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CHAPTER I
INTRODUCTION

1.1 Flexural Joints and Flexible Link Mechanisms

A new era in mechanism design has begun where pin
(revolute, pivoted) joints of the linkage are replaced
by flexural (flekible) joints. Problems of backlash and
wear are inherent with pivoted joints. In many applica-
tions the lubrication of joints is difficult because of
small rotations of the linkage or because of hostile en-
vironmental conditions. This results in excessive frié-
tional forces at thg joints, which oppose the motion of
the linkage.

Bendix [1] produced flexural pivots as a replace-
ment for the pin joints. These flexural pivots can
perform as bearings, hinges, force sensing devices,
torsional springs, or may serve many other functions.
The flexural pivot solved most of the problems associated
with pin joints but the relatively high cost of the
flexural pivots énd their limited rotation prevent their

unanimous acceptance for pin jeint replacement.



Hewlett Packard [2] designed a four-bar linkage

with flexural joints for an adjustment of the mirror

of the optical galvanometer in an ultraviolet recorder.

The form of the linkage-used by Hewlett Packard is
depicted in Figure 1. The flexural joints deflect in
this linkage to achieve + 2.5° of adjustment. This
particular linkage was moulded of glass filled poly-
carbonate, which reduced the cost of manufacturing
tremendously.

Infotechnics, Inc. [3] used flexural joints
instead of pivots in their design of a random access
prime mover. Levers, torsional springs and flexural
joints were produced from a metal sheet by a chemical
etching process to simplify fabrication. This reduced
the inertia of the system which increased the speed of

the prime mover's rotation with increased accuracy.

Many other companies have also used flexural joints

in one form or other in their products. At NCR the

" flexural joint linkage as shown in Figure 2 was con-
sidered for the mechanical adder. Another unusual
application of the flexible link mechanism was made to

guide the hammer of a high speed printer. The linkage

of
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Figure 3 is the hammer guide spring mechanism whose
flexible guide springs are bonded in the plastic hammer.
The joints at the coupler are defined as fixed join_ts.1

Another possible practical version of the flexible
link mechanism is depicted in Figure 4 whose coupler
is a flexible link which is connected by fixed joints
to rigid input and output links. This type of linkage
has the capability of large rotation which is necessary
to demonstrate the technique of nonlinear analysis. The
linkage can be used as a nonlinear spring but the author's
interest is to use it as a function generator.

From the above applications it can be stated clearly
that the flexural joint and flexible 1link mechanisms have
the following advantages over pin joint linkages:

A. Wear, lubrication and frictional losses diminish

to near zero.

B. Zero backlash makes increased accuracy and

reduces noise levels.

C. Lower manufacturing cost and better quality

control can be achieved.

D. Fewer parts in the mechanism make it mechanic-

ally simpler and increases the reliability.

1Burns and Crossley [7] defined this type of joint as a

fixed joint.
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The distinction between'pinned, fixed and flexural
joints are clear from Figure 1 to 4. One more clarifica-
tion the author would like to make is between rigid,
elastic and flexible links. A rigid link is one which
does not‘deform under the operating conditions. When
a rigid link is deformed under static or dynamic loading
then this link becomes an elastic link. A flexible link
is an elastic link which must deflect to impart motion
to the linkage as depicted in linkages of Figure 3 and 4.

From Griibler's criter’ion2 for the number of degrees
of freedom of a plane linkage it can be proven that
linkages which have less than 4 links and a maximum of
3 pinned or prismatic joints (with the exception of
fixed and flekure'joints) will have zero or a negative
number of degrees of freedom. The linkages shown in
Figure 1 to 4 fall in this category, e.g. the linkage of
Figure 1 is a one piece member or link with no joints
which will have zero degrees of freedom. These linkages
can move only due to the elastic deflection of the joints

or the flexible iinks. More detailed discussion on the

2Griibler's criterion:

Number of degrees of freedom = 3 (L-1) - 2J

Where L=Number of links, and J = Number of joints
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number of degrees of freedom and the structural permu-
tations of flexible link mechanisms is covered by Burns
and Crossley [7] and Shoup and McLarnan [13].

A limitation of the flexible link mechanism is that
the linkage will have relatively small rotation. Also
with fixed or flexural joints at the coupler, as in
linkage of Figure 4, the crank will not be able to make
more than one revolution unless the flexible link winds
up like a watch spring. So the flexible link mechanisms
covered in Figure 1 to 4 can be used only as a '"double-
rocker™ mechanism. If one of the joints at the coupler
is permitted to be a pin joint then the mechanism can
be used for a "crank-rocker" application. But this will

not be covered in this investigation.

1.2 Background

Flexible link mechanisms with one or more flexible
members were first explored by Burns and Crossley [7],
[8]. They proposed a semi-graphical static synthesis
technique for a flexible 1link four bar mechanism similar
to linkage of Figure 4 whose coupler is a flexible link
which acts as a cantilever beam (fixed-pin) or an
encastered beam (fixed-fixed). Shockling [9] has

utilized non-linear flexible beams to replace one or more



links or joints in a kinematic linkage. Shoup and
McLarnan [10-13], applied the equations of the undulating
and nodal elastica to a flexible strip subjected to very
large displacements. The results are presented in terms
of the non-dimensional variables which serve as a first
approximation for the iterative synthesis of flexible
link devices or flexible 1link mechanisms.

Boronkay and Mei [14] analyzed the motions of
mechanical adder linkage of Figure 2. The finite element
method was used to simulate the dynamic response of the
mechanical adder linkage to the multiple inputs. Small
displacement (linear) theory was sufficient to obtain a
reasonable match between the theoretical and experimental
results. The finite element method was combined by
Winfrey [15] with the kinematics of rigid link mechanisms
to predict the dynamics of elastic mechanisms. The method
was demonstrated on a planar quick return mechanism and
a spatial Bennett mechanism to determine the dynamic
deflection of the coupler link under a constant speed of
an input shaft. Also, he [16] reduced the computational
time by modifying the method without appreciable loss of
accuracy.

A similar technique was developed by Erdman, Sandor,

et al [17-20] for dynamic synthesis. The method was based
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on a new stretch rotation operator which includes kineto-
elastodynamic effects. The technique provides a system-
atic iterative process for synthesis of an elastic
mechanism.

Refs. [21-23] deal with the dynamic response and
vibration analysis of the elastic connecting rod of a
planar slider crank mechanism. Classical beam theory
was used for the derivation of the motion equations
which were solved by numerical methods. Refs. [24,25]
carried out the stability analysis of the elastic coupler
in a planar mechanism. Davidson [26] worked out the
analysis and approximate synthesis of a slider-crank mech-
anism whose slider was connected to another slider through
a spring. A survey article by Lowen and Jandrasits {27]
~ covers the literature in the area of dynamic behavior of
mechanisms with elastic links which are assumed to have
a continuous distributed mass.

The background material thus far mainly pertains to
the analysis of elastic and flexible link mechanisms.

Now a brief background on the synthesis of rigid link
mechanisms will be covered. Special attention will be
given to the optimization methods. Rigid link mechanisms
were used by many researchers to demonstrate the capability
of optimization methods, It is the purpose of this invest-

igation to apply one of the optimization methods to the



synthesis of flexible link mechanisms. A detailed
discussion of optimization methods is included in
chapter V.

There are several ways to synthesize rigid link
mechanisms. The methods can be grouped into direct
(classical) methods and indirect methods. The direct
methods include graphical as well as analytical pro-
cedures, while the indirect methods include the optimi-
zation techniques. In the direct analytical method,
characteristically, the linkage equation is derived in
terms of the unknown dimensions (parameters) of the
linkage. These parameters are determined from the solu-
tions of a set of linear or nonlinear simultaneous equa-
tions for known conditions at the precision points. The
solution may be obtained by one of several standard
techniques.

Leading contributions in the direct synthesis
methods have been made by PFreudenstein, McLarnan, Sandor
and Roth [40-44] who studied the synthesis of four-link,
six-1link and geared five-bar mechanisms. Since then
more sophisticated methods have been developed to syn-
thesize spatial and complek planar mechanisms, as account-

ed for in survey articles [49] and [50].
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Recently indirect methods have been developed for
mechanism synthesis whereby the synthesis is performed
indirectly. An objective criteria for the synthesis is
formulated indirectly in terms of the mechanism para-
meters. The mechanism synthesis is then achieved by
driving the objective criteria to its minimum value by
the process of successively readjusting the mechanism
parameters based on one of the optimization methods
(mathematical or non-linear programming methods).
The following is a list of the optimization me-
thods and the major users of the method in the mechanism
synthesis field.
A. Least square method - Timko [52].
B. Random methods - Tomas [61], Garrett and
Hall [63].

C. Rosenbrook's rotating courdinate method -
Lakshminarayana and Narayanamurthi [66].

D. Steepest Descent - Tull and Lewis [70].

E. Fletcher and Powell's variable metric method -

Fox and Willmert [79].

Some optimization methods are capable of handling
design constraints such as limitations on the length of

the links, location of the shafts, minimum or maximum
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magnitude of the transmission angle, etc. References
[61] and [79] have demonstrated the synthesis of
mechanisms using design constraints for function and
coupler curve generation problems.

Comparéd to the direcf'synthesis method, the in-
direct methods require only one formulation of the
objective criteria for all synthesis problems (function
generation, coupler curve generation or coupler posi-
tioning) regardless of the linkage type to be designed,
whereas the evaluation of the objective criteria by way
of analysis is unique for each problem. This makes it
possible to use the indirect method for generalized
computer-oriented synthesis of mechanisms. The limita-
tion of the method is that the global minimum is not
guaranteed, only the local minimum is attained, and that
a good starting design is required for rapid convergence

to the optimum design.

1.3 Scope of the investigation

In this dissertation, the analysis and synthesis of
flexible 1link mechanisms, as depicted in Figure 1 to 4,
will be investigated. The finite element method used by
Boronkay and Mei [14],and Winfrey [15] will be extended

for the static large rotation of the mechanism. Since
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the large rotation makes the analysis nonlinear, the
problem will be solved by the piecewise linear method.
The synthesis of the mechanism will be attempted by
Fletcher and Powell's variable metric method of optimiza-
tion.

In the mechanism, the flexible link is assumed to
be initially straight and without internal stresses. To
avoid the buckling and snap-through behavior, the present
investigation assumes that the flexible link will be
under tension during the motion of the linkage. Also,
it assumes that the flexible link will not be subjected
to a twisting moment. The present formulation of analysis
can only account for rectangular cross sections of the
flexible links. But, with slight modification this
restriction can be removed.

The derivation is general. Therefore, the method is
capable of solving any complex mechanism assuming any
combination of external loads. For simplicity, however,
the four bar mechanism will be analyzed and it will not
be subjeéted to external loading other than the driving
force. |

The analysis and synthesis procedures will be de-
veloped in the'neit'chapters and will be demonstrated
first on a cantilever beam subjected to the large de-
flections. The same technique then will be applied to

the mechanism having one or more flexible links.



CHAPTER I1
NONLINEAR ANALYSIS BY THE
FINITE ELEMENT METHOD

2.1 Introduction

The finite element method was initially developed
in the early Nineteen Fifties and is gaining a wide-
spread acceptance in the field of structural analysis.
Normally, links of the traditional pin-jointed linkage
are assumed rigid, thus it does not deflect during the
motion of the linkage. Therefore, the structural anal-
ysis method is not required for the analysis of a pin-
jointed linkage but it is required for a flexural joint
or flexible link mechanism. Because, as mentioned pre-
viously, the flexible members have to deflect to impart
motion to a flexible mechanism. The finite element
method has been shown to produce accuracies of the same
order of magnitude as the classical methods. In addi-
tion, the finite element method is more general and is
easier to apply than the classical methods. The finite
element method for large (nonlinear) static deflections
will be developed in this chapter and will be applied to

the analysis of flexible link mechanisms.

13
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The pioneering efforts in the field of the finite
element methods were contributed individually by Argyris
and Turner. Turner used a matrix displacement method,
i.e. a direct stiffness method of finite element analysis
to solve complek structures subjected to linear deflec-
tions. Since that time much progress has been made in
linear and nonlinear analysis.

Basically there are two types of nonlinearity:
(1) geometrical nonlinearity and (2) material or physical
nonlinearity. In geometrical nonlinearity, large dis-
placements are normally accompanied by small strains and
material nonlinearity is due to nonlinear elastic and
plastic or viscoelastic behavior of the material. Material
nonlinearity will be omitted in this investigation.

Geometrical nonlinearity results in two classes of
problems, the large deflection problem and the problem
of structural stability. It is the large deflection which
is of interest for the analysis of a flexible 1link mech-
anism. The problem of stability will be avoided in this
investigation for which the flexible links are assumed to
be under tension.

In the large deflection problem, nonlinearity arises
in two places. First, with respect to the equilibrium

equation. The equilibrium equations are written in the
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deformed configuration and a solution can be achieved
by two procedures: (1) direct solution where iteration
. is done at the prescribed load level for force equi-
librium, and (2) an incremental or piedéwise linear
procedure as depicted in Figure 5 where the final load

level is reached by series of small steps.

FORCE

EXACT

V4

INCREMENTAL

ta— D>~

DEFLECTION

Figure 5. Nonlinear Analysis by the Linear Incremental
Method

Turner et al [28] published the first article in
the area of geometrically nonlinear problems, in which
the problems were analyzed by the finite element method.
Martin [29] presented a useful review of the efforts

up to 1965 and revised it in 1970, [30]. Contributions
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were also made by Argyris [31, 32], Jennings {[33], Purdy
and Przemieniecki [34], Mallett and Marcal [36], Powell
[37], etc. Ebner and Ucciferro [38] compared the methods
of Martin, Méllétt and Marcal, Jennings and Powell for
the solution of a variety of problems. Ebner concludes
that the incremental procedure of Martin [29], performs
the best for all classes of problems even though the
procedure does not include the higher order terms in its
formulation.

Martin's incremental procedure is the one which is
used in this investigation for the analysis of flexible

link mechanisms.

2.2 Basic Equations of the Finite Element Method

The complete derivation of the finite element method
is covered by Martin [29] and Przemieniecki [35]. Only
the fundamental equations and their results will be given
in the following derivation.

The beam element selected for the analysis is shown
in Figure 6. The element has six nodal degrees of free-
dom which is sufficient to model a flexible 1link of
planar mechanisms. The beam element can be modified by
adding extra degrees of freedom for spatial mechanism

applications.
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‘Figure 6. Planar Beam Element with Six Degrees of
Freedom

The nodal displacement {6}, and force {F}, vectors of

the beam element of Figure 6, are related by:

{F} = [k] {6} _ (1)
where
(v [ Fya
0 M,
v , F
{6} = { B } and {F} = { yB $ (2)
®p My
qA FkA
L s J g Fes J
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where u and v are horizontal and vertical displacements
and their corresponding forces are'Fx and Fy respect-
ively. 6 is the end rotation and M is the corresponding
moment.

The strain energy U of any elastic system can be
expressed in a quadratic form in terms of the nodal

displacements {6}, as:
U =2 {6} [k] {6} (3)

where {8} is the transpose of the matrix {s}.

Taking the partial derivative of strain energy gives:

i (4)
i
Equation (4) is the Castigliano's first theorem. The

second partial derivative gives the stiffness coefficient

kij as:

32U (5)

.th

th row and j column

where kij is the element in the i
of stiffness matrix [k].
Now the derivation of the stiffness matrix [k] of the

beam element of Figure 6 will be presented. Let the
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present strain in the element be'eo and the additional
strain developed due to the load increment be €, then

the total strain & will be '
E=¢€_+ g ' (6)

By accounting in the nonlinear strain displacement equa-
tion for the longitudinal strain and the contribution
due to bending, the additional strain can be expressed
as:

_ 9U Wy 2 _ 9%V
€, " 5% * (g; Y(;;;. (7)

where the higher order term'(ggaz’is neglected in com-

V4 2

X is retained.

parison to (%%) but (
A displacement function is selected which must be
consistent with the beam theory. u(k) should be linear
to provide the constant strain along the length of the
beam member and v(x) should be cubic to provide the con-

stant shear and linearly varying bending moment along

its length. It will be:

a + a.x

u(x) o .

v(x)

b, + b,x + b,x? + b,x* (8)
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b b, and b, are six constants. By

where ag s a, b 19 »

o’
using the boundary conditions the constants can be ex-

pressed in terms of the nodal displacements as follows:

ao = uA
_.uBAUA
a4 = =1
bo =»VA
b, = eA
_ 3 _ 21
b, = E;‘(VB VA) T (26A+6B)
b, = 2 (vg-vy) + 1= (0,+65) (9)
2 7 13 'BTVA > ATB

The total strain energy U arising during the deformation

€o+€a
jjj[]cde] dx dy dz
80
Eeojffeadxdydz+§]j]e;dxdydz (10)

For constant cross sectional area A of a beam element, U

is given by:

c
i}

can be simplified to:

U= AEe v}F €, dx + %E bj. s; dx (11)
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On substitution of equation (7) and grouping the terms

it gives:
. C a2
U=AEeoj[g—;-Y(§—}..c—2‘£).] dx + 7 ABe_ f(-g{-z
(o] 0
L
"2
+A2-E-][c%§-2- c)c ) +y (-2—2.(%)21@

L

+

7 G+ GRGP ¢ yGp Eh1ax an

The partial derivatives in Eqdétion (12) are first
derived from Equation (8) and then expressed in terms of
the nodal displacements with help of Equation (9). Upon
substitution of the derivatives it is recognized that the
first and the last integrals do not contain the quad-
ratic terms and based on Equation (3) they can be omitted
from Equation (12). Also, a symmetrical cross-sectiongl
area is assumed for the beam element in the following
simplication.

L

L
U=3 AEeoj( 3Vy2 gy + ‘%AE]['(‘%Z- ycax)(""’)
[o]

(o]

.
+ yz(——g,.‘z’m dx (13)
X
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which can be expressed as:

1 T Py 1,47 :
U = VA {6} [kG] {6} + 7 {8} [kE] {6} (14
where [kE] is the elastic or linear stiffness matrix, and
[kG] is the geometrical matrix or referred as the initial

stress matrix. On comparison of Equations (14) and (3),

the total stiffness matrix [k] is
[k} = [kgl + [kgl (15)

where [kE] and [kG] are expressed as follows:

12EI1

L3

6EBI 4E1 Symmetric
LZ E

_12BI _6EI  12EI

_ L2 L? L?
[kE] =

6E1 2EI _ 6EI 4EI

1.2 2 1.2 L

0 0 0 0 AE
T

0 0 0 0 _AE AE
T L (16)
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and -
6
5C
1 2 .
, Symmetric
0 15L2
b &
[kG]=FO
1 _L 21 2
o 3 0 15L2
0 0 0 0 0
0 0 0 0 0 (17)

The incremental equation between force and displacement

for Martin's method will be:
[k] {a8} = {AF} (18)

where {A§} and {AF} are the increments$ ‘in the nodal dis-
placements and corresponding forces. So far the deriva-
tion of equations are only for the beam element. Now the

derivation will be extended for a structure.

2.3 Coordinate Transformation Matrix

A structure (or mechanism) is composed of many beam
elements which are oriented differently. Each of the ele-
ments is expressed in its local coordinate system and

then related to the global coordinate system in which the



24

mechanism is oriented. The stiffness matrix, Equation
(15) is expressed in the local coordinate system and
transformation is essential because the displacement or
loading on the mechanism is expressed in the global
coordinate system. In Figure 7, the local coordinate
system (x-y) is oriented at the angle y to the global
coordinate system (X-Y). In the following equations,

the displacements in the global coordinate system are

represented by a bar at the top.

Figure 7. Displacement Relationship Between the Local
(x-y) and the Global (X-Y) Coordinate Systems
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vV, = ¥, cosy - u, siny

u, VA siny + EA cosy (19)

similar relations can be derived for up and vg- Now the

displacement vectors {8} and {3} can be related by:

{8} = [T] {3} (20)

where [T] is the coordinate transformation matrix whose

elements are expressed as:

F;;SY 0 0 0 -siny 0
0 1 0 0 0 0
0 0 cosy 0 0 -siny
[T] =
0 0 0 1 0 0
siny 0 0 0 cosy 0
0 0 siny 0 0 cosy (21)

The components of the displacement vector {é} are expressed

in Equation (2).

2.4 Formulation of the Finite Element Method for a

Structure.
The basic equations for the beam element derived in

the previous sections will now be extended to a structure.
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The formulation of the stiffness matrix [K] of the struc-

ture is derived from the stiffness matrix [k] of the beam
element in this section.

The strain energy of the structure can be expressed

as:
U= {q}" [K] {q} (22)

where {ql} is the nodal displacement vector of the struc-
ture in the global coordinate system. The strain energy

th

of the i~ element can be expressed from Equation (3) as:

-1 T :
U, = 7 {Gi} [ki] {Gi} (23)

Upon substitution of Equation (20) into the Equation (23),
the strain energy will be transferred to the global coor-

dinate system. This gives:
. 1 54T T Y

The nodal displacement {§} in the global coordinate

system is further related to {ql by:

{5} = [8;] {q} - (25)
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where [Bi] is unique for each element and contains

either one or zero. This will be ekplained in detail
with an illustrative ekample in a latter part of this
section. Substitution of Equation (25) into Equation (24)
gives:

T

Uy = 4 {q}T [8,]

(7,17 [k;1 [T,1 (8,1 {q} (26)

The total strain energy of the structure will be the
sum of the strain energies of the individual beam elements.

For the structure with 'n' number of elements, it will be:

n
b ACARC RN VRN O E EN I oS I 2 IRV

The stiffness matrix of the structure can now be
expressed in terms of the element stiffness matrices by

comparing with Equation (22) and (27) as=:

[B:

T T
7 107 k1050 18] (28)

[K] =

1

N~
(WY

The incremental equation for the structure is then:

[K] {Aq} = {AP} (29)
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where {Aq} and {AP} are respectively, the incremental
nodal displacement and the force vector of the structure.

The finite element method of structural analysis
will be demonstrated with the help of a simple struc-
ture as depicted in Figure 8. The structure is composed
of three beam elements or members and has seven nodal
displacements (ql to q7) at the three nodal points.

The local coordinate systems of the three elements are
oriented by angles y of 45, 0; and 315 degrees as de-
picted in Figure 8. When these values of y are substi-
tuted in Equation (21), corresponding transformation
matrices [Ti] can be obtained.

From Figure 8 it is clear that uy and vy , the
nodal displacements of the Element No. 1 in the global
coordinate system, correspond to a; and q, respectively
of the structural nodal displacements. Also Eh will
be same as qz- Based on these relations the [61] matrix

for Element No. i is constructed as follows:

1 2 3 4 5 6 7
1 -B. 0 0 0 0 0 6-
2 10 0 0 0 0 0 0o
[Bl]= 3 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0
6 L_i .O 0 0 0 0 Q_J (30)



g
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Ua

Figure 8. Three Member Planar Structure with 7 Nodal Displacements
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similarly, [BZ] and [63} for the Elements No. 2 and 3

will be:
— —
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
[8,] =
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 0 0.
e —
F_B 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
[83] =
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0 (31)

It should be noticed that in the above matrices for
any row there is a maximum of one nonzero element and in
the same way for any column there is a maximum of one
nonzero element.

The stiffness matrix [K] of the structure can be
assembled by Equation (28) and the solution of the un-
known parameters may be obtained from Equation (29).
There are two types of incremental problems: (1) Find

the nodal displacements under a given loading condition
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and; (2) Pind the necessary load corresponding to the
desired displacements. Each of the two problems re-
quire a different solution procedure.

(1) Force Input: Premultiply both sides of Equation (29)
by k17!

ment corresponding to the applied load increment

and the increment in the nodal displace-

can be evaluated as:
‘{aq} = [K]"1 (aP} (32)

(2) Displacement input: The solution procedure in this

case is more complicated. The procedure is known

as the reduction of coordinates by Guyan [39]. The
basis for this procedure is that the forces corres-
ponding to the unknown displacements are zero. Thus
the nodal displacements corresponding to the unknown
displacements can be eliminated from the Equation (29)
as follows:

= s 9 r 3
B Aqg 0

S R S

e — — e — — o ] s s

I
I € Adyg AP (33)
l - J - o/

where [A], [B] and [C] are submatrices of [K] after the
partitioning. '{AqII} are the known displacements and
{AP;;} are the corresponding forces. {Aq;} are the re-

maining unknown displacements for which the forces are
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zero. Equation (33) can be separated into:
[A] {Aqp} + [B] {Aqz;} = {0} (34)
and
T _ =
[B]" {Aqp} + [C] {Aqy;} = {aP[;} (35)
Equation (34) can be rearranged as:
{aqp} = -[A1"1 [B] {aq;} (36)
Substitution of Equation (36) into (35) gives:
. - T raq-1
{ap;;} = (I€1 - [B] [A)! [BD) {aqpy} (37
Equations (36) and (37) give the remaining unknown dis-
placements {Aq;} and unknown force'{APIi} corresponding to

the displacement'{AqII}.

2.5 Solution Procedure for the Nonlinear Analysis

In the previous sections the equations for the finite
element method were derived for the beam element and were
extended to the structure. Also, the solution procedures
for the force and displacement input problems were ex- '
plained. Now the solution procedure based on the previous

section will be described.
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The nonlinear analysis is performed by the linear

incremental method as depicted in Figure 5, where the
final load is reached in a series of small linear steps.
The information from the previous step is utilized to
update the stiffness matrix. The stiffness matrix is
used to determine the increment in displacement under
a given increment of load. The following steps des-
cribe the procedure in detail:

A. The correction in the length of each element is
made based on the deformation from the previous
step. Corresponding to the new length, the
elastic stiffness matrix [kE] is formed from
Equation (16).

B. At the end of the previous step, the total axial
fdrce‘Fo is determined and; based on Equation
(17), a new initial stress matrix‘[kG] is formed.
This, when summed with [k;] will give the new
stiffness matrix of the element, [k].

C. From the previous step, the new orientation of
the beam element, y, is determined and from Equa-
tion (21) a new coordinate transformation matrix
[T] is determined. The stiffness matrix [k] now can

be transferred into the global coordinate system by
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following two steps:
(1) 717 (k] [T1T and
(i1) 817 1117 [x1 [T1 (8]

where [B] remains constant throughout the analysis.

D. These transformed matrices of elements are summed
by Equation (28) to form the new stiffness matrix
of the structure, (K].

E. The new stiffness matrix when used in conjunction
with Equation (29) and solved by Equation (32) gives
the increment in nodal displacements'{AQ} of the
structure under a given load increment {AP}. (If
displacement is the'input; the solution for {AP;;!}
and'{AqI} is obtained by Equations (36) and (37).)

F. The displacement of the individual element {A§} in
the global system can be evaluated from {Aq} by
Equation (25). {A%} can be transferred back to the
local coordinate system, {AS8}, by transformation
Equation (20). Now the correction of the length AL

is applied as follows:

up - u, (38)

where u; and u, are the S5th and 6th components of

vecétor {A8} .
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With the help of Equation (1) the nodal forces

'{AF} of the element are calculated, from which the

increment in the axial force will be:

AF, = A (yp - u,) (39)

which when added to the previous value will give the
total axial force Fo' Similarly the increment in

bending and axial stresses are determined by:

"h
_ My 7
AOb = I—_h—a (40)

where Aoy is the increment in the bending stress

at nodal B of the element.and Mp is 4th component
of vector {AF}. A similar expression for the
bending stress at the nodal point A can be derived.

The increment in the axial stress is determined by:
AO'a = PR (41)

where F.p is the 6th component of vector {AF}.
According to the convention in Figure 6, the axial
stress will be positive for tension and negative

for compression. When the increment values of
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stress are added to the previous values it will

give the total magnitude of the stress.

H. By adding {Aq}, the increment of the displace-
ment, to the previous position of the structure,
the new position of the structure and new orienta-
tion y of the element can be determined.

I. With the new values of y, L and Fo’ the procedure
is repeated for the next increment of load and the
process is continued until the total load has been
applied on the structure.

The basic computational flow diagram of the method is de-
picted in Figure 9.

A complete listing of the computer program is given
in Appendik A. The flow diagram of Figure 9 is programmed
into the subroutine FX4BAR. The subroutine FORDIS solves
the increment equation for input of either force or dis-
placement. In its present form it allows only one dis-
placement input. Also, subroutine BEMREK is for [kE]
and BEMRET is for [kG]' The transformation matrix [T]
is programmed in a subroutine TRETS. Subroutine A4BAR
is for solving a pin-jointed four bar linkage with rigid

links.
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FOR EACH ELEMENT FORM: [kgl, [kgl, AND [k;]

FOR EACH ELEMENT FORM: [Ti]

1

ASSEMBLE :

[K1

APPLY LOAD

INCREMENT: {AP}

SOLVE:

[kj{aq} = {AP}

ACCUMULATE:

L, Fo, o

DETERMINE :

'DISPLAY SOLUTION

‘(Z STOP

)

Figure 9. Flow Diagram of the Finite Element Method
Using the Linear Incremental Method.



CHAPTER III
ANALYSIS OF NONLINEAR SPRINGS

3.1 Cantilever Beam

The finite element method for ﬁonlinear analysis by
the linear incremental procedure as developed in Chapter 2,
will now be applied to a cantilever beam. A force vs.
deflection relation is desired for a beam under a large
deflection. A cantilever beam is selected as a prelimi-
nary test problem to check the accuracy of the method.

The results of the finite element method are compared
against the results of Bisshopp and Drucker [4] and with
the experimental results.

The cantilever beam selected is a 0.5 inch wide strip
of spring steel whose length L is 10 inches, and thick-
ness h is 0.006 inch. The modulus of elasticity E for the
spring steel is assumed to be 30 x 10° psi. The canti-
lever beam is divided into 5 elements of equal length as
depicted in Figure 10. There is no displacement at the
-fixed end of the beam but there will be 15 nodal displace-
ments, q, to q,,, at the 5 nodal points. A vertical load
P is applied at the free end which moves with the free end
and always acts in a vertical direction. The horizontal

and vertical deflections, 6* and Gy which are indirectly
38
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q,, and q,,, are determined at the end of each load
increment 'AP' by the procedure shown in Figure 9 of
Chapter 2.

The results are converted in terms of the nondi-
mensional parameters, g%i, gz-and §23 and are plotted
in Figure 11. The conversion was necessary because the
results of Bisshopp and Drucker [4], which are plotted
in Figure 11, are in the same nondimensional parameters.
The results by the finite element method compares within
6.6% to Bisshopp and Drucker's results in %Z for E%i = 3
which amounts to a load P of 0.0081 1b. This final load
was reached in a total of 90 load increments.

It should also be pointed out that a cantilever beam
problem is solved by Frisch-Fay [5], Shoup [10] and Tada
and Lee [6]. Bisshopp and Drucker, Frisch-Fay and Shoup
have transferred the nonlinear bending moment equation of
a cantilever beam into elliptical integrals which were
solved by numerical methods, while Tada and Lee's solution
is by finite element method based on Galerkin's method.
The results of all the authors [4-6, 10] are in agreement
except those of Tada and Lee, whose results in Ei do not
match with the others. The extension of a cantilever beam
is very small and negligible. However, the finite element
method developed in this investigation accounts for the
extension of the beam, while the results of Bisshopp and

Drucker and other authors assume an inextensible beam.
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Figure 11. Results of Nonlinear Analysis for a Cantilever Beam
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The results of the cantilever beam by the finite
element method was further checked by an experimental
result. The physical dimensions of the beam selected
are given in Figure 12 along with its ekperimental and
analytical results by the finite element method. Again,
the comparison reveals that analytical results are in
error of 5.13% for the deflection of 2.4 inches in Gy
for a 5}0 inch span of the beam. When the experimental
results of Figure 12 are converted in terms of nondi-
mensional parameters and plotted in Figure 11, it shows
agreement with the results of Bisshopp and Drucker. It
also indicates that the loading on the beam in the experi-
ment reaches %%i of 2 only and not 3. The modulus of
elasticity E, for the spring steel beam used in the anal-
ysis, was determined to be 27.8 x 10°® psi from the experi-
mental results.

The cantilever beam shown in Figure 10 was analyzed
for nonlinear deflection by incremental displacement
input. A total of 128 increments were taken to displace
the free end of the beam by 6.4 inches in Gy. The results
of displacement input perfectly matches results of the
force input of Figure 11. The deflected shapes of the can-
tilever beam for increasing displacement in Gy of the free
end are depicted in Figure 13. When the number of incre-
ments are decreased from 128 to half that number, the

results were in error by 1.24% to the previous results.
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Figure 12. Comparison of Experimental and Analytical Results
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3.2 Attempts to Improve the Results.

As mentioned previously, the nonlinearity comes from

two areas: (1) the equilibrium equation and (2) the

strain displacement equation. Many attempts were made to

account for the nonlinearity in order to improve the re-

sults.

The following are the results and conclusions of

those attempts:

-A.

The effect of an initial stress matrix and an
extension of the beam were considered first.
When the beam was assumed inextensible and
without initial stress; matrix [kG] of Equation
(17), i.e. cnly the coordinate transformation
matrix [T] of Equation (21) is accounted for in
the analysis. An error of 14.6% was observed

in the results compared to a 6.6% error if all
of these factors are accounted for. It was
further concluded that the improvement in error
from 14.6% to 6.6% was mainly due to the initial
stress matrix and not due to the extension of
the beam. This also explains why the Bisshopp -
Drucker's results with the assumption of an
inextensible beam, are in good agreement with the
experimental results.

The derivation of the stiffness matrix was
carried out based on the Mallet and Marshal

method [36]. This method does not neglect the
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higher order terms in Equation (12). When this
stiffness matrix was used in the incremental
procedure to analyze the cantilever beam of
Figure'lo; difficulties were eXperienced. The
same conclusions were reached by Ebner and
Ucciferro [38] for the Mallet and Marshal
method.

The finite element method, based on the stiff-
ness method, guarantees continuous displace-
ments but does not assure matching of forces
at the nodal point. The method developed in
Chapter 2 is based on the stiffness method and

some error in matching external forces with the

“internal forces was expected. But the internal

axial force near the free end of the cantilever
beam is in large error relative to the applied
load. The reasonable explanation for this large
error in equilibrium of forces is not available
at the present time.

The analysis procedure was modified slightly by
rotating the global coordinate system parallel
to the free end of the cantilever beam. The
vertical load at the free end is divided along
the axes of the rotated global coordinate system,
thus placing the load along the beam and perpen-

dicular to it. By this modification, the equili-
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brium of forces along the beam is achieved but
it made the beam stiffer than Bisshopp and
Drucker's beam and an error of larger magnitude
resulted than that of Figure 11. No clear-

cut conclusion can be reached from the above
results but there are procedures available where
the equilibrium of the forces can be achieved

by iteration at the end of each or a few incre-
ment steps. Such a method will increase the
computation time and thus was not considered in
this preliminary investigation.

Accuracy of the finite element method's results
can be impioved by: (1) dividing the beam into
more elements and (2) by increasing the number
of increments. The effect of these two para-
meters on the results of a cantilever beam are
studied in Figure 14. Figure 14 shows the con-
vergence of the results as the number of elements
and increments increase. It also indicates that
the results of Figure 11 with 5 elements and 90
increments are very close to the threshold
values. Taking more elements or much smaller
steps than the maximum indicated in Figure 14,
might lead to numerical instability due to

truncation errors.
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CHAPTER IV
ANALYSIS OF FLEXIBLE
LINK MECHANISMS

The finite element method will be applied to the
analysis of a flexible link mechanism subjected to large
displacements. The types of linkage under consideration
are depicted in Figure 1 to 4 of Chapter 1: The couplers
of these linkages are connected to the input and output
links by flexural joints. Any or all three of the links
in the linkage can be rigid or flexible. In this chapter,
mechanisms with one flexible link and with two flexible
links will be analyzed. A three flexible 1ink mechanism
would be impractical to use for many applications because
of too much flexibility. '

The input and output links of the planar mechanism
can be grounded by pin, slider or fixed joints. Table 1
lists the various configurations of the joints and the
nodal displacements associated with them; e;g. for a pin
joint, the displacements u and v will be zero but rota-
tion 6 will be present. The mechanisms analyzed in the
present investigation have not included any slider joints
but without much effort a mechanism with slider joints

can be analyzed.
49



TABLE 1

JOINTS AND THEIR CORRESPONDING

NODAL DISPLACEMENTS

50

JOINT NODAL DISPLACEMENTS
FIXED ? S u =0 v =0 6 =0
PINNED ?]l 2l u=0 v=o0
TRANSVERSE u=o0 6 =0
SLIDER

Qe
LONGITUDINAL __l—__:'l 2 v=0 6=o0
SLIDER

TR
INCLINED %W u=yv tan o B =0
SLIDER mﬂmﬂ“““
TRANSVERSE g:‘L—J u=o
SLIDER § PIN =

Julniant
LONGITUDINAL -—-r_@_" 2 lv=o0
SLIDER § PIN  pumenm

g

FREE c—E’ _$
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The flexible links in the mechanism are assumed to
have no pre-stresses and to be initially straight. Also,
the mechanism is displaced such that the flexible mem-
bers remain under tension. For a given displacement,
analysis based on the finite'element'meth6d, determines
a required input (driving) force or tordue'and the dis-
placement of the output link. The mechanisms analyzed in
this chapter could be subjected to any type of external
loading but for simplicity, external loads other than
the driving force have been avoided. This external
loading, if included, would change the relationship between

the input and output displacements of the flexible link

mechanism.

4.1 One Flexible Member - Flexible Strip 'as a Coupler

A flexible link mechanism wifh'one‘flexible'link
(member) selected for the analysis is depicted in Figure
15. The flexible link is a spring steel strip which
connects two rigid links and acts as a flexible coupler.
For purposeé of this analysis, the flexible coupler is
divided into 4 elements of equal lengths. One element is
assumed for the two "rigid" input and output links.
Therefore, a total of 6 elements are required for this
model of the flexible link mechanism in Figure 15 for the °

analysis by the finite element method.
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From Table 1 and the geometry of the mechanism, it

is clear that the two pin joints for the input and output
shafts will permit rotation only for the nodal displace-
ments at those joints. The joints at the other ends of the
input and output links (where they are connected to the
flexible coupler) can be looked at as fixed joints with
respect to the coupler. However, the motion of these
links relative to the frame of the mechanism causes these
joints (or nodes 2 and 6) to move relative to the ground,
thus they have all three nodal displacements. The total
of 17 nodal displacements as depicted in Figure 15, q, to
q,,, are required at 7 nodal points for the analysis of
the mechanism. If any external load is applied on the
mechanism, and it happens that the point of application

is not one of the 7 nodal points, then an additional nodal
point and displacements are selected at the application
point of the load.

The physical dimensions of the mechanism and the beam
elements are included in Figure 15, The flexible strip is
0.5 inch wide and is 0.005 inch thick. All the links of
the mechanism are assumed to be of steel for which the
elastic modulus, E is 30 x 10° psi. The mechanism is
analyzed to give the displacement ¢ of the output shaft,
for a given displacement of the input shaft 6. The rela-
tion between the displacements 0 and ¢ is depicted in

Figure 16, where the input shaft is displaced in increments
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of 3 degrees to a maximum rotation of 45 degrees. Also,
variation of the input torque T,, and the bending stress
in the coupler Op» as a function of the input shaft rota-
tion é, is depicted. It is interesting to notice that
the input torque T, reaches a peak of 0.124 in-1bs., and
its magnitude decreases for further rotation of the input
shaft. The bending stress 0y, 1is the stress at the nodal
point 6 on the coupler near the output link. The maximum-
stress of 115,000 psi is reached which is still within
the elastic limit of spring steel. The bending stress
can be calculated only at the nodal points. There are
ways to find the maximum stress if it occurs in between
the two nodal points but the present analysis procedure
does not account for this.

The relation between 6 and ¢ for the equivalent pin
joint linkage (where two fixed joints are replaced by
pin joints at nodes 2 and 6) with rigid links is also
shown in Figure 16 for purposes of comparison. As a
result of the fixed joints and the flexible coupler, the
output link rotates 7.27 degrees more than the equivalent
pin joint linkage.

The deflected shapes of the flexible coupler as the
mechanism rotates are depicted in Figure 17. It should be
pointed out that nodal points 2 and 6 of the coupler,
which also belong to the rigid input and output links

respectively, do not follow the rigid link motion. This
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error could be due to the truncation error which can be
minimized by taking smaller increments or by double
precision manipulation on the computer. In the subse-
quent sections, the method will be applied to the analysis

of the mechanisms with two flexible members.

4.2 Two Flexible Members - Rigid Coupler Supported on

Two Flexible Input and Output Links.

A hammer guide spring mechanism, as shown in Figure
3 of Chapter 1, is selected as an illustrative example
to demonstrate the analysis method on the flexible link
mechanism having 2 links which are flexible. The mechanism
is composed of a 'rigid" plastic coupler mounted on two
flexible input and output links of equal length. The
flexible links are 0.006 inch thick and 0.060 inch wide.
One end of each 1link is molded in a plastic coupler and
the other end is firmly fixed to the ground as depicted
in Figure 18. The coupler is guided on the flexible
links during its forward and return motion.

The coupler, being rigid, will be assumed to have
only 1 element. Each of the two flexible links are
divided into 6 elements. The total of 13 elements and 36
nodal displacements at 12 nodal points are depicted in
Figure 18. The physical dimensions and elastic modulus

of the links are also included in the figure.
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The flexible input and output link mechanism was
analyzed by the present analysis method for a horizontal
input displacement (Gx or qls). For this analysis, Gx
was incremented by 0.010 inch up to a maximum displace-
ment of 0.450 inch, which is almost half the length of
the flexible links. The deflected shapes of the
mechanism for the displacements of 0.100, 0.300 and 0.450
inch in Gx are plotted in Figure 19. The experimental
results are also included in the same figure for compari-
son.

The analytical results by the finite element method
compare excellently to the experimental results. It can
be noticed that the height of the coupler decreases as
the mechanism is displaced horizontally. The following
two major conclusions can be derived from the results:

A. From the analytical results it was observed |
that the coupler rotates clockwise as it is
displaced horizontally. This rotation of the
coupler induces tensile forces in the input
link and compressive forces in the output 1link.
The compressive forces are not large enough to
buckle the beam, so these results were included
even though the assumption of tensile force in
a flexible link was violated. It is the large

displacement associated with the post-buckling
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phenomenon that is not successfully handled

by the present analysis method. The finite
element method is capable of analyzing the
buckling problem but modification of the

present procedure would be required.

In analysis by the finite element method, the
stiffness of the beam (EI) is assigned to its
neutral axis and the thickness of the beam does
not enter into the analysis. Normally the nodal
points are selected on the neutral axis of any
beam. For the flexible link mechanism of Figure
18, the stiffness ratio of the coupler to the
flexible link is high, so the flexible link will
deflect at the lower edge of the coupler. There-

fore, the nodal points are selected at the lower

~edge. It was also noted that the location of

the nodal points at or between the lower edge

and the neutral axis of the coupler changes the
force vs. displacement relation of the mechanism
but does not affect the displacement vs. dis-
placement relation (deflected shapes). The best
prediction of forces would come with nodes
located at 0.019 inch above the lower edge of the

coupler.
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4.3 Two Flexible Members - Flexible Members as Flexural

Joints.

A second flexible link mechanism with two flexible
members will now be analyzed. 1In this type of linkage,
flexural joints are flexible members. Such a mechanism is
depicted in Figure 20, which can be considered as three
rigid links connected by two flexible members. It is
these two flexible members which deflect when mechanism
is moved.

The mechanism of Figure 20 is a one piece part which
can be made in a single punch operation, thereby reducing
manufacturing cost. This makes the one piece mechanism
of greater interest to engineers. Alternately, three
rigid links and two flexible links could be made separ-
ately and bonded together. Similarly the other two
mechanisms studied in this chapter could also be produced
from a single part if so desired.

Each flexible member of the mechanism in Figure 20
is divided into 2 elements and 1 element is assumed for
the rigid links. Therefore, a total of 7 beam elements
with 20 nodal displacements at 8 nodal points as shown in
Figure 20 are required to model this flexural joint
mechanism. The flexible members are of 0.020 inch thick-
ness and the rigid links are of 0.400 inch thickness.

The mechanism is analyzed to determine the relation

between the input and the output link rotations which are
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depicted in Figure 21 with the variation of input torque
and bending stress. The bending stress is the maximum
among the stresses at the nodal points 2 to 7. The
input link (8) is rotated to a maximum rotation of
36.825 degrees in 10 increments for which the output
link (¢) rotates by 38.85 degrees and a driving torque
T, of 0.272 in-1bs. is required.

The results of the flexural joint mechanism, Figure
21, are similar to the results of the flexible coupler
mechanism, Figure 16. In both problems, the input link
(8) rotates with an increment angle of 3 degrees or more
which gives less than 15 increments. 1In light of the
convergence study on the results of the cantilever beam
(Figure 11 of Chapter 3) it could be concluded that
analysis with less than 15 increments is marginal and
will contribute some error to the results, which can be
reduced by taking smaller increments in the input rota-
tion.

It was concluded in the previous section that a
high stiffness ratio of the rigid link to the flexible
link can affect the location of the nodal point. Also,
the fillet radius near the nodal points.2 and 7 will
change the flexibility of flexural joint. A separate

detailed investigation of the study of flexural joints
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with consideration to the stiffness ratio, design of the
joints, etc. will be desirable for the accurate modeling

of flexible link mechanisms.



CHAPTER V
OPTIMIZATION METHODS IN THE
SYNTHESIS OF MECHANISMS

5.1 Introduction

Traditionally designers and kinematicians have
synthesized the pin-jointed linkages by classical or
direct methods. In recent years indirect methods have
been developed and have been applied to the mechanism
synthesis problem. Indirect methods are based on the
optimization method, which evolved from structural
engineering. Optimization methods are well accepted
in structural, control and aerospace engineering and
are slowly becoming popular in the mechanical engineer-
ing field.

Survey articles by Wasiutynski and Brant [45] cover
developments in optimum design up to 1963 and Sheu and
Prager [46] cover the developments up to 1968. Two
recent articles by Prager [47] and Seireg [48] update
the advancement in structural and mechanical design.

The survey articles by Fox and Gupta [49] and

Sallam and Lindholm [50] include the references of the

.....
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mechanism design. Fox and Gupta cover in brief the
general formulation for a design p}oblem relevant to
kinematic synthesis. No attempts will be made to dup-
licate the efforts of Fox and Sallam but a brief review
will be covered in this section.

The optimization method, which is also referred to
as the mathematical or nonlinear programming method, is
further divided into two categories: (1) unconstrained
minimization and (2) constrained minimization. The
present investigation will be limited to the unconstrained
minimization only.

The univariate method was the first method used for
unconstrained minimization. The algorithm by Timko [52]
was based on the univariate method in which one variable
at a time is changed and the function generation problem
was attempted by a least error-squared fit. The algorithm
was not efficient but the optimization method was well
demonstrated. Levenberg's damped least square method [51]
was employed by Lewis et al [53-55] for a synthesis prob-
lem involving planar curve generation, higher order kine-
matic design, and multiple input mechanisms. Yeh [56] and
Mansour and Osman [57] also followed the least square
method for static force mechanism design and coupler curve
generation problems, respectively. Efficient algorithms
were developed for the least square method by Marquardt

[58] and Powell [59].
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The random-gradient method, which is a modifica-
tion of Brooks' [60] method, was applied by Tomas [61,
62]. Tomas did an excellent job of formulating a mech-
anism synthesis problem into an optimization problem. A
general formulation was sufficient for the synthesis of
linkages for coupler curve generation and function genera-
tion problems. A random search procedure was popular with
Garrett and Hall [63]. A library of four bar linkages,
generated from the random numbers, were stored on tape.
This tape was then searched for the desired function
generation and a small number of good designs were select-
ed. A subset of random linkages were generated around
these to find the optimum design. Eschenback and Tesar
[64] followed similar random search technique for general-
ized coupler positions design of linkages.

Rosenbrock's rotating coordinate method [65] was
applied by Lakshminarayana and Narayanamurthi [66] to
synthesize a seven-link, two degrees of freedom mechanism
from precision point equations in which the starting point
was selected from a brief'random search. Sridhar and
Torfason [67] used the same method to optimize a design of
spherical four bar linkages for a path generation problem.
Mueller and Osman [68] also followed the rotating coord-
inate method for the synthesis of a planar mechanism for

coupler curve generation.
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The steepest descent method [69] was used by Tull

and Lewis [70] for space curve generation and by Rees
Jones and Rooney [71] for planar curve generation.
Kugath [72] made a comparative study of univariate,
random, and pattern search, and steepest descent methods
on four and six bar linkages for function generation.

Combinations of gradient and relaxation methods
were applied by Nechi [73] for planar curve generation.
Dimarogonas, et al [74] synthesized geared N-bar linkages
with the help of the Monte Carlo optimization technique,
in which the number of design variables were optimized
first until better characteristics for a starting point
were obtained. Bagci [75] applied the Lagrange multi-
plier for generation of constrained and unconstrained
screws of the space mechanism.

References so far include application of design
constraints externally, which means the parameters are
checked for violation of constraints at the beginning of
each iteration step. Fox and Willmert [78] formulated
the constraints internally right in the objective func-
tion for the synthesis of planar curve generating linkages.
Faicco-McCormick's sequential unconstrained minimization
(SUMT) [81] was followed for the solution, but the pro-
cedure was found unsatisfactory for synthesis of four
bar linkages. The modified SUMT procedure was developed

and applied satisfactorily in [79]. Fletcher and Powell's
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variable metric method [77] was used to minimize the
unconstrained objective function. Fox and Willmert
derived the necessary gradient expression for the four
bar while Moore [83] used the numerically compufed gra-
dients as suggested by Stewart [85] and applied to the
original variable metric method of Davidon [76].
Tranquilla [84] also followed the SUMT procedure to
design four-bar linkages for specified extremes of
coupler curves. Recently, Willmert and Fox [80] used
the optimization method for the shock isolation system,
where the topology of a system, in a limited sense, was
attempted by optimizing the number of elements in the
system.

Among the many methods developed for unconstrained
minimization, a few are worth mentioning, even though
they did not find application in the mechanism field.
They are: (1) the conjugate gradients method of Fletcher
and Reeves [86], and Powell [87], and (2) the rank one
method of Powell [88]. The computational algorithms for
most of the methods covered so far and the many more for
solving unconstrained and constrained optimization problems

are included by Mangasrian [89].

5.2 Formulation of Equations for the Optimization Method

The formulation of equations for a kinematic synthesis

problem, as a mathematical programming problem, will be
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presented before the explanation of the optimization
method.

In general, the mathematical programming problem is
as follows:

Let the given function to be minimized be expressed

as

B |
F({d}') = F(d,, ..., ) (42)

where d,, ..., dn are the n components of the unknown n
dimensional vector {d}. Function F({d}T) may or may not
be subjected to constraints. In any case, during the
optimization process, the components of {d} are searched
in such a way that F({d}T) is driven to its minimum.

For a design problenm, F({d}T) is referred to as the
objective function. Components d,, ..., dn are referred
to as design variables. The objective function could be
a weight function for a structural design or a cost func-
tion for a manufacturing process. For a linkage design,

the objective function will be an error function.

Let the function for the synthesis be:

¢ = £(6) (43)
and the generated function by the linkage be:
0, = £(6,{d}") (44)

as depicted in Figure 22, where 6 is the input and ¢ is
the output rotation of flexible link mechanism. The com-

ponents of {d} are the design variables such as the length
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and stiffness of the links, the initial position of the

linkage, etc. the objective of the kinematic synthesis

is to generate ¢g as close as possible to function f(6).
The error (which leads to the objective function) is

the difference between the two curves as shown in Figure

22, This difference can be ekpressed in many ways to give

different objective or criteria functions, three of which

are shown in Equations (45), (46), and (47), as follows:

F({d}") = B, =_§1 |£0;) - glo;,1a1T) (45)
1=

where EA is the sum of the absolute values of the error
curve cumulated at 's' number of points. This is an
approximation of the absolute area of the error curve.

F({d}") = By = max | £(;) - g(o,,1d}")
i

(i=1, ..., s) (46)

Where E,, is the maximum value of the error curve.

M

) T.
F({a}T) = Ep =\/ .

Where Ep is the root-mean square value of the error at

0=
[ e 17]

[£(8;)-g(0;,(a} )]* (47)
1

's' number of points.
In the above formulation, the desired and generated

functions are assumed to be for the synthesis of a linkage
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for a function generation problem. The desired func-
tion could as well be a coupler curve expressed in
polar coordinates, or x or y coordinates, or combined
x and y coordinates. Therefore, it should be pointed
out that the above formulation is valid even for a
coupler curve generation problem. But, in the present
investigation, only the function generation problem

will be attempted.

DESIRED - £(6)

Figure 22. Desired and Generated Functions
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Similarly, any one of the objective functions, Equa-
tions (45) to (47), can be minimized under design con-
straints such as: a limitation on the length of the
links, limitation on the location of the input and output
shafts, limitation on stress, etc. However, for the
present investigation, design constraints will not be

included.

5.3 Variable Metric Method

The variable metric method is selected as the opti-
mization method for the synthesis of the flexible link
mechanisms of this dissertation. The variable metric
method was originally developed by Davidon {76] and
improved by Fletcher and Powell [77]. The method re-
quires the first partial derivative of the objective
function. These derivatives (gradients) will be
impossible to express in a closed form for a flexible
link mechanism. Therefore, the gradients are approx-
imated by difference quotients according to Stewart's
technique [85].

The iteration procedure for converging to the
optimum design by the variable metric method is depicted
in the flow diagram of Figure 23. The major steps of
which are as follows:

A. The iteration starts with the initial value of

design variables, {d }.
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Figure 23. Flow Diagram of the Variable Metric Method
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At the minimum point the first partial deriva-
tive of the objective function will be zero and
the matrix of the second partial derivative will
be positive definite., This matrix is referred
to as the Hessian matrix. Proper estimation of
the Hessian matrix leads the method with rapid
convergence to the optimum point but its evalua-
tion is difficult for most of the problems. The
basis of the variable metric method is to re-
place the Hessian matrix by an approximate matrix
[Hq]. At the end of each iteration step, [Hq] is
improved which eventually leads to convergence
of the local Hessian matrix at the minimum point.
At the beginning of the iteration cycle [Hq] is

initialized to the identity matrix as:
[Hq] = [I] (48)

where [I] is the identity matrix.
The components gradients (the‘{Gq} of the objec-

tive function) at the initial point are evaluated

by:

F(d;+Ad;)-F(d;)

G. = (49)
i Adi

(i=1, ..., n)

where Adi is the given initial increment in di'
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The direction of line {Sq}, along which the

minimization will be searched, is set by:
= =~ G )
{Sq} [Hq] { q} (50)

The function F({d }T) is evaluated at three

q+l
points along the line whose equation is:

{d ..} = {dq} + a '{Sq} (51)

q+l q

where % is the increment along the line.

With the help of quadratic interpolation, aa is
determined at which the function F({dq}+a*{Sq})
will be minimum. A new minimum point, {dq+1} can

be evaluated from Equation (51) and aa.

Convergence of {dq+1} to {dq} is checked based

on the desired accuracy. If the test is satis-
factory, the iteration cycle terminates. If it
is not satisfactory, then [Hq] is improved and

the cycle is repeated until the convergence is

achieved.

Before computing [Hq+1], the gradients are

evaluated at the new point {d }. The gradient

q+l
components are computed from Equation (50) but

the increments in {d__ .}, {Ad__.}, are now

q+1
determined based on special techniques developed

q+1

by Stewart [87]. Stewart developed an algorithm
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which accounts for the accuracy to which a func-
tion is computed and the truncation error of the
machine. This algorithm was used for determining
the increment size which is very crucial for
accurate evaluation of the gradient components.

H. [Hq+1] is computed as follows:

[H, ] = [H] + ]+ [N (52)
where (s 11 }T
S S
M]=oao 99 (53)
q q {sq}T (R}

45T
. ) ([Hq]{Rgi)([Hq]{Rq}J
{Rq} [Hq] {Rq}

r—

2

tand
1)

(54)

and

Rg} = (64,4} - {6y} (55)

The cycle is repeated from step D.

The variable metric method has proven to be rapid in
convergence‘and it possesses good stability; stability in
the sense that it requires very little special attention
for the progress of the minimization procedure even for a
highly distorted and eccentric function. It is the most
general method for finding the local minimum of an objec-

tive function for an unconstrained minimization.
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The subroutine DMIN2 in Appendik A, is the program

for the flow diagram of Figure 23. The subroutine FX4BAR
is called whenever evaluation of the objective function

is required in DMIN2. The objective function (Equation
(45), (46) or (47)) is included in FX4BAR. The subroutine
INITPM performs the quadratic interpolation required in
step E.

In the next two chapters the variable metric method
will be applied to: (1) the design of a nonlinear spring
for a desired force vs. displacement relation, and (2) the
synthesis of a flexible 1link mechanism for a function

generation problem.



CHAPTER VI
OPTIMUM DESIGN OF
NONLINEAR SPRINGS

6.1 Design of Cantilever Beam

The analysis by the finite element method of a
cantilever beam subjected to large displacements was
demonstrated in Chapter 3. Now a cantilever beam will
be designed for a desired force vs. displacement rela-
tion by the optimization method. This problem was
selected fo check the accuracy and the convergence of the
variable metric method described in the previous chapter.

The design problem is to determine the length, L,
of the cantilever beam so that the force vs. displace-
ment relation is generated as close as possible to the
desired relation (function). A cross-sectional area of
0.5 inch width and 0.006 inch thickness, and an elastic
modulus of 30 x 10° psi for the beam are assumed to be
fixed parameters for this design.

As the accuracy of the optimization method is to be
checked, the desired function (force vs. displacement)
of Figure 24 was determined by the finite element method

for a 10 inch length of beam. The design by optimization

81
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method started with an initial value of 9 inches for the
length of the beam. If the variable metric method of
optimization converges the length of the beam to 10 inches
then this will demonstrate the accuracy of the optimiza-
tion method for one variable.

The variable metric method, as depicted in the flow
diagram of Figure 23, Chapter 5, is now applied to this
design of a cantilever beam. For each time the objec-
tive function is evaluated during the optimization pro-
cess, the analysis based on the finite element method is
performed. A total of 30 points 's' are selected at
equal increments of the input force for the analysis and
accumulation of error for the objective function. Also,
the analysis assumes 3 elements for the cantilever beam.

The optimization method started with an initial value
of 9 inches for the length L of the beam. The force vs.
displacement relation for this initial design is shown in
Figure 24 along with the desired function. The difference
between the two gives the error curve. The sum of the
absolute errors EA, was selected as the objective func-
tion for the optimization method. The results of the
optimization by the variable metric method is tabulated
in Table 2. Examination of this table indicates that at
the end of 3 iteration steps 'q', the length L of the

beam has converged from 9.0 to 9.9996 inches which is
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{d} {G} Objective Functions
j L E, Ey Eg
1 9.0000 22.0942 1.1524 0.8093
2 9.0010 -18.4396 22.0757 1.1514 0.8086
3 11.3964 35.1739 1.6931 1.2701
4 9.9245 1.7719 0.0895 0.0646
5 10.8491 20.8369 1.0220 0.7549
6 9.9255 -29.4604 1.7424 0.0883 0.0635
7 10.0448 1.0453 0.0528 0.0380
8 10.0002 0.0059 0.0005 0.0002
9 9.9993 0.1818 0.0090 0.0066
10 10.0093 0.2181 0.0114 0.0080
11 10.0012 21.4905 0.0274 0.0016 0.0010
12 9.9996 0.0043 0.0004 0.0002
13 9.9999 0.0059 0.0003 0.0003
14 9,9992 0.0155 0.0007 0.0006
15 9.9998 -20.0059 0.0020 0.0002

0.0001
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within 0.0004 inch of the correct value of 10 inches.
The method required 15 evaluations (j) of the objective
function which includes the evaluation required for the
gradients and for the quadratic interpolation. The
results of the quadratic interpolation are underlined
in Table 2. At this design point, the minimum of the
objective function is achieved along a line of search
for each iteration step.

The objective function EA reduced from 22.0942 to
0.0043 at the optimum design of 9.9996 inches length of
the beam. Table 2 includes the estimates of the other
two objective functions, EM, the maximum value of the
error, and ER, the root-mean square error which are
also minimized along with the objective function Ep-

From the results of Table 2 it can be concluded that
the optimization method of the variable metric is rapidly
converging and very accurate. The optimization method is
dependent on the analysis method, thus the accuracy of
the analysis can affect the progress of optimization.
This effect of accuracy is noticed during the 3rd itera-
tion step. The design variable L, length of the beam at
the 13th evaluation of the function (j) is 9.9999 inches
which is closer to the correct length of 10 inches than
the length of 9.9996 inches of the 12th evaluation of the
objective function. But, the objective function EA’ for

the 13th evaluation was estimated to be more than the
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12th evaluation which lead to 9.9996 inches as an opti-
mum length. This was investigated in detail and was con-
cluded that the present analysis by the finite element
method is accurate only to 4 digits in the length, L.
Beyond this the method breaks down due to the trunca-
tion error and this error was detected in the results.

The magnitudes of the gradients at each iteration
step are listed in Table 2. The gradients fluctuate
from negative to positive and the magnitude is increased
instead of decreased at the optimum point. This increase
~in the magnitude could be false because of the truncation
error. The fluctuation in the gradients is valid and the
true minimum can be achieved by continuing the optimiza-
tion beyond the 3rd iteration step. But the error in the
objective and the gradient functions can divert the search
away from the local minimum. Thus, the extra iteration
may not be worthwhile so the optimization method was term-
inated at the end of 3rd iteration.

A separéte design of a cantilever beam was also op-
timized by the variable metric method for the remaining
two objective functions, maximum value of the error Ey
and root-mean-square error ER. The results of these as
well as the first optimization at termination of 3 itera-
tion steps are tabulate& in Table 3, in which the opti-

mum designs are listed for each objective function with
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evaluation of the three objective functions at these
optimum designs. With one exception, the results indi-
cate that the minimum of the objective function is
achieved when that objective function is used for opti-
mization of the design. The exception is for the ob-
jective function ER’ where the minimum of ER was achieved
for the design with E,- Continuation of the optimization
with ER beyond 3 iteration steps would drive ER to its
minimum. The objective function EA’ will be the only

one used for the remaining part of the investigation.

TABLE 3
COMPARISON OF THE THREE OBJECTIVE FUNCTIONS

Optimization Optimum Objective Functions
With L
Objective E E E
Function A M R
EM 9.9988 0.0139 0.0002 0.0005
Ep '9.9992 0.0096 0.0005 0.0004
EA 9.9996 0.0043 0.0004 0.0002

In the next chapter, optimization by the variable
metric method will be applied to the synthesis of flexible

link mechanisms.



CHAPTER VII
OPTIMUM SYNTHESIS OF
FLEXIBLE LINK MECHANISMS

7.1 Synthesis for Function Generation, y=x?

Various types of flexible 1link mechanisms were
analyzed by the finite element method in Chapter 4.

The analysis determined the relationship between the
input and output link rotations. The optimization
method was demonstrated on the design of a cantilever
beam in a previous chapter. In this chapter, the method
is applied to the synthesis of flexible 1ink mechanisms
for a function generation problem.

A parabolic function, y=x?, will be generated by
flexible coupler and flexural joint mechanisms to demon-
strate the method. The independent variable x and de-
pendent variable y of the function can be related to input
6 and output ¢ rotations of linkage by the following

linear relations:

8 - es X - X

[
- = - (56)
ef es xf X

¢ - o ) Yy - Vg (57)
¢f - ‘Ps Y © Y
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where subscript 'f' stands for the final position of the
links and 's' stands for the initial position.

Major consideration for the synthesis of flexible
link mechanism will be to choose the angle of rotation
for the ranges of 6 and ¢. Also, the proportion of
the links should be selected so that during the range
of motion the flexible members do not deflect to their

extreme and produce a locking position for the mechanism.

7.2 Synthesis of a Flexible Coupler Mechanism

The flexible coupler mechanism of Figure 15 (Chapter
4) will be synthesized to generate y=x?, for 1 > x > 0.5,
The range of rotation for the input link (8) is limited
to 45 degrees and that of the output link (¢) to 67.5
degrees. The x and y coordinates can be related to 6 and
¢ by Equations (56) and (57).

A flexible coupler mechanism which has similar dimen-
sions to Freudenstein's [41] pin joint linkage (for func-
tion y=x2) was taken as the initial estimate to a solution
for this problem. The results of the analysis of the flex-
ible coupler mechanism and the Freudenstein's pin joint
linkage analysis are depicted in Figure 16 (Chapter 4),
which indicates that Freudenstein's linkage has a maximum
error of 0.0673 degree compared to 7.266 degrees for the

flexible linkage. Similarly, the sum of the absolute
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error (EA), at 15 points 's'" through the range of rota-
tion for the pin joint linkage is 0.998 and that for the
flexible coupler mechanism is 53.293. It is the objective
of the optimization method to reduce this error E, of
53.293 to an acceptable level.

As depicted in Figure 25, the flexible coupler
mechanism has seven possible design variables: 3 lengths
of the links d1’ d2,'and ds’ the initial position of the
input 1link 6, the thickness h and width b of the flexible
coupler and the length of the fixed link (distance between
the input and output shaft), d,. For the present synthesis,
only four design variables, d4,, d,, d,, and es, will be
considered. Before attempting optimization with the four
design variables, one variable at a time was studied for
the flexible coupler mechanism of Figure 15. From the
study it was discovered that és is the most effective
parameter. The decrease of the objective function E, as
a function of bg is depicted in Figure 26. The lowest
magnitude of Ep (4.564) occurs at es of 128.059 degrees.

The flexible coupler mechanism of Figure 15, with
this new value of 8, is now selected as the starting
design for the optimization by the variable metric method.
The results of the optimization method are tabulated in
Table 4. The objective function E,, sum of the absolute

error, was used for the optimization method. In 3 itera-
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TABLE 4

OPTIMUM SYNTHESIS OF A FLEXIBLE COUPLER MECHANISM

{d}
a j 4q, d, d, B i Gy E,
0
1 2.5234 3.3296 0.5560 128.059 4.5638
2 2.5224 3.3296 0.5560 128.059 1 -36.372 4.5274
3 2.5234 3.3286 0.5560 128,059 2 39,606 4.6034
4 2.5234 3.3296 0.5570 128.059 3 -107.754 4.6716
5 2.5234 3.3296 0.5560 128.065 4  40.936 4.5597
1
6 2.5028 3.3520 0.4952 129.382 30.8794
7 2.5207 3.3325 0.5481 128.229 4.9483
8 2.5244 3.3285 0.5589 127.995 4.9865
9 2.5229 3.3301 0.5545 128.091 4.5082
10 2.5219 3.3301 0.5545 128.091 1  36.661 4.4715
11 2.5229 3.3291 0.5545 128.091 2  -35.908 4.5441
12 2.5229 3.3301 0.5555 128.091 3 - 2.617 4.5056
, 13 2.5227 3.3301 0.5545 128.097 4 -101.746 4.4980
14 2.4913 3.3624 0.5187 131.918 23.0241
15 2.5154 3.3378 0.5460 128.995 5.3793
16 2.5255 3.3274 0.5575 127.771 5.0496
17 2.5215 3.3315 0.5530 128.251 4.2866
18 2.5538 3.3315 0.5530 128.251 1  43.461 5.6896
19 2.5215 3.3275 0.5530 128.251 2  -34.047 4.4233
20 2.5215 3.3315 0.5534 128.251 4.2997
21 2.5215 3.3315 0.5525 128.251 3  13.609 4.2870
22 2.5215 3.3315 0.5530 128.263 4.2757
23 2.5215 3.3315 0.5530 128.240 4 -51.140 4.2961
3
24 2.4010 3.4032 0.5464 129.150 15.1972
25 2.4950 3.3473 0.5515 128.449 3.3364
26 2.4924 3.3489 0.5514 128.469 3.2550
27 2.4871 3.3520 0.5511 128.508 3.0017
28 2.4764 3.3583 0.5505 128.587 2.2398
29 2.4552 3.3709 0.5494 128.745 1.2944
30 2.4398 3.3801 0.5485 128.860 3.3403
31 2.4612 3.3674 0.5497 128.701 1.2230
32 2.4623 3.3674 0.5497 128,701 1  12.455 1.2367
33 2.4612 3.3655 0.5497 128.701 2  -9.316 1.2407
34 2.4612 3.3674 0.5499 128.701 1.2149
35 2.4612 3.3674 0.5495 128.701 3  -41.500 1.2313
36 2.4612 3.3674 0.5497 128.707 4  -9.568 1.2220
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START 2.5234
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128.701 1.2230

Synthesis of a Flexible Coupler Mechanism
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tive steps 'q',. the value of the objective function Eys
was further reduced from 4.5638 to 1.2230., A total of
36 evaluations of the function 'j' was required for the
optimization method. The minimum objective function
achieved dufing each step is underlined in Table 4.

Thf;error (structural error) curves for the starting
design and the optimum design are depicted in Figure 27.
The error curve has a maximum of 0.1490 degrees of error

which amounts to 0.221% error of the output range.

7.3 Synthesis of a Flexible Coupler Mechanism from a

Different Starting Design

A second starting point was also investigated for
this type of linkage. The schematic diagram for the
linkage is shown in Figure 28. For this linkage, it is
desired to generate the function y=x?> for 0 < x < 1. The
range of rotation for the input link 6 was selected to be
60 degrees and for the output link ¢ to be 50 degrees.

The optimization method was also applied to the
linkage of Figure 28. Only the three lengths of links

d,, d,, and d, were selected as the design variables for

17?
the optimization. For the given three initial lengths of
links, the initial position of the input link g, was
determined so that the coupler would be in line with the

input link. This assures that the first derivative of the
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DESIGN:

d1 = 3,000" b=0.5" r—r
d. = 3.000"

ds = 3.000"

FOR WHICH

05 = 29.926° |

b=0.5"
h=0.150" —

Figure 28. Second Flexible Coupler Mechanism

TABLE 5
OPTIMUM SYNTHESIS OF A SECOND FLEXIBLE COUPLER MECHANISM

{d}

a
q a, d, a, 62 E,

0 3.0000 3.0000 3.0000 29,926 39.0028
1 2.8612 3.0567 3.1224 31.844 14.8834
2 2.5261 2.5754 3.0380 34,987 8.3910

Total Number of Evaluations (j) of EA = 17

a 6, was determined from: ‘
6. = cos ! .(d1+d2)2 * dé - dg}
s 2d (d,+d,) _
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function, y=x2, %§ will be zero or close to zero at
X=0.

The results of the optimization method are tabulated
in Table 5. Table 5 includes only the results of the
quadratic interpolation at which the objective function
is minimum during each iteration step. The optimization
method was terminated after 2 iteration steps during
which the objective function E,, sum of the absolute error
at 20 points (s) was reduced from 39.003 to 8.391., The
error curves for the starting and the optimum design
reached are depicted in Figure 29, which indicates E,
is reduced even though the maximum error is increased.

If the flexible coupler mechanism is limited to move 51
degrees for 6 (i.e. x = 0.85) the maximum error of 0.223
degree results and the sum of the absolute error, BA will
be 1.880 only. This is a reasonable design, unless the

motion in the neighborhood of x=1 is important.

7.4 Study of the Remaining Design Variables (dg, h and b)

of the Flexible Link Mechanism

The optimum design of the flexible coupler‘mechanism
of Figure 28 is selected as representative of flexible link
mechanisms to study the effect of the remaining design
variables.

Even for the case where the input rotation 6 was
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START 3.0000 3.0000 3.0000 39.0028
OPTIMUM 2.5261 2.5754 3.0380 8.3910

Figure 29. Synthesis of a Second Flexible Coupler
Mechanism
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limited to 51 degrees only, the bending stress 'op' in the
coupler near the output link reaches 410,773 psi, which
is very high, but can be reduced within the elastic limit
of the spring steel with help of the remaining parameters.

The flexible coupler mechanism selected for this
investigation was analyzed for increase and decrease in
length d0 of the fixed length and thickness h of the
flexible coupler. The results of this investigation are
depicted in Figure 30. For the variation in do’ it was
assumed that the increase or decrease in the size of the
linkage was in the same proportion as the length do' The
results indicate that the bending stresses decrease in the
same proportion as the increase in the length of the fixed
link do’ and the decrease in thickness h of the flexible
coupler. By decreasing the thickness h of the flexible
coupler by 5 times, it will reduce the bending stresses to
82,509 psi, which is within the elastic limit. The varia-
tion of the length d0 in Figure 30 was studied with a
thickness h of 0.001 inch.

It should be pointed out that for the magnitude of
variations of d0 and h as depicted in Figure 30, the func-
tional characteristic between 6 and ¢ was not altered
significantly. The maximum variation in the objective
function EA was from 1.880 to 2.118 only.

Obviously, the effect of the variation of width b

of the fleXible'coupler will be similar to the thickness h.
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Therefore, the study for the design variable 'b' was

omitted.

7.5 Synthesis of a Flexural Joint Mechanism

The synthesis of a flexural joint mechanism for a
function generation problem will now be attempted by
the optimization method. The flexural joint linkage as
shown in Figure 20 (Chapter 4) is analyzed by the finite
element method. A flexural joint linkage as depicted
in Figure 31 has two more design variables than a flex-
ible coupler mechanism. The extra two variables come
from the fact that besides the length of coupler d,,
the lengths of two flexural joints d, and d; are also
to be determined.

The starting design for the synthesis of the flexural
joint linkage was selected to be the same as the starting
design of the flexible coupler mechanism whose dimensions
are listed in Table 4 for j=1. When this linkage was
analyzed it was discovered that a bending stress of
406,448 psi was reached in the flexural joint near the
output link. From the conclusion of the previous section,
the linkage size was increased by 3 times which reduced
the stresses to 135,144 psi. This 3 times increased
linkage was the starting design for the optimization
method. From an independent study, it was determined

that if d, was selected as a design variable then, this



Figure 31.

b=0.050”
h=Q.020"

b=0.050"
h=0.400"

.

Design Variables for a Flexural

Joint Mechanism

TABLE 6

OPTIMUM SYNTHESIS OF A FLEXURAL JOINT MECHANISM

{d}
q d, d, d, d3 0 Ep
0 7.5701 3.4944 3.4944 1.6678 128.410 6.1339
1 7.5699 3.4945 3.4946 1.6672 128.371 6.0951‘
2 7.5671 3.4962 3.4965 1.6679 128.298 6.0803
3 3.4836 3.5559 3.5632 1.6508 128.578 4.0213
4 7.2283 3.2117 3.7850 1.5885 130.259 1.6293
5 7.2798 3.1856 3.9169 1.6099 130.117 1.2405
Total Number of Evaluations (j) of E, = 60

101
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would lead to an optimum design in which the length of
the rigid coupler d, would vanish to zero. Then this
would be a flexible coupler mechanism. To avoid the
repetition of the design, the length of the rigid coupler
d, was assumed to be constant at 3.0 inches during the
synthesis of the flexural joint linkage.

The results of the optimization by the variable
metric method for 5 design variables: d,, d,, d;, d; and
CIp is summarized in Table 6. In 5 iteration steps, the
objective function EA,(accumulated at 15 points 's') was
reduced from 6.1339 to 1.2405, for which a total of 60
evaluations (j) of the objective function was required.
One more design variable and slower convergence for the
first two steps are responsible for these many evalua-
tions of the function. The error curves for the starting
design and the optimum design are depicted in Figure 32.
For the optimum design, a maximum error of 0.3410 degree
(0.505%) resulted at the extreme of the input rotation.
The optimized flexural joint mechanism will generate
y=x? for 1 > x > 0.5 for which the range of rotation for
the input link (6) is 45 degrees and for the output (¢)

is 67.5 degrees.

7.6 Common Characteristics of the Results

The variable metric method of optimization produced

acceptable results for the synthesis of flexible link
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START 7.5701 3.4944 3.4944 1.6678 128.410 6.1339
OPTIMUM 7.2798 3.1856 3.9169 1.6099 130.177 1.2405

Figure 32. Synthesis of a Flexural Joint Mechanism
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mechanisms. This method is very powerful which, in these
cases, reduced the magnitude of the objective function
(error) by at least 3 or more within 3 iteration steps.
Some common characteristics of the results are as follows:

A. The number of points 's' at which the error E, is
accumulated can be more than the precision points
for the direct method. Thus the sum of the
absolute error EA, can uéually be driven to a
minimum value, but not to zero by the optimiza-
tion method.

B. The results of the optimization method indicate
that the sum of the absolute error Ep reaches
the magnitude in the neighborhood of 1.2 in two
out of three syntheses. It should be ekpected
that any design will reach a plateau of accept-
able design and no improvement beyond this is to
be expected

C. The external type of constraint was used during
the optimization method. At the beginning of
each evaluation of the function, the length of
the links were checked to test the viability of
the linkage. For a given set of 3 lengths of the
links, if the linkage could not be assembled, then
a large number was assigned to the objective

function EA and the method was continued.
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It can be noticed from Table 4 that after
determination of the gradient Gi’ the first
search point for the quadratic interpolation
(j=6, 14 and 24) falls far away resulting in
a large value for the objective function Ep
This leads to more evaluations of the function
for the quadratic interpolation. This was
common with the other two synthesis problems
too.

The (structural) error curve of the optimum
design in Figures (27), (29) and (32) shows
clearly that 3 true precision points resulted.
More investigation is required if control of
the number of true precision points on the

error curve is desired.



CHAPTER VIII
CONCLUSION

8.1 Discussion of the Results

In this investigation flexible link mechanisms were
analyzed by the finite element method and were synthesized
for a function generation problem by the optimization
method. From the results, the following conclusions and
recommendations have been reached.

The cantilever beam subjected to large deflections
was analyzed by the finite element method and the results
were within an acceptable degree of accuracy for engineer-
ing purposes. This method was also applied to the
analysis of various types of flexible 1link mechanisms
with one or two flexible members where the mechanisms were
displaced by a linear force or torque. These mechanisms
were synthesized to give minimum structural error for the
function generation problem by the variable metric method
of optimization.

The greatest advantage of the present analysis and
synthesis methods is that they are very general. Only the
four-bar flexible link mechanism was accounted for in this
investigation but a six link mechanism or any complek
mechanism with even multiple loads or deflections can be

106
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handled very easily by these methods. With only slight
modification of the finite element method, spatial
mechanisms can be analyzed or synthesized.

Besides the capabilities of the present method, an
added attraction to the designer is that all design
information concerning the flexible link mechanism such as
the driving torque, the bending stress, and (when extended
to cover dynamics) the buckling load, the natural fre-
quencies, etc. can be obtained from this one analysis,
which is essential for the completion of the design of the
mechanism. Also, the optimization method demands no knowl-
edge of kinematic synthesis and the design obtained will be
an optimum under the conditions specified by the designer.

Of the analysis and synthesis methods, the synthesis
method has proven to be more accurate. This was best
demonstrated by the cantilever beam design of Chapter 6.
The optimization method is capable of achieving\aCcurate
results but the finite element method imposes limits on it.

Inaccuracies in the finite element method arise from
two areas: (1) the formulation of the method and
(2) truncation errors. The truncation errors can be
improved by using double precision for the computation,
while the accuracy of the linear increment method can be
improved by including the higher order terms in Equation
(12) or reducing the unequilibrated force to zero. The

iteration at the end of each selected increment step can
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be performed to improve the force equilibrium. These
double precision and iteration procedures will increase
the computation time which should be justified only if
the accuracy is critical.

Inaccuracy also lies in modeling the flexible 1link
mechanisms as was discussed in Chapter 4. The large
difference in the thicknesses of the flexible link and
the rigid 1link near the fixed or flexural joint, presents
a problem in defining an accurate location of the nodal
point. The situation will be more critical if a joint
has a fillet at the corner or other design features. A
separate detailed investigation for study of joints
would be both desirable and significant.

The results of the flexible link mechanism when
compared with an "equivalent'" pin joint linkage indicated
that the flexible linkage performed in a similar manner
to the pin joint linkage. Thus the synthesis of the
flexible linkage was conducted with the dimensions of the
pin joint linkage which possesses minimum (structural)
error as the starting design. The optimization method
reduced the error of the flexible link mechanism to a level
comparable to that of a pin joint linkage. It was noted
during the synthesis that a different starting design may
lead to a different optimum design. This indicates that

the objective function E, has many minimum points in a
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close neighborhood. Depending upon the starting design,

a specific local minimum is achieved but the global
minimum is unlikely to be achieved. It might be advisable
to investigate more than one starting point, in order to
find possibly better optima. From a theoretical stand-
point, the question of the global minimum is unanswered,
but from a practical point of view, it is not relevant.

A minimum is achieved and optimum design is obtained
without a cut and try approach which is very time con-

suming for the designer.

8.2 Possibilities for Future Research

The present investigation can be extended in two
areas: analysis and synthesis. First, the analysis by
the finite element method can be extended to include the
compressive load on the links of the flexible 1link
mechanism. Also, the method should be able to predict
the post buckling behaviour.

A very valuable investigation would be to analyze a
flexible 1link mechanism subjected to large deflections
under dynamic loading. Also, information on the natural
frequency would be useful for the application of such a
linkage in a vibrational environment.

During the optimization procedure, the analysis was

performed many times. An eccnomy in computation time
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could be gained by an efficient optimization method but
a greater saving can be attained by a faster analysis
method. The doors are thus still open to originate a
simpler and faster analysis method for the analysis of
the flexible link mechanisms.

A very practical extension of the optimization
method would be to include design constraints such as
limitations on the length of links, locations of the
input and output shafts, and limitation on stresses for
the synthesis of flexible link mechanisms.

The finite element method for the analysis and the
optimization method for the synthesis of flexible link
mechanisms are very general in their formulation, thus
they hold great promise for a completely automated

computer aided design.
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THE FOLLOWING IS THE LISTING OF THE COMPUTER
PROGRAM FOR THE SYNTHESIS OF THE FLEXIBLE
LINK MECHANISMe

MAIN PROGRAM

EXTERNAL FX4BAR

COMMON /SYN/NEVAL» MEVAL .
DIMENSION XL(5)» DRV(S)s EPS(5)
NIT = {0

IW » 3

FO. = Qe

N=s§

ETA = 1¢E=04

DRV(1) s =0.001

DRV(2) = =0.001
DRV(3) = 0.001
DRV(4) = 0001
DRV(5) = 0001
EPS(1) = 0.001
EPS(2) = 04001
EPS(3) = 04001
EPS(4) = 0.001
EPS(5) = 00001
ISTART =
NEVAL = O
MEVAL = 37

CALL DMIN2 (XL»ERSUMs» N» FO» EPSs DRV,
1 FX4BAR» ETAs NIT» IWs IC)
PRINT 1011, ICs ERSUMs» (XL(I)sIs1,5)

1011 FORMAT (1X» I3» 5Xs 6132 6X» 4E1646)

END
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THE SUBROUTINE DMIN2 1S FOR UNCONSTRAINED
MINIMIZATION OF A FUNCTION.

DMIN2 1S BASED ON THE VARIABLE METRIC
METHOD OF FLETCHER AND POWELL o WHERE THE
GRADIENTS ARE EVALUATED ACCORDING TO AN
ALGORITHM BY STEWART.

SUBROUTINE DMIN2(X0sFOsNNsFMIN,EPS,DRVS

1 EVALJETALNLINSWRITE,CONY)

DIMENSION X0(20),EPS(20)sDRV(20)2H(20220)»
1 X(20)2G(20)sG1(20)»Y(20)2»

2 DEL(20)sC(20)sE(4)sEE(4)sF(4)

LOGICAL IDENT
INTEGER CONV,WRITE,COUNT

INITIALIZE THE PROGRAM

EM= «1E=10
FM a FMIN
N = NN
ILIN = O
COUNT = 1
LOWEST = 1
E(L1) = 1.
CALL EVAL(X0sFO)
IF(WRITE«GT«0) PRINT 2000s FO2(XO(I)aI=1sN)
IF(WRITE«GTe2) PRINT 2007
DO 10 IsisN
X(I) s XO(I)
XO(I) = X(I) + DRvV(I)
CALL EVAL(X0,FG)
COUNT = COUNT + 1
IF(WRITE«GTe2) PRINT 2001, FGsr(X0(J)adJd=laN)
IF(FGeNE«FQ) GO TO 7
DRV(I) s 2¢4DRV(])
GO TO.5
G(]) = (FG = FO)/DRV(I)
X0(l) = X(I)

SET H EQUAL TO THE IDENTITY MATRIX

IDENT = oTRUE

DO 30 Is1,N

DD 25 JsisN

H(IsJ) = O

H(Ial) = 1o

C(I) s 1

IF{WRITE«GT«0) PRINT 2002, (G(l)2leisN)
IF{WRITE«GT+«0) PRINT 2003s (C(1)s1=1sN)

SET UP FOR A MINIMIZATION ALONG A LINE
D ; Qe
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EP u 1o 114
EQei.
DO 60 Isi,N
DEL(1) = O
00 85 JsisN
85 DEL(I) » DEL(I) = H(lsJ)=G(J)
IFC¢DEL(I)+EQeO¢) GO TO 60
EP = AMIN1(EP,ABS(EPS(I)/DEL(I1)))
EQs AMINI(EQs1+E=7#ABS(XO(I)/DEL(I1)))
D oD + G(l1)#DEL(I)
60 CONTINUE
EP = «05#EP
IF(DsLTe0e) GO TO 70
IF(eNQT«IDENT) GO TO 20
CONV s 2
GO TO 500
70 IF(FOesLE«FM) FM = =1+E20
E(2) o AMIN1(1e¢s2e%(FM=F0)/D)
E(2)s AMAX1(E(2),EQ)

100 IF(WRITE«GTe0) PRINT 2004» EPs(DEL(I)s»l=1sN)
IF(WRITEeGT«0) PRINT 2005, FOs(XO0(I)s1=1sN)
F(1) = FO
E(1) = Oe
KKK = 0O

103 DO 105 I=i,N

105 X(I) = XO(Il) + E(2)=DEL(I)

CALL EVAL(XsF(2))

COUNT s COUNT + 1

IF(WRITE«GTe1) PRINT 2001» F(2)sE(2)
IF(F(2)*NEeF (1)) GO TO 107

E(2) = 2¢#E(2)

GO TO 103

107 ED = «S54DwE(2) %22/ (DRE(2)+(F(1)=F(2)))
IF(EDeLEeQe) ED = 2exE(2)

IF (ED o¢LTe 0¢001%E(2)) ED = 0+0014E(2)
IF(F(2)sLTeF(1)) GO TO 120
E(2) = ED
KKK s KKK + 1
IF(KKKeLTe2) GO TO 103
F(2) s FO
F(3) F(2)
E(3) E(2)
E(2) O
E(1) =E(3)
DO 110 Isi,N
110 X(I) = XO(I) + E(1)«DEL(])
CALL EVAL(XsF (1))
COUNT = COUNT + 1
IF(WRITE«GT+2) PRINT 2001, F(1)»E(1)
GO TO 150

120 LOWEST = 2
IF(EDeGTe3exE(2)) ED = 3exE(2)
IF(ABS(E(2)=ED)oLT+EP) ED = E(2) + 1e1xEP
IF( ABS(E(2)=ED)eLTee03%ABS(E(2))) ED = 1e1#E(2)
DO 130 I=1,N



130 X(I) = XO(I) + ED#DEL(I) 115
IF(EDeGTeE(2)) GO TO 140
E(3) = E(2)
E(2) = ED
F(3) s F(2)
CALL EVAL(XsF(2))
COUNT = COUNT + 1
IF(WRITEeGTe1) PRINT 2001, F(2)sE(2)
GO TO 150
140 E(3) s ED
CALL EVAL(XsF(3))
COUNT = COUNT + 1
IF(WRITE«GTe1) PRINT 2001, F(3),E(3)
150 CALL INITPM(EsFsEE,A0)
160 LOWEST = 1
DO 165 1=2,3
IF(F(I)eLTeF(LOWEST)) LOWEST = 1
165 CONTINUE
IE = 2¢ + SIGN(1esEE(2))
IF(AeEQeOe) JE= 2o + SIGN(1esF(1)=F(2))
IF(AeL.TeOe) IE= 4=]E
IF(AeLEoQe «0ORe ABS(EE(2))eGTeABS(3e#EE(IE)))
1 EE(2) = 3esEE(IE)
EEE = E(2) + EE(2)
IF(ABS(EEE=E(LOWEST))+LT«EP) GO TO 250
IF(ABS(EEE=E(LOWEST))+LTe«e034ABS(E(LOWEST)))
1 GO TO 250
IF(EE(IE) o LTeEE(2)) IE 2 IE + 1
IF(IE«EQe4) GO TO 180
DO 170 LL=IE,3
L = 3=LL+IE
E(L+1) = E(L)
170 F(L+1) = F(L)
180 E(IE) = EEE
DO 1390 I=1,N
190 X(I) = XO(1) + EEE#DEL(I)
CALL EVAL(Xs.F(IE}))
COUNT s COUNT + 1
IF(WRITE«GTe1) PRINT 2001, F(IE)LE(IE)
IF(IE«EQel) GO TO 150
KKK = 1
IF(IEEQe4) GO TO 220
IF(F(1)eGTeF(4)) GO TO 200
CALL INITPM(E»F2EE,A,0)
IF(E(2)+EE(2)eLTeE(4) oANDe AeGTeQe) GO TO 160
GO TO 210
200 KKK = 2
CALL INITPM(EsFrEEsA»1)
IF(E(3)+EE(2) *GTeE(1) «ANDe AeGTeQe) GO TO 220
210 KKK = 1
IF(F(2)eLTeF(1) oANDe F(2)eLEeF(3) «0ORe
i F(2)sLEeF (1) oANDe F(2)eLTeF(3)) GO TO 150
220 D0 230 I=1.3
E(I) = E(1l+1)
230 F(I) s F(I+1)
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GO TO (150,160)2KKK
END OF MINIMIZATION ALONG DEL

IF(WRITE«GT«0) PRINT 20055 F(LOWEST)sE(LOWEST)

IF(WRITE«GTe0) PRINT 2006» COUNT
IF THERE WAS NO MOTIONs RETURN.

CONYy = 3
GO TO 500

IF THE FUNCTION VALUE WAS NOT CHANGEDs RETURNe.

IF(F(LOWEST)sNE«FO) GO TO 270
CONV = 4
GO TO 500

TEST FOR CONVERGENCE

FO = F(LOWEST)

CONV s 1

ETEST =« AMAX1(1¢sABS(E(LOWEST)))
DO 280 I=si,N
IF(ABS(ETEST*DEL(I))eGT+ABS(EPS(I))) CONYy = 0
DEL(I) = E(LOWEST)«DEL(I)
X0(I) = XO(I) + DEL(D)
Gi(Il) = G(I)
IF(CONVeEQe1) GO TO 500

IF THERE HAVE BEEN TOO MANY MINIMIZATIONS
ALONG A LINE, RETURNe

ILIN « ILIN + 1
CONV ¢ 5
IF(ILINeGESNLIN) GO TO 500

CALCULATE A NEW GRADIENT

IF(WRITE«GT+2) FRINT 2007

DO 300 I=1,N

X(I) s X0(I)

IF(FO*EQeQe) GO TO 285

IF(IDENT) GO TO 285

IF(G(1)*EQeOes) GO TO 285

ETAM s AMAX1(ETA»ABS(1¢E=8#G(1)#X0(I1)/F0))
IF(G(1)%%2eGTeC(I)#ABS(FO)#ETAM) GO TO 282
DRV(I) = 2¢4(ABS(FO)#ABS(G(I))#ETAM/C(I)=u2)
1##¢33333333

DRV(I) = DRV(I)#(1e = ABS(G(I))/(1e5xC([)»
1DRV(I) + 2e4ABS(G(]1))))

GO TO 283

DRV(I) = 2¢#SQRT(ETAM*ABS(F0)/C(I))

DRV(I) = DRV(I)#(1e=C(I)#DRV(1)/(3e%C(])#»
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285

290
295

300

310

320
330

I1DRV(1)+4e#ABS(G(]1)))) 117

DRY(I) s SIGN(DRV(I)»G(I))
IF(+S#ABS(C(I)#DRV(I)/G(I)) «GTe ¢01) GO TO 295
X0¢I) = X(1) + DRV(I)

CALL EVAL(X0sFG)

COUNT s COUNT + 1

IF(FGeNEFO) GO TO 290

IF(WRITE«GT«2) PRINT 20012 FGa(XO0(J)aJzlsN)
DRV(I) s 2¢#DRV(1)

GO TO 285

G(I) =« (FG = FO)/DRV(D)

GO TO 300

DRY(I) = 100«#ABS(FO#ETAM/G(I]))

DRV(1I) = ABS(G(I)) + SORT(G(I)#%2 + 200+»
1ABS(FO)»C(1)%ETAM)

DRV(I) = 100+#ABS(FO)*ETAM/DRV(I])

XO0(I) = X(1) + DRV(I)

CALL EVAL(XO0sFP)

COUNT = COUNT + 1

IF(WRITE+GTe2) PRINT 2001, FPs(X0(J)sJ=lsN)
X0(1l) = X(1) = DRV(I)

CALL EVAL(XO0,FMI)

COUNT = COUNT + 1

IF(WRITE«GTe2) PRINT 2001, FMI»(XO(J)aJ=1sN)
G(I) = oS#*(FP=FMI)/DRV(])

X0(I) = X(I)

IF THE MINIMUM WAS FOUND ALONG =DEL»
GO SET H EQUAL TO C INVERSE

IF(EC(LOWEST)eLTeCe) GO TO 20
MODIFY H AND GO BACK FOR ANOTHER ITERATION

IDENT = «FALSE.

A a Qe

DO 310 IslsN

Y(I) s G(I) - G1(I)

Az A+ YCD*DEL(I)

IF(WRITE«GT«0) PRINT 2002s» (G(I)slxlasN)
AA = A/E(LOWEST)

Cl a 1e/A =~ D/AA%%2

C2 = 2e¢/AA

B s Qo

DO 330 [=1,N

C(I) = C(I) + Cl#y(l)#*%x2 + C2#Y(I1)#G1i(I)
X(1) 3 O

DO 320 J=slsN

X(I) = X(1) + H(I»J)xY (D)

B s B = X(I)»Y(])

IF(WRITE«GT«0) PRINT 20032 (C(I)sl=l1sN)
DO 340 IsisN

IF(C(I)esLEeQe) GO TO 20

DO 340 J=I»N

H{lsJ) = H(IsJd) « DEL(I)#DEL(J)/ZA + X(I)#X(J)/B
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340

500

2000
2001
2002
2003
2004
2005
2006
2007
3000
3010
3011

H(Js 1) = H(I,J)

PRINT 2002s ((H(I2J)s Jel12sN)s 131sN)
PRINT 2005, FO» (XO(I)s Is1sN)

PRINT 2007

GO TO 50

RETURN
IF(WRITE+GT«0) PRINT 2005, FOs(X0(I)sIs1sN)

IF(WRITE«GTe0) PRINT 2006» CONYV
RETURN

118

FORMAT(3H1 #1PE15e7,2X26E15¢7/(3H 17X26E1547))
FORMAT(3H #1PE15e7,2X06E157/(3H 17X26E157))

FORMAT(3HO G17X»1P6E15¢7/(3H 17Xs6E15¢7))
FORMAT(3H C17X»1P6E15¢7/(3H 17X26E15¢7))

FORMAT(3H D1PE15¢722Xs6E157/(3H 17X26E157))
FORMAT(3H F1PE15e7,2X26E15¢7/(3H 17X06E15¢7))

FORMAT(1H 15)
FORMAT(1H )
FORMAT (5E15.7)
FORMAT (13)
FORMAT (1X» 13)
END

SUBROUTINE INITPM(EsFs,EEsA,I])

THE SUBROUTINE INITPM IS FOR THE QUADRATIC
INTERPOLATION

DIMENSION E(1)sF(1)sEE(1)
EE(1) = E(I+1) = E(I+2)
EE(3) = E(I+3) = E(I+2)
DF1 = EE(1)#(F(I+3) = F(1+2))
DF3 = EE(3)#(F(I+1) = F(1+2))
EE(2) = «5#(EE(1)#DF1-EE(3)%DF3)/(DF1-DF3)
Az (DF3*DF1)#SIGN(1+sEE(1))#SIGN(1sEE(3))#

1 SIGN(1«,EE(1)-EE(3))

RETURN
END



cCOoOOOO0n

119
THE SUBROUTINE FX4BAR IS FOR THE ANALYSIS
OF A FLEXIBLE LINK MECHANISM SUBJECTED TO
LARGE(NONLINEAR) STATIC DEFLECTIONS.
THE ANALYSIS IS BY THE FINITE ELEMENT METHOD
WITH LINEAR INCREMENTAL PROCEDURE

SUBROUTINE FX4BAR (XL» ERSUM)

COMMON /SYN/ NEVAL, MEVAL

COMMON KB(6,15)» EL(15)» EAL(15)s AF(15)s
1PT(2,15)» EKT(6+90)» BST(15), AST(15).
2EB(15)» EH(15)s ALK(3)s TLK(3)s LLK(10),»
3EALD(15)» DR(48B)Y» DP(48)s LV(48)s MV(48),
4SK(20020)2s ADG(48)s EK(696)sET(66)sRK(626)2
SRT(62,6)» TR(626)s EF(6)s TE(6)s DEL(S)
DIMENSION SK11(19»,19)» SK12(19)» TRF(19)
DIMENSION XL(1)

EQUIVALENCE (SksSK11)

1001 FORMAT (39H1LARGE DEFLECTION BY LINEAR INCREMENTAL
140H PROCEDURE = FLEXIBLE FOUR=BAR LINKAGE
277+ 11H INPUT DATA/)

1002 FORMAT (4H LNE 12X 4H KB 18X 4H EL 12X
14H EB 12X 4H EH /)

1003 FORMAT ( 9HIOUTPUT =//5H STEP 18X 4HTH2 12X
14HTHS 12X 4HT2 12X
240HX AND Y COORDINATES OF THE NODAL POINTS //)

1010 FORMAT (12,8X%X2613s2X23F158)

1011 FORMAT (iXs I35 SXs 6132 6Xo 4E1646)

1020 FORMAT (5F15+5)

1021 FORMAT (1Xs 6E1646)

1031 FORMAT (1Xs 13, 13Xs 6E16¢6/(17X06E1666))

1032 FORMAT (1X» 13, 13Xs 6116 /(17Xs 6116))

1040 FORMAT (10A1)

1041 FORMAT (1X, 10A1)

1050 FORMAT (//)

1052 FORMAT (/)

1060 FORMAT (12, 8xs» 1013)

1061 FORMAT (1X» 13, 5Xx» 1013)

PI = 3¢141592654%

DTR = Pl/180»

RTD = 1+/DTR

PRINT 1001

IF (NEVAL «GTe 0) GO TO 22

PRINT 1050

READ AND PRINT INPUT DATA

READ 1010, NE

PRINT 1011, NE

READ 1010, JEs» NSs NLD» NSTs NMPs, NKDs» NPS
PRINT 1011, JE,» NS, NLDs» NST, NMP» NKDs NPS
READ 1020, A1,TH4AD» TH2SDs» THMD» THIDs E
PRINT 1021, A1,TH4ADs» TH2SDs» THMD» THIDs E
READ 1020» XS» XFa» YS» YFs DTHDs DPHID
PRINT 1021, XS» XFs YS» YFs DTHDs DPHID
READ 1060, JEs» (LLK(I1)» 1s1,10)



10

20
21

a2

PRINT 1061, JE» (LLK(I)2 I121,10) 120
DX = XF = XS

DY = YF ~ ¥S

PRINT 1002

DO 10 J = 31, NE

READ 1010, JUE,» (KB(I» JUE)» I = 1,6)

1EL(JE)» EB(JUE)s EH(JE)

PRINT 1011, JE, (KB(l» JE)s» I = 1,6),

1EL(JE)s EB(JE)» EH(JE)

CONTINUE

PRINT 1050

‘NSMK = NS « NKD
NSMB =2 NS = NKD + 1
NSM1 s NS - 1

NSM2 = NS » 2

NDSX = Q

NDSY = O

TH4A » TH4AD#DTR
TH2S s TH2SD«DTR

DO 21 Il = 1,85

J e Il ¢« J1 « 1

K s LLK(J)

L = LLK(J+1)

XL(II) = Qo

DO 201 = Ks» L

XL(ID) = XL(ITI) + EL(D)
CONTINUE

ALK(1) = XL(1)

ALK(2) = XL(2) + XL(3) + XL(&)
ALK(3) = XL(5)

CELS s XL(3)

XL(3) = XL(4%)

XL(4) = XL(5)

XL(5) = THZ2S

A2 = ALK(1)

A3 = ALK(2)

Ah = ALK(3)

NEVAL = NEVAL + 1

IF (NEVAL «GTe MEVAL) STOP
1ZPLOT = O

IPIC = O

INPS »

SQSUM & Qe

ERSUM s Qo

ERMAX = O

BSTMAX = Qe

ASTMAX = Oe

BSTEX = Qe

A2 = XL(1)

A3 » XL(2) + CEL% + XL(3)
Ab = XL(4%)

TH2S s XL(S)

AAS = TH2S -

IF (AAS +GTe PI) AAS = Pl + Pl = TH2S
AS w SQRT (AixAl + A2#AZ2 = Z2e8A18A24COS(AAD))



a3
523

24

IF (A3 «GTe ABS(AS =~ A4)) GO TO 23 121
GO TO 523

IF (AF oLTe (AS + A4)) GO TO 24

ERSUM = 10¢E 10

PRINT 1021, A5

GO TO 410

CONT INUE

IFL.s O

. CALL A4BAR (A1, A2, A3, Ak, TH2S» TH3» TH&4,

es

26
27

528

a8

a9
30

32

1002 VA32 VA4, Qo2 AA32 AAN, TH4A, IFL)
TLK(1) s TH2S

TLK(2) = TH3

TLK(3) = TH4 + P!

I = 0

IK = 0 .

00, 30 Il = 1, 5

Je Il + 11 =1

K e LLK(J)

Ls CLK(J+1)

VNE s L = K ¢+ 1

IF (11 «EQe 3) G0 TO 26

s lU + 1

SL = XL(1J)/VNE

GO TO 27 -

SL = CEL%

IF (Il ¢EQe 3 «0ORe Il oEQe 4) GO TO 528
IK = JK + 1

DELX = COS(TLK(IK))

DELY s SIN(TLK(IK))

DO 29 I = K» L

EL¢I) = SL

EALCI) . = TLK(IK)

EALD(I) = EAL(I)#RTD

IF (1 «EQes 1) GO TO 28

PT(1, 1) o PT(1, I=1) ¢ EL(I)#DELX
PT(2s 1) s PT(2s 1) + EL{(I)#DELY

G0 TO 29 v

PT(1, I) EL(I)«DELX

PT(2s 1) EL(I)#DELY

CONT INUE

CONT INUE

DO 32 JU s 1, NE

AF(J) = O+

BST(J) = 0o

AST(J) = Do

PRINT 1011, NS, NSMKs NDSXs NDSY» NSM1» NSMB
TH3D s TH3#RTD

TH&D s TH4##RTD

TH2SD = TH2S#RTD

PHISD .= TH&4D

THSD s TH2SD :
PRINT 1021» A2, A3, A4s TH3D» THAD, (EALD(1).
11 = 1sNE)s (PT(151)s PT(221)2 ! s 4sNE)
PRINT 1021, (XL(1)» Is1,5)s (EL(1)»

1] o 1oNE)s PHISDs THSDs AS
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PRINT 1003 122
DO 35 1 = 1, NS
DR(I) = Os
DP(1) = O
35 ADQ(I) = 0o
ISTEP = O
FIX = Qo
FIY = Qo
FIM = Qo
DSXC = Oe
DSYC s Qe
DELM s 10
DELMC = 125
IPHASE = 1
IFD = 1
DQ(NLD) = THID#DTR
ND = NKD
MD = NS =« ND
TI = TH2S
TO = TH#4
I1SW = 1717
STIFFNESS (EK) AND INITIAL STRESS (ET) MATRICES
FOR INDIVIDUAL BEAM ELEMENT AND FORMATION
OF SYSTEM STIFFNESS MATRIX =SK
41 N = O
ISTEP = ISTEP + 1
IF (DSXC «GEe THMD) GO TO 400
43 DO 44 1 = 1, NS
DO 44 J = 1, NS
44 SK(1sJ) s Qo
DO 130 LNE = 1, NE
CALL TRETS (TRs EAL(LNE))
CALL BEMREK (EB(LNE)s EH(LNE)» EL(LNE)sE » EK)
CALL BEMRET (EL(LNE)s» AF(LNE)Ys ET)
115 pO 120 I = 1, 6
DO 120 J = 1, 6
JJd = N +
120 EKT(1,JJ) = EK(Isd) + ET(I2J)
N s N2+ 6
CALL BTAB (EKs TRs RK2 6» 6)
CALL BTAB (ETs TRs» RTs 65 6)
DO 125 K = 1, 6
IF (KB(Ks LNE) «EQe 0) GO TO 125
121 I s KB(KsLNE)
DO 124 L = 1, 6
IF (KB(Ls» LNE) «EQe Q) GO TO 124
123 J = KB{(LsLNE)
SK(I»d) = SK(IsJ) + RK(KsL) + RT(KsL)
124 CONTINUE
125 CONTINUE
130 CONTINUE
CALCULATIONS FOR THE NODAL FORCES AND
REMAINING NODAL DISPLACEMENTS
CALL FORDIS (SK» SK11» SK12s» SK22» TRKs TRF.
1 LV, MV, NS, ND» MDs ISWs DQ@s DPs» IFDs DETR)



150 DO 160 l=1,NS 123
160 ADQ(I) = ADG(I) + OQ(I)

PRINT 1031, ISTEPs» (DQ(I)» I=1sNS)s (ADQ(I) »

1 Is1,NS)» DETRs DP(NLD)» TRK

CALCULATIONS FOR DISPLACEMENTS AND FORCES

FOR THE BEAM ELEMENTS

LsO

N =1

DO 300 LNE = 1, NE

D0 250 I = 1, 6

IF (KB(1ls LNE) «EQe 0) GO TO 220

J = KB(I,» LNE)

TE(I) = DR(J)

GO TO 250
220 TE(I) = O
250 CONTINUE

B = EB(LNE)

H = EH(LNE)

CALL TRETS (TR, EAL(LNE))

CALL MPLY (TR» TEs» DELs 62 6, 1)

CALL MPLY (EKT(1sN)s DEL» EFs 64 65 1)

AF(LNE) = AF(LNE) + EF(6)

N = N+ 6

IF (LNE oNEe 2) GO TCO 253

BSTEX = BSTEX + 6e#EF(2)/(B*H#H)

IF (ABS(BSTMAX) oLTe ABS(BSTEX)) BSTMAX = BSTEX
253 CONTINUE

BST(LNE) = BST(LNE) + 6e%EF(4)/(BaH#H)

AST(LNE) = AST(LNE) + EF(6)/(BsH)

IF (ABS(BSTMAX) oLTe ABS(BST(LNE))) BSTMAX =

1 BST(LNE)

IF (ABS(ASTMAX) oLTe ABS(AST(LNE))) ASTMAX =
1 AST(LNE)

SLOPE AND LENGTH OF THE BEAM ELEMENTS

1 = LNE

IF (1 «GEe NE) GO TO 255
PT(1, 1) = PT(1s 1) + DG(L+1)
PT(2s» 1) s PT(2, 1) + DG(L+2)
LsL + 3
255 IF (1 «GTe 1) GO TO 260
DELX s PT(1,1)
DELY s PT(2,1)
GO TO 265
260 DELX s PT(1, 1) = PT(1,» I-1)
DELY = PT(2s I) = PT(2s 1=1)
265 CONTINUE
DELEL = DEL(6) = DEL(5)
EL(¢I) = EL(I) + DELEL
EAL(I) = ATAN2 (DELY» DELX)
ALD = EAL(I1)*RTD
300 CONTINUE
FIX = FIX + DP(NLD)
DSXC s DSXC + DGQ(NLD)#RTD
DSYC = DSYC + DO(NMP)#RTD
TI = T1 + DQ(NLD)
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TO = TO + DQ(NMP)

TID s T1 *RTD

TOD = TO #RTD

PRINT 1031, ISTEP» DSXC» DSYCs» TID» TOD,
1 FIXs FIYs FIMs
2(PT(1s1)s PT(2» 1)s I = 15 NE)sBSTMAX»ASTMAX
THD = TID

PHID = TOD

X u XS ¢+ (THD = THSD)/DTHD#DX

Y 3 X#X

PHIDD s PHISD + (Y =YS)/DY«DPHID

ERR = PHIDD = PHID

AERR s ABS(ERR)

ERSUM s ERSUM + AERR

SQSUM = SQSUM + ERR#ERR

IF (ERMAX «LTe AERR) ERMAX = AERR

PRINT 1031, ISTEP» THDs PHIDs Xs Ys PHIDD.
1 ERR» ERSUMs ERMAX, SQSUM

PRINT 1050

GO TO 41

400 CONTINUE
410 SSTEP = ISTEP = 1

ERRMS = SQRT(SQSUM/SSTEP)

PRINT 1031, NEVALs (XL(I)s 1e1,5), ERSUM,
1 ERMAX» SQSUMs» ERRMS

RETURN

END
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135
138

140

148

160
170

180

SUBROUTINE FORDIS (SKs SFA» SFBs SFCe RK»
1 TRFs LVs» MVs NS, NDs MDs» ISWs Qs Ps» IFL:s DETR)

THE SUBROUTINE FORDIS IS FOR THE SOLUTION
OF EQUATION, P = (K)#Q » FOR FORCE OR
DISPLACEMENT INPUT.

DIMENSION SK(NSsNS)» SFA(MDsMD)» SFB(MDsND)»
1 SFC(NDsND)» RK(NDsND)» TRF(MDsND)

DIMENSION Q(1)s» P(1)s LV(1)s MV(1)s ISW(1)
NB s NS =ND + 1 ,

DO 100 I = 1, ND

K = ISW(l)/100

L s ISW(I) = K#i100

IF (K «EQe L) GO TO 100

CALL SWAP (SK» NS» NS» Ks L)

TEMP = Q(K)

Q(K) QL)

o(L) TEMP

TEMP P(K)

P(K) P(L)

P(L) = TEMP

CONTINUE
DO 138 J
L = MD +
DO 135 1
K = MD +
SFC(1,J)
DO 138
SFB(I.J)
DO 140 U
DO 140 1 1, MD

SFA(I.)) SK(1,J)

CALL MATINV (SFA» MDs DETRs LVs MV)

CALL MPLY (SFA, SFBs» TRF» MDs» MD»s ND)
CALL BTAB (SFA, SFBs» RKs MDs ND)

DO 148 I = 1, ND

DO 148 J = 1, ND

RK(I1sJ) = SFC(I,J) =~ RK(I»J)

IF (IFL «GTe 0) GO TO 160

RK(121) = 1¢/RK(121)

CALL MPLY (RKs P(NB)2» Q(NB)» ND» ND» 1)
GO TO 170

CALL MPLY (RKs G(NB)s P(NB)2» ND» NDs 1)
CALL MPLY (TRF» Q(NB)» Q» MD» ND2 1)

DO 180 I = 1,MD

G(I) s =Q(I)

DO 300 I = 1, NC

K s ISW(I)/100

L = ISW(I) =~ K#100

IF (K ¢ EQe L) GO TO 300

TEMP & Q(K)

Q(K) = Q(L)

Q(L) = TEMP

1» ND
1, ND

SK(KsL)
1» MD
SK(I»,L)
1,MD

® % B N8B n

125
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TEMP = P(K)

P(K) s P(L)

P(L) s TEMP
300 CONTINUE

RETURN

END



e XsXaXalislaXsln

10

20

127

SUBROUTINE BEMREK(BsHsELSE,EK)

ELASTIC STIFFNESS MATRIX OF A BEAM ELEMENT
B = WIDTH OF BEAM CROSS SECTION

H = HEIGHT OF BEAM CROSS SECTION

EL = LENGTH OF BEAM ELEMENT

E = MODULUS OF ELASTICITY

EK = OUTPUT STIFFNESS MATRIX OF ORDER (6s6)

DIMENSION EK(6s6)
CFeEnBeHeH®H/ (6 ¢0%*EL)
EK(121)6+08CF/(EL®EL)
EK(2s1)= 3¢QuCF/EL
EK(321)8=6¢04CF/(EL#EL)
EK(421)s 3¢0#CF/EL
EK(222)82+04CF
EK(3+2)3=3¢0#CF/EL
EK(4s2)sCF
Ek(323)=6004CF/ (EL*EL)
EK(%23)a=3e04CF/EL
EK(4s4)82e0uCF
EK(525)=E#BsH/EL
EK(645)s=ExBaH/EL
EK(626)sE«BaH/EL

DO 10 [=5,6

DO 10 J=1,4
EK(1,J)=0e0

DC 20 Isls6

DO 20 J=ls6
EK(IsJ)sEK(J2 1)

RETURN

END
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SUBROUTINE BEMRET (ELs Ps ET)

INITIAL STRESS STIFFNESS MATRIX OF A BEAM
ELEMENT

DIMENSION ET(626)s A(424)
CALL MINBEM (ELs» Ps A)

DO 101 = 1, 4
DO 10 J = 1, &
ET(1sJ) = A(Is))
DO 20 I = 55 6
00 20 JU = 1, 6
ET(IsJ) = O
ET(Jsl) = Qo
RETURN

END

SUBROUTINE MINBEM (ELs CA» A)
DIMENSION A(4s 4)
CF = o14CA

CFT = CF

A(2s,1) = CFT
A(4s1) s CFT
A(3s2) ==CFT
A(4s3) ==CFT

CFT = 12+%CF/EL
A(l1s1) = CFT
A(3s1) ==CFT
A(3s3) = CFT

CFT = ¢333333333333%CF*EL
A(4s2) a=CFT

CFT = 4euCFT
A(2s2) = CFT
A(hs4) = CFT

0O 10 y = 1, 3
Ju s J + 1

00O 101 = UJs 4
A(Jr 1) = A(Ls )
RETURN

END
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SUBROUTINE TRETS (T. AL)

THIS SUBROUTINE GIVES THE COORDINATE
TRANSFORMATION MATRIX

DIMENSION T(6s 6)
NEM = 6

SINB = SIN(AL)
COSB = COS(AL)
DO 10 I=s1,NEM
DO 10 JslsNEM
T(1oJ)=0+0
T(12,1)sCOSB
T(52,1)=SINB
T(2s2)8 160
T(3,3)=C0OSB
T(6,3)sSINB
T(4ob)s 100
T(1,5)==SINB
T(5,5)=C0SB
T(3,6)s=SINB
T(626)sCOSB
RETURN

END
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SUBROUTINE BTAB(AsBETAsRsMsN)
THIS SUBROUTINE COMPUTES BETA TRANSPOSE » A
BETA» RESULT IS STORED IN Re

A = INPUTE MATRIX OF ORDER M X Me
BETA = INPUTE MATRIX OF ORDER M X No
R = OUTPUT MATRIX OF ORDER N X No
DIMENSION A(MsM)sBETA(MaN)2»R(N2aN)
DO 40 l=1,N

D0 30 J=1,N

DY=0+0

DO 20 K=1,M

IF(BETA(Ksl)eEQe0Oe0) GO TO 20
CY=0-0

DO 10 LslsM

IF({BETA(L2J)+EQe0+0) GO TO 10
CYsCY+A(KaL)#BETA(LSJ)

CONTINUE

DYsDY+CY#BETA(K»1I)

CONTINUE

R(I,J)sDY

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE MATINV(AsNsDaL2M) 131

STORE MODE OF MATRIX A MUST BE GENERALe
THIS SUBROUTINE INVERSES A MATRIXe
A=INPUT MATRIX» DESTROYED IN COMPUTATION
AND REPLACED BY ITS INVERSE.

N=ORDER OF MATRIX A

D=RESULTANT DETERMINANT

L=WORK VECTOR OF LENGTH N

M=WORK VECTOR OF LENGTH N

DIMENSION A(1)aL(1)2M(1)
D=1.0

NKs=N

DO 80 K=1sN
NKeNK+N

L{K)sK

M(K) sK

KKaNK+K
BIGAsA(KK)

DO 20 J=KsN
IZasN#(J=1)

DO 20 ls=KsN
1JslZel

IF ( ABS(BIGA)= ABS(A(IJ))) 15,20,20
BIGA=A(1J)

L(K)sl

M(K)=J

CONT INUE

JelL(K)

IF (J=K) 35,35,25
KlsK=N

DO 30 I=1,N
KIsK]+N
HOLD==A(KI)
JIsKI=K+J
A(KI)sA(JI)
A(Jl)sHOLD

IsM(K)

IF (I=K) 45,45,38
JPaN#{1l=1)

DO 40 Jsi1sN
JKaNK+J

JisJP+J
HOLDs=A(JK)
AlJK)IsA(JI)
A(JI)sHOLD

IF (BIGA) 48,46,48
D=0+0

RETURN

DO 55 I=x1sN

IF (I=K) 50255,50
IKsNK+]
A(IK)=sA(IK)/(=BIGA)



55

60
62

65

70
75
80
100
105
108

110
120

125

130
150

CONTINUE

DO 65 IsisN
IKeNK+1

HOLD=A( IK)

IJsl=N

DO 65 JsisN
IJslJ+N

IF(I=K) 60,65,60
IF(J="K) 62,65,62
KJslJ=1+K
A(IJ)sHOLD#A(KU)+A(IU)
CONTINUE

KJsK=N

DO 75 J=1sN
KJsKJ+N

IF (J=K) 70575570
A(KJ)sA(KJ)/BIGA
CONTINUE

DaD#BIGA
A(KK)s1+0/BIGA
CONT INVUE

KsN

Ksk=1

IF (K) 15001500105
I=sL(K)

IF (I=K) 120,120+108
JOsN#(K=1)
JRasN#(I=1)

DO 110 JsisN
JKsJQ+J
HOLD=A( JUK)
JIsJdRey
A(JK)s=A(JI)
A(JI)=sHOLD

JeM(K)

IF (J=K) 100,100,125
KIsK=N

DO 130 Isi1,N
KIlsKI+N
HOLD=A(KI)
JIsKl=K+J
A(Kl)s=A(JD)
A(J1)sHOLD

GO 70 100

RETURN

END
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SUBROUTINE MPLY(AsBaRIMaLsN)

THIS SUBROUTINE COMPUTES A(MsL)#B(LsN) AND
STORED THE PRODUCT IN R(MsN)e

DIMENSION A(MsL)sB(L2N)2R(MsN)
D0 20 I=i,M

DO 20 JelsN

2800

DO 10 KsisL

282+A({1sK)#B(KsJ)

R(I,J)=Z

CONTINUE

RETURN

END

SUBROUTINE SWAP(AsMaNsLsK)

THIS SUBROUTINE SWAPS THE ROW L TO THE
ROW K AND THE COLUMN L TO THE COLUMN K
OF THE MATRIX A(MaN)e

DIMENSION A(Ma1)
D0 15 lsisN
ASWAPsA(L21)
A(Lal)sA(KsI)
A(Ks1)=ASWAP
DO 25 IsisM
ASWAPsA(I,L)
A(IsL)eA(1sK)
A(loK)8ASWAP
RETURN

END
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SUBROUTINE A&BAR (A1» A2» A3s» Aks» TH2,» TH3»
1TH4s VA2s VA3, VA4, AA2, AA3, AA4, TH4S, IFL)

THIS SUBROUTINE PERFORMES THE ANALYSIS
OF THE PIN JOINT FOUR=BAR LINKAGE

IF (IFL «GTes 0) GO TO 10

PIT2

R1
R2
R3
R4
10 CA
c8
cC
co
IF

IF

IF (ABS(TH4P=TH4S)

s 2043141592654

Al/A2

Al/A4

(Al#ALl + A2#A2 = A3#A3 + AbuA4)/(2e2A24A%)
A3/7A4

SIN(TH2)

COS(TH2) = R1

R3 = R2#COS(TH2)

s SQRT (CA«CA + CB*CB = CC#CC)

(IFL *GTs 0) GO TO 20

TH4P = 2e#ATAN2((CA+CD)» (CB+CC))
(TH4P oGEe PIT2) TH4P = TH4P = PIT2
TH4M s 2e#ATAN2((CA=CD)» (CB+CC))

IF (TH4M «GEe PIT2) TH4M a TH4M =~ PIT2
IF (TH4S oLTe Oe) TH4S = TH4S + PIT2
IFL = 1

SN = 1o

TH4 s TH&4P

SN 2 =1

TH4 = TH4M

GO TO 30
20 TH& = 2e#ATANZ2((CA+SN#CD)» (CB+CC))

IF (TH& oGEe PIT2) TH4 = TH4 = PIT2
30 TH3sATANZ((A4#SIN(TH4)=A2«SIN(TH2))»

1 (A1+A4#COS(TH&)=A2%COS(TH2)))

DM = 1¢/(A3#SIN(TH3=TH4))

VA3 =
VA4 =

(A2#SIN(TH4=TH2) ) *DMuVA2
(A2#SIN{TH3=TH2) ) #R4«DM#VA2

AA3 = (A2#SIN(TH4=TH2)%AAZ2 =
1 A2#COS(TH4=TH2)#VA28VA2
2=A3»COS({TH3=THL ) #VAS#VA3 + AbkuVALaVAL)xDM
AAh s (A2#SIN(TH3=TH2)#AA2 =
1 A2#COS(TH3=TH2)#VA2xVA2
2+A48COS(TH3=TH4 ) #VA4xVAL = A3#VA3xVA3)«R4«DM
RETURN

END
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oLTe ABS(TH4M=TH4S)) GO TO 30 -



INPUT DATA FOR THE SYNTHESIS
7

0 2020 619 1 O
300 3600
30000000+0
1.00 050
67450

9 1 1 2 3 4 4
LNE KB

1 020 2 3 0 1

2 2 3 5 6 1 &

3 5 6 8 9 & 7

4 8 91112 7 10

5 11 12 14 15 10 13

6 14 15 17 18 13 16

7 17 18 01916 0

OF A FLEXURAL JOINT MECHANISMs FUNCTION Y & X##2

128441
100

5 6 7 7
EL
7570080
1724719
174719
3+00000
174719
174719
1066784

45.00
025

EB
0050
0050
0050
0050
0050
0+050
0050

300
4500

EH
0400
0020
0020
0400
0020
0020
0400

S¢I
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