so that the states corresponding to
K◦ are uniquely identified. We begin by constructing the machine G1 := G2V ′. Recall that
L(G1) = L(G). Using G1 we construct a machine that generates the language M−1M(L(G1))
by employing the following algorithm:

Algorithm 1

1. Replace each transition σ ∈ Σ in G1 by the transition M(σ) ∈ Λ ∪ {ǫ}. Call this
machine G2; clearly, L(G2) = M(L(G1)).

2. Construct a deterministic machine G3 which is language equivalent to G2 [7]. Then
the state space of G3 is 2X×Q′

, and L(G3) = L(G2) = M(L(G1)).

3. Replace each transition λ ∈ Λ in machine G3 by the events in the set M−1(λ) :=
{σ ∈ Σ | M(σ) = λ}. Also, at each state in G3, add self-loops corresponding to the
events in the set M−1(ǫ) = {σ ∈ Σ | M(σ) = ǫ}. Call this machine G4; clearly,
L(G4) = M−1(L(G3)) = M−1(L(G2)) = M−1M(L(G1)).

16

G4 has a nice property that if two strings s, t ∈ L(G4) are such that M(s) = M(t), then
the state reached by executing them are the same. This follows from the observations that (i)
the state reached by executing s in G4 is the same as that reached by executing M(s) in G3

(by construction), (ii) since M(s) = M(t) and G3 is deterministic, the same state is reached
by executing M(t) in G3; and (iii) by construction, this is the state reached by t in G4. We
exploit the above property of G4 in identifying the states corresponding to the strings in the
language K◦. This, however, requires the construction of machine G5 := G12G4, for which
it is clear that L(G5) = L(G1)∩L(G4) = L(G)∩M−1M(L(G)) = L(G), and the state space
of G5 equals X × Q′ × 2X×Q′

. Construction of state machines G1 through G5, their state
spaces, and their languages are summarized in Table 1. Note that in Table 1 and in Figure

SM Construction State space Language
G1 G2V ′ X × Q′ L(G)
G2 M(G1) X × Q′ M(L(G))
G3 det(G2) 2X×Q′

M(L(G))
G4 M−1(G3) 2X×Q′

M−1(M(L(G))
G5 G12G4 X × Q′ × 2X×Q′

L(G)

Table 1: Various Machines used for computation of K◦

4, we have used the notations (i) M(G1) to represent that G2 is obtained by “masking” the
transitions of G1, (ii) det(G2) to represent that G3 is obtained by “determinizing” G2, and
(iii) M−1(G3) to represent that G4 is obtained by “unmasking” the transitions of G3.

Example 7 Consider the state machine G1 = G2V ′ of Example 3. Let the mask M : Σ =
{a, b} → {λ} be defined as: M(a) = M(b) = λ. Then the state machine G2, G3, G4 and G5

obtained by using Algorithm 1 are shown in Figure 4.

We use r = ((x, q′), {(x1, q
′
1), (x2, q

′
2), . . . , (xr, q

′
r)}) ∈ X ×Q′ × 2X×Q′

to denote a typical
state of G5, where (x, q′) ∈ X × Q′ and {(x1, q

′
1), (x2, q

′
2), . . . , (xr, q

′
r)} ∈ 2X×Q′

. We call
r′ := (x, q′) to be the G1 part of r, and R := {(x1, q

′
1), (x2, q

′
2), . . . , (xr, q

′
r)} to be the G4

part of r. We prove in the next Lemma that if r1 and r2 are two states of G5 with identical
G4 part, then corresponding to each string, execution of which takes to state r1, there exists
another string, execution of which takes to state r2, such that it looks like the former string.
We call such a pair of states to be a matching pair. Formally,

Definition 9 Let r1 = (r′1, R1), r2 = (r′2, R2) ∈ X ×Q′×2X×Q′

be such that R1 = R2. Then
the pair r1 and r2 of states is called a matching pair of states.

Example 8 Consider the SM G5 of Example 7. The states 3′′ = (2, 1′), {(2, 1′), (2, d)} and
5′′ = (2, d), {(2, 1′), (2, d)} constitute a matching pair of states. Similarly, the pair of states
4′′ = (2, 2′), {(2, 2′), (2, d)} and 6′′ = (2, d), {(2, 2′), (2, d)} is another matching pair of states.

17

G
4

)
3

(G

(2,1’)

(2,d)

(2,2’)

(1,1’) λ

λ

λ

λ λ

λ

{(2,2’)} {(2,1’),(2,d)}

{(1,1’)}

{(2,2’),(2,d)}

{(2,2’)} {(2,1’),(2,d)}

{(1,1’)} λ λ

λλ

a,b a,b

a,b a,b

1’’

{(2,2’),(2,d)}

SM, G = det(G)
3 2SM, G

2
:= M(G

1
) = M(G V’)

2’’ 3’’ 4’’

5’’ 6’’

a

a

a b b

a,b

a,b

b

a

SM, G
4
:= M SM, G

5
:= G

1

1’’ = (1,1’), {(1,1’)}; 3’’ = (2,1’), {(2,1’), (2,d)}; 5’’ = (2,d), {(2,1’), (2,d)}

2’’ = (2,2’), {(2,2’)}; 4’’ = (2,2’), {(2,2’), (2,d)}; 6’’ = (2,d), {(2,2’), (2,d)}

-1

Figure 4: Diagram illustrating construction of G2, G3, G4, G5

18

Lemma 7 Let r1, r2 ∈ X ×Q′ × 2X×Q′

be a matching pair of states. Then given a string s,
execution of which takes to r1, there exists a string t, execution of which takes to r2, such
that M(s) = M(t).

Proof: First note that r = (r′, R) is a reachable state of G5 if and only if r′ ∈ R, i.e. if and
only if the G1 part of r is an element of the G4 part of r. This follows from (i) if s ∈ L(G5) is
a string, execution of which takes to r, then execution of s takes to the state r′ in G1, and to
the state R in G4, and (ii) execution of s takes to the state R = {(x1, q

′
1), (x2, q

′
2), . . . , (xr, q

′
r)}

in G4 implies that there exists a state (xj, q
′
j) ∈ R such that execution of s takes to the state

(xj, q
′
j) in G1.

Consider then the states r1, r2 ∈ X × Q′ × 2X×Q′

such that R1 = R2 := R. Then
r1 = (r′1, R) and r2 = (r′2, R). It follows from the discussion in the preceding paragraph that
r′1 ∈ R and r′2 ∈ R. Let s ∈ L(G5) be a string, execution of which takes to state r1 in G5,
then execution of s takes to state r′1 in G1, and to state R in G4. Since both the states
r′1, r

′
2 ∈ R, there exists at least one string t, execution of which takes to state r′2 in G1, and

to state R in G4, such that M(t) = M(s). This follows from: (i) states r′1 and r′2 of G2

belong to the same state R of G3 if and only if there exists a string in L(G3) = L(G2) ⊆ Λ⋆

execution of which takes to state R in G3, and execution of it takes to both states r′1, r
′
2 in

G2 (note that G2 is a nondeterministic machine in general), and (ii) a string, execution of
which takes to states r′1, r

′
2 in G2, corresponds to two different strings in L(G1) having the

same mask value.
The result of Lemma 7 can be used for identifying the strings in K◦. Note that a string

s ∈ K − K◦ if and only if there exists a string t ∈ L(G) − K such that M(t) = M(s). A
state r = (r′, R) in G5 corresponds to strings in L(G)−K if and only if r′ = (x, d) for some
x ∈ X. Thus strings in K, and those in L(G)−K can be easily identified in G5. Let r1 and
r2 be a matching pair of states in G5, with R1 = R2 := R, such that the second coordinate of
r′1 does not equal d, whereas the second coordinate of r′2 equals d. Then as discussed above,
strings leading to r1 belong to K, and those leading to r2 are in L(G)−K. Moreover, strings
leading to r1 are in K−K◦. This follows from Lemma 7, which asserts that corresponding to
each string that leads to r1 (i.e. the string is in K), there exists a string leading to r2 (i.e. this
string is in L(G) − K) such that it looks like the former string. Thus states corresponding
to K − K◦ can also be identified in G5 by first identifying all those matching pair of states
for which exactly one of the states in each pair has its second coordinate of the G1 part
equal to d, and then among these matching pair of states, determining those states for which
the second coordinate of the G1 part does not equal d. Hence it is possible to obtain the
generator for K◦ by partitioning the graph of G5 into the set of reachable and unreachable
states. Finally, we pose the problem of computing the supremal normal sublanguage as an
instance of OSCP1 with respect to the machine obtained by adding an equally directed pair
of transitions labeled θ between each matching pair of states in G5. We call the machine
thus obtained to be G′

5.

19

Define the following cost of control function for G′
5:

∀r ∈ X × Q′ × 2X×Q′

, σ′ ∈ Σ ∪ {θ} : c(r, σ′) :=

{

∞ if σ′ = θ
p0

|e|+1
otherwise,

(4)

where |e| denotes the total number of transitions in G′
5. The cost of control function for

the event θ is infinity. Such a cost of control function ensures that the matching pair of
states remain in the same partition of states induced by an optimal supervisor. Define the
following penalty of control function on G′

5:

∀r = (r′, R) ∈ X × Q′ × 2X×Q′

: p(r) :=

{

∞ if r′ ∈ X × {d}
−p0 otherwise

(5)

Thus the penalty of control is positive infinity whenever a state corresponds to strings in
L(G)−K. Such states are undesired and should remain unreachable in the controlled plant
under an optimal supervision. Other states have a negative penalty of control, −p0, implying
that such states are desired, and as many of them as possible should remain reachable in the
controlled plant.

Example 9 Consider the state machine G5 of Example 7. Then in order to compute the
supremal normal sublanguage of the language K = (ab)∗ with respect to plant G of Example
2 and mask M(a) = M(b) = λ, G′

5 is constructed by adding, in G5, a pair of oppositely
directed transitions labeled θ between both the pair of matching states, namely, between 3′′

and 5′′, and between 4′′ and 6′′. The cost of disabling θ is assigned to be infinity. Finally, the
penalty of control function is defined to be infinity for the states 5′′ and 6′′, and −p0 for the
remaining states, 1′′, 2′′, 3′′, and 4′′. Note that the states 5′′ and 6′′ are such that for them
the second part of the G1 part equals d.

Theorem 6 If K◦ 6= ∅, then K◦ equals the controlled plant behavior of G′
5 under the control

of a solution of OSCP1 with respect to G′
5, with cost of control function as in Equation 4,

and penalty of control function as in Equation 5.

Proof: Similar to that of Theorem 4. The key to the proof is that each matching pair of
states belong to the same partition induced by an optimal supervisor.

It can be shown that the cost of control function in Equation 4 can be slightly modified
for computing the supremal controllable and normal sublanguage of K:

∀r ∈ X × Q′ × 2X×Q′

, σ′ ∈ Σ ∪ {θ} : c(r, σ′) :=

{

∞ if σ′ ∈ Σu ∪ {θ}
p0

|e|+1
otherwise

(6)

Also, the penalty of control function in Equation 5 can be replaced by the following penalty
of control function to compute the infimal controllable and normal superlanguage of K:

∀r = (r′, R) ∈ X × Q′ × 2X×Q′

: p(r) :=

{

p0 if r′ ∈ X × {d}
−∞ otherwise

(7)

20

Theorem 7 If the supremal controllable and normal sublanguage of K is nonempty, then
it equals the controlled plant behavior of G′

5 under the control of a solution of OSCP1 with
respect to G′

5, with cost of control function as in Equation 6, and penalty of control function
as in Equation 5. Furthermore, if instead penalty of control function as in Equation 7 is used,
then the controlled plant behavior equals the infimal controllable and normal superlanguage
of K.

Proof: Similar to that of Theorem 4.
Finally we show that the computation of the infimal observable superlanguage of K can

be posed as an instance of OSCP2. Refer to [16] for a detailed discussion of observable
languages and their properties. It is shown in [16] that the infimal observable superlanguage
of a prefix closed language exists, and a closed form expression for computing it is obtained
in [24, 9]. Observability of a language K requires that whenever a pair of strings, belonging
to K and having the same mask value, are extended by a common event, then either both
the resulting strings belong to K, or both do not belong to K. This condition is needed
so that the supervisor can take the same control action after execution of a pair of strings
that have the same mask value. If K does not satisfy this property, then infimal observable
superlanguage of K is computed, which satisfies such a property.

The notion of pairs of strings in K with the same mask value is captured by the matching
pair of states having the second coordinate of the G1 part unequal to d. Let r1, r2 ∈ X ×
Q′× 2X×Q′

be a matching pair of states so that the second coordinate of the G1 part of both
the states is unequal to d. Since r1 and r2 is a matching pair of states, Lemma 7 implies
that corresponding to each string that leads to the state r1, there exists a string having the
same mask value as of the former string, such that it leads to the state r2; and vice versa.
Since the supervisor must take the same control action after the execution of a pair of strings
that have the same mask value, an event is enabled at state r1 if and only if it is enabled at
r2. This constraint is similar to the constraint C1, and can be captured by defining a mask
function Ψ on the state space of G5 as follows:

∀r1 = (r′1, R1), r2 = (r′2, R2) ∈ X × Q′ × 2X×Q′

: Ψ(r1) = Ψ(r2) ⇔ R1 = R2 (8)

Thus two states in state space of G5 have the same mask value if and only if they constitute
a matching pair. Hence, according to constraint C1 of OSCP2, it is ensured that the same
control action is taken at any matching pair of states. Next the cost of control function is
defined as:

∀r ∈ X × Q′ × 2X×Q′

, σ ∈ Σ : c(r, σ) :=
p0

|e| + 1
(9)

where |e| denotes the number of transitions in G5.

Theorem 8 The infimal observable superlanguage of K equals the controlled plant behavior
of G5 under the control of a solution of OSCP2 with respect to G5, with cost of control
function as in Equation 9, penalty of control function as in Equation 7, and state mask
function Ψ as in Equation 8. Furthermore, if the cost of control function is modified so
that c(·, σ) = ∞ whenever σ ∈ Σu, then the controlled plant behavior equals the infimal
controllable and observable superlanguage of K.

21

Proof: Similar to that of Theorem 4.

Example 10 Consider the state machine G5 of Example 7. Then in order to compute the
infimal observable superlanguage of the language K = (ab)∗ with respect to the plant G of
Example 2 and mask M(a) = M(b) = λ, we define the mask Ψ on the state space G5 such
that Ψ(3′′) = Ψ(5′′) and Ψ(4′′) = Ψ(6′′). Next the penalty of control function is defined to
be negative infinity for the states 1′′, 2′′, 3′′, and 4′′. The penalty of control for the states 5′′

and 6′′ is defined to be p0.

Remark 3 An advantage of using the above techniques for computing controllable and
normal/observable sublanguages/superlanguages is that they do not require alternate com-
putations of controllable and normal/observable sublanguages/superlanguages as is done in
[4]. Note that if M is a projection type mask, then the formula in [1] can be used to com-
pute the supremal controllable and normal sublanguage without having to perform alternate
computations of supremal controllable and supremal normal sublanguages. However, if the
mask is non-projection type, then no such formula is known, and techniques developed above
can be used.

In case M is a non-projection type mask, then the fact that a computation of supremal
controllable sublanguage followed by a computation of supremal normal sublanguage does
not necessarily yield the supremal controllable and normal sublanguage can be illustrated
as follows. Suppose Σ = {a, b, c, u}, Σu = {u},M(b) = M(c) = M(u) 6= ǫ, K = {ǫ, a, au},
and L(G) = {ǫ, a, au, ab, ac, acu}. Clearly K is controllable, i.e., K↑ = K; and K is not
normal, as au ∈ K, ab ∈ L(G) − K and M(au) = M(ab), i.e., K◦ 6= K. It is easily seen
that K◦ = {ǫ, a}. Then K◦ is not controllable, as a ∈ K◦, u ∈ Σu and au ∈ L(P) − K◦.
Thus (K↑)◦ = K◦ does not equal the supremal controllable and normal sublanguage of K.
On the other hand, if we let K̂ = {ǫ, a, au, ab, ac}, then K̂ is normal, i.e., K̂◦ = K̂; and
K̂ is not controllable, i.e., K̂↑ 6= K̂, as ac ∈ K̂, u ∈ Σu and acu ∈ L(G) − K̂. It is easily
seen that K̂↑ = {ǫ, a, au, ab}. Then K̂↑ is not normal, as ab ∈ K̂↑, ac ∈ L(G) − K̂↑ and
M(ab) = M(ac). Thus (K̂◦)↑ = K̂↑ does not equal the supremal controllable and normal
sublanguage of K̂. Also, note that the formula for computing the supremal controllable and
normal sublanguage given in [1, Theorem 4] is only applicable in a setting where, whenever
a controllable and an uncontrollable event have “non-epsilon” mask values, then their mask
values are different; so that the set of “masked uncontrollable” events is unambiguously
identified. Since u ∈ Σu and b, c ∈ Σ − Σu are such that M(b) = M(c) = M(u) 6= ǫ, the
formula of [1, Theorem 4] is not applicable here.

5 Conclusion

We have introduced the problem of optimal supervisory control for DEDS by introducing
the notions of cost and penalty of using a controller. Cost of control is incurred when an
event is disabled by a controller, and penalty of control is incurred whenever undesired states
remain reachable, or desired states remain unreachable in the controlled plant. The control

22

objective is to optimize the net cost of control. This is formulated as OSCP1 for the case
of complete state observation, and OSCP2 for the case of incomplete state observation. We
show that a solution to OSCP1 can be obtained as a min-cut of an associated flow network,
and a solution for OSCP2 is obtained by reducing an instance of OSCP2 to an instance
of OSCP1. We show that supervisory control problems under complete as well as partial
observations can be reduced to instances of OSCP1. In particular, we provide techniques
for the computation of supremal controllable and normal sublanguage, infimal controllable
and normal/observable superlanguage without having to perform alternate computations of
controllable and normal/observable languages until a fixed point is reached. Thus above
theory serves as a unified computational framework for supervisory control problems.

We did not comment on the computational complexity of any of the algorithms derived
in this paper. However, since (i) all the algorithms, developed in this paper, are instances of
OSCP1, and (ii) OSCP1 is solved using the max-flow min-cut computation; the computa-
tional complexity of any of the algorithms presented in this paper can be obtained from that
of the max-flow min-cut computation, which is O(|v| · |e| log(|v|2/|e|)), where |v| denotes the
number of vertices, and |e| denotes the number of edges in the underlying flow network. Note
that we are not suggesting that the computation of a supervisor under partial observation
can be performed in a polynomial time; as in case of partial observation, OSCP1 is solved
with respect to a state machine having its state space as the power set of the state space of
the plant composed with the generator of the desired behavior.

References

[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.
Formulas for calculating supremal controllable and normal sublanguages. Systems and

Control Letters, 15(8):111–117, 1990.

[2] Y. Brave and M. Heymann. On optimal attraction in discrete event processes. Technical
Report CIS 9010, Technion - Israel Institute of Technology, Hafia, Israel 32000, 1990.

[3] Y. Brave and M. Heymann. On stabilization of discrete event processes. International

Journal of Control, 51(5):1101–1117, 1990.

[4] H. Cho and S. I. Marcus. On supremal languages of class of sublanguages that arise in
supervisor synthesis problems with partial observations. Mathematics of Control Signals

and Systems, 2:47–69, 1989.

[5] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete
event processes with partial observation. IEEE Transactions on Automatic Control,
33(3):249–260, 1988.

[6] V. K. Garg and R. Kumar. State-variable approach for controlling discrete event systems
with infinite states. In Proceedings of 1992 American Control Conference, pages 2809–
2813, Chicago, IL, July 1992.

23

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading, MA, 1979.

[8] R. Kumar. Supervisory Synthesis Techniques for Discrete Event Dynamical Systems:

Transition Model Based Approach. PhD thesis, Department of Electrical and Computer
Engineering, University of Texas at Austin, 1991.

[9] R. Kumar. Formulas for observability of discrete event dynamical systems. In Proceed-

ings of 1993 Conference on Information Sciences and Systems, pages 581–586, Johns
Hopkins University, Baltimore, MD, March 1993.

[10] R. Kumar and V. K. Garg. Optimal control of discrete event dynamical systems using
network flow techniques. In Proceedings of 1991 Annual Allerton Conference, pages
705–714, Urbana, IL, October 1991.

[11] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete
event dynamical systems. Systems and Control Letters, 17(3):157–168, 1991.

[12] R. Kumar, V. K. Garg, and S. I. Marcus. Language stability and stabilizability of dis-
crete event dynamical systems. SIAM Journal of Control and Optimization, 31(5):1294–
1320, September 1993.

[13] R. Kumar, V. K. Garg, and S. I. Marcus. Predicates and predicate transformers for
supervisory control of discrete event systems. IEEE Transactions on Automatic Control,
38(2):232–247, February 1993.

[14] S. Lafortune and E. Chen. On the infimal closed and controllable superlanguage of a
given language. IEEE Transactions on Automatic Control, 35(4):398–404, 1990.

[15] E. Lawler. Combinatorial Optimization - Networks and Matroids. Holt Rinehart and
Winston, 1976.

[16] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information

Sciences, 44(3):173–198, 1988.

[17] C. M. Ozveren and A. S. Willsky. Observability of discrete event dynamical systems.
IEEE Transactions on Automatic Control, 35(7):797–806, 1990.

[18] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. Stability and stabilizability of discrete
event dynamical systems. Journal of ACM, 38(3):730–752, July 1991.

[19] K. M. Passino and P. J. Antsaklis. Near-optimal control of discrete event systems. In
Proceedings of 1989 Allerton Conference, pages 915–924, Allerton, IL, September 1989.

[20] K. M. Passino and P. J. Antsaklis. On the optimal control of discrete event systems.
In Proceedings of 1989 IEEE Conference on Decision and Control, pages 2713–2718,
Tampa, FL, December 1989.

24

[21] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems.
SIAM Journal of Control and Optimization, 25(5):1202–1218, 1987.

[22] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[23] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings

of IEEE: Special Issue on Discrete Event Systems, 77:81–98, 1989.

[24] K. Rudie and W. M. Wonham. The infimal prefix closed and observable superlanguage
of a given language. Systems and Control Letters, 15(5):361–371, 1990.

[25] R. Sengupta and S. Lafortune. A graph-theortic optimal control problem for terminating
discrete event processes. Discrete Event Dynamic Systems: Theory and Applications,
2(2):139–172, 1992.

[26] J. N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics of

Control Signals and Systems, 2(2):95–107, 1989.

[27] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM Journal of Control and Optimization, 25(3):637–659, 1987.

25

