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Abstract—Gradient error can be compensated by 
optimizing switching sequences of DAC arrays. This 
paper establishes an absolute lower bound of integral 
nonlinearity (INL) which may be achieved by optimizing 
switching sequences. Optimal switching sequences that 
meet this lower bound are presented for one-dimensional 
linear gradient error compensation in unary 
(thermometer decoded) DAC arrays. The sequences can 
be used in row-column decoded current or capacitor 
unary arrays as well as R-string DACs, where the 
switching sequence is optimized in one dimension.  
 

I.   INTRODUCTION 
 

The accuracy of DACs depends on the matching property 
of the elements in the DAC arrays. Gradient error always 
exists. In high resolution DACs, it becomes very significant 
due to the large dimension of the arrays and must be correctly 
compensated.  

Optimizing switching schemes can reduce the nonlinearity 
due to gradient errors. This potential has been seen in many 
current-steering DAC designs [1]-[7]. A switching scheme is 
actually a layout technique. In a current steering or charge 
redistributed DAC, the switching scheme determines the 
interconnection between the outputs of the thermometer 
decoder/latch and the control terminals of the switches in the 
unary array. In another words, it determines the order the unit 
elements are switched on as the digital code increases. For a 
R-string DAC, the R-string is often laid out in several 
segments, the order to interconnect the segments can also be 
optimized using the approach described in this paper.  

DAC arrays are generally either binary weighted or 
thermometer decoded. Thermometer based DACs have many 
advantages over their binary counterparts, such as guaranteed 
monotonicity, lower DNL and less glitch. In a high accuracy 
DAC, the MSBs usually drive a thermometer-decoded unary 
array that determines the linearity of the overall DAC. This 
paper focuses on the switching optimization in thermometer-
decoded arrays. 

Row-column decoding is most widely used in DAC design 
due to its simplicity for design and layout [1]-[5]. A DAC 
using row-column decoding generally consists of a row and a 
column decoder as well as a unary array. Each cell in the 
array contains a local decoder, a latch and a unit element. In 
this scheme, the spatial gradient errors are averaged in both 
the x and y directions as shown in Fig.1 and the sequences for 
the row and column selections are optimized independently. 
One switching sequence for the overall 8-bit matrix (16x16) 

in Fig.1, where the "Symmetrical Sequence" [1] is used for 
the row and column selection, is as follows:  

1. current source at (row 1, column 1), 
2. current source at (row 1, column 2), 
…  
16. current source at (row 1, column 16), 
17. current source at (row 2, column 1), 
18. current source at (row 2, column 2), 
… 
254. current source at (row 16,column 14), 
255. current source at (row 16, column 15). 

The dummy current source is at (row 16, column 16). The 
switching optimization problem is thus reduced to a one-
dimensional space. The goal of this paper is to derive the 
optimal switching sequence for one-dimensional array with 
linear gradient dominant. In a current source matrix, the 
doping and the oxide thickness over the wafer or the voltage 
drop along the power supply lines can all cause 
approximately linear gradient errors [1][2]. 

 
II.    LINEARITY ERRORS 

Assume a unary array consists of N elements. For example, 
in Fig.1, the 16 rows form a 1x16 array, hence N=16, and 
each row is represented by a current source with current equal 
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Fig.1 A unary array using row-column decoding
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to the average current of the 16 sources in the row. Ideally, 
the elements in the array are identical. However, 
mismatches between the elements always exist. In a current 
array, as an example, the actual current provided by current 
source j ( Nj ≤≤1 ), can be expressed as   
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where 
_
I is the average current provided by all the current 

sources in the array and jε is the relative deviation of 

jI from 
_
I . Hence,  
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and the average value of jε  ( Nj ≤≤1 ) is equal to zero. 

Assume the actual current output for a digital code k 
( Nk ≤≤0 ) is denoted as I(k) and the offset is I(0). The 
linearity errors are generally in units of LSBs. The actual 
value of 1 LSB is defined as 

N
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The integral nonlinearity (INL) (in LSBs) at digital code k 
( Nk ≤≤0 ) can be given by 
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It is easy to see that INL(0) = INL( N) = 0. The differential 
nonlinearity (DNL) (in LSBs) at digital code k ( Nk ≤≤1 ) 
is given by 
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If all the N current sources are numbered 
1,2,…,N in the order they are switched on, the actual 
output current for digital code k (k=1,2, …, N) is thus 
given by 
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follows from (1)-(6) that INL and DNL (in LSBs) can be 
expressed as 

 

�
=

=
k

j
kINL j

1
)( ε         ( Nk ≤≤0 )  (7) 

kkDNL ε=)(          ( Nk ≤≤1 )  (8) 

It can be seen the INL and DNL are independent of the 

average current 
_
I and can be determined only by the 

relative errors jε ( Nj ≤≤1 ) of the current sources in the 
array. The INL and DNL of the overall DAC array are 
defined as  
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From (8) and (10), it is apparent that thermometer 
decoded DACs can achieve very low DACDNL . For each 
element in the array, 50% variation is good enough to obtain 
a DACDNL  of 0.5LSB. However, it can be shown that with 
a poor switching sequence, the DACINL  can be very high 
due to gradient error accumulation. Our goal is to minimize 

DACINL  by optimizing the switching sequence. 

III.     OPTIMAL SWITCHING SEQUENCES 
 
As an example, a 1x8 unary array with linear gradient errors 
is given in Table.1. Row 1 and Row 2 show the actual 
values of the elements in the array and the relative error of 
each element respectively. Three switching sequences are 
considered. For example, with the symmetrical sequence, as 
the digital input increases from 1 to 8, the element with 
error -1% is switched on first and numbered 1, the element 
with error +1% is switched on next and numbered 2, and so 
forth. Based on (7) and (9), the INL of the DAC with 
different switching sequences can be easily calculated as 
shown in the last two columns of Table.1. The sequential 
sequence results in an DACINL  of 16% due to sever error 
accumulation. In the symmetrical sequence, the linearity 
error caused by a certain element is canceled when the 
element located symmetrically is switched on. It results in 
an DACINL  of 7%, which is equal to the maximum error 
magnitude in the error array. The new sequence is able to 
further reduce DACINL  by about a factor of 2. In what 
follows, it will become apparent that the new sequence in 
this example is an optimal sequence. An optimal switching  
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Table.1  Switching sequences for a 1x8 linear error array and the INL corresponding to these sequences 

Location → 
Original array :  4.65  4.75  4.85  4.95  5.05  5.15  5.25  5.35 
Error array (%)      -7 -5  -3  -1 +1 +3  +5  +7 
 
                          Sequences 

Errors (%) of the elements:    
 1   2    3    4    5    6    7   8 

INL (%) of digital code: 
 1    2     3    4    5    6   7  8 

DACINL  
(%) 

 
Sequential seq.       1  2   3   4   5    6    7    8

 
-7  -5   -3  -1  +1  +3  +5 +7 

 
-7 -12 -15 -16 -15 -12 -7  0 

 
16 

Symmetrical seq.   7  5   3   1   2    4    6    8 -1  +1  -3  +3  -5  +5  -7  +7  +1  0   +3    0   +5   0  +7 0 7 

A new seq.            2  6   4   8   5    1    7    3   +3  -7  +7  -3  +1  -5  +5  -1  +3  -4 +3    0   +1  -4  +1 0 4 

 

sequence means for a given gradient, no other switching 
sequence can achieve an DACINL  less than that achieved by 
this optimal sequence. Note that the definition of optimality 
says nothing about uniqueness. For a given type of gradient, 
there are often several or even many distinct optimal 
sequences. 
 
     To find optimal sequences, we will first determine a 
lower bound for DACINL . For a unary array containing N 
elements, define the maximum and minimum INL of a 
certain sequence as 
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Then, based on (9), DACINL  can be given by  
min)_max,_max( INLINLINLDAC −=  (13) 

As the digital input k increases one by one, the value of 
INL(k) moves between INL_max and INL_min as 
illustrated in Fig.2. Each step size is determined by the error 
of the element currently switched on. The maximum step is 
equal to the maximum magnitude of the errors (donated as 
Emax) in the error array. Therefore, the spacing between 
INL_max and INL_min can be no less than Emax. This 
results in the inequality: 

 maxINL_min -INL_max E≥   (14) 

It can be observed from (13) that DACINL  is minimized if 
INL_max and INL_min are symmetrical about 0 as depicted 
in Fig.2. In this case, 

min_max_ INLINLINLDAC −==  (15) 

Returning to (14), a lower bound of DACINL  is obtained: 

 2max/EINLDAC ≥    (16) 

This key inequality establishes an absolute lower bound on 
the INL of a DAC. It is not dependent upon the type of 
gradient present and applies to arrays of any dimension. 

The formal proof of (16) are given as follows:  

 It is well known that if x and y are non-negative real 
numbers, then  

2
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and 
2

),max(
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=  if and only if x=y. 

     Observe that INL_max and –INL_min are non-negative 
real numbers. It thus follows that 

  
2

min_max_ INLINLINLDAC
−
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With (14), (16) can be obtained and DACINL  is equal to the 
lower bound Emax/2 if and only if  

 INL_max=-INL_min=Emax/2  (18) 

     For a given error distribution, Emax/2 is an absolute 
lower bound of DACINL . Since this is an absolute lower 
bound, no switching sequence can results in an DACINL  
lower than this lower bound. In the above example, 
Emax=7%, thus Emax/2=3.5%. Since the resolution of the 
error array is 1%, the minimum achievable DACINL  is 4%. 
The new sequence in Table.1 meets this lower bound, so it 
is optimal. 

     We are now in a position to make the following claim: 
This new switching sequence given in Table.1 is optimal for 
any 1x8 linear error array independent of both the sign and 
magnitude of the gradient, because any linear gradient 
differs from that given in the example only by a constant 
scaling factor. From (7), it can be seen that the INL for any 
sequence scales by the magnitude of that constant.  

The new optimal sequence given in Table 1 is not unique. 
There are several other optimal sequences, two of which are 
obtained if the elements in the array (left to right) are 
numbered 3 5 1 8 7 6 4 2 and 4 6 2 8 1 7 3 5 respectively.  
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We can find optimal sequences by building a tree 
structure as shown in Fig.3.  Start with an element, the 
amplitude of whose relative error is equal to or less than the 
lower bound of DACINL . In the above example, the lower 
bound of DACINL  is 4%, so we can start with the elements 
that have errors of 3%, 1%, -1% or –3%. They are 
surrounded with circles in Fig.5. If we start with 3%, the 
INL for digital code “1” is also 3% shown beside the arrow. 
The next element is chosen so that the INL for digital code 
“2” is within [-4%, 4%]. The possible elements are those  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whose errors are within [-4%-3%, 4%-3%]=[-7%, 1%]. As 
shown in the second row of Fig.5,   -7%, -5%, -3%, -1% and 
1% can satisfy this requirement. Likewise, the third element 
is chosen so that the INL for digital code “3” is within [-4%, 
4%]. The same process is repeated (if possible) until all 8 
elements are selected without repetition and thus the INL for 
all digital codes (1-8) are no larger than the lower bound. 

This yields an optimal sequence. Otherwise, if the selection 
is stuck somewhere in the middle, that is, none of the 
remaining elements can make the INL meet the lower 
bound, then the searching fails in this path and we have to 
go back to the upper level and try another path. Any path 
successfully going though all 8 levels represents an optimal 
sequence. For example, in Fig.5, the high lighted path: 3%, 
–7%, 7%, -5%, 5%, -3%, 1%, –1% which corresponds to the 
sequence 2 4 6 8 7 1 5 3 is another optimal sequence for a 
1x8 linear error array. 

Using the same approach, the optimal sequences for one-
dimensional linear error arrays of any size can be obtained. 
The following two sequences are for 1x16 and 1x32 arrays 
respectively. They are optimal for linear gradient of any 
magnitude and sign. 

1x16 array:   2  6  10 14, 4  8  12  16, 13  9  5  1, 15 11 7  3 
1x32 array:  2  6 10 14 18 22 26 30, 4 8 12 16 20 24 28 12, 
                    29 25  21 17 13  9 5 1, 31 27 23 19 15 11 7 3 

IV.    CONCLUSIONS 
 

 An absolute lower bound of the integral nonlinearity error 
(INL) due to gradient effects is developed for switching 
sequence optimization in thermometer decoded DAC arrays. 
This lower bound is 1/2 of the maximum deviation of all the 
elements in the gradient error array. Optimal switching 
sequences that meet this lower bound for linear error 
compensation in one-dimension arrays were introduced. 
Compared to the symmetrical sequence, the new switching 
sequences can reduce the linearity errors due to gradient 
mismatch by up to 50%.  
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