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Conventional economic theory assumes that the utility of a person or a
family is independent of the consumption of others. Yet a visit to the park-
ing lot of a suburban shopping mall may tempt an economist to question this
independence. Has the proliferation of sport utility vehicles owned by non-
adventurous people in moderate climates resulted from factors that are the
focus of traditional economic analysis, such as increased income or wealth,
superior hedonic traits, or sharp reductions in the prices of these vehicles
or their complementary goods, such as gasoline? Pending the econometric
resolution of this question, I will pursue the temptation to question the inde-
pendence of a person’s utility from the consumption of others. A half century
ago, Duesenberry (1949) questioned the apparent preference for Buicks over
Chevrolets and developed a theory of consumption and saving based on the
assumption that a person’s utility is a function of that person’s consumption
relative to the average level of consumption in society.1

I will assume that consumers use an endogenous benchmark level of con-
sumption to evaluate their utility. I will specify the benchmark level of
consumption to be a weighted geometric average of the contemporaneous
consumption of all consumers in the economy. In addition to a person’s
own consumption, I will include in the utility function a person’s own con-
sumption relative to the benchmark level of consumption. Elsewhere, others
and I have shown that including a benchmark level of consumption in the
utility function can help account for various puzzling empirical moments of
asset returns.2 Here my focus is on the saving decision and aggregate capital
accumulation.3 I will modify the Diamond (1965) overlapping generations

1“It is well known that there are societies in which prestige is gained by the acquisition
of some sort of good which is completely useless in fulfilling any need whatever. In spite
of the complete uselessness of the things in question, their acquisition may be vital to
the acquisition of prestige or maintenance of self-esteem. A great deal of effort may be
expended in acquiring these useless items. In our society people may think that they
expend effort to get a Buick instead of a Chevrolet because the Buick is more comfortable
or goes faster. But this does not in the least prove that part of the basis for the purchase
is not the maintenance of self-esteem.” (Duesenberry, 1949, p. 29)

2See, for example, Abel (1990, 1999) and Campbell and Cochrane (1999).
3Dupor and Liu (2002) develop a taxonomy for various features of consumption ex-

ternalities. If utility is u (c, b), where c is the individual’s own consumption and b is a
benchmark that equals the average level of consumption by others, they define jealousy as
∂u/∂b < 0 and keeping up with the Joneses as ∂2u/∂c∂b > 0. They show that keeping up
with the Joneses is important for asset pricing considerations and jealousy is important
for consumption allocations. The utility function I use in this paper displays jealousy. It
also displays keeping up with the Joneses for the case in which the curvature parameter
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model to include a benchmark level of consumption in the utility function of
individuals. The introduction of a benchmark level of consumption leads to
a straightforward modification of the equilibrium balanced growth path in a
competitive economy. More interesting is the modification of the balanced
growth path that maximizes a social welfare function that assigns geometri-
cally declining weights to the utility of subsequent generations. The socially
optimal balanced growth path is characterized by the same Modified Golden
Rule as in standard neoclassical growth models. However, the concern for
consumption relative to the benchmark level of consumption introduces an
optimality condition on the allocation of consumption across generations that
are simultaneously alive.

After deriving the competitive balanced growth path and the socially op-
timal balanced growth path, the next step is to characterize a set of tax
and transfer policies that will induce the competitive economy to attain the
social optimum. In a standard neoclassical growth model without a bench-
mark level of consumption, a balanced-budget lump-sum intergenerational
tax/transfer scheme, which could be interpreted as pay-as-you-go social se-
curity, can be used to achieve the appropriate level of saving for the economy
to attain the Modified Golden Rule. However, an additional fiscal tool is
needed to attain the socially optimal balanced growth path when, in addition
to the level of their own consumption, consumers care about their consump-
tion relative to the benchmark level of consumption. This appearance of
the benchmark level of consumption in the utility function introduces an ex-
ternality in consumption, and, not surprisingly, the attainment of the social
optimum requires a distortionary tax.4 In particular, a capital income tax
or subsidy, offset by lump-sum rebates or taxes, and accompanied by the
appropriate social security system will induce the competitive economy to
attain the social optimum.

At some level, the use of a lump-sum intergenerational tax/transfer sys-
tem to attain the Modified Golden Rule and the use of distortionary taxes on
capital income to correct a consumption externality are not surprising. Yet,
in principle, the signs of these taxes could be positive or negative. Specifi-
cally, the optimal intergenerational tax/transfer system could involve trans-
fers from young consumers, who are working, to old consumers who are re-

α, introduced in equation (11), is greater than one.
4Duesenberry (1949), Boskin and Sheshinski (1978), Ljungqvist and Uhlig (2000), and

de la Croix and Michel (1999) have derived optimal distortionary taxes in the presence of
various sorts of consumption externalities.
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tired, as in a social security system, or the transfers could be in the opposite
direction, from old to young. Also, the optimal tax rate on capital income
could be positive, negative, or zero. I address these potential ambiguities by
deriving conditions on exogenous parameters that determine the direction of
the transfers in the optimal social security system and the sign of the optimal
tax rate on capital income. In the special, but perhaps focal, case in which
benchmarks are equally-weighted geometric averages of the contemporane-
ous consumption of all consumers, I derive a surprising result: if the social
planner is more patient than individuals, the optimal tax rate on capital in-
come is positive. This result is surprising because an increase in the social
planner’s patience would increase the optimal capital-labor ratio, and one
might be tempted to think that the social planner would foster capital accu-
mulation by subsidizing capital. But as I show in Section 5, and summarize
intuitively in the concluding remarks in Section 6, the greater patience of the
social planner leads the social planner to favor later, i.e., younger, genera-
tions. The social planner can tilt a given amount of aggregate consumption
in any period toward the younger generation alive in the period by taxing
capital income at a positive rate. In addition to analytic results about the
signs of the optimal taxes, I present illustrative calculations to demonstrate
that, in plausible cases, the optimal lump-sum intergenerational (social se-
curity) transfers can be from young to old and that the optimal tax rate on
capital income can be positive.

I use a standard neoclassical production function, which I present in Sec-
tion 1. Then in Section 2 I define the benchmark level of consumption and
incorporate it into the utility function of an individual consumer. Using the
utility function with benchmark levels of consumption, I solve the optimal
consumption decision of a young consumer and characterize the equilibrium
balanced growth path in a competitive economy in Section 3. I specify the
objective function of the social planner in Section 4 and characterize the
socially optimal balanced growth path. This characterization includes the
standard Modified Golden Rule and a condition that determines the optimal
intergenerational allocation of consumption in each period. In Section 5, I
derive and characterize the optimal tax and transfer policies that induce a
competitive economy to attain the socially optimal balanced growth path.
Concluding remarks are presented in Section 6. The appendixes contain
derivations that would be distracting if presented in the text.
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1 The Production Function

Consider a closed economy with overlapping generations of consumers who
live for two periods. Each generation consists of a continuum of identical
consumers. Let Nt be the measure of the consumers born at the beginning
of period t, and let GN ≡

Nt+1

Nt

≥ 1 be the constant growth rate of the
population. Consumers born at the beginning of period t inelastically supply
one unit of labor in period t when they are young, and they supply no labor
in period t + 1 when they are old.5 Thus, the measure of workers in period
t is Nt.

The economy uses capital and labor to produce a homogenous good ac-
cording to the production function Yt = F (Kt,AtNt) where Yt is aggregate
output in period t, Kt is the aggregate capital stock at the beginning of pe-
riod t, and At is an index of labor-augmenting productivity which grows at
a constant rate GA ≡

At+1

At

≥ 1. The production function F (, ) is strictly
increasing, concave, and linearly homogeneous in its two arguments Kt and
AtNt. It is convenient to write the production function in intensive form as

Yt = AtNtf (kt) (1)

where kt ≡
Kt

AtNt

is the effective capital-labor ratio, f (0) = 0, f ′ (kt) > 0,

f ′ (0) = ∞, f ′ (∞) = 0, and f ′′ (kt) < 0. Define εf (kt) ≡
ktf

′(kt)
f(kt)

as the

elasticity of the production function f (kt) with respect to kt. For positive
finite values of kt, 0 < εf < 1. The marginal product of capital is f ′ (kt) and
the marginal product of labor is At [f (kt)− ktf

′ (kt)]. I will assume that the
labor market is competitive so that the wage income of a young consumer in
period t is

wt = At [f (kt)− ktf
′ (kt)] . (2)

Output produced during period t has three uses. An amount Ct is
consumed by each of the Nt young consumers during period t, an amount
Xt is consumed by each of the Nt−1 old consumers in period t, and the

5By specifying an inelastic supply of labor for young consumers and zero labor supply
for old consumers, I am cutting off an important channel leading to non-zero optimal cap-
ital income taxes in Erosa and Gervais (2002) and Garriga (2001). I chose this inelastic
specification of labor supply in order to focus on the impact of benchmark levels of con-
sumption, which are absent in Erosa and Gervais (2002) and Garriga (2001). Ljungqvist
and Uhlig (2000) derive optimal taxes (on labor income) with consumption externalites
and endogenous labor supply, but their model does not include capital.
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remaining output is devoted to creating the capital stock at the beginning
of period t + 1, Kt+1 = At+1Nt+1kt+1. Therefore, the aggregate resource
constraint in period t is

AtNtf (kt) = NtCt +Nt−1Xt + At+1Nt+1kt+1. (3)

Using the assumptions that population and productivity grow at constant
rates, GN and GA, respectively, rewrite the aggregate resource constraint as

f (kt) =
Ct

At

+
1

GN

Xt

At

+GAGNkt+1. (4)

Along a balanced growth path in this economy, the ratios kt,
Ct

At
, and Xt

At

are all constant. Therefore, both Ct and Xt grow at the rate GA, and the
ratio Xt

Ct
is constant along a balanced growth path,

2 The Utility Function with Benchmark Con-

sumption

I will specify an individual consumer’s utility function to depend in each pe-
riod on the consumer’s own consumption in that period and on a benchmark
level of consumption that is a weighted geometric average of the contempo-
raneous consumption of other consumers. To specify the benchmark level
of consumption more precisely, I will first introduce some notation for con-
sumption. Let ct be the consumption in period t of an individual young
consumer (who was born at the beginning of period t), and let xt be the
consumption in period t of an individual old consumer (who was born at the
beginning of period t− 1). The variables Ct and Xt defined earlier are the
per capita consumption levels of the young and old generations, respectively,
and are not affected by the decisions of an individual consumer. An indi-
vidual consumer born at the beginning of period t chooses ct and xt+1 and
takes as given the values of Ct, Xt, Ct+1, and Xt+1. In equilibrium ct = Ct

and xt = Xt because all consumers in a given generation are identical.
Now consider the benchmark levels of consumption for a consumer born

at the beginning of period t. Let νyt be the benchmark level of consump-
tion for a young consumer in period t and let νot+1 be the benchmark level
of consumption for an old consumer in period t + 1. In each period the
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benchmark level of consumption is a weighted geometric average of the per
capita consumption of the two living generations. Specifically,

νy
t = C

GN
θy+GN

t X
θy

θy+GN

t , 0 ≤ θy ≤ 1 (5)

and

νot+1 = C
θoGN

θoGN+1

t+1 X
1

θoGN+1

t+1 , 0 ≤ θo ≤ 1. (6)

The parameter θy in equation (5) is the weight of the consumption of a
representative old consumer relative to the consumption of a representative
young consumer in the specification of the benchmark for young consumers.
The restriction that θy ≤ 1 implies that the benchmark for young consumers
places at least as much weight on the consumption of a fellow young consumer
as on the consumption of an old consumer. Similarly, the restriction θo ≤ 1 in
equation (6) implies that the benchmark for old consumers places at least as
much weight on the consumption a fellow old consumer as on the consumption
of a young consumer.

To simplify notation, I rewrite the specification of the benchmarks in
equations (5) and (6) as

νyt = C
1−εy
t X

εy
t , 0 ≤ εy ≡

θy
θy +GN

≤
1

1 +GN

(7)

and

νot+1 = Cεo
t+1X

1−εo
t+1 , 0 ≤ εo ≡

θoGN

θoGN + 1
≤

GN

1 +GN

. (8)

The restrictions on εy and εo in equations (7) and (8) imply that εy +
εo ≤ 1. If the benchmark for young consumers, νyt , is an equally-weighted

geometric average of the consumption of all consumers alive in period t,
then θy = 1 and εy =

1

1+GN
. If the benchmark for old consumers, νot+1, is an

equally-weighted geometric average of the consumption of all consumers alive
in period t + 1, then θo = 1 and εo =

GN
1+GN

. Thus, when both benchmarks
are equally-weighted geometric averages of consumption of all consumers,
εo + εy = 1 and εo = εyGN .

It will be useful to define the (intratemporal) intergenerational consump-
tion ratio σt ≡

Xt

Ct
. With this definition, the benchmark levels of consump-

tion in equations (7) and (8) can be written as

νyt = Ctσ
εy
t (9)
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and
νot+1 = Xt+1σ

−εo
t+1 = Ct+1σ

1−εo
t+1 . (10)

Now I will specify a utility function that incorporates benchmark levels
of consumption. The utility of a consumer born at the beginning of period t
is

Ut =
1

1− α

(

ct
(νyt )

η

)1−α

+ β
1

1− α

(

xt+1
(

νot+1
)η

)1−α

(11)

where α > 0, β > 0, and 0 ≤ η < 1. The felicity in any given period can be
viewed as an isoelastic function (with elasticity 1−α) of a geometric average
of the consumer’s own consumption and the consumer’s own consumption
relative to the benchmark level of consumption. For example, the consumer’s
felicity when young in period t is an isoelastic function of ct

(νyt )
η , which can be

expressed as c1−ηt

(

ct
ν
y
t

)η

. The parameter η measures the (geometric) weight

of the ratio of the consumer’s own consumption to the benchmark level of
consumption. If η = 0, this ratio does not enter the utility function, and
utility is simply an isoelastic function of the consumer’s own consumption,
as in the conventional formulation of isoelastic utility. If η were equal to
one, then the consumer’s own consumption would affect utility only through
its ratio to the benchmark, ct

ν
y
t
, as in Abel (1990, 1999)6. However, I rule out

this case here by restricting η to be strictly less than one.7

I will rewrite the utility function in equation (11) using the expressions
for νyt in equation (9) and νot+1 in equation (10) to obtain

Ut = uyt + βuo
t+1 (12)

6In Abel (1990), the benchmark level of consumption in period t depends on the per
capita level of consumption in period t− 1, rather than on the contemporaneous level of
per capita consumption. In considering this difference, note that in Abel (1990) a period
is one year, but in the current paper a period is one half of an adult lifetime. Also, in
Abel (1990), the parameter γ, which corresponds to η in the current notation, is set equal
to one in the numerical calibration, though the theoretical analysis does not restrict γ to
be equal to one.

7Although η = 1 has interesting asset pricing implications, this value of η changes the
nature of the social planner’s problem. Specifically, if η = 1, the utility of a representative
consumer born at the beginning of period t is unaffected by a doubling of ct and xt+1, if
Ct, Xt, Ct+1, and Xt+1 are also doubled.
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where

uy
t = uy

t (ct, Ct,Xt) ≡
1

1− α

(

ctC
−η
t

(

Xt

Ct

)

−ηεy
)1−α

(13)

and

uot+1 = uot+1 (xt+1, Xt+1, Ct+1) ≡
1

1− α

(

xt+1X
−η
t+1

(

Xt+1

Ct+1

)ηεo)1−α

. (14)

Note that the time subscripts in equations (13) and (14) refer to the time
period in which consumption takes place rather than to the period in which
the consumer is born. Thus, uot+1 is the felicity during period t+1 of an old
consumer who was born at the beginning of period t.

3 Competitive Economy

In this section I examine the behavior of a competitive economy in which
consumers have the utility function specified in equation (12) and the ag-
gregate resource constraint is described by equation (4). I will introduce
two fiscal instruments, which can be described as a pay-as-you-go social se-
curity system and a capital income tax. I focus on these two instruments
because they will turn out to be useful in directing a competitive economy
to a socially optimal balanced growth path, as I will show in Section 5.

First consider the pay-as-you-go social security system. Let T y
t be a

lump-sum tax paid by each young consumer in period t, and let T o
t be a

lump-sum tax paid by each old consumer in period t. If T o
t is negative,

then old consumers are recipients of transfers from the government and (if
T y
t > 0) the tax/transfer system involving T y

t and T o
t has the character of a

social security system. I will impose the condition that the social security
system is financed on a balanced-budget pay-as-you-go basis by requiring
NtT

y
t +Nt−1T

o
t = 0, which implies

T o
t = −GNT

y
t . (15)

Social security taxes and benefits are indexed to the level of productivity
measured by At. Specifically,

T y
t =

At

A0
T y
0 . (16)
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The second fiscal instrument is a capital income tax that is rebated via
lump-sum transfers to old consumers. Let τK be the rate at which (gross)
capital income is taxed. The pre-tax, or social, gross rate of return on capital
held from period t to period t + 1 is f ′ (kt+1). Let Rt+1 denote the after-tax
gross rate of return on capital held from period t to period t + 1, which is

Rt+1 = (1− τK) f
′ (kt+1) . (17)

Pre-tax gross capital income per old consumer in period t+1 is the marginal
product of capital, f ′ (kt+1), multiplied by the amount saved by each young
consumer in period t, wt − T y

t − Ct. Therefore, the capital income tax per
old consumer is τKf

′ (kt+1) (wt − T y
t − Ct). Each old consumer in period

t+ 1 receives a lump-sum rebate, qt+1, of the capital income tax, so8

qt+1 = τKf
′ (kt+1) (wt − T y

t − Ct) . (18)

The lifetime budget constraint of a consumer born at the beginning of
period t, taking account of the lump-sum social security taxes and transfers,
the capital income tax, and the lump-sum rebate of the capital income tax,
is

xt+1 = (wt − T y
t − ct)Rt+1 − T o

t+1 + qt+1. (19)

A consumer born at the beginning of period t chooses ct and xt+1 to
maximize utility in equation (12) subject to the budget constraint in equation
(19). Along a balanced growth path σt = σ and Ct+1

Ct
= GA, and this decision

problem is isomorphic to the following simple problem:

max
ct,xt+1

1

1− α
c1−αt + βM (σ) σαG

−η(1−α)
A

1

1− α
x1−αt+1 (20)

subject to equation (19) where

M (σ) ≡ σεM (21)

8The lump-sum tax on old consumers, T o

t+1, and the lump-sum rebate of the capital

income tax, qt+1, can be combined into a single variable ˜T o

t+1 ≡ T o

t+1 − qt+1, which is the

net lump-sum tax paid by each old consumer in period t+1. I have chosen to specify the

separate components, T o

t+1 and qt+1, of ˜T
o

t+1 to help interpret optimal fiscal policy.
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and9

εM ≡ −α− (1− α) η (1− εy − εo) < 0. (22)

To interpretM (σ), note that βM (σ)G
−α−η(1−α)
A equals the private marginal

rate of substitution, MRSP (ct, xt+1) ≡ β
∂uo

t+1
/∂xt+1

∂uyt /∂ct
, evaluated in equilibrium

along a balanced growth path (so that xt+1 = σct+1 = σGAct). Thus, βM (σ)
is the private marginal rate of substitution along a balanced growth path in
the absence of productivity growth.

In Appendix A I show that along an equilibrium balanced growth path10

βRM (σ) = G
α+η(1−α)
A . (23)

Equation (23) is the intertemporal Euler equation of an individual consumer
along a balanced growth path.11 It describes the long-run relationship be-
tween two endogenous variables, the after-tax rate of return, R, and the inter-
generational relative consumption ratio, σ. In this relationship the elasticity
of R with respect to σ is −εM > 0 so that the R and σ are positively related.

4 The Optimal Balanced Growth Path

In this section I analyze the path of consumption and capital accumulation
that would be chosen by a social planner who maximizes a particular social
welfare function. The social planner chooses levels of consumption for each
consumer, and, in principle, could choose different levels of consumption for
two identical consumers born at the same date. However, I will assume that
the social planner attaches equal weights to the utility of all consumers in a
given generation. Since the consumption of each consumer is too small to af-
fect the per capita consumption of that consumer’s generation, all consumers
in a given generation have the same benchmark levels of consumption as each
other. Therefore, they have the same utility functions as each other, and,

9The elasticity εM can be written as εM = −1 + (1− α) (1− η (1− εy − εo)) < 0 .
10Liu and Turnovsky (2002) show that with inelastic labor supply and identical

infinitely-lived consumers, the steady-state rate of return on capital is not affected by
consumption externalities. However, with overlapping generations of finitely-lived con-
sumers, the equilibrium rate of return along a balanced growth path depends on the
consumption externalities as captured by η and M (σ), which depends on η, εy, and εo,
in equation (23).
11Using the expression for the private intertemporal marginal rate of substitution in

equation (E.3), equation (23) can be rewritten as R×MRSP (ct, xt+1) = 1.
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since utility is strictly concave in an individual consumer’s own consump-
tion, the social planner will choose equal consumption for all consumers in a
generation.

Suppose that the social welfare function in period t is12

∞
∑

j=−1

ρjGj
NUt+j (24)

where
0 < ρGNG

(1−α)(1−η)
A < 1. (25)

In the social welfare function in equation (24), the parameter ρ is the discount
factor applied to the total utility of a given generation relative to the total
utility of the preceding generation, which has 1

GN
as many people as the given

generation.13 The restriction in equation (25) is necessary and sufficient for
the sum in equation (24) to be finite along a balanced growth path.14

Since the social planner chooses equal consumption for all consumers in
a generation, the utility of a representative consumer born at the beginning
of period t is found by setting ct = Ct in equation (13) and xt+1 = Xt+1

in equation (14), using the definition of the intergenerational consumption
ratio, σt ≡

Xt

Ct
, and substituting equations (13) and (14) into equation (12)

to obtain

Ut =
1

1− α

(

C1−η
t σ

−ηεy
t

)1−α

+ β
1

1− α

(

C1−η
t+1 σ

1−η+ηεo
t+1

)1−α
. (26)

The standard Modified Golden Rule in overlapping generations economies15

is a special case of the current model in which η = 0 so that benchmarks do
not enter the utility function. In this special case, the social welfare function

12Because the generation born at the beginning of period t− 1 consumes during period
t (as well as during period t− 1), it is important that the social planner assigns a positive
weight to Ut−1 when making decisions at the beginning of period t. Therefore, the index
j in equation (24) runs from −1 to ∞ rather than from 0 to ∞.

13I thank an anonymous referee for suggesting that I apply the discount factor ρj to the
total utility of a generation, GjNUt+j , rather than to per capita utility, Ut+j .

14Along a balanced growth path, Ct+1

Ct

= Xt+1

Xt

= GA, which implies that Ut+1

Ut

=

G
(1−α)(1−η)
A . Therefore, along a balanced growth path, equation (24) is a geometric

series in which each term is ρGNG
(1−α)(1−η)
A times as large as the preceding term. This

series has a finite sum if and only if 0 < ρGNG
(1−α)(1−η)
A < 1.

15See, for example, Samuelson (1968) and Blanchard and Fischer (1989, p. 100).
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is maximized by an appropriate path of the aggregate capital stock, which
implies an appropriate path of aggregate consumption. In the absence of
consumption externalities (η = 0) the social planner has no particular target
for the intergenerational consumption ratio, σt. Indeed, the social welfare
function is maximized by the intergenerational allocation of consumption
that arises when individual consumers facing market rates of return—without
capital income taxes—choose their optimal allocations of consumption over
their own lifetimes.

The introduction of consumption externalities (η > 0) implies that the
social planner must target the intergenerational consumption ratio as well as
the path of capital accumulation. We can think of the social planner as first
choosing the optimal path of aggregate consumption and capital accumula-
tion. Then, given this optimal path of aggregate consumption, the social
planner chooses the intergenerational consumption ratio σt. Unfortunately,
the social planner’s objective function is not concave in σt for all permissible
parameter values. To assure that the optimal value of σt is characterized by
the first-order conditions derived in Appendix B, I will assume henceforth
that α ≥ 1. This assumption does not guarantee that the social planner’s
objective function is concave in σt, but it does imply that the value of the
social welfare function approaches −∞ both as σt approaches 0 and as σt
approaches ∞.16 Therefore, the optimal value of σt is strictly positive and
finite. Since the social welfare function is continuously differentiable in σt
for positive σt, the optimal value of σt will satisfy the first-order condition.

Let k∗ denote the socially optimal value of kt along a balanced growth
path. As shown in Appendix B, k∗ satisfies

ρf ′ (k∗) = G
α+η(1−α)
A . (27)

Equation (27) is a generalization of the well-known Modified Golden Rule.
In the standard formulation of preferences without benchmark levels of con-

16Equation (14) implies that when xt = Xt, u
o

t
= 1

1−α

(
X
1−η+ηεo
t C

−ηεo
t

)1−α
. For a

given amount of aggregate consumption in period t, limσt→0Xt = 0. If α > 1, then
limσt→0 u

o
t = −∞. If α = 1, then uot = (1− η + ηεo) lnXt − ηεo lnCt so limσt→0 u

o
t =

−∞. Therefore, if α ≥ 1, then limσt→0 u
o
t = −∞. Equation (13) implies that when

ct = Ct, u
y
t = 1

1−α

(
C
1−η+ηεy
t X

−ηεy
t

)1−α
. For a given amount of aggregate consumption

in period t, limσt→∞Ct = 0. If α > 1, then limσt→∞ u
y
t = −∞. If α = 1, then

u
y
t = (1− η + ηεy) lnCt − ηεy lnXt so limσt→∞ u

y
t = −∞. Therefore, if α ≥ 1, then

limσt→∞ u
y
t = −∞.
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sumption, η = 0 and the Modified Golden Rule in equation (27) takes the
more familiar form, ρf ′ (k∗) = Gα

A.
17 In the absence of productivity growth

(GA = 1), the value of k∗ is not affected by the introduction of benchmark
levels of consumption. In the presence of productivity growth (GA > 1), the
introduction of benchmark levels of consumption will increase k∗ if α > 1,
but will have not effect on k∗ if α = 1.

Let σ∗ denote the optimal value of σt along a balanced growth path. It
is convenient to analyze σ∗ by defining the function

Ψ (r) ≡
1− η + ηεo + ηεor

(1− η + ηεy) r + ηεy
r, for r > 0. (28)

Appendix E shows that Ψ
(

σ∗

GN

)

equals the ratio MRSS(Ct,Xt+1)
MRSP (ct,xt+1)

, whereMRSS (Ct,Xt+1)

is the social marginal rate of substitution between current consumption of
the young and next period’s consumption of the old along a socially op-
timal balanced growth path, and MRSP (ct, xt+1) is the private marginal
rate of substitution between these two consumptions along a socially opti-
mal balanced growth path. The function Ψ (r) is useful in characterizing the
socially optimal balanced growth path. Appendix D proves the following
lemma, which describes various properties of Ψ (r).

Lemma 1 The function Ψ(r) defined in equation (28) has the following
properties:

(a) Ψ(r) > 0 for r > 0;
(b) Ψ′ (r) ≥ 0 for r > 0, with strict inequality if ηεy > 0 or if ηεo > 0;

(c) 0 ≤ εΨ ≡
rΨ′(r)
Ψ(r)

< 1 for r > 0;

(d) if ηεy = ηεo = 0, then Ψ(r) ≡ 1;

(e) if ηεy > 0 and ηεo > 0, then Ψ
(

εy

εo

)

= 1;

17The formulations of the Modified Golden Rule presented by Samuelson (1968) and
Blanchard and Fischer (1989) include the population growth rate GN , but equation (27)
does not explicitly include GN . Samuelson and Blanchard and Fischer use a social welfare
function that is a weighted average of the utility of the representative consumer in each
generation, but the social welfare function in equation (24) is a weighted average of the total

utility of each generation. With a constant population growth rate GN , this difference is
simply a normalization. To illustrate, define ρ̂ ≡ ρGN . The social welfare function in

equation (24) can be written as
∞∑

j=−1

ρ̂
j
Ut+j and the Modified Golden Rule in equation

(27) can be written in the more familiar form as ρ̂f ′ (k∗) = GNG
α
A when η = 0.

13



(f) (i) limr→0
1
r
Ψ(r) = 1−η+ηεo

ηεy
> 0, if ηεy > 0;

(ii) limr→0
1
r
Ψ(r) = ∞, if ηεy = 0;

(g) limr→∞
1
r
Ψ(r) = ηεo

1−η+ηεy
.

Parts (a), (b), and (c) of Lemma 1 state for positive r, Ψ (r) is positive,
increasing, and has an elasticity with respect to r that is less one. When
the private marginal rate of substitution, MRSP (ct, xt+1), equals the social
marginal rate of substitution, MRSS (Ct, Xt+1), along a socially optimal bal-
anced growth path, Ψ (r) = 1. Parts (d) and (e) of Lemma 1 describe cases
in which Ψ (r) = 1. Finally, parts (f) and (g) of Lemma 1 describe limit-
ing behavior of Ψ (r) that is helpful in ensuring that the characterization of
optimal σ presented later is correct for the case in which α = 1.

Appendix B shows that the optimal value of the intergenerational con-
sumption ratio σ∗ satisfies

βM (σ∗)Ψ

(

σ∗

GN

)

= ρ. (29)

To interpret equation (29), use equation (27) to show that Gα+η(1−α)
A /f ′ (k∗)

equals the social discount factor ρ, and substitute this expression for ρ into
equation (29) to obtain

[

βM (σ∗)G
−α−η(1−α)
A Ψ

(

σ∗

GN

)]

f ′ (k∗) = 1. (30)

Since the private marginal rate of substitution, MRSP (ct, xt+1), equals

βM (σ∗)G
−α−η(1−α)
A , and since Ψ

(

σ∗

GN

)

is the ratio of the social marginal

rate of substitution to the private marginal rate of substitution, the term in
square brackets in equation (30) is the social marginal rate of substitution,
MRSS (Ct, Xt+1). Equation (30) simply states that the product of the social
marginal rate of substitution and the social rate of return, f ′ (k∗), equals one,
which is a standard Euler condition for intertemporal optimization.

Equation (29) characterizes the optimal intergenerational consumption
ratio, σ∗. I will devote the remainder of this section to analyzing the prop-
erties and implications of this equation. I will focus on two cases in which
I can prove that there is a unique positive value of σ that satisfies equation
(29):

• Case I: α > 1.

14



• Case II: α = 1 and 0 < ηεo
1−η+ηεy

< ρGN
β

< 1−η+ηεo
ηεy

.

The following lemma, which is proved in Appendix D, is useful in ana-
lyzing these cases.

Lemma 2 In Cases I and II, εM + εΨ < 0 for r > 0.

Lemma 2 implies that the left side of equation (29) is a strictly decreasing
function of σ in Cases I and II, so that if there is a value of σ that satisfies
this equation, that value is unique. Also, because the left side of equation
(29) is continuous in nonnegative σ, the existence of a positive value of σ
that satisfies this equation can be proved by showing that the left side is
greater than ρ for σ = 0 and is less than ρ for sufficiently large positive σ.
These results are summarized in the following proposition, which is proved
in Appendix D.

Proposition 1 In Cases I and II, there exists a unique positive value of σ
that satisfies equation (29).

Anticipating the results in Section 5.1 on the optimal capital income
tax rate, it will be important to determine whether the optimal value of
σ is greater than, equal to, or less than εyGN

εo
. Lemma 2 implies that

βM (σ)Ψ
(

σ
GN

)

is strictly decreasing in σ so that if βM (z)Ψ
(

z
GN

)

> ρ,

then σ∗ is greater than z. Similarly, if βM (z)Ψ
(

z
GN

)

< ρ, then σ∗ is less

than z. These arguments are summarized in the following lemma.

Lemma 3 In Cases I and II, sign [σ∗
− z] = sign

[

M (z)Ψ
(

z
GN

)

−
ρ

β

]

.

Part (e) of Lemma 1 states that Ψ
(

εy
εo

)

= 1 if εy > 0 and εo > 0, so that

Lemma 3 implies

Proposition 2 In Cases I and II, sign
[

σ∗
−

εyGN
εo

]

= sign
[

M
(

εyGN
εo

)

−
ρ

β

]

,

if ηεy > 0 and ηεo > 0.

Proposition 2 provides a condition on exogenous parameters that deter-
mines whether σ∗ is greater than, equal to, or less εyGN

εo
. It is easiest to

interpret this condition in the case in which both benchmarks are equally-
weighted geometric averages of the contemporaneous consumption of all con-
sumers, so that θy = θo = 1, which implies that εyGN

εo
= 1.

15



Corollary 1 18 In Cases I and II, if θy = θo = 1, then sign [σ∗
− 1] =

sign [β − ρ].

According to Corollary 1, if both benchmarks are equally-weighted geo-
metric averages of the consumption of all consumers, a social planner with
discount factor ρ equal to the time preference discount factor β in individual
utility functions will equalize the consumption of young and old consumers
in each period along a balanced growth path. If the social planner is more
patient than individuals, so that ρ > β, then the social planner will allocate
a higher level of consumption to young consumers than to old consumers in
each period along a balanced growth path. To understand this result, con-
sider the social planner’s problem in period t along a balanced growth path.
Suppose that the social planner has chosen how much capital to carry into
period t+1, and is deciding how to allocate the remaining output to Ct and
Xt. In period t, having chosen kt+1, the social planner chooses Ct and Xt to
maximize

uyt (Ct, Ct, Xt) + ρ−1G−1N βuot (Xt, Xt, Ct) (31)

where uyt () and uot () are defined equations (13) and (14). The first term in
equation (31), uyt (Ct, Ct, Xt), is increasing in Ct and decreasing in Xt, and
the second term, ρ−1G−1N βuot (Xt,Xt, Ct), is increasing in Xt and decreasing
in Ct. An increase in ρ

β
reduces the weight on uot (Xt, Xt, Ct) and thus leads

the social planner to shift current consumption away from Xt toward Ct,
which is a reduction in σt. This argument suggests that the optimal value
of σ is a decreasing function of the ratio ρ

β
. The argument does not depend

on the assumption in Corollary 1 that εyGN = εo, and Proposition 3 below
relaxes this assumption.

To analyze formally the effects of ρ and β on the optimal value of σ,
totally differentiate equation (29) with respect to σ and ρ

β
to obtain

(εM + εΨ)
dσ

σ
=

d (ρ/β)

ρ/β
. (32)

Equation (32) and Lemma 2 imply the following proposition.

Proposition 3 In Cases I and II, dσ∗

d(ρ/β)
= 1

εM+εΨ

σβ

ρ
< 0.

18To prove this corollary, use the fact that M (1) = 1.
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Since the functions M () and Ψ () depend on preference parameters but
not on technology, inspection of equation (29) proves the following proposi-
tion.

Proposition 4 σ∗ is independent of the specification of the production func-
tion, f (kt), and of the growth rate of productivity, GA.

5 Fiscal Policy Along the Optimal Balanced

Growth Path

In Section 4, I derived the values of the intergenerational relative consump-
tion ratio, σ∗, and the capital-labor ratio, k∗, along the socially optimal
balanced growth path. In this section, I derive the fiscal policies—specifically
the tax and transfer policies—that induce a competitive economy to attain
these values along a balanced growth path. The strategy for determining
the optimal tax and transfer policies is to assume that the competitive econ-
omy has attained the socially optimal balanced growth path and then to
determine the values of the tax and transfer parameters that are consistent
with competitive equilibrium along this balanced growth path. I will confine
attention to deterministic—indeed constant—tax rates.

5.1 Optimal Tax on Capital Income

To avoid considerations of dynamic consistency that can arise with a capital
income tax, I assume that the fiscal authority can credibly commit to main-
tain a constant tax rate on capital income. To calculate the optimal tax rate
on capital income, divide the expression for the competitive private rate of
return on capital implied by equation (23) by the expression for the optimal
marginal product of capital in equation (27), to obtain

R

f ′ (k∗)
=

ρ

βM (σ∗)
. (33)

Use equation (17) to rewrite the left side of equation (33) as 1 − τK. Use

equation (29) to rewrite the right side of equation (33) as Ψ
(

σ∗

GN

)

. There-

fore, equation (33) can be rearranged to obtain

τ ∗

K
= 1−Ψ

(

σ∗

GN

)

. (34)
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where τ ∗
K
is the optimal tax rate on gross capital income.19 The expression

in equation (34), along with the fact that the function Ψ () depends only on
preference parameters, implies the following corollary to Proposition 4.20

Corollary 2 The optimal tax rate on capital income, τ ∗
K
, is independent of

the specification of the production function, f (kt), and of the growth rate of
productivity, GA.

To understand the role of the capital income tax along the socially optimal

balanced growth path, recall thatMRSS (Ct,Xt+1) = Ψ
(

σ∗

GN

)

×MRSP (ct, xt+1),

so Ψ
(

σ∗

GN

)

represents the wedge between the private and social marginal

rates of substitution along a socially optimal balanced growth path. Along
a balanced growth path, equation (17) states that R = (1− τK) f

′ (k), so
that 1−τK is the wedge between the private rate of return, R, and the social

rate of return, f ′ (k). Setting 1− τK = Ψ
(

σ∗

GN

)

makes the wedge between

the private and social rates of return exactly offset the wedge between the
private and social marginal rates of substitution.21

Equation (34) implies that the sign of the optimal capital income tax

rate depends on whether Ψ
(

σ∗

GN

)

is greater than, less than, or equal to

one. Specifically, if Ψ
(

σ∗

GN

)

< 1, the optimal capital income tax rate is

19Erosa and Gervais (2000) and Garriga (2001) show that it is generally optimal to
tax (or subsidize) capital income if individuals have labor-leisure choices throughout their
lives. However, this result does not apply to the model I present here because labor
is inelastically supplied in the first period of life and zero labor is supplied in the second
period of life. In the model I present here, the tax rate on capital along the socially optimal
balanced growth path would be zero in the absence of the consumption externalities that
I study here.

20Ljungqvist and Uhlig (2000) derive a related result in a model with identical consumers
and endogenous labor supply, but without capital. They show that the optimal tax rate
on labor income is independent of technology, if, as in the model I present here, the
benchmark level of consumption depends only on the contemporaneous consumption of
other consumers.

21Along the socially optimal balanced growth path, 1 = MRSS (Ct, Xt+1)× f ′ (k∗) =

Ψ
(
σ
∗

GN

)
×MRSP (ct, xt+1)×f

′ (k∗) = MRSP (ct, xt+1)× (1− τ∗
K
) f ′ (k∗) = 1, where the

first equality reflects the Euler equation for the socially optimal intertemporal allocation

of consumption, the second equality usesMRSS (Ct, Xt+1) = Ψ
(
σ
∗

GN

)
×MRSP (ct, xt+1),

the third equality uses equation (34), and the fourth equality reflects the Euler equation
for private consumers.

18



positive; if Ψ
(

σ∗

GN

)

> 1, the optimal capital income tax rate is negative; and

if Ψ
(

σ∗

GN

)

= 1, the optimal capital income tax rate is zero. The properties

of Ψ (r) imply the following proposition.22

Proposition 5 If ηεo = 0 and ηεy > 0, then τ ∗K > 0. If ηεy = 0 and

ηεo > 0, then τ ∗K < 0. If ηεy = ηεo = 0, then τ ∗K = 0.

If ηεo = 0 and ηεy > 0, the consumption of old consumers imposes a
negative externality on young consumers. Since old consumers do not take
account of this externality, the value of σ ≡ Xt

Ct

in a competitive economy
without taxes would be higher than in the social optimum. To reduce the
value of σ in a competitive economy, the social planner could reduce the
private rate of return by introducing a positive tax rate on capital income.23

By contrast, if ηεy = 0 and ηεo > 0, the consumption of young consumers
imposes a negative externality on old consumers, so the value of σ ≡ Xt

Ct

in a
competitive economy without taxes is lower than in the social optimum. In
this case, a negative tax rate on capital income would increase the private
rate of return and increase σ. If neither generation imposes an externality
on the other generation (ηεy = ηεo = 0), the optimal capital income tax rate
is zero.24

Proposition 5 gives the sign of the optimal capital income tax rate if
ηεyεo = 0. The sign of the optimal capital income tax rate in the case in

22If ηεo = 0, then Ψ (r) = (1−η)r
(1−η+ηεy)r+ηεy

< 1 if ηεy > 0. If ηεy = 0, then Ψ (r) =
1−η+ηεo+ηεor

1−η > 1 if ηεo > 0. If ηεy = ηεo = 0, then Ψ (r) ≡ 1.
23Recall from equation (23) and the discussion below that equation that σ is positively

related to R along a competitive balanced growth path.
24In de la Croix and Michel (1999), the optimal tax rate on capital income is negative

because of an asymmetry in the specification of benchmark consumption in the utility
function. In their model, consumers live for three periods, and consume during middle
age and old age. Middle-aged consumers have a benchmark level of consumption equal
to the middle-age consumption of the previous generation, but there is no benchmark for
old-age consumption. However, if their model were altered so that there is no benchmark
for middle-aged consumption, but there is a benchmark for old-age consumption equal to
the old-age consumption of the previous generation, then the optimal tax rate on capital
would be positive, rather than negative. In the model I present here, in which consumers
live for two periods (and the benchmarks depend on the contemporaneous rather than the
lagged consumption of others), there are benchmark levels of consumption in both periods
of a consumer’s life and the optimal tax rate on capital could be negative, positive, or
zero, as illustrated by Proposition 5.
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which ηεy and ηεo are both positive is given in the following proposition.25

Proposition 6 In Cases I and II, if ηεo > 0 and ηεy > 0, then sign [τ ∗K] =

sign
[

ρ

β
−M

(

εyGN
εo

)]

.

Since ρ, β, GN , εy, and εo are exogenous parameters, Proposition 6 provides
a condition on exogenous parameters that determines whether the optimal
capital income tax rate is positive, negative, or zero. This condition takes a
simple form when the benchmarks are equally-weighted geometric averages
of the consumption of all consumers so that θy = θo = 1, which implies that
εyGN
εo

= 1.

Corollary 3 In Cases I and II, if η > 0 and if θy = θo = 1, then sign [τ ∗K ]
= sign [ρ− β].

With benchmarks that are equally-weighted geometric averages of con-
sumption, if the social discount factor, ρ, equals the time preference discount
factor, β, the optimal tax rate on capital income is zero. Perhaps surpris-
ingly, if the social planner is more patient than individuals, so that ρ > β,
the optimal tax rate is positive. If ρ > β, the social planner wants to
shift consumption toward later generations of consumers, and thus in each
period wants to shift consumption away from old consumers toward young
consumers. By imposing a positive tax rate on capital income, consumers
are induced to shift consumption away from old age toward their youth.

Equation (34) shows that for given values of η, εy, and εo, the optimal
value of the tax rate on capital income depends only on σ∗

GN
. Differentiating

equation (34) and using part (b) of Lemma 1 proves the following proposition.

Proposition 7 For given values of ηεy and ηεo in Cases I and II, if ηεy > 0

or if ηεo > 0, then
dτ∗K
dσ∗

= −Ψ′

(

σ∗

GN

)

1

GN
< 0.

Corollary 4 In Cases I and II,
dτ∗
K

d( ρβ )
> 0.

25Proof: If ηεy > 0 and ηεo > 0, then sign [τ∗K ] = sign
[
1−Ψ

(
σ∗

GN

)]
=

−sign
[
σ∗ −

εyGN
εo

]
= sign

[
ρ
β
−M

(
εyGN
εo

)]
, where the first equality follows from equa-

tion (34), the second equality follows from parts (b) and (e) of Lemma 1, and the third
equality follows from Proposition 2.
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As suggested by the discussion following Corollary 3, an increase in ρ

β

shifts the optimal consumption toward later, younger, generations. The
desired increase in consumption of the young relative to consumption of the
old can be achieved by an increase in τ ∗K , which reduces the private rate of
return on capital and induces consumers to shift consumption from old age
toward youth.

5.2 Optimal Lump-Sum Intergenerational Tax/Transfer

Now consider the optimal lump-sum intergenerational tax/transfer, which
can be interpreted as a lump-sum pay-as-you-go social security system. In
period t along a balanced growth path, the aggregate tax on young con-
sumers, which follows from equation (16), is Nt

At

A0

T y
0 and total output is

AtNtf(kt). Define τ y∗ ≡
T
y

0

A0f(k∗)
as the tax on young consumers, expressed

as a fraction of total output, along the optimal balanced growth path. I
show in Appendix C that the optimal tax on young consumers, τ y∗, is

τ y∗ = τ y∗ (σ∗,Λ) ≡
σ∗Λ−GN

σ∗ +GN

εf , (35)

where26

Λ ≡

1− εf
εf

− ρGNG
(1−α)(1−η)
A > −1. (36)

Equation (35) expresses τ y∗ as a function of an endogenous variable (σ∗)
and a function of parameters (Λ). The following lemma describes the effect
of the endogenous variable, σ∗, on τ y∗.

Lemma 4
∂τy∗(σ∗,Λ)

∂σ∗
= Λ+1

(σ∗+GN )
2GNεf > 0.

Lemma 4 states that if the optimal intergenerational consumption ratio,
σ∗, increases, the optimal lump-sum tax on young consumers, τ y∗, increases.
To understand this result, consider an increase in τ y, which transfers re-
sources from young consumers to old consumers. An increase in the tax
on young consumers reduces their saving, and an increase in the transfer

26To prove that Λ > −1, rewrite Λ as Λ =
[

1
εf
− ρGNG

(1−α)(1−η)
A

]
− 1. Observe that

the term in brackets is positive because εf < 1 implies 1
εf
> 1 and equation (25) states

that ρGNG
(1−α)(1−η)
A < 1. Since the term in brackets is positive, Λ > −1.
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to old consumers also reduces saving by consumers when they are young.
The reduction in saving reduces the capital-labor ratio, k, along a balanced
growth path. The reduction in k increases the social rate of return, f ′(k),
which increases the private rate of return, R. The increase in the private
rate of return, R, induces consumers to substitute from current consumption
to future consumption, thereby increasing the intergenerational consumption
ratio, σ. Thus, an increase in the lump-sum tax, τ y, can be used to increase
the intergenerational consumption ratio, σ, as stated by Lemma 4.

Lemma 4 can be applied to determine the effect on τ y∗ of a change in the
time preference discount factor of consumers, β, because β affects σ∗, but
has no effect on Λ. Proposition 3 implies that an increase in β increases
σ∗, which, according to Lemma 4, increases τ y∗. This reasoning proves the
following proposition.

Proposition 8 In Cases I and II, dτy∗

dβ
> 0.

An increase in the time preference discount factor, β, increases the amount
of saving in the competitive economy and thus would increase the capital-
labor ratio to a level higher than the Modified Golden Rule level, k∗. An
increase in the tax levied on young workers can offset the increase in saving
and maintain the capital-labor ratio equal to k∗.

The effect of ρ on τ y∗ operates through two channels: an increase in ρ
reduces σ∗ (Proposition 3), which reduces τ y∗; and an increase in ρ reduces
Λ, which also reduces τ y∗. This argument proves the following proposition.

Proposition 9 In Cases I and II, dτy∗

dρ
< 0.

An increase in the social discount factor, ρ, increases the Modified Golden
Rule capital-labor ratio, k∗, and requires an increase in saving, which can be
induced by a reduction in the lump-sum tax on young workers.

I have referred to the lump-sum intergenerational tax/transfer system as
a social security system, because it transfers resources from young consumers
to old consumers, if τ y > 0. However, it is possible for τ y to be negative,
in which case the tax/transfer system is a ”reverse social security system”
transferring resources from old consumers to young consumers. It is evident
from equation (35) that the sign of the optimal value of τ y∗ is the same as
the sign of σ∗Λ−GN . Therefore, if Λ > 0, the sign of τ y∗ is the same as the
sign of σ∗−Λ−1GN , which, according to Lemma 3, is the same as the sign of
M (Λ−1GN)Ψ (Λ−1) − ρ

β
. The following proposition provides the condition

on the exogenous parameter Λ that determines the sign of τ y∗.
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Proposition 10 In Cases I and II, if Λ ≤ 0, then τ y∗ < 0, and if Λ > 0,

then sign [τ y∗] = sign
[

M (Λ−1GN)Ψ (Λ−1)− ρ

β

]

.

5.3 Numerical Example

I have derived expressions for the optimal values of the lump-sum tax levied
on young consumers, τ y∗, and the capital income tax rate, τ ∗K. I have
also derived conditions to determine whether each of the optimal tax rates
is positive or negative. In this section, I provide a numerical example,
including a modest sensitivity analysis, to illustrate that both τ y∗ and τ ∗K
can be positive in plausible cases.

In this example, I assume that the labor share in income is constant and
equal to 2

3
, which implies that εf = 1

3
. I assume that the curvature param-

eter α in the utility function equals 4, which implies that the intertemporal
elasticity of substitution equals 0.25. To specify the values of the parameters
ρ, β, GA, and GN , I need to specify the length of a time period. Since a time
period in the model is one half of an adult lifetime, I will assume that a period
is 30 years. I set the time preference discount factor of consumers, β, equal
to (0.98)30, so that the rate of time preference is approximately 2% per year.
I assume that the social planner is more patient than individual consumers
and set the social discount factor, ρ, equal to (0.99)30, which implies that
the social rate of time preference is approximately 1% per year. Multifactor
productivity in the United States grew at the rate of 1.2% per year from 1948
to 1998. In the model in this paper, labor-augmenting productivity growth
is the only source of multifactor productivity growth. Attributing all of the
growth in multifactor productivity to growth in labor-augmenting productiv-

ity, A, implies that the growth rate of A is
(

1

1−εf

)

(1.2%) per year.27 Since

εf = 1

3
, the growth rate of A is 1.8% per year, and GA = (1.018)30. During

the period 1948-1998, the population of the United States grew at the rate
of 1.2% per year. However, this period included the baby boom. Instead
of using data from the baby boom to calibrate the population growth rate,
I use the Census Bureau’s middle population projection over the entire 21st

27If the aggregate production function is Yt = θtK
εf

t
N

1−εf

t
, the rate of multifactor

productivity growth is the growth rate of θt. This production function can be rewritten

as Yt = K
εf

t
(AtNt)

1−εf where At ≡ θ

1

1−εf

t
. Thus, the growth rate of At equals 1

1−εf

times the growth rate of θt.
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Socially Optimal Balanced Growth Path

εf = 1

3
, α = 4, β = (0.98)30 , ρ = (0.99)30

GA = (1.018)30 , GN = (1.007)30

θy = θo = 0 θy = θo = 0.5 θy = θo = 1
εy = 0 εy = 0.289 εy = 0.448
εo = 0 εo = 0.381 εo = 0.552

f ′ (k∗) = 11.499 σ∗ 0.927 0.927 0.927
η = 0 τ ∗

K, τ
∗

K,net 0, 0 0, 0 0, 0
f ′

ann = 1.0848 τ y∗ 0.070 0.070 0.070
f ′ (k∗) = 7.698 σ∗ 0.911 0.921 0.922

η = 0.25 τ ∗

K, τ
∗

K,net 0, 0 0.002, 0.001 0.020, 0.010
f ′

ann = 1.0704 τ y∗ 0.053 0.055 0.056
f ′ (k∗) = 5.153 σ∗ 0.885 0.915 0.917

η = 0.5 τ ∗

K, τ
∗

K,net 0, 0 0.008, 0.005 0.043, 0.027
f ′

ann = 1.0562 τ y∗ 0.028 0.035 0.035

Table 1: Socially Optimal Balanced Growth Path

century to calculate a projected growth rate of 0.7% per year.28 Therefore,
I set GN = (1.007)30.

I assume that the benchmark functions are symmetric in the sense that
θy = θo, and I present results for three values of η and for three values of
θy = θo, and the implied values of εy and εo, in Table 1. The row with
η = 0 shows the results for the standard model without benchmark levels of
consumption. The column with θy = θo = 0 (which implies εy = εo = 0)
shows the results under the assumption that a consumer’s benchmark level of
consumption depends only on the per capita consumption of the consumer’s
own generation, and is independent of the per capita consumption of the
other generation. Since the optimal social marginal product of capital,
f ′ (k∗), is independent of θy and θo (equivalently, it is independent of εy and
εo), I present the value of f ′ (k∗) once at the beginning of each row, rather
than repeating the same value in each of the columns of the row. The social
marginal product of capital, f ′ (k∗), is the gross rate of return over a 30-
year period. To help gauge the magnitude of f ′ (k∗), I also the present the

28The projections were taken from http:// www.census.gov/ population/ projections/
nation/ summary/ np-t1.txt; Internet Release Date: January 13, 2000, Revised Date:
February 14, 2000.
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annualized gross social marginal product of capital, f ′

ann ≡ (f ′ (k∗))1/30. For
instance, when η = 0.25, the optimal 30-year social gross marginal product
of capital, f ′ (k∗), is 7.698, which implies an annualized gross social marginal
product of capital, f ′

ann, of 1.0704, or equivalently, a net social marginal
product of capital, f ′

ann − 1, of 7.04% per year.
Each cell of Table 1 contains three rows, which present the values of the

optimal intergenerational consumption ratio, σ∗, the optimal capital income
tax rate τ ∗

K , and the optimal lump-sum tax on young consumers, τ y∗. To
help interpret the tax rate on capital, I will make two adjustments. First, I
will annualize the tax rate. Equation (17) implies that the optimal capital
income tax rate, τ ∗

K, can be rewritten as 1−τ ∗

K = R
f ′(k∗)

, where R and f ′ (k∗)
are gross rates of return over a 30-year period. Define τ ∗K,ann as the optimal
tax rate on gross capital income, if the capital income tax is levied annually.
This annual capital income tax rate satisfies 1− τ ∗K,ann = Rann

f ′

ann

where Rann ≡

R1/30 is the annualized gross private rate of return. Therefore,29 τ ∗K,ann =

1 − (1− τ ∗K)
1/30. The second adjustment converts the tax rate on gross

capital income, f ′

ann, to the tax rate on net capital income, f ′ann−1. Letting

τ ∗K,net be the tax rate on annual net capital income,30 τ ∗K,net =
f ′

ann

f ′

ann
−1
τ ∗K,ann.

Table 1 reports the values of τ ∗K and τ ∗K,net. For instance, when η = 0.5 and
θy ≡ θo = 1, Table 1 shows that τ ∗K = 0.043, which implies that the tax rate
on net annual capital income, τ ∗K,net, is 0.027, or equivalently, 2.7%.

The optimal lump-sum intergenerational tax on young consumers, τ y∗, is
positive throughout Table 1, ranging from 2.8% when η = 0.5 and θy = θo = 0
to 7.0% when η = 0. In the United States, the value of τ y is about 5%.31

Consistent with Proposition 5, the optimal capital income tax is zero when
η = 0 or θy = θo = 0. For the cells in Table 1 in which η and εy = εo are
positive, τ ∗K,net is positive but small, with a maximum value of 2.7% when
η = 0.5 and θy = θo = 1.

Table 2 presents a simple sensitivity analysis for the values of the annual
gross marginal product of capital, f ′

ann, the intergenerational consumption

29
1 − τ∗K,ann = Rann

f ′
ann

=
(

R
f ′(k∗)

)1/30
= (1− τ∗K)

1/30. Therefore, τ∗K,ann = 1 −

(1− τ∗K)
1/30

.
30The net and gross tax rates on annual capital income satisfy 1 +(
1− τ∗K,net

)
(f ′ann − 1) =

(
1− τ∗K,ann

)
f ′ann. Therefore, τ∗K,net = τ∗K,ann

f ′
ann

f ′
ann

−1 .
31In the United States in 2001, Social Security payroll taxes (OASDI) were $516.4 billion

and GDP was $10,082 billion, so τy was equal to 0.051.
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Sensitivity Analysis

Baseline: parameter values in Table 1 with η = 0.5 and θy = θo = 1.
f ′

ann σ∗ τ ∗K τ ∗K,net τ y∗

Baseline 1.0562 0.917 0.043 0.027 0.035
εf = 0.30 1.0562 0.917 0.043 0.027 0.074
εf = 0.36 1.0562 0.917 0.043 0.027 0.004
ρ = 1.00 1.0456 0.841 0.084 0.067 -0.002

ρ = (0.98)30 1.0669 1.000 0.000 0.000 0.070

β = (0.99)30 1.0562 1.000 0.000 0.000 0.054

β = (0.97)30 1.0562 0.839 0.084 0.055 0.017
N (years per period) = 25 1.0562 0.930 0.036 0.027 0.036
N (years per period) = 35 1.0562 0.903 0.050 0.027 0.032

GA = (1.01)30 1.0355 0.917 0.043 0.042 0.010

GA = (1.026)30 1.0770 0.917 0.043 0.020 0.052
GN = 1 1.0562 0.917 0.043 0.027 0.092

GN = (1.01)30 1.0562 0.917 0.043 0.027 0.011
α = 2 1.0375 0.816 0.098 0.094 -0.028
α = 6 1.0752 0.946 0.027 0.013 0.066

Table 2: SensitivityAnalysis

ratio, σ∗, the tax rate on capital, shown both as the tax rate on the 30-
year gross marginal product of capital, τ ∗K , and the tax rate on the net
annual marginal product of capital, τ ∗K,net, and the lump-sum intergenera-
tional tax/transfer, τ y∗, along a socially optimal balanced growth path. The
baseline for this sensitivity analysis uses the parameter values in Table 1 with
η = 0.5 and θy = θo = 1. Each row of the baseline changes one parameter
value at a time.

Since θy = θo = 1 and η > 0, Corollaries 1 and 3 apply throughout Table
2. Therefore, since ρ ≤ β throughout Table 2, Corollary 1 implies that
σ∗ ≤ 1, and Corollary 3 implies that τ ∗K ≥ 0. For the two rows in which
ρ = β (the row with ρ = (0.98)30 and the row with β = (0.99)30), the optimal
intergenerational consumption ratio, σ∗, equals one, as implied by Corollary
1, and the optimal tax rate on capital is zero, as implied by Corollary 3. With
the exception of only two rows, Table 2 presents a consistent set of results:
the optimal tax rate on net capital income, τ ∗K,net, is small (5.5% or less) and
the lump-sum tax/transfer system imposes a tax on young consumers and
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gives a transfer to old consumers. In the two rows that deviate slightly from
these results (the row with ρ = 1.00 and the row with α = 2), the optimal
tax rate on net capital income is slightly higher, but still smaller than 10%,
and the lump-sum tax/transfer system subsidizes young consumers by taxing
old consumers (a reverse social security system), but the tax rate is smaller
than 3%.

6 Concluding Remarks

I have examined the implications for saving and capital accumulation of as-
suming that consumers care about their consumption relative to a benchmark
level of consumption in addition to caring directly about their own consump-
tion. In a competitive economy, individual consumers do not take account
of the externality imposed by their consumption, and make their saving and
consumption decisions taking as given the consumption of others. With
the formulation of utility that I have used here, the introduction of a con-
cern about consumption relative to the benchmark level of consumption is
isomorphic to a change in the rate of time preference, from the viewpoint
of an individual consumer. Thus, the introduction of concern about the
benchmark level of consumption does not dramatically alter the nature of
the equilibrium balanced growth path in a competitive economy. However,
the characterization of the socially optimal balanced growth path is funda-
mentally affected by the introduction of a benchmark level of consumption
because a social planner internalizes the consumption externality. Taking
account of this externality, the socially optimal balanced growth path is char-
acterized by a condition on the intratemporal intergenerational allocation of
consumption in addition to the Modified Golden Rule condition, which spec-
ifies the optimal capital-labor ratio.

I derived a set of taxes and transfers that induces a competitive economy
to attain the socially optimal balanced growth path. This set of taxes con-
sists of a tax on capital income and a lump-sum intergenerational tax/transfer
system that resembles pay-as-you-go social security. The optimal set of
taxes has a couple of counter-intuitive features. First, though one might be
tempted to think that the capital income tax is used to achieve the optimal
capital-labor ratio, and the lump-sum intergenerational tax/transfer system
is used to attain the optimal intergenerational allocation of consumption,
this paper shows that the opposite is the case. If the benchmark level
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of consumption does not enter the utility, then the Modified Golden Rule
capital-labor ratio can be attained by lump-sum intergenerational taxes and
transfers that lead to the appropriate level of aggregate saving; the optimal
capital income tax rate is zero in this case. However, when the benchmark
level of consumption enters the utility function, the socially optimal balanced
growth path is also characterized by an optimal intergenerational consump-
tion ratio. This value of the intergenerational consumption ratio is attained
by the appropriate value of the capital income tax. Indeed, the optimal tax
rate on capital income in equation (34) is a function of the intergenerational
consumption ratio, but does not depend directly on the capital-labor ratio.

A second counter-intuitive feature of the optimal set of taxes concerns
the optimal capital income tax when the social planner is more patient than
the individuals. One might be tempted to think that in this case, the social
planner would want to foster capital accumulation at a higher rate than in
a laissez-faire competitive economy, and thus the optimal tax/transfer sys-
tem would include a subsidy to capital. However, with benchmarks that
are equally-weighted geometric averages of individual consumption (θy =
θo = 1), I derive the opposite result: the optimal capital income tax rate
is positive when the social planner is more patient than individuals. In
this case, the social planner wants to shift consumption toward future, i.e.,
younger, consumers. Thus, relative to laissez faire, in each period the so-
cial planner wants to shift consumption away from old consumers toward
young consumers, and a positive tax on capital income achieves this goal in
a competitive economy.
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A Competitive Balanced Growth Path

This appendix characterizes the private rate of return, R, and the capital-
labor ratio, k, along a competitive balanced growth path. Use equation (19)
to substitute for xt+1 in equation (20), differentiate with respect to ct, and
set the derivative equal to zero to obtain

βM (σ) σαG
−η(1−α)
A

(

xt+1
ct

)

−α

Rt+1 = 1. (A.1)

Use the facts that ct = Ct and xt+1 = Xt+1 in equilibrium and that along a
balanced growth path Rt+1 is constant and Xt+1 = σGACt to obtain

βM (σ)G
−α−η(1−α)
A R = 1, (A.2)

which implies equation (23). Also use these facts to rewrite the budget
constraint in equation (19) along a balanced growth path as

σGACt = (wt − T y
t − Ct)R− T o

t+1 + qt+1. (A.3)

Now use equation (17) to substitute for R, equation (15) updated by one
period to substitute for T o

t+1, and equation (18) to substitute for qt+1, and
recall that kt+1 is constant along a balanced growth path to rewrite equation
(A.3) as

σGACt = (wt − T y
t − Ct) f

′ (k) +GNT
y
t+1. (A.4)

Equation (A.4) is linear in Ct and can be easily solved for Ct to obtain

Ct = φ

(

wt − T y
t +

GNT
y
t+1

f ′ (k)

)

(A.5)

where

φ ≡

[

1 +
σGA

f ′ (k)

]

−1

. (A.6)

The aggregate capital stock at the beginning of period t + 1, Kt+1 =
At+1Nt+1kt+1, equals the aggregate saving of young consumers during period
t. Therefore,

At+1Nt+1kt+1 = Nt (wt − T y
t − Ct) . (A.7)

Use equation (A.5) to substitute for Ct in equation (A.7) to obtain

At+1Nt+1kt+1 = Nt

(

(1− φ) (wt − T y
t )− φ

GNT
y
t+1

f ′ (k)

)

. (A.8)
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Use equation (2) for wt, equation (16) for T y
t , divide both sides of equation

(A.8) by AtNt , and recall that kt is constant along a balanced growth path
to obtain

GAGNk = (1− φ)

(

f (k)− kf ′ (k)−
T y
0

A0

)

− φ
GNGAT

y
0

A0f ′ (k)
. (A.9)

Use the definition εf ≡
kf ′(k)
f(k)

and rearrange equation (A.9) to obtain

[

1− φ+ φ
GNGA

f ′ (k)

]

T y
0 =

[

(1− φ) (1− εf)−
GAGN

f ′ (k)
εf

]

A0f (k) . (A.10)

B Optimal Balanced Growth Path

This appendix derives the values of σ and k along the socially optimal bal-
anced growth path. First, rewrite the aggregate resource constraint in equa-
tion (4) in terms of Ct and σt (rather than in terms of Ct and Xt) as

f (kt) =

(

1 +
σt
GN

)

Ct

At

+GAGNkt+1. (B.1)

Using equation (26) for the utility of the representative consumer born at
the beginning of period t, the Lagrangian for the problem of the social plan-
ner maximizing the social welfare function in equation (24) subject to the
aggregate resource constraint in equation (B.1) is

L = Σ∞j=−1ρ
jGj

N







1
1−α

[

(

C1−η
t+j σ

−ηεy
t+j

)1−α

+ β
(

C1−η
t+j+1σ

1−η+ηεo
t+j+1

)1−α
]

+λt+j
[

f (kt+j)−
(

1 + σt+j
GN

)

Ct+j

At+j
−GNGAkt+j+1

]






.

(B.2)
Differentiating L with respect to Ct+j, σt+j, and kt+j+1, and setting each
derivative equal to zero, yields

(

ρGNσ
−ηεy(1−α)
t+j

+βσ
(1−η+ηεo)(1−α)
t+j

)

(1− η)C
(1−η)(1−α)
t+j = ρGN

λt+jCt+j

At+j

(

1 +
σt+j
GN

)

(B.3)
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[

−ρGNηεyσ
−ηεy(1−α)
t+j +

(1− η + ηεo)βσ
(1−η+ηεo)(1−α)
t+j

]

1

σt+j
C

(1−η)(1−α)
t+j = ρλt+j

Ct+j

At+j

(B.4)

and

ρ
λt+j+1
λt+j

f ′ (kt+j+1) = GA. (B.5)

Now confine attention to balanced growth paths so that Ct+1

Ct
= Xt+1

Xt
=

GA, and σt = σ. Evaluate both sides of equation (B.3) along a balanced
growth path, multiply both sides by σ−(1−η+ηεo)(1−α) and use the definition
of M (σ) in equation (21) to obtain

(1− η)
[

ρGN [σM (σ)]−1 + β
]

C
(1−η)(1−α)
t = ρGN

λtCt

At

(

1 +
σ

GN

)

σ(1−α)(−1+η−ηεo).

(B.6)
Equating the gross growth rates of both sides of equation (B.6), and setting
Ct+1

Ct
= GA along a balanced growth path, yields

G
(1−η)(1−α)
A =

λt+1
λt

. (B.7)

Substitute equation (B.7) into equation (B.5), and let k∗ denote the value of
k along the optimal balanced growth path, to obtain

ρf ′ (k∗) = G
α+η(1−α)
A . (B.8)

Let σ∗ denote the value of σt along the optimal balanced growth path.
To determine σ∗, first evaluate equation (B.4) along a balanced growth path
and use the definition of M (σ) in equation (21) to obtain

[

−ρGNηεy [σM (σ)]−1

+β (1− η + ηεo)

]

σ(1−η+ηεo)(1−α)
1

σ∗
C

(1−η)(1−α)
t = ρλt

Ct

At

. (B.9)

Now use equation (B.9) to substitute for ρλt
Ct

At
in equation (B.6) and rear-

range to obtain

[

(1− η + ηεy)
σ∗

GN

+ ηεy

]

ρGN

β
[σ∗M (σ∗)]−1 = 1−η+ηεo+ηεo

σ∗

GN

. (B.10)
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Using the definition of Ψ (r) in equation (28), equation (B.10) can be rewrit-
ten as

ρ

β
[M (σ∗)]−1 = Ψ

(

σ∗

GN

)

. (B.11)

Equation (B.11) implies equation (29) in the text.

C Optimal Intergenerational Tax/Transfer

This appendix derives the optimal intergenerational transfer in equation (35).
First, rearrange equation (A.6) to obtain

1− φ =
σGA

f ′ (k)
φ. (C.1)

Substitute equation (C.1) into equation (A.10) to obtain
(

1 +
GN

σ

)

T y
0 =

(

1− εf
εf

− φ−1GN

σ

)

εfA0f (k) . (C.2)

Now substitute the expression for f ′ (k∗) from equation (27) into equation
(C.1) and rearrange to obtain an expression for φ−1 along the socially optimal
balanced growth path

φ−1 = 1 + σρG
(1−α)(1−η)
A . (C.3)

Finally, substitute equation (C.3) into equation (C.2) and multiply both sides
of the resulting equation by σ∗ to obtain

(σ∗ +GN)T
y
0 =

(

σ∗
1− εf
εf

− σ∗ρGNG
(1−α)(1−η)
A −GN

)

εfA0f (k
∗) . (C.4)

Using the definition τ y∗ ≡
T
y

o

A0f(k)
and the definition of Λ in equation (36),

equation (C.4) implies equation (35).

D Proofs of Lemmas 1 and 2 and Proposition

1

Proof of Lemma 1: Define n ≡
ηεy

1−η
≥ 0 and m ≡

ηεo
1−η

≥ 0. Use

these definitions to rewrite Ψ (r) in equation (28) as Ψ (r) = 1+m+mr
(1+n)r+n

r. (a)
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Inspection of the expression for Ψ (r) indicates that Ψ (r) > 0 for r > 0.
(b) Ψ (r) = 1+m+mr

1+n+n

r

, so Ψ′ (r) = m

1+n+n

r

+ 1+m+mr

(1+n+n

r
)
2

n

r2
, which is positive

for r > 0 if m > 0 or if n > 0. (c) Parts (a) and (b) imply that εΨ ≡
rΨ′(r)
Ψ(r)

≥ 0 for r > 0. Ψ′ (r) = 1
r
Ψ(r) + m

1+m+mr
Ψ(r) − 1+n

(1+n)r+n
Ψ(r) =

1
r
Ψ(r)

[

1− 1+m+n
(1+m+mr)((1+n)r+n)

r
]

. Therefore, rΨ
′(r)

Ψ(r)
= 1− (1+m+n)r

(1+m+mr)((1+n)r+n)
<

1 for r > 0. (d) If ηεy ≡ ηεo ≡ 0, then m = n = 0, so Ψ (r) = 1
r
r = 1.

(e) Ψ
(

εy

εo

)

= Ψ
(

n

m

)

=
1+m+m n

m

(1+n) n
m
+n

n

m
= 1+m+n

(1+n+m)n
n = 1. (f) limr→0

1
r
Ψ(r)

= limr→0
1+m+mr
(1+n)r+n

= 1+m
n

= 1−η+ηεo
nεy

if ηεy > 0 and limr→0
1
r
Ψ(r) = ∞ if

ηεy = 0. (g) limr→∞
1
r
Ψ(r) = limr→∞

1+m+mr
(1+n)r+n

= m
1+n

= ηεo
1−η+ηεy

.

Proof of Lemma 2: The definition of εM in equation (22) implies that
εM + εΨ = − (1− εΨ) − (α− 1) (1− η (1− (εy + εo))). Part (c) of Lemma
1 implies that − (1− εΨ) < 0. Since 1− η (1− (εy + εo)) > 0, εM + εΨ < 0
if α ≥ 1.

Proof of Proposition 1 Existence: Case I: α > 1. Use the defini-

tion of M (σ) in equation (21) to obtain M (σ)Ψ
(

σ
GN

)

= σεM+1 1
GN

Ψ(σ/GN )
σ/GN

.

Equation (22) implies that εM+1 = (1− α) (1− η (1− εy − εo)) < 0 for α >

1. Therefore, since (from Lemma 1, part (f)) limr→0
1
r
Ψ(r) > 0, limσ→0 σ

εM+1 1
GN

Ψ(σ/GN )
σ/GN

=

∞. Since limr→∞
1
r
Ψ(r) is finite (from Lemma 1, part (g)), limσ→∞ σεM+1 1

GN

Ψ(σ/GN )
σ/GN

=

0. SinceM (σ)Ψ
(

σ
GN

)

is continuous in σ for σ > 0, and since limσ→0M (σ)Ψ
(

σ
GN

)

=

∞ and limσ→∞M (σ)Ψ
(

σ
GN

)

= 0, there exists a σ > 0 for whichM (σ)Ψ
(

σ
GN

)

=
ρ
β
> 0.

Case II: α = 1 and 0 < ηεo
1−η+ηεy

< ρ
β
GN < 1−η+ηεo

ηεy
. If α = 1, then εM =

−1, which implies that M (σ)Ψ
(

σ
GN

)

= 1
GN

Ψ(σ/GN )
σ/GN

. Part (f) of Lemma

1 implies that limσ→0M (σ)Ψ
(

σ
GN

)

≥
1
GN

1−η+ηεo
ηεy

and part (g) of Lemma

1 implies that limσ→∞M (σ)Ψ
(

σ
GN

)

= 1
GN

ηεo
1−η+ηεy

. Since M (σ)Ψ
(

σ
GN

)

is continuous in σ, there exists a σ > 0 such that M (σ)Ψ
(

σ
GN

)

= ρ
β
for

1
GN

ηεo
1−η+ηεy

< ρ
β
< 1

GN

1−η+ηεo
ηεy

.

Uniqueness: Lemma 2 implies that M (σ)Ψ
(

σ
GN

)

is monotonically de-

creasing in σ in Cases I and II. Therefore, there is at most one value of σ

for which M (σ)Ψ
(

σ
GN

)

= ρ
β
.
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E Private and Social Marginal Rates of Sub-

stitution

The private intertemporal marginal rate of substitution isMRSP (ct, xt+1) ≡

β
∂uot+1/∂xt+1

∂uyt /∂ct
. Differentiate equation (13) with respect to ct and equation

(14) with respect to xt+1, and evaluate these derivatives using the definition
σt+1 ≡

Xt+1

Ct+1
and the fact that in equilibrium ct = Ct and xt+1 = Xt+1 to

obtain

MRSP (ct, xt+1) = β
C

(1−η)(1−α)−1
t+1 σ

−α−η(1−εo)(1−α)
t+1

C
(1−η)(1−α)−1
t σ

−ηεy(1−α)
t

. (E.1)

Now evaluate MRSP
t+1 (ct, xt+1) along a balanced growth path using the facts

that σt+1 = σt and Ct+1 = GACt along a balanced growth path to obtain

MRSP (ct, xt+1) = βG
(1−η)(1−α)−1
A σ−α−(1−α)η(1−εo−εy). (E.2)

Use the definition of M (σ) in equation (21) to rewrite MRSP (ct, xt+1) as

MRSP (ct, xt+1) = βG
−α−η(1−α)
A M (σ) . (E.3)

The social intertemporal marginal rate of substitution is

MRSS (Ct, Xt+1) ≡
β
(

∂uot+1/∂xt+1 + ∂uot+1/∂Xt+1

)

+ ρGN∂u
y
t+1/∂Xt+1

∂uyt /∂ct + ∂uyt /∂Ct + (ρGN)
−1 β∂uot/∂Ct

.

(E.4)
Use equations (13) and (14) to calculate the derivatives in equation (E.4),
and evaluate these derivatives using the definition σt+1 ≡

Xt+1

Ct+1
and the fact

that in equilibrium ct = Ct and xt+1 = Xt+1 to obtain

MRSS (Ct,Xt+1) =

β (1− η + ηεo)X
(1−η)(1−α)−1
t+1 σ

ηεo(1−α)
t+1

−ρGNηεyC
(1−η)(1−α)−1
t+1 σ

−ηεy(1−α)−1
t+1

(1− η + ηεy)C
(1−η)(1−α)−1
t σ

−ηεy(1−α)
t

− (ρGN)
−1 βηεoX

(1−η)(1−α)−1
t σ

ηεo(1−α)+1
t

. (E.5)

Now evaluate MRSS (Ct, Xt+1) along a balanced growth path using the facts
that σt+1 = σt and that Ct+1 = GACt along a balanced growth path to obtain

MRSS (Ct, Xt+1) = βG
(1−η)(1−α)−1
A σ(1−α)(1−η+ηεo+ηεy)−1

×
1− η + ηεo − β−1ρGNηεyσ

−(1−α)(1−η+ηεo+ηεy)

1− η + ηεy − β (ρGN)
−1 ηεoσ(1−α)(1−η+ηεo+ηεy)

. (E.6)
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Now use the expression for MRSP (ct, xt+1) in equation (E.2) and the defi-
nition of M (σ) in equation (21) to rewrite equation (E.6) as

MRSS (Ct, Xt+1) = MRSP (ct, xt+1)
1− η + ηεo − ηεyρGNβ

−1 [σM (σ)]−1

1− η + ηεy − ηεo (ρGN )
−1 βσM (σ)

.

(E.7)

Define r∗ ≡ σ∗

GN
and use equation (B.11) to substitute Ψ(r∗)

r∗
for ρGNβ

−1 [σM (σ)]−1

along a socially optimal balanced growth path in equation (E.7) to obtain

MRSS (Ct,Xt+1) = MRSP (ct, xt+1)
1− η + ηεo − ηεy

Ψ(r∗)
r∗

1− η + ηεy − ηεo
r∗

Ψ(r∗)

. (E.8)

To simplify the expression on the right hand side of equation (E.8), use
the following lemma.

Lemma 5
1−η+ηεo−ηεy

Ψ(r)
r

1−η+ηεy−ηεo
r

Ψ(r)
= Ψ(r).

Proof. Define n ≡
ηεy
1−η

≥ 0 and m ≡
ηεo
1−η

≥ 0 and observe that

1−η+ηεo−ηεy
Ψ(r)
r

1−η+ηεy−ηεo
r

Ψ(r)
=

1+m−nΨ(r)
r

1+n−m r

Ψ(r)
=

1+m−nΨ(r)
r

(1+n)
Ψ(r)
r
−m

Ψ(r)
r

=
1+m−n 1+m+mr

(1+n)r+n

(1+n) 1+m+mr
(1+n)r+n

−m

Ψ(r)
r

= (1+m)(1+n)r−nmr

(1+n)(1+m)−nm
Ψ(r)
r

= Ψ(r).
Finally, use Lemma 5 to rewrite equation (E.8) as

MRSS (Ct, Xt+1) = MRSP (ct, xt+1)×Ψ

(

σ∗

GN

)

. (E.9)
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