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Abstract. Deciding whether a modal formula is satisfiable with respect
to a given set of (global) assumptions is a question of fundamental impor-
tance in applications of logic in computer science. Tableau methods have
proved extremely versatile for solving this problem for many different
individual logics but they typically do not meet the known complex-
ity bounds for the logics in question. Recently, it has been shown that
optimality can be obtained for some logics while retaining practicality
by using a technique called “global caching”. Here, we show that global
caching is applicable to all logics that can be equipped with coalgebraic
semantics, for example, classical modal logic, graded modal logic, prob-
abilistic modal logic and coalition logic. In particular, the coalgebraic
approach also covers logics that combine these various features. We thus
show that global caching is a widely applicable technique and also pro-
vide foundations for optimal tableau algorithms that uniformly apply to
a large class of modal logics.

1 Introduction

Modal logics have many applications in computer science, and e.g. provide a rig-
orous foundation for reasoning about programs [15] and knowledge [7]. Typically,
we are given a set formulas Δ that represents our assumptions (e.g. knowledge
about a particular domain) and are faced with the task of deciding whether a
formula A (that we may think of as a hypothesis) is logically consistent with
Δ. From a model theoretic perspective, this means that there exists at least one
model that validates Δ everywhere, but also makes A true in at least one point.
The elements of Δ are usually referred to as global assumptions in modal logic,
or as a TBox in description logic. Various automated theorem proving techniques
have been developed to handle this task but it is fair to say that tableau methods
have proved particularly versatile for solving this problem [1,9,26].

Tableau algorithms, however, often do not meet the known complexity bounds
for the logics in question. For example, the traditional tableau algorithm for the
modal logic K requires double exponential time in the worst case, even though the
global satisfiability problem for this logic is known to be Exptime-complete [1].
The success of suboptimal tableau algorithms in practice, implemented in rea-
soners like Racer [14] and Fact++[27], lies in the vast array of optimisations that

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 114–128, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Optimal Tableau Algorithms for Coalgebraic Logics 115

have been developed for the underlying tableau methods [17]. In contrast, the (op-
timal) algorithms that underly typical complexity proofs either perform rather
wholesale fixpoint computations or employ semantical means, which is infeasible
in practice. Clearly the ideal situation is to have optimal tableau algorithms that
remain amenable to proven optimisation techniques.

The main reason for the suboptimal behaviour of tableau algorithms is that
they proceed by searching one branch at a time, using backtracking, and the
same node can appear on multiple branches. The second occurrence of the node
in a different branch will repeat the computations already performed by its
previous incarnation, since the previous branch will have been reclaimed via
backtracking. Although optimal tableau algorithms that avoid this behaviour
are known [6], they are rarely used by practitioners because they are difficult
to implement [1]. Recently, it has been shown that both optimality and ease
of implementation can be reconciled while keeping the feasibility of tableau-
based algorithms for the description logics ALC and ALCI [10,13] by employing
so-called “global caching”. The resulting tableau algorithms explore a graph of
nodes, rather than a tree with distinct branches, since subsequent incarnations of
a node lead to a “cache hit” to the first incarnation on a previous branch. It has
been experimentally demonstrated that global caching compares very favourably
with other caching techniques known in the literature [12].

Here, we show that global caching can be applied not only to logics with an un-
derlying relational semantics, but also to a large class of logics that is amenable
to coalgebraic semantics. This class contains many different logics such as classi-
cal modal logic, graded modal logic, probabilistic modal logic and coalition logic,
as well as their various combinations. We first construct a complete tableau cal-
culus for coalgebraic logics with global assumptions where all closed tableaux
are finite trees, and then show that global caching is applicable to this type
of calculus. Both results are self-contained, and completeness of global caching
readily applies to any tableau calculus that can be encoded as reachability game.
In summary, we derive a concrete algorithm to decide satisfiability of modal for-
mulas in presence of global assumptions that uniformly applies to a large class of
logics. We illustrate the technical development by instantiating the coalgebraic
framework to three different logics: probabilistic modal logic, coalition logic, and
coalition logic with probabilistic outcomes that arises as a combination of both.
In summary, we not only extend the applicability of global caching by a large
margin, but also obtain new and optimal tableau algorithms for a large class
of logics, including e.g. probabilistic modal logic, for which no tableau-based
decision procedure is so far known to exist.

Related Work. Global caching has so far been used for logics with relational
semantics in [10,11]. The extension of global caching, given in this paper, to
logics that do not have an underlying relational semantics is new. The com-
plexity of coalgebraic logics has been studied previously in [24] without global
assumptions, and [25] establishes an Exptime complexity bound in the presence
of global assumptions. The tableau calculus given here is new, and unlike the
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algorithm in op.cit. which is based on Hintikka sets, the resulting algorithm is
easily implementable.

2 Preliminaries and Notation

To keep our treatment parametric in the underlying modal logic, we fix a modal
simlarity type Λ consisting of modal operators with arities, and a denumerable
set V of propositional variables. In the sequel, we will only consider formulas in
negation normal form and abbreviate V = {p | p ∈ V} and similary Λ = {♥ |
♥ ∈ Λ} where we consider ♥ as a modal operator with the same arity as ♥. The
set F(Λ) of Λ-formulas is given by the grammar below

F(Λ) � A1, . . . , An ::= p | p | A1 ∧A2 | A1 ∨A2 | ♥(A1, . . . , An) | ♥(A1, . . . , An)

where ♥ ∈ Λ is an n-ary operator. The rank of a formula A ∈ F(Λ) is the
maximal nesting depth of modal operators in A and is denoted by rank(A), and
subf(A) denotes the set of subformulas of A. The closure cl(A) of A contains all
subformulas of A and their negations, i.e. cl(A) = subf(A) ∪ subf(A). We write

(Λ ∪ Λ)(F ) = {♥(A1, . . . , An) | ♥ ∈ Λ ∪ Λ n-ary, A1, . . . , An ∈ F}
for the set of all formulas that can be constructed by applying a (possibly
negated) modal operator to elements of a set F of formulas.

A Λ-tableau-sequent, short Λ-sequent or just sequent, is a finite set of Λ-
formulas that we read conjunctively, and we write S(Λ) for the set of Λ-sequents.
The rank of a sequent Γ is the maximum of the ranks of the elements of Γ and we
put rank(∅) = 0. The closure of a sequent is given by cl(Γ ) =

⋃{cl(A) | A ∈ Γ}.
As usual, we identify a formula A ∈ F(Λ) with the singleton sequent {A} ∈ S(Λ)
and write Γ, Δ for the union of Γ and Δ. We write State(Λ) for the set of Λ-
sequents that neither contain a top-level propositional connective nor a pair
p, p of complementary propositional variables. As we only deal with formulas in
negation normal form, negation becomes a derived operation, and we write A for
the negation of a formula A ∈ F(Λ) given by p = p, (A ∧ B) = A ∨ B, A ∨ B =
A ∧ B, ♥(A1, . . . An) = ♥(A1, . . . , An) and ♥(A1, . . . , An) = ♥(A1, . . . , An).
This notation extends to sequents so that Γ = {A | A ∈ Γ}. A substitution is
a mapping σ : V → F(Λ), and the result of replacing every occurrence of p ∈ V
in a formula A ∈ F(Λ) is denoted by Aσ. Again, this extends to sequents, and
Γσ = {Aσ | A ∈ Γ} if Γ ∈ S(Λ).

On the semantical side, parametricity is achieved by adopting coalgebraic
semantics [19]: formulas are interpreted over T -coalgebras, where T is an end-
ofunctor on sets, and we recover the semantics of a large number of logics by
specific choices for T (Example 1). To interpret the modal operators ♥ ∈ Λ, we
require that T extends to a Λ-structure, i.e. T comes equipped with a pred-
icate lifting (natural transformation) of type �♥� : 2n → 2 ◦ T op for every
n-ary modality ♥ ∈ Λ, where 2 : Set → Setop is the contravariant powerset
functor. In elementary terms, this amounts to assigning a set-indexed family



Optimal Tableau Algorithms for Coalgebraic Logics 117

of functions (�♥�X : P(X)n → P(TX))X∈Set to every n-ary modal operator
♥ ∈ Λ such that (Tf)−1 ◦ �♥�X(A1, . . . , An) = �♥�Y (f−1(A1), . . . , f−1(An))
for all sets X, Y and all functions f : Y → X . If ♥ ∈ Λ is n-ary, we put
�♥�X(A1, . . . , An) = (TX)\ �♥�X(X \A1, . . . , X \An). We often leave the pred-
icate liftings implicit and refer to a Λ-structure just in terms of the underlying
endofunctor T .

In the coalgebraic approach, the role of frames is played by T -coalgebras,
i.e. pairs (C, γ) where C is a (state) set and γ : C → TC is a (transition)
function. A T -model is a triple (C, γ, π) where (C, γ) is a T -coalgebra and π :
V → P(C) is a valuation of the propositional variables. For a Λ-structure T and
a T -model M = (C, γ, π), the truth set �A�M of a formula A ∈ F(Λ) w.r.t. M
is given inductively by the following, where ♥ ∈ Λ ∪ Λ is n-ary: �p�M = π(p),
�p�M = C \ π(p) and

�♥(A1, . . . , An)�M = γ−1 ◦ �♥�C(�A1�M , . . . , �An�M ).

We write M, c |= A if c ∈ �A�M and M |= A if M, c |= A for all c ∈ C. Again, this
extends to sequents under a conjunctive reading, and we put �Γ �M =

⋂{�A�M |
A ∈ Γ} and write M |= Γ if M |= A for all A ∈ Γ . We denote the model class
of a sequent Δ ∈ S(Λ) by Mod(Δ), which comprises the class of all T -models
M with M |= Δ, that is, M globally validates Δ. If Γ, Δ ∈ S(Λ) are sequents,
we say that Γ is satisfiable in Mod(Δ) if there exists M ∈ Mod(Δ) such that
�Γ �M �= ∅.

Our main interest in this paper is the global satisfiability problem, that is, to
determine whether a sequent Γ is satisfiable in Mod(Δ), for a set Δ of global
assumptions. The generality of the coalgebraic approach allows us to treat this
problem uniformly for a large class of structurally different modal logics that is
moreover closed under composition, as the following example demonstrates.

Example 1. The generic approach of coalgebraic semantics specialises to a large
class of different logics by instantiating the signature functor T appropriately.
The class of these logics comprises classical and monotone modal logic in the
sense of [2], the modal logic K, graded modal logic [8], probabilistic modal logic
[16], coalition logic [21] and conditional logic [2]. We refer to [20,24] for details on
their coalgebraic treatment. Here, we concentrate on probabilistic modal logic,
coalition logic and a combination of both.

1. Coalition logic over a finite set N of agents has similarity type ΛG = {[C] |
C ⊆ N}, and is interpreted over game frames, i.e. coalgebras for the functor

G(X) = {(f, (Si)i∈N ) | ∅ �= Si ⊆ N finite for all i ∈ N, f :
∏

i∈N

Si → X}.

The Si are the strategies of agent i and f is an outcome function. We read [C]A
as “coalition C can achieve A in the next round of the game”, captured by

�[C]�X(A) = {(f, (Si)i∈N ) ∈ G(X) |
∃(si)i∈C ∈ (Si)i∈C . ∀(si)i∈N\C ∈ (Si)i∈N\C . f((si)i∈N ) ∈ A}
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that induces – up to the move to finite sets of strategies – the standard semantics
of coalition logic [21].

2. The syntax of probabilistic modal logic is induced by the similarity type
ΛD = {〈p〉 | p ∈ [0, 1] ∩ Q} and we put [p] = 〈p〉. The formula 〈p〉A reads as
“A holds with probability at least p in the next state”. The semantics of the
probabilistic modal logic is given by the structure

D(X) = {μ : X →f [0, 1] | μ(X) = 1} �〈p〉�X(A) = {μ∈D(X) | μ(A) ≥ p}
where X →f [0, 1] is the set of all functions f : X → [0, 1] with finite support,
i.e. f(x) �= 0 for only finitely many x ∈ X , and μ(A) =

∑
x∈A μ(x). Coalgebras

for D are precisely image-finite Markov chains.
3. A combination of probabilistic modal logic and coalition logic over a set

N of agents arises by considering the (combined) similarity type

ΛD◦G = {〈p〉[C] | p ∈ [0, 1] ∩ Q, C ⊆ N}
and we read the formula 〈p〉[C]A as “with probability p coalition C has a col-
laborative strategy to achieve A in the next round of the game”. Formulas are
interpreted over coalgebras for the (combined) endofunctor D ◦ G by the (com-
bined) predicate lifting

�〈p〉[C]�X = �〈p〉�GX ◦ �[C]�X : P(X) → P(D ◦ G(X))

where the interpretation of the individual modalities �〈p〉� and �[C]� is as above.
In a D◦G-coalgebra (C, γ), the transition function γ delivers a probability distri-
bution over possible outcomes of a strategic game. The predicate lifting �〈p〉[C]�
singles out all those distributions that assign probability ≥ p to the set of those
outcomes for which coalition C can achieve A.

Note that this is just one possible combination that naturally finds its place in
the coalgebraic framework and refer the reader to [3,5,23] for details.

3 Tableaux and Games for Global Consequence

The first goal of this paper is to set up a sound and complete tableau system for
global satisfiability in coalgebraic modal logics. Completeness is established via
winning strategies in the associated reachability games. We begin by introducing
a generic version of both that we later specialise to coalgebraic logics.

Definition 2. A tableau system is a pair (S, R) where S is a set (of sequents)
and R is a set of rules of the form Γ/Ψ where Γ ∈ S and Ψ ⊆ S is finite.

A sequent Γ ∈ S has a closed tableau in the system (S, R) if Γ is an element of
the least set closed under the rules in R, that is, an element of the least fixpoint
of the (evidently monotone) operator

M : P(S) → P(S), M(X) = {Γ ∈ S | ∃Ψ ⊆ X.(Γ, Ψ) ∈ R}.
We say that (S, R) is finite, if both S and R are finite.
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We understand axioms as rules Γ/∅ with no conclusions so that the least fixpoint
of M will contain all sequents Γ for which we can construct a closed tableau,
i.e. a tree with root Γ constructed according to the rules in R whose leaves are
all axioms. Tableau systems can be described in terms of reachability games:

Definition 3. A reachability game played by the two players ∃ (Éloise) and ∀
(Abelard) is a tuple G = (B∃, B∀, E) with B∃ ∩ B∀ = ∅, where

– B∃ and B∀ are the positions owned by the players ∃ and ∀, respectively
– E ⊆ (B∃ ∪ B∀)2 is a binary relation that indicates the allowed moves.

The board B of a reachability game (B∃, B∀, E) is the disjoint union of positions,
i.e. B = B∃∪B∀. A play in G is a finite or infinite sequence of positions (b0, b1, . . . )
with the property that (bi, bi+1) ∈ E for all i, i.e. all moves are legal, and b0 is
the initial position of the play. A full play is either infinite, or a finite play ending
in a position bn where E[bn] = {b ∈ B | (bn, b) ∈ E} = ∅, i.e. no more moves are
possible. A finite play is lost by the player who cannot move, and infinite plays
are lost by ∀. A history-free strategy for a player P ∈ {∃, ∀} is a partial function
f : BP → B such that f(b) is defined whenever E[b] �= ∅ and (b, f(b)) ∈ E in
this case. A play (b0, b1, . . . ) is played according to f if bi+1 = f(bi) for all i with
bi ∈ BP , and f is a history-free winning strategy from position b ∈ B if P wins
all plays with initial position b that are played according to f . A position b′ ∈ B
is called f -reachable from b ∈ B if there is a play (b0, b1, . . . , bk) that is played
according to f and such that b0 = b and bk = b′.

Reachability games are history-free determined, i.e. from every position b of the
game board, one of the players has a history-free winning strategy (this holds
for the more general class of parity games [18]). To every tableau system we
associate the following reachability game.

Definition 4. The tableau game induced by a tableau system (S, R) is reacha-
bility game (B∃, B∀, E) where

– B∃ = {Ψ ⊆ S | Ψ finite} and B∀ = S
– E = {(Ψ, Γ ) ∈ B∃ × B∀ | Γ ∈ Ψ} ∪ {(Γ, Ψ) ∈ B∀ × B∃ | Γ/Ψ ∈ R}.

In other words, ∀ plays a tableau rule, and ∃ selects one of its conclusions. Note
that ∃ wins all infinite plays, which correspond to infinite paths in a tableau. As
a consequence, ∀ has a winning strategy from position Γ in a tableau game, if
he can select a tableau rule applicable to Γ so that every conclusion that ∃ can
possibly choose eventually leads to a tableau axiom, at which point ∀ wins.

Proposition 5. Suppose (S, R) is a tableau system. Then Γ ∈ S has a closed
tableau if and only if ∀ has a winning strategy in the associated tableau game
starting from position Γ .

We will come back to this general formulation of tableaux in Section 5 and now
introduce tableau systems for coalgebraic logics with global assumptions. These
are most conveniently formulated in terms of one-step rules.
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Definition 6. A one-step tableau rule over Λ is a tuple (Γ0, Γ1, . . . , Γn), written
as Γ0/Γ1 . . . Γn, where Γ0 ⊆ (Λ∪Λ)(V∪V) and Γi ⊆ V∪V so that every variable
that occurs in the conclusion Γ1 . . . Γn also occurs in the premise Γ0, and every
propositional variable occurs at most once in the premise Γ0.

We can think of one-step rules as a syntactic representation of the inverse image
γ−1 : P(TC) → P(C) of a generic coalgebra map γ : C → TC in that the premise
describes a property of successors, whereas the conclusion describes states. The
requirement that propositional variables do not occur twice in the premise is
for technical convenience, as it later allows us to speak of injective substitutions,
rather than substitutions that do not identify elements of the premise. While this
rigid format of one-step rules suffices to completely axiomatise all coalgebraic
logics [22], they do not accommodate frame conditions like transitivity (�p →��p) which require separate consideration.

Example 7. One-step rules that axiomatise the logics in Example 1 can be
found (in the form of proof rules) in [20,24]. Continuing Example 1, we single
out coalition logic, probabilistic modal logic and their combination.

1. A tableau system for coalition logic is induced by the set RG that comprises

(C1)
[C1]p1, . . . , [Cn]pn

p1, . . . , pn
(C2)

[C1]p1, . . . , [Cn]pn, [D]q, [N ]r1, . . . , [N ]rm

p1, . . . , pn, q, r1, . . . , rm

for n, m ≥ 0 provided that the Ci ⊆ N are pairwise disjoint sets of coalitions,
and additionally Ci ⊆ D in (C2) for all i = 1, . . . , n.

2. The rules RD for probabilistic modal logic contain

(P )
〈a1〉p1, . . . , 〈an〉pn, [b1]q1, . . . , [bm]qm∑m

j=1 sjqj −
∑n

i=1 ripi < k

where n, m ∈ N and ri, sj ∈ N \ {0} satisfy the side condition
∑n

i=1 riai −∑m
j=1 sjbj ≤ k if n > 0 and −∑m

j=1 sjbj < k if n = 0. The conclusion of (P )
contains all clauses in the disjunctive normal form of the associated {0, 1}-valued
predicate.

3. Games with quantitative uncertainty are described by the rule set RD◦G

Γ0σ

Σ1
1σ1 . . . Σ1

k1
σ1 . . . Σn

1 σn . . . Σn
kn

σn

that can be constructed from rules Γ0/Γ1 . . . Γn ∈ RD and Σi
0/Σi

1 . . . Σi
ki

∈ RG

(1 ≤ i ≤ n) by injective substitutions σ : V → (ΛG ∪ΛG)(V∪V) and σ1, . . . , σn :
V → V satisfying Γiσ = Σi

0σi. That is, rules for the combined logic first de-
construct the top-level probabilistic modal operators by means of a probabilistic
rule in RD, and then apply a rule of coalition logic (RG) to each conclusion.

Given a sequent Δ that represents the global assumptions, every set of one-step
rules induces a tableau system that arises by adding Δ to each of the conclusions
of modal rules. To reduce the bureaucracy of dealing with propositional rules,
we use skeletal tableaux where they are subsumed into a single rule schema.
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Definition 8. Suppose Δ ∈ S(Λ) is a set of global assumptions and R is a
set of one-step tableau rules over Λ. The skeletal system over R with global
assumptions Δ is the tableau system (S(Λ), S(R)) where S(R) contains Γ/sat(Γ )
for all Γ ∈ S(Λ) and all rules Γ0σ, Γ ′/Γ1σ, Δ . . . Γnσ, Δ where Γ0/Γ1 . . . Γn ∈
R, σ : V → F(Λ) is an injective substitution and Γ ′ ∈ S(Λ) is arbitrary. The
operation sat : S(Γ ) → S(Γ ) is called saturation and is inductively given by

sat(Δ′) = {Δ′} sat(A ∨ B, Γ ) = sat(A, Γ ) ∪ sat(B, Γ )
sat(p, p, Γ ) = ∅ sat(A ∧ B, Γ ) = sat(A, B, Γ )

where A, B ∈ F(Λ) are formulas, Γ ∈ S(Λ) is a sequent, p ∈ V is a proposi-
tional variable and Δ′ ∈ State(Λ) is a state, i.e. contains neither complementary
propositional variables nor top-level propositional connectives.

We often leave the underlying set of one-step rules implicit and say that Γ has
a closed skeletal tableau with global assumptions Δ, and refer to the induced
tableau game as the skeletal game with global assumptions Δ. An easy conflu-
ence argument shows that sat is well-defined, i.e. the sequence of steps when
computing sat(Γ ) is immaterial. Given Γ ∈ S(Λ), the restriction to injective
substitutions avoids a possible source of infinity when computing rules that can
be applied to Γ . Conclusions are always contained in the closure of its premise
and the global assumptions:

Lemma 9. Suppose Γ, Δ ∈ S(Λ) and Σ ⊆ cl(Γ, Δ). Then Σi ⊆ cl(Γ, Δ) for all
i = 1, . . . , n if Σ/Σ1 . . . Σn ∈ S(R). Moreover, cl(Γ, Δ) is finite.

4 Soundness and Completeness

It is evidently impossible to prove even as much as soundness of skeletal tableaux
unless the underlying set of one-step rules is suitably linked to the intended
(coalgebraic) semantics. This is achieved by imposing coherence conditions that
relate premise and conclusions of one-step rules to the underlying (coalgebraic)
semantics that can be checked locally, i.e. without reference to models.

Definition 10. Suppose that T is a Λ-structure, X is a set and τ : V → P(X)
is a valuation. The interpretation of a propositional sequent Γ ⊆ V ∪V over X, τ
is given by �Γ �X,τ =

⋂{τ(p) | p ∈ Γ} ∩ ⋂{X \ τ(p) | p ∈ Γ} ⊆ X . Modalised
sequents Γ ⊆ (Λ ∪ Λ)(V ∪ V) are interpreted as subsets of TX by

�Γ �TX,τ =
⋂

{�♥�X(�p1�X,τ , . . . , �pn�X,τ ) | ♥(p1, . . . , pn) ∈ Γ}

where p1, . . . , pn ∈ V ∪ V and ♥ ∈ Λ ∪ Λ.

The announced coherence conditions now take the following form:

Definition 11. Suppose that T is a Λ-structure and R is a set of one-step
tableau rules. We say that R is one-step tableau sound (resp. one-step tableau
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complete) with respect to T if, for all Γ ∈ S((Λ ∪ Λ)(V ∪ V )), all sets X and
valuations τ : V → P(X):

�Γ �TX,τ �= ∅ only if (if) for all rules Γ0/Γ1 . . . Γn ∈ R and all renamings
σ : V → V with Γ0σ ⊆ Γ , we have that �Γiσ�X,τ �= ∅ for some 1 ≤ i ≤ n.

This means that a rule set is both sound and complete if a modalised sequent
is satisfiable iff every one-step rule applicable to it has at least one satisfiable
conclusion. Soundness follows immediately from one-step soundness.

Proposition 12 (Soundness). Suppose Γ, Δ ∈ S(Λ) and Γ, Δ has a closed
tableau in the skeletal system given by R with global assumptions Δ. Then Γ is
unsatisfiable in Mod(Δ).

For completeness, we show that the existence of a winning strategy for ∃ from
Γ, Δ implies that Γ is satisfiable in Mod(Δ) via suitable truth and existence
lemmas that account for possibly non-monotone modal operators.

Definition 13. If A ∈ F(Λ) then spec(A) = {Σ ∈ State(Λ) | ∃Σ′ ∈ sat(A).Σ′ ⊆
Σ} are the specified states of A.

If we think of of sat(A) as the disjunctive normal form of A, a state Σ ∈ State(Λ)
satisfies A if Σ contains all formulas of an element of sat(A). Thus spec(A) is
the collection of states where A is required to hold, and non-monotonicity forces
us to sandwich the interpretation of A between spec(A) and the complement of
spec(A) in a syntactic model based on Λ-states. This will be a consequence of
coherence, introduced next.

Definition 14 (Coherence). Suppose W ⊆ State(Λ). A coalgebra structure
w : W → TW is coherent, if

w(Γ ) ∈ �♥�W (X1, . . . , Xn)

whenever ♥(A1, . . . , An) ∈ Γ and W ∩ spec(Ai) ⊆ Xi ⊆ W \ spec(Ai) for all
i = 1, . . . , n. A valuation π : V → P(W ) is coherent if spec(p) ∩ W ⊆ π(p) ⊆
W \spec(p) for all p ∈ V. Finally, a T -model (W, w, π) is coherent, if both (W, w)
and π are coherent.

Given that ∃ has a winning strategy in the skeletal system, the next lemma
asserts the existence of a coherent structure, that we will use later to prove
satisfiability, given that the underlying set of one-step rules admits contraction:

Definition 15. A set R of one-step rules admits contraction if, for all rules
Γ0/Γ1, . . . , Γn ∈ R and all renamings σ : V → V we can find a rule Σ0/Σ1 . . . Σk

∈ R and an injective renaming ρ : V → V such that Σ0ρ ⊆ Γ0σ and, for all
j = 1, . . . , k there exists 1 ≤ i ≤ n such that Σjρ ⊇ Γiσ.

That is to say, an application of contraction to the premise of a modal rule (via
a substitution that identifies propositional variables) can always be replaced by
a different rule for which this is not the case, and moreover the conclusions of
this rule are even harder to satisfy. The existence lemma now takes the following
form:
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Lemma 16 (Existence Lemma). Suppose that R is one-step tableau complete
and admits contraction. If ∃ has a winning strategy f in the game induced by the
skeletal tableau system with global assumptions Δ, then there exists a coherent
coalgebra structure w : W → TW on the set of states that are f -reachable from
Γ, Δ.

Given coherence, we can now prove:

Lemma 17 (Truth Lemma). Suppose that M = (W, w, π) is coherent. Then
spec(A) ∩ W ⊆ �A�M ⊆ W \ spec(A) for all A ∈ F(Λ).

Completeness is now an immediate consequence of the Truth Lemma and the
Existence Lemma.

Proposition 18. If ∃ has a winning strategy from Γ, Δ ∈ State(Λ) in the skele-
tal game with global assumptions Δ, then Γ is satisfiable in Mod(Δ).

In summary, we have the following result that lays the semantical foundation of
the algorithms in the following section.

Theorem 19. Suppose that R is one-step sound and complete with respect to a
Λ-structure T . The following are equivalent for Γ, Δ ∈ S(Λ):

1. Γ is satisfiable in Mod(Δ)
2. Γ does not have a closed skeletal tableau with global assumptions Δ
3. ∃ has a winning strategy in the skeletal tableau game with global assumptions

Δ from position Γ, Δ.

As a by-product of this theorem, we obtain admissibility of cut (via semantical
completeness) and the small model property, which is implicit in the proof of
Proposition 18. We remark that the rules given in Example 7 are both one-step
sound and complete [24].

5 Global Caching

In this section, we show that global caching [10] is applicable to coalgebraic logics,
and give a feasible algorithm to decide satisfiability of a sequent Γ over a set Δ of
global assumptions. The idea behind global caching is very simple: every sequent
is expanded at most once, and sequents are not expanded unnecessarily. We begin
our discussion of global caching in the context of a generic tableau system that
we then subsequently specialise to coalgebraic logics to prove optimality.

Definition 20. Suppose that (S, R) is a tableau system. A caching graph for
(S, R) is a quintuple G = (A, U, E, X, L) where A, U, E, X ⊆ S and L ⊆ S ×
P(S) ∪ P(S) × S. The set supp(G) = A ∪ U ∪ E is called the support of G. A
caching graph G = (A, U, E, X, L) is expanded if

L =
⋃

Γ∈supp(G)

{(Γ, Ψ) | Γ/Ψ ∈ R} ∪ {(Ψ, Σ) | Γ/Ψ ∈ R, Σ ∈ Ψ}

and Ψ ⊆ supp(G) ∪ X for all Γ/Ψ ∈ R with Γ ∈ supp(G).
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In other words, a caching graph is a concrete data structure that not only stores
sequents, but also links every sequent in its support to each conclusion of a rule
applicable to it, and every conclusion to each of its elements. We think of A as
the set of winning positions of ∀ in the associated tableau game, and similarly
E represents ∃’s winning positions. The set L (of links) represents the collection
of all rules that can be applied to a sequent in the support of a caching graph.
The status of sequents in U is undecided, but they are expanded, in the sense
that L contains all rules that are applicable to elements in U . The conclusions
of such rules that are not already contained in the support of a caching graph
are collected in the set X , the set of sequents that are still unexpanded.

Definition 21. We define two transition relations →E (“expand”) and →P

(“propagate”) on caching graphs. We put (A, U, E, X, L) →E (A′, U ′, E′, X ′, L′)
if A′ = A, E′ = E and there exists Γ ∈ X such that

U ′ = U ∪ {Γ} X ′ = X ∪
(⋃

{Ψ | Γ/Ψ ∈ R}
)
\ (A′ ∪ E′ ∪ U ′)

L′ = L ∪ {(Ψ, Σ) | Σ ∈ Ψ, Γ/Ψ ∈ R} ∪ {(Γ, Ψ) | Γ/Ψ ∈ R}.
Moreover, (A, U, E, X, L) →P (A′, U ′, E′, X ′, L′) in case X ′ = X , L = L′ and

A′ = A ∪ μML E′ = E ∪ νWL U ′ = U \ (A′ ∪ E′)

where μML and νWL are, respectively, the least and greatest fixpoints of the
operators WL : P(U) → P(U) and ML : P(U) → P(U) given by

WL(X) = {Γ ∈ U | ∀(Γ, Ψ) ∈ L. ∃(Ψ, Σ) ∈ L. Σ ∈ X ∪ E}
ML(X) = {Γ ∈ U | ∃(Γ, Ψ) ∈ L. ∀(Ψ, Σ) ∈ L. Σ ∈ X ∪ A}

for X ⊆ U . We write →PE for the union of →P and →E and →∗
PE for its

reflexive-transitive closure.

In an expansion step, an unexpanded sequent Γ ∈ X is chosen, all rules that are
applicable to Γ are recorded in L and Γ is moved to U . To ensure that the ensuing
caching graph is expanded, new conclusions that arise from expanding Γ that are
not yet contained in the support are added to X , the set of unexpanded sequents.
The (deterministic) propagation steps update the set of winning positions of ∀
and ∃ in the tableau game. For ∀, this amounts to recursively adding a sequent
to A if we can apply a tableau rule whose conclusions are contained in A – this is
achieved by the least fixpoint construction above. The winning positions of ∃ are
computed by means of a greatest fixpoint, and we extend E by the largest set Ψ
of sequents so that for every tableau rule applied to Ψ , at least one conclusion
is contained in Ψ ∪ E, in other words, the construction of a closed tableau for
elements of Ψ ∪ E is impossible, provided that E already enjoys this property.

If we interleave expansion and propagation steps until all sequents are ex-
panded (X = ∅), we update the winning positions in a final propagation step,
and all elements not known to be either satisfiable or unsatisfiable (the elements
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of U) are declared to be satisfiable, since any tableau rule applied to a sequent
in U necessarily has at least one conclusion in E ∪ U , since this sequent would
otherwise have been moved to A by propagation.

Lemma 22. Suppose that (S, R) is a tableau system and (A, U, E, X, L) is an
expanded caching graph for (S, R) for which all Γ ∈ A but none of the Γ ∈ E,
have a closed tableau. If (A, U, E, X, L) →∗

PE (A′, U ′, E′, ∅, L) →P (Â, Û , Ê, ∅, L̂)
then all Γ ∈ Â, but none of the Γ ∈ Û ∪ Ê have a closed tableau.

Correctness of global caching induces the following (nondeterministic) algorithm.

Algorithm 23. Decide whether Γ ∈ S has a closed tableau.

1. initialise: Put G = (A, U, E, X, L) where
– A = E = ∅, U = {Γ} and X =

⋃{Ψ | Γ/Ψ ∈ R}
– L = {(Γ, Ψ) | Γ/Ψ ∈ R} ∪ {(Ψ, Σ) | Σ ∈ Ψ, Γ/Ψ ∈ R}

2. while (X �= ∅) do
(a) choose G′ with G →E G′ and put G := G′

(b) (optional)
– find G′ with G →P G′ and put G := G′

– return “yes” if Γ ∈ A and “no” if Γ ∈ E
3. find G′ with G →P G′ and put G := G′

4. return “yes” if Γ ∈ E and “no” otherwise.

Correctness of this algorithm follows from Lemma 22, and termination is clear
as every expand-transition adds one sequent to the support of a caching graph,
as long as (S, R) is finite. Since transitions between caching graphs preserve the
property that all elements in A, but none of the elements in E, have a closed
tableau, we may in fact terminate earlier if we find the initial sequent in E ∪A.

Theorem 24. Suppose that (S, R) is a finite tableau system and Γ ∈ S. Then
every execution terminates in at most 3 · |S| + 1 steps and returns “yes” if and
only if Γ has a closed tableau.

We remark that – although Algorithm 23 is non-deterministic – we just need to
check one particular execution, i.e. there is no inherent non-determinism, but
room for heuristics. We now specialise Algorithm 23 to the case of coalgebraic
logics and establish an (optimal) Exptime bound. In the general (coalgebraic)
setting, we can not expect that satisfiability of a sequent Γ under global as-
sumptions Δ is even decidable unless we make additional assumptions about the
underlying set of one-step rules (which may in general be non-recursive). How-
ever, all rule sets that we are aware of, in particular the rule sets that completely
axiomatise the logics introduced in Example 1 satisfy an additional assumption:
the set of conclusions of a rule can be polynomially encoded in terms of the size
of the premise. This was used in [24] and applied to fixpoint logics in [4].

To be precise, we assume that the underlying similarity type Λ is equipped
with a size measure s : Λ → N and measure the size of a formula A in terms
of the number of subformulas of A adding s(♥) for every occurrence of a modal
operator ♥ or ♥ in A. For the logics in our running example, we code numbers
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in binary, that is 〈p/q〉 = [p/q] = �log2 p�+ �log2 q� for probabilistic modal logic
and s([C]) = 1 for operators of coalition logic, as the overall set of agents is
fixed. The definition of size is extended to sequents by size(Γ ) =

∑
A∈Γ size(A)

for Γ ∈ S(Λ). In particular, the size of the closure of a sequent is polynomially
bounded.

Lemma 25. Suppose Γ ∈ S(Λ). Then size(Σ) ≤ 2size(Γ )2 for all Σ ⊆ cl(Γ ).

The notion of size allows us to formulate polynomial encodings.

Definition 26. A set R of tableau rules is exponentially tractable, if there exists
an alphabet Σ and two functions f : S(Λ) → P(Σ∗) and g : Σ∗ → P(S(Λ))
together with a polynomial p such that |x| ≤ p(size(Γ )) for all x ∈ f(Γ ),
size(Δ) ≤ p(|y|) for all Δ ∈ g(y), so that, for Γ ∈ S(Λ),

{g(x) | x ∈ f(Γ0)} = {{Γ1, . . . , Γn} | Γ0/Γ1, . . . , Γn ∈ R}
and both relations x ∈ f(Γ ) and Γ ∈ g(x) are decidable in Exptime.

Tractability of the set S(R) of tableau rules follows from tractability of the sub-
stitution instances of rules in R, as both propositional rules and saturation can
be encoded easily. At this point, we use the fact that the modal rules in the
skeletal system are defined in terms of injective substitutions as otherwise a rule
can be generated through infinitely many substitution instances.

Lemma 27. Suppose R is a set of one-step rules. Then S(R) is exponentially
tractable iff the set {Γ0σ/Γ1σ, . . . , Γnσ | Γ0/Γ1, . . . , Γn ∈ R, σ : V → F(Λ)
injective} of substituted one-step rules is exponentially tractable.

Tractability ensures that we can encode the data on which Algorithm 23 operates
as strings of at most polynomial length in terms of the initial sequent and the
global assumptions.

Lemma 28. Suppose that R is exponentially tractable and Γ, Δ ∈ S(Λ). Then
every Ψ ⊆ cl(Γ, Δ) that appears as the conclusion of a rule Σ/Ψ ∈ S(R) for which
Σ ∈ cl(Γ, Δ) can can be encoded as a string of polynomial length (in size(Γ, Δ)).
Under this coding, the relations {(Σ0, {Σ1, . . . , Σn}) | Σ0/Σ1 . . . Σn ∈ S(R),
Σ0 ⊆ cl(Γ, Δ) and {({Σ1, . . . , Σn}, Σi) | 1 ≤ i ≤ n, ∃Σ0 ⊆ cl(Γ/Δ).
Σ0/Σ1 . . . Σn ∈ R} are decidable in exponential time.

Tractability of rule sets guarantees that Algorithm 23 runs in Exptime.

Theorem 29. Suppose that Λ is a modal similarity type and T is a Λ-structure.
If R is a one-step tableau sound and complete set of one-step rules that admits
contraction, then Algorithm 23 decides satisfiability of Γ in Mod(Δ) in at most
exponential time (w.r.t. size(Γ, Δ)), if R is exponentially tractable.

In our examples, the situation is as follows:

Example 30. All logics mentioned in Example 1 can be captured by a one-
step sound and complete rule set that is exponentially tractable [20,24], and we
briefly discuss the case for those logics that we have singled out in Example 1
and Example 7.
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1. For coalition logic, no coding is needed at all, as the size of sequents de-
creases when we move from the premise to the conclusion of a rule, and Exptime
decidability of the rule set is clear.

2. For the conclusions of the rule schema that axiomatises probabilistic modal
logic, we take the linear inequality

∑m
j=1 sjqj −

∑n
i=1 ripi < k itself as a code for

the associated set of conclusions. Tractability was shown in [24] using the fact
that the (binary) size of the coefficients ri can be polynomially bounded.

3. For rule sets that arise as combinations, tractability follows from tractabil-
ity of the individual components, which is most conveniently made explicit in a
multi-sorted setting [23].

As the modal logic K can be encoded into all logics mentioned in Example 1
with the exception of classical and monotone modal logic, global satisfiability
for these logics is Exptime hard, and hence optimality of Algorithm 23.

6 Conclusions

We have given a sound and complete tableau calculus for coalgebraic modal
logics in the presence of global assumptions. Based on the completeness of the
tableau calculus, we have then described a concrete tableau algorithm to de-
cide satisfiability in presence of global assumptions, based on global caching.
In particular, this algorithm meets the (in nearly all cases optimal) Exptime
bound, while avoiding the unnecessary overhead of computing least fixpoints
naively. This showcases not only the wide applicability of global caching, but
also demonstrates that automated reasoning with coalgebraic logics in the pres-
ence of global assumptions is also in practice not (much) harder than for modal
logics with an underlying relational semantics. We have demonstrated by means
of examples, that the general (coalgebraic) framework specialises to a large class
of modal logics, and have thus not only described the first tableau algorithm for
deciding e.g. probabilistic modal logic, but an algorithm that is also worst-case
optimal that we plan to implement and evaluate experimentally in the future.
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13. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp.
205–219. Springer, Heidelberg (2009)
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