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Abstract: The multimodel approach is a powerful and practical tool to deal with analysis, modeling, observation, emulation and

control of complex systems. In the modeling framework, we propose in this paper a new method for optimal systematic determination

of models′ base for multimodel representation. This method is based on the classification of data set picked out of the considered

system. The obtained cluster centers are exploited to provide the weighting functions and to deduce the corresponding dispersions

and their models′ base. A simulation example and an experimental validation on a semi-batch reactor are presented to evaluate the

effectiveness of the proposed method.
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1 Introduction

The multimodel approach is an interesting alternative

and a powerful tool for representation, observation, emula-

tion and control of complex processes.

The basic idea of this approach is the decomposition of

the full operation range of the process into a number of

operating regimes. In each operating regime, a simple lo-

cal model is considered. These local models called model′s
library are then combined in some way to yield a global

model.

Nonlinear models are also widely used in engineering sci-

ence applications to describe the dynamic behavior of real

processes. Due to their mathematical complexity, they are

not easily exploitable for designing an observer, an emu-

lator, a control law or for setting up a diagnosis strategy,

even if they give a good description of the considered pro-

cess. Assuming that the modeled process evolves around an

operating point, a linearization procedure is then possible

and leads to the reduction of the mathematical complexity

of the nonlinear model. Hence, analysis tools available for

linear systems can be used. However, in practical cases, the

linearity assumption is not always valid and consequently

the linearized model does not represent the whole behavior

of the process[1, 2].

Moreover, it will be more interesting in practice to have

a model that is easily usable and gives a good global char-

acterization of the process dynamic behavior.

Different approaches exist in the literature dealing with

the multimodel representation. Initially, the founder of

the multimodel approach focused on the regime decompo-

sition and the choice of local model structure on the base

of a combination of qualitative, quantitative, empirical and

mechanistic system knowledge[3−5]. A fuzzy set methods

for local modeling and identification of nonlinear systems

were described in [1]. In which, local models structure was
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described by means of fuzzy “if-then” rules and any prior

knowledge about the operating regime was not required.

Other approaches based on the Takagi-Sugeno model were

developed in [6, 7]. For the representation of discrete and

continuous linear systems with uncertain parameters, some

methods related to the systematic generation of a models′

base were proposed in [8–13].

Two basic multimodel structures for interconnecting the

sub-models (local models) can be distinguished[14].

1) In the first structure, the sub-models have the same

state vector (Takagi-Sugeno multimodels). This leads to the

same structure for all sub-models. Which limits the choice

of the models′ base. Several works dealing with modeling,

state estimation, control and diagnosis of nonlinear systems

were based on this multimodel structure[7, 15−18].

2) In the second one, the sub-models are uncoupled and

their state vectors are different (uncoupled multimodel). So

we can consider sub-models with different structures. As

works dealing with this multimodel structure, we cite [19–

23].

In the two aforementioned multimodel structures, the

contribution of the sub-models depends on the weighting

functions. The modeling performances are closely related

to the choice of the centers and degrees of overlap between

them (for example, the dispersions for Gaussian functions

case). In this frame work, we propose a new method to

optimize these parameters for the systematic generation of

weighting function centers and dispersions. This method in-

tegrates a classification procedure of an identification data

set picked out of the considered system.

The paper is organized as follows: We present in Sec-

tion 2, the principle of the multimodel representation. The

proposed method for an optimal systematic generation of

the weighting function centers and dispersions is detailed

in Section 3. The next section presents the results of a nu-

merical simulation example. An experimental validation on

a semi-batch reactor is given in Section 5. Conclusions will
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be drawn in Section 6.

2 Multimodel representation

“Divide and conquer” strategy is the basic idea of the

multimodel approach. It consists in subdividing the full

operating range of the system into several operating zones.

At each operating zone a simple linear sub-model is identi-

fied using the known tools of linear systems identification,

linearization techniques or other techniques. The global

model, which is valid under all operating conditions of the

system, is thereafter formed by a fusion of the sub-models

and it is easily exploited to study any local proprieties and

to deduce simple and powerful observers, emulators and

controls. These sub-models are typical, but not always se-

lected. The multimodel output (the output of the global

model) is generated through an interpolation mechanism

that integrates an online weighting functions evaluation.

2.1 Weighting functions

The sub-models contributions can be quantified by the

weighting functions μi(ξ(k)) that ensure smooth transition

between sub-models. It can be obtain, for example, from

the normalized Gaussian function:

μi(ξ(k)) =
ωi(ξ(k))

N∑

j=1

ωj(ξ(k))

(1)

where

ωi(ξ(k)) = exp

(
− (ξ(k)− ci)

2

σ2
i

)

where ci is the centre of the i-th weighting function and σi

is the dispersion for weighting functions, N is the number

of models. The weighting functions satisfy the following

constraint[1, 3, 4, 19−22, 24]:

N∑

i=1

μi(ξ(k)) = 1, ∀k

0 � μi(ξ(k)) � 1, ∀k, ∀i = 1, · · · , N

where ξ(k) is the decision variable. It can be an exogenous

measured signals: for example, input, output and state vari-

able. A large choice of weighting functions is possible such

as Gaussian functions, sigmoidal functions, etc. There are

various ways of connecting sub-models in order to gener-

ate the multimodel output yMM (k). We distinguish two

multimodel structures according to the use of coupled or

uncoupled states.

2.2 State multimodel structure

Two multimodel structures are possible. The cou-

pled state multimodel structure also called Takagi-Sugeno

multimodel[3, 4, 24] is extensively used in the multimodel

analysis and synthesis. This multimodel structure is given

by

x(k + 1) =
N∑

i=1

μi(ξ(k)) {Aix(k) + Biu(k)}

yMM (k) =
N∑

i=1

μi(ξ(k))Cix(k) (2)

where x ∈ Rn is the common state vector of the sub-models,

u ∈ Rm the input, yMM ∈ Rp is the multimodel output,

Ai ∈ Rn×n, Bi ∈ Rn×m and Ci ∈ Rp×n are constant

matrices. In this multimodel framework, the contribution of

each sub-model is evaluated through a weighted sum of sub-

models parameters. Therefore, this multimodel structure

can be considered as a system with time varying parameters

(we note that there is only a global state xMM ) and we have

x(k + 1) = Ã(k)x(k) + B̃(k)u(k)

yMM (k) = C̃(k)x(k) (3)

where Ã(k) =
∑N

i=1 μi(ξ(k))Ai, B̃(k) =
∑N

i=1 μi(ξ(k))Bi

and C̃(k) =
∑N

i=1 μi(ξ(k))Ci.

The other possible structure is called the uncoupled state

multimodel[14, 19−22]:

xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k)

yi(k) = Ci(k)xi(k) (4)

and

yMM (k) =
N∑

i=1

μi(ξ(k))yi(k) (5)

where xi ∈ Rni and yi ∈ Rp are respectively the state vec-

tor and the output vector of the i-th sub-model, u ∈ Rm

is the input, yMM ∈ Rp is the multimodel output, Ai ∈
Rni×ni , Bi ∈ Rni×m and Ci ∈ Rp×ni are constant ma-

trices. In this case the multimodel output is formulated

by a weighted sum of sub-models outputs. Therefore, each

sub-model evolves independently in its own state space de-

pending on the input control and its initial state. The main

interest of the uncoupled state multimodel structure is the

decoupling between the sub-models. Indeed, different sub-

models structure can be used.

2.3 Parametric estimation

Essentially, there are two estimation criteria can be used

in the parameter identification of the uncoupled multi-

model: global and local criteria[25] . The retained estimation

criterion, is the global one defined by

J =
1

2

NH∑

k=1

(yMM (k)− y (k))2 (6)

where NH is the number of training data and y(k) is the

real output of the nonlinear system.

This criterion favors a good global characterization be-

tween global behavior of the nonlinear system and the mul-

timodel. In this section, we present the parameter estima-

tion procedure based on the uncoupled state multimodel
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approach. The column vector θ is the vector of unknown

parameters of the multimodel.

θ = [θT
1 · · · θT

i · · · θT
N ]T

where each column block θi is formed by the qi unknown pa-

rameters of the particular sub-model denoting the unknown

scalar parameter of the sub-model i.

θi = [θi,1 · · · θi,q · · · θi,qi ]
T (7)

where θi,q denotes the unknown scalar parameter of the

sub-model i.

The parametric estimation of θ is based on an iterative

minimization procedure of a quadratic criterion J(θ) which

can be a Levenberg-Marquardt′s algorithm[26] considering

the persistent excitation condition.

θ(it + 1) = θ(it)−Δ(it)(H(θ) + λ(it)I)−1G(θ) (8)

where θ(it) is the vector of parameters at a particular iter-

ation it, H(θ) is Hessian matrix, and G(θ) is the gradient

vector. The calculus of the gradient vector and the Hessian

matrix are based on the calculation of sensitivity functions

with respect to sub-models parameters.

The gradient G is given by the simple derivation of the

global criterion with respect to parameters θ as

G =
∂J

∂θ
=

NH∑

k=1

ε(k)
∂yMM (k)

∂θ
(9)

where

ε(k) = (yMM (k)− y(k)). (10)

Hessian matrix H is obtained by a double derivation of

the global criterion with respect to parameters θ as

H =

NH∑

k=1

∂yMM (k)

∂θ

∂yMM (k)

∂θT
(11)

where

∂yMM (k)

∂θ
=

N∑

i=1

μi(ξ(k))
∂yi(k)

∂θ
. (12)

3 Optimal systematic generation of

weighting function centers

The multimodel representation is composed of a set of

sub-models. Each one is valid in a specified operating zone.

The local validity of a sub-model is defined by a weighting

function which tends to one in the corresponding operating

zone and tends to zero outside it. The weighting function

related to each sub-model can be defined in classical cases

by the static characteristic or by linearization procedure.

Also, they can be defined systematically using clustering

techniques and fuzzy clustering techniques. The difficul-

ties related to these last solutions are the determination

of the number of clusters and their centers which will be

the weighting functions centers. In this work, we propose a

method for the optimal determination of the weighting func-

tions centers based on Chiu′s classification method[9, 27, 28].

Here, the normalized Gaussian functions is retained as

ωi(ξ(k)) = exp

(
− (ξ(k)− ci)2

σi
2

)
(13)

and

μi(ξ(k)) =
ωi(ξ(k))

N∑

j=1

ωj(ξ(k))

(14)

where ci is the center of the i-th weighting function, σi is

the corresponding dispersion, and ξ is the decision variable.

The choice of centers ci has a great influence on the mod-

eling precision.

3.1 Influence of centers ccci choice

To demonstrate the influence of the centers, we choose

them based on the system static characteristic. Indeed, af-

ter picking up the nonlinear system static characteristic, we

proceed to subdivide it into linear zones. Each linear zone

which will be represented by a sub-model is associated with

a weighting function centered on the number ci. This center

is also chosen based on the system static characteristic.

3.1.1 Identification example

Let us use the uncoupled multimodel structure to repre-

sent the behavior of the nonlinear system[29]:

y (k + 1) =
y (k)

1 + y2 (k)
+ u3 (k) , u ∈ [−1 1] (15)

Here, the identification of the multimodel is realized by

a global criterion. The weighting functions μi depend on

the input signal ξ(k) = u(k), and the centers are c1 =

−0.3, c2 = 0.0, c3 = 0.3 and the dispersion σ = 0.1. Fig. 1

shows the resulting weighting functions evolutions. A set of

input/output data points is used to build the multimodel.

Fig. 2 shows the evolution of this data set). In this case,

the signal used to validate the uncoupled state multimodel

is given by

u(k) = 0.7 sin(
2πk

100
). (16)

The resulting local models, by application of the identifi-

cation algorithm, are described by the following expressions:

Sub-model 1.

A1 = 0.8909, B1 = 0.1308, C1 = 1.

Sub-model 2.

A2 =

[
0.0911 −0.0943

−0.14 0.9

]
, B2 =

[
−0.3664

−0.67

]
,

C2 =
[

1 0
]
.

Sub-model 3.

A3 = 0.8919, B3 = 0.1357, C3 = 1.

The validation results are given in Fig. 3. This figure

shows the evolutions of the real and the multimodel outputs
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(y(k) and yMM (k)). The simulation results show that the

multimodel output cannot describe the real behavior with

satisfactory precision. The mean square error (MSE) and

the variance-accounted-for (VAF) have been calculated to

evaluate the performance by the following equations:

MSE =
1

NH

NH∑

k=1

(yMM (k)− y (k))2 (17)

VAF = max

{
1− var (yMM (k) − y (k))

var (yMM (k))
, 0

}
× 100%. (18)

They are respectively equal, in this case, to 0.021 and

92.17 %.

Fig. 1 Weighting functions evolutions (classical choice based on

the static characteristic)

Fig. 2 Data set for system identification

Fig. 3 Evolutions of the real and the multimodel outputs

3.2 Proposed optimal systematic genera-
tion of centers ccci

We propose in this work to generate systematically the

synthesis parameters (centers and dispersions) related to

the weighting functions. Indeed, the full operating range of

the nonlinear system is partitioned into a set of operating

zones via a classification procedure which provides the clus-

ter centers that will be considered as the weighting function

centers. The dispersion of each weighting function is then

given in function of the distances separating the neighbor

centers.
3.2.1 Classification procedure

Having a set of numerical data, the classification pro-

cedure consists in selecting between these data, the clus-

ter centers using Chiu′s method for the numerical data

classification[9, 27, 28]. In this work, we aimed to extend

this method to classify a set of regression vectors ϕj (ϕj =

[y(j) y(j − 1) u(j − 1)]T, j = 1, · · · , M) built from a set

of persistent identification data covering the hole operating

range of the considered nonlinear system.

Each regression vector ϕj , is associated with a potential

Pj given by the expression as

Pj =
M∑

h=1

e

(
−4‖ϕj−ϕh‖2

r2
a

)

(19)

where ra is a positive parameter controlling the decrease ra-

tio of the potential. The potential decreases exponentially

as ϕh moves away from ϕj . The first regression vector clus-

ter center ϕ∗
1 is the vector whose potential P ∗

1 given by (19)

is the maximum.

To avoid selecting the first cluster center ϕ∗
1 having the

potential P ∗
1 and its neighbors as other cluster centers, the

classification procedure assigns to each potential Pj the fol-

lowing new value:

Pj ← Pj − P ∗
1 e

(
−4‖ϕj−ϕ∗

1‖2
r2

b

)

. (20)

The parameter rb (rb > 0) must be selected larger than

ra to favor the operation related to the selection of other

cluster center completely different from the last one. Next,

we select, as second cluster-center, the vector whose mod-

ified potential given by the relation (20) is the maximum.
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Let the second cluster-center be ϕ∗
2 and the associated po-

tential value be P ∗
2 .

In a similar manner, we choose the i-th cluster center ϕ∗
i

with the maximum potential P ∗
i and modify the potentials

as follows:

Pj ← Pj − P ∗
i e

⎛

⎝ −4‖ϕj−ϕ∗
i
‖2

r2
b

⎞

⎠

. (21)

Chiu determined the cluster selection by introducing two

positive parameters ε1 and ε2 (ε1 > ε2 ). He proposed

the following inequalities for stopping the cluster centers′

selection.

1) If P ∗
i > ε1P

∗
1 ⇒ Selection sanctioned.

2) If P ∗
i < ε2P

∗
1 ⇒ Selection stopped.

3) If ε2P
∗
1 � P ∗

i � ε1P
∗
1 and if :

min
(
min(

∣∣ϕ∗
i
− ϕ∗

1

∣∣), · · · , min(
∣∣ϕ∗

i
− ϕ∗

i−1

∣∣)
)

ra
< 1− P ∗

i

P ∗
1

where ϕ∗
i

is the current regression vector center and ϕ∗
1 ,

ϕ∗
2 , · · · , ϕ∗

i−1 are the last selected ones. The regression

vector center to be retained corresponds, in this case, to the

maximum value of the potentials after rejecting the current

value P ∗
i .

3.2.2 Centers determination

Once the regression vector cluster centers are selected

and referring to the decision variable to be considered

(ξ(k) = y(k) or ξ(k) = u(k)), we have the weighting func-

tions centers ci.

ci = u∗
i or ci = y∗

i , i = 1, · · · , N.

3.2.3 Dispersions computation

Then, we calculate the corresponding dispersion σi using

one expression of the two given below:

Expression 1. The dispersions σi can be adjusted ac-

cording to the mean distance to the n nearest neighbors[24].

σi = α
1

n

n∑

j=1

|ci − cj | (22)

where ci is the current center and cj is the nearest neighbor

center to ci. α is a scaling factor defining the degree of

overlap between the weighting functions.

Expression 2. The dispersions σi is considered to be in

proportion to the distance separating the center ci and the

nearest center[28].

σi =
1

α
min

j=1,··· ,n
(|ci − cj |) (23)

where α is a positive factor defining the degree of overlap

between the weighting functions. Order estimation of re-

tained models can be insured by instrumental determinants′

ratio-test method[2].

4 Simulation results

We consider the same nonlinear system given by (15).

The same identification data set (see Fig. 1) is used

to generate the set of regression vectors ϕj (ϕj =

[y(j) y(j − 1) u(j − 1)]T) for the extended classification

procedure to generate the regression vectors cluster centers

ϕ∗
i . It generates three clusters centered on the following

regression vectors:

ϕ∗
1 =

⎡

⎢⎣
−0.8149

−0.8181

−0.6874

⎤

⎥⎦ , ϕ∗
2 =

⎡

⎢⎣
−0.0555

−0.0557

−0.0376

⎤

⎥⎦ , ϕ∗
3 =

⎡

⎢⎣
0.4655

0.4646

0.4369

⎤

⎥⎦ .

For the decision variable ξ(k), we consider the input u(k)

(the third element of the regression vector). So, we have the

weighting functions centers ci as

c1 = u∗
1 = −0.6874, c2 = u∗

2 = −0.0376, c3 = u∗
3 = 0.4369.

Using (23), we deduce the corresponding dispersions σi

as

σ1 = 0.6498, σ2 = 0.4745, σ3 = 0.4745.

Fig. 4 gives the resulting weighting functions evolution.

Fig. 4 Weighting functions evolutions

The multimodel identification is realized with a global

criterion (as described previously in the identification pro-

cedure) and it adopts the uncoupled state multimodel struc-

ture. The resulting sub-models are described in the state

space by the following expressions:

Sub-model 1.

A1 = −0.1468, B1 = 1.6142, C1 = 1.

Sub-model 2.

A2 =

[
−0.6938 −0.3287

−0.14 0.9

]
, B2 =

[
−2.1141

−0.67

]
,

C3 = [1 0] .

Sub-model 3.

A3 = 0.5334, B3 = 0.6489, C3 = 1.

The same validation conditions are conserved. Fig. 5 il-

lustrates the multimodel validation results. It gives the

evolutions of the multimodel response and the real one. We

can observe that the multimodel can describe properly the
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non linear system behavior. The MSE and the variance-

accounted-for VAF have been calculated to evaluate the

performance of the proposed method. They are respectively

equal to 0.003 and 98.81 %.

Fig. 5 Evolutions of the multimodel output yMM(k) and the

real output y(k). (Systematic and optimal choice of centers and

dispersions)

The obtained results using proposed procedure are very

good relatively to the case where the classical procedure is

used. The following table (Table 1) summarizes the MSE

and VAF calculated in the two cases.

Table 1 MSE and VAF

Classical choice Optimal choice

MSE 0.021 0.003

VAF 92.17% 98.81%

5 Experimental validation

The satisfactory modeling performances obtained in nu-

merical simulations, incited us to perform an experimental

validation on a semi-batch reactor[22, 30, 31]. The plant con-

sists of a perfectly stirred tank provided with a jacket where

the heat is exchanged between a cooling fluid and the reac-

tion mixture as shown in Fig. 6. The heating-cooling system

fluid flow rate through the jacket is constant and the fluid

temperature into the jacket is modulated using an exter-

nal servo system involving a plate heat exchanger together

with electric resistors. The plate exchanger is used for the

fluid cooling, namely the tap water, while the heating of

the fluid is ensured by the electric resistors. Several tem-

perature sensors allow to measure the reactor temperatures

and the inlet and outlet jacked temperatures. The reactor

is mainly used in bach mode for chemical esterification of

the crude olive oil according to the following reaction:

Acid + Alcohol � Ester + Water.

The typical temperature profile for the involved esterifica-

tion experiment is the following: The reaction mixture is

first heated from the room temperature to a specified tem-

perature which usually corresponds to the reaction temper-

ature, then this temperature is maintained constant until

the end of the reaction. Finally, the reactor is cooled back

to the room temperature.

Fig. 6 The chemical reactor

The control variable is the electric power supplied by the

heating resistors while the output is the reactor tempera-

ture. Such a system is nonlinear as mentioned in [13, 22, 32].

This is the rational behind the multimodel approach to be

adopted.

Fig. 7 gives implementation scheme of models′ base op-

timal systematic generation for the considered chemical re-

actor. The set of identification data picked out of the re-

actor given by Fig. 8 (the process sampling time is 180 s) is

treated off line by the classification procedure to generate

the weighting functions centers. So, we obtain the following

regression vectors centers:

ϕ∗
1 =

⎡

⎢⎣
83

83

1000

⎤

⎥⎦ , ϕ∗
2 =

⎡

⎢⎣
89

88.1

1700

⎤

⎥⎦ , ϕ∗
3 =

⎡

⎢⎣
104.5

104.4

2000

⎤

⎥⎦ .

When we choose the input u(k) as decision variable, we

can deduce the weighting functions centers.

c1 = u∗
1 = 1000, c2 = u∗

2 = 1700, c3 = u∗
3 = 2000.

Fig. 7 Implementation scheme of the proposed method for the

chemical reactor
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Fig. 8 Identification data set

Fig. 9 Evolutions of weighting functions

We deduce the corresponding dispersions using relation

(22).

σ1 = 0.0700, σ2 = 0.0263, σ3 = 0.0750.

Fig. 9 gives the evolution of the resulting weighting func-

tions. The identification procedure application yields to the

three sub-models described in the state space as follows:

Sub-model 1.

A1 =

[
0.3357 0.4002

0.3495 0.6685

]
, B1 =

[
0.1200

0.1487

]
,

C1 =
[

1 0
]
.

Sub-model 2

A2 =

[
0.0948 0.3740

0.3598 0.7085

]
, B2 =

[
0.0670

0.3847

]
,

C2 =
[

1 0
]
.

Sub-model 3.

A3 =

[
0.2279 0.3667

0.3500 0.7288

]
, B3 =

[
0.1819

0.1039

]
,

C3 =
[

1 0
]
.

The result of the validation phase is given by Fig. 10

which illustrates the evolution of the multimodel output

and the reactor one. We can note that the multimodel

output describes the real behavior with satisfactory preci-

sion. The variance-accounted-for VAF has been calculated

to evaluate the performance of the proposed method. It is

equal, in this real case, to 98.7 %. Fig. 11 shows the rela-

tive errors erMM (%) (between the real output y(k) and the

multimodel output yMM (k)). In the full operating regimes

(heating, reaction and cooling), the considered error does

not exceed 10 %.

Fig. 10 Evolutions of the multimodel output yMM (k) and the

reactor output y(k)

Fig. 11 Evolution of the relative error

6 Conclusions

In this paper, we proposed an optimal systematic gener-

ation of the weighting function parameters and the models′
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base for an uncoupled state multimodel structure. The pro-

posed method integrates a classification procedure of an

identification data set picked out of the considered nonlin-

ear system. The obtained results in numerical simulation

are very satisfactory relatively to the case where the system

static characteristic is exploited. An experimental valida-

tion on a chemical reactor is also judged very satisfactory.
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