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We numerically simulate turbulent Taylor-Couette flow for independently rotating in-
ner and outer cylinders, focusing on the analogy with turbulent Rayleigh-Bénard flow.
Reynolds numbers of Rei = 8 · 103 and Reo = ±4 · 103 of the inner and outer cylinders,
respectively, are reached, corresponding to Taylor numbers Ta up to 108. Effective scal-
ing laws for the torque and other system responses are found. Recent experiments with
the Twente turbulent Taylor-Couette (T 3C) setup and with a similar facility in Mary-
land at very high Reynolds numbers have revealed an optimum transport at a certain
non-zero rotation rate ratio a = −ωo/ωi of about aopt = 0.33 − 0.35. For large enough
Ta in the numerically accessible range we also find such an optimum transport at non-
zero counter-rotation. The position of this maximum is found to shift with the driving,
reaching a maximum of aopt = 0.15 for Ta = 2.5 · 107. An explanation for this shift
is elucidated, consistent with the experimental result that aopt becomes approximately
independent of the driving strength for large enough Reynolds numbers. We furthermore
numerically calculate the angular velocity profiles and visualize the different flow struc-
tures for the various regimes. By writing the equations in a frame co-rotating with the
outer cylinder a link is found between the local angular velocity profiles and the global
transport quantities.

1. Introduction

Taylor-Couette (TC) flow, i.e. the flow in the gap between two independently rotating
coaxial cylinders, is among the most investigated problems in fluid mechanics, due to its
conceptional simplicity and to applications in process technology, see e.g. Haim & Pismen
(1994). Traditionally, the driving of this system is expressed by the Reynolds numbers
of the inner and outer cylinders, defined by Rei = riωid/ν and Reo = roωod/ν, where ri
and ro are the inner and outer cylinder radius, respectively, d = ro − ri is the gap width,
ωi and ωo the angular velocities of the inner and outer cylinders, and ν the kinematic
viscosity. In dimensionless numbers the geometry of a TC system is expressed by the
radius ratio η = ri/ro and the aspect ratio Γ = L/d, see figure 1. In the limit η → 1, the
flow becomes plane Couette flow. It was shown by Eckhardt, Grossmann & Lohse 2007
(from now on referred to as EGL 2007) that TC flow has many similarities to Rayleigh-
Bénard (RB) convection, i.e. the thermal flow in a fluid layer heated from below and
cooled from above, which will be discussed in detail below.

http://arxiv.org/abs/1207.2290v3
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Figure 1: Geometry of the Rayleigh-Bénard (left) and the Taylor-Couette systems (right).
The RB system consists of two cylindrical plates, a hot one at the bottom and a cold one
at the top of diameter D separated by a distance L. The top plate is at a temperature
T0 and the bottom plate is at a temperature T0 +∆, with ∆ the temperature difference
between the plates. The TC system consists of two coaxial cylinders of length L. The
inner cylinder has the radius ri and the angular velocity ωi, while the outer cylinder has
the radius ro and the angular velocity ωo.

Both RB and TC flows have been popular playgrounds for the development of new con-
cepts in fluid dynamics. Both systems have been used to study instabilities (Pfister & Rehberg
1981; Pfister et al. 1988; Chandrasekhar 1981; Drazin & Reid 1981; Busse 1967), nonlin-
ear dynamics and chaos (Lorenz 1963; Ahlers 1974; Behringer 1985; Strogatz 1994),
pattern formation (Andereck et al. 1986; Cross & Hohenberg 1993; Bodenschatz et al.

2000), and turbulence (Siggia 1994; Grossmann & Lohse 2000; Kadanoff 2001; Lathrop et al.

1992b; Ahlers et al. 2009; Lohse & Xia 2010). The reasons that RB and TC are so pop-
ular include: (i) These systems are mathematically well-defined by the Navier-Stokes
equations and the appropriate boundary conditions; (ii) these are closed system and
thus exact global balance relations between the driving and the dissipation can be de-
rived; and (iii) they are experimentally and numerically accessible with high precision,
thanks to the simple geometries and high symmetries.
The analogy between TC and RB may be better seen from the exact relations (EGL

2007) between the transport quantities and the energy dissipation rates. For RB flow the
conserved quantity that is transported is the thermal flux J = 〈uzθ〉A,t−κ∂z〈θ〉A,t of the
temperature field θ, where κ is the thermal conductivity of the flow. The first term is then
the convective contribution (uz is the vertical fluid velocity component) and the second
term is the diffusive contribution. Here 〈...〉A,t indicates the averaging over time and a
horizontal plane. In the state with lowest thermal driving there is not yet convection.
Therefore J ≡ J0 = κ∆L−1 and the corresponding dissipation rate is ǫu,0 = 0 since
u = 0. – In TC flow, the conserved transport quantity, which is transported from the
inner to the outer cylinder (or vice versa) is the flux Jω = r3 (〈urω〉A,t − ν∂r〈ω〉A,t) of
the angular velocity field ω, where the first term is the convective contribution with ur

as the radial fluid velocity component and the second term is the diffusive contribution,
cf. EGL 2007. In this case 〈...〉A,t indicates averaging over time and a cylindrical surface
with constant radial distance r from the axis. In the state with lowest driving induced
by the rotating cylinders and neglecting plate effects from the upper and lower plates
(achieved in the simulations by periodic boundary conditions in axial direction), the flow
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is laminar and purely azimuthal, uθ(r) = Ar+B/r, while ur = uz = 0. This flow provides
an angular velocity current Jω

0 (called Jω
lam in EGL2007) and a nonzero dissipation rate,

see eqs.(1.8) and (1.16) in table 1.
The analogy between RB and TC (EGL 2007) is highlighted when the driving in TC is

expressed in terms of the Taylor number Ta and the angular velocity ratio a = −ωo/ωi of
the cylinders, while the response is given by the dimensionless transport current density
Jω divided by the corresponding molecular current density of the angular velocity from
the inner to the outer cylinder, called the “ω-Nusselt number” Nuω. The Taylor number
Ta is defined as Ta = σ(ro − ri)

2(ro + ri)
2(ωo − ωi)

2/(4ν2), or

Ta = (r6ad
2/r2or

2

i ν
2)(ωo − ωi)

2. (1.1)

Here

σ = r4a/r
4

g (1.2)

with ra = (ro + ri)/2 the arithmetic and rg =
√
rori the geometric mean radii. ωo,i are

the angular velocities of the outer and inner cylinders, respectively; see also table 1 for
definitions and relations.
TC flow has been extensively investigated experimentally (Wendt 1933; Taylor 1936;

Smith & Townsend 1982; Andereck et al. 1986; Tong et al. 1990; Lathrop et al. 1992b,a;
Lewis & Swinney 1999; van Gils et al. 2011b,a; Paoletti & Lathrop 2011; Huisman et al.

2012) at low and high Ta numbers for different ratios of the rotation frequencies a =
−ωo/ωi, see the phase diagram in figure 3. However, up to now most numerical sim-
ulations of TC flow have been restricted to the case of pure inner cylinder rotation
(Fasel & Booz 1984; Coughlin & Marcus 1996; Dong 2007, 2008; Pirro & Quadrio 2008),
or eigenvalue study (Gebhardt & Grossmann 1993), or counter-rotation at fixed a (Dong
2008). Recent experiments (van Gils et al. 2011a,b; Paoletti & Lathrop 2011; Huisman et al.

2012) have shown that at fixed Ta an optimal transport is obtained at non-zero a.
(van Gils et al. 2011b) obtained aopt = 0.33 ± 0.05, whereas Paoletti & Lathrop (2011)
got aopt ≈ 0.35.
In this paper we use direct numerical simulations (DNS) to study the influence of the

rotation ratio a on the flow structures and the corresponding transported angular veloc-
ity flux for Ta numbers up to Ta = 108. Our motivation is two-fold: as a first objective,
we wish to further investigate the analogy between RB and TC flow by comparing the
scaling laws of the global response across the different flow states. Our second objec-
tive is to study the optimal transport, which was recently observed in TC experiments
(van Gils et al. 2011b; Paoletti & Lathrop 2011; van Gils et al. 2012), by using data ob-
tained from DNS. In DNS we namely have access to the complete velocity field, which
is not available in experiments, and this allows us to study this phenomenum in much
more detail. Presently, however, in DNS we are restricted to smaller Reynolds numbers
as compared to above mentioned recent experiments.
Figure 2 shows the cases which are simulated, in the (Ta, a), the (Ta, 1/Ro) and the

(Reo, Rei) parameter space. Note that a higher density of points has been used in places
where the response (Nuω, Rew) shows more variation. All points have been simulated
for fixed Γ = 2π and η = 5/7 since these are very similar to the parameters of the
T 3C setup. There is a significant difference, however, as numerically we take periodic
boundary conditions in the axial direction, while the T 3C system is a closed system with
solid boundaries at top and bottom which rotate with the outer cylinder.
In section 2 we start with a description of the numerical method that has been used.

In section 3 we will discuss the validation and resolution tests that have been performed.
In section 4 the global response, in terms of Nuω and the wind Reynolds number Rew,
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Figure 2: Control parameter phase space which was numerically explored in this paper:
(a) classical representation (Reo,Rei) and (b) (Ta,a) representation with a = −ωo/ωi

and (c) (Ta, 1/Ro) representation with Ro defined in eq. (2.3). We fixed η = 5/7, Γ = 2π
and employed axial periodicity. The same color code, denoting the Taylor number, is
maintained throughout the paper. The grey-shaded area, outlines boundary conditions
for which the angular momentum of the outer cylinder (Lo) is larger than the angular
momentum of the inner cylinder (Li). This causes the flow to have an overall transport of
angular momentum towards the inner cylinder. In this region, the Rayleigh stability cri-
terium applies, which states that if dL/dr > 0 the flow is linearly stable to axisymmetric
perturbations.

R
e

i

-10
3

-10
4

-10
5

-10
6

10
3

10
4

10
5

10
6

Re o

Re o = 0

R
e

i

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

counter-rotation co-rotation

sim. Pirro and Quadrio 2007

sim. Bilson and Bremhorst 2007

sim. Dong 2008

exp. Ravelet et al. 2010

exp. T
3
C 2011

exp. Paoletti et al. 2011

sim. Ostilla et al. 2012

exp. Wendt 1933

exp. Taylor 1936

exp. Smith and Townsend 1982

exp. Andereck et al. 1986

exp. Tong et al. 1990

exp. Lathrop et al. 1992

ana. Esser and Grossmann 1996

sim. He et al. 2007

Figure 3: Explored phase space (Reo, Rei) of TC flow with independently rotat-
ing inner and outer cylinders. Both experimental data (Wendt 1933; Taylor 1936;
Smith & Townsend 1982; Andereck et al. 1986; Tong et al. 1990; Lathrop et al. 1992a;
Ravelet et al. 2010; van Gils et al. 2011b; Paoletti & Lathrop 2011) and numerical data
(Pirro & Quadrio 2008; Bilson & Bremhorst 2007; Dong 2007, 2008) are shown. Solid
lines between markers represent a large density of experiments. The dashed lines are
Esser and Grossmann’s (1996) estimate for the onset of turbulence with η = 0.71. The
dark shaded area indicates the data points in the well studied small Reynolds number
regime of pattern formation and spatial temporal chaos (see e.g. Andereck et al. (1986);
Pfister & Rehberg (1981); Cross & Hohenberg (1993)). The light gray area is the region
shown in figure 2a, covered by the present DNS.
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Table 1: Analogous relations between RB and TC flow, leading to the same effective scaling
laws as derived by Eckhardt, Grossmann & Lohse (Eckhardt et al. 2007). In RB flow, the dimen-
sionless control parameters are the Rayleigh number Ra = βg∆L3/(νκ), the Prandtl number
Pr = ν/κ, and the aspect ratio Γ = D/L, where ∆ is the temperature difference between the
cold top and hot bottom, β the thermal expansion coefficient, g the gravitational acceleration,
and κ the thermal diffusivity, see figure 1. The response of the system is the heat flux from
the bottom to the top in terms of the molecular heat flux, known as the Nusselt number Nu.
In analogy, for TC flow we define a Nusselt number Nuω as ratio of the total and the purely
azimuthal and laminar angular velocity flow. ǫ̃u,0 is the dissipation in the purely diffusive state,
equal to zero in RB flow, since the fluid velocity is zero and there is molecular heat transport
only, while in TC flow ǫ̃u,0 is the purely azimuthal and laminar flow dissipation rate.

Rayleigh-Bénard Taylor-Couette

Conserved: temperature flux Conserved: angular velocity flux

J = 〈uzΘ〉A,t − κ∂z〈Θ〉A,t (1.3) Jω = r3 (〈urω〉A,t − ν∂r〈ω〉A,t) (1.4)

Dimensionless transport: Dimensionless transport:

Nu =
J
J0

(1.5) Nuω =
Jω

Jω
0

(

=
τ

2πLρJω
0

)

(1.6)

J0 = κ∆L−1 (1.7) Jω
0 = ν

2r2i r
2

o

ri + ro

ωi − ωo

d
(1.8)

Driven by: Driven by:

Ra =
βg∆L3

κν (1.9) Ta =
1
4
σ(ro−ri)

2(ri+ro)
2(ωi−ωo)

2

ν2
(1.10)

Exact relation: Exact relation:

ǫ̃′u = ǫ̃u − ǫ̃u,0 (1.11) ǫ̃′u = ǫ̃u − ǫ̃u,0 (1.12)

= (Nu− 1)Ra Pr−2 (1.13) = (Nuω − 1)Ta σ−2 (1.14)

ǫ̃u,0 = 0 (1.15)
ǫ̃u,0 =

d4

ν3
·ν

r2i r
2

o

r2a

(ωi − ωo

d

)2

(1.16)

Prandtl number: Pseudo ‘Prandtl’ number:
Pr = ν/κ (1.17) σ =

(

1 +
ri
ro

)

4

/
(

4
ri
ro

)

2

(1.18)

Scaling: Scaling:

Nu ∝ Raγ (1.19) Nuω ∝ Taγ (1.20)

as functions of the angular velocity ratio a will be discussed. In order to understand
the global system response we will analyze the coherent structures in section 5 and
the boundary layer profiles in section 6, i.e. quantities that are difficult to analyze in
experiments. This allows us to rationalize the position of the maximum in Nuω(a). We
conclude with a brief discussion and outlook to future work in section 7.

Brauckmann & Eckhardt (2012) offer a complementary direct numerical simulation
of turbulent Taylor-Couette flow: They employ a spectral code with periodic boundary
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conditions also in azimuthal direction and an aspect ratio Γ = 2 in axial direction rather
than Γ = 2π as we do. Also they find a maximum in the angular velocity transport
for moderate counter-rotation a = −ωo/ωi ≈ 0.4, similar as found in the experiments
by van Gils et al. (2011b, 2012); Paoletti & Lathrop (2011) and in the present numerical
simulations. So the result seems to be very robust and does at least not strongly depend on
Ta, Γ and other details of the flow. Brauckmann & Eckhardt (2012) also offer an analysis
of the PDFs of the local angular velocity fluxes in the different regimes, similarly as has
been done in the experiments by van Gils et al. (2012).

2. Numerical method

The Taylor-Couette flow was simulated by solving the Navier-Stokes equations in a
rotating frame, which was chosen to rotate with Ω = ωoez. This way the boundary
conditions are simplified: at the inner cylinder the new boundary condition is uθ(r =
ri) = ri(ωi − ωo), while at the outer cylinder we have a stationary wall uθ(r = ro) = 0.
We can choose the characteristic velocity U ≡ ri|ωi − ωo| and the characteristic length
scale d to non-dimensionalize the equations and boundary conditions. The characteristic
velocity U can be written as

U = (ν/d) · [8η2/(1 + η)3] · Ta1/2. (2.1)

Up to a geometric factor, which is 0.810 for our choice of η, the characteristic velocity U is
thus simply Ta1/2, expressed in terms of the molecular velocity ν/d. The non-dimensional
variables will be labeled with a hat. In this notation, the non-dimensional inner cylinder
velocity boundary condition simplifies to: ûθ(r = ri) = (ωi − ωo)/|ωi − ωo|. As ωi − ωo

is positive throughout the range covered in this work, in our coordinate system the flow
geometry is simplified to a pure inner cylinder rotation with the boundary condition
ûθ(ri) = 1. The effect of the outer cylinder is felt as a Coriolis force in this rotating
frame.
The resulting Navier-Stokes equations in the rotating frame are now

∂û

∂t̂
+ û · ∇̂û = −∇̂p̂+

(

f(η)

Ta

)1/2

∇̂2
û+Ro−1

ez × û , (2.2)

where the Rossby number is defined as

Ro =
|ωi − ωo|

2ωo

ri
d

= −|1 + a|
a

η

2(1− η)
(2.3)

and f(η) as

f(η) =
(1 + η)3

8η2
. (2.4)

Equation (2.2) is in analogy to the Navier-Stokes equation for a rotating Rayleigh-
Bénard system,

∂û

∂t̂
+ û · ∇̂û = −∇̂p̂+

(

Pr

Ta

)1/2

∇̂2
û+ Θ̂ez −Ro−1

ez × û , (2.5)

with the main difference that the Rossby number’s sign (carried by ωo in eq. (2.3)) is
relevant in TC flow. As long as the transport of angular momentum takes place from
the inner to the outer cylinder, i.e. ωi > ωo, Ro is always negative for counter-rotating
cylinders and always positive for co-rotating cylinders. Therefore the sign of Ro affects
the flow physics, as it indicates the direction of rotation of the outer cylinder.
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These equations were solved using a finite difference solver in cylindrical coordinates.
The domain was taken to be periodic in the axial direction. Coordinates were distributed
uniformly in the axial and azimuthal direction. In the radial direction, hyperbolic-tangent
type clustering was used to cluster points near both walls. For spatial discretization, a
second order scheme was used. Time integration was performed fractionally, using a third
order implicit Runge-Kutta method. More details of the numerical method can be found
in Verzicco & Orlandi (1996). Large scale parallelization is obtained with a combination
of MPI and OpenMP directives.

In order to quantify the flow, it is useful to continue with the normalized radius r̃ =
(r− ri)/(ro − ri) and the normalized height z̃ = z/(ro − ri). As an aid to quantification,
we define the time- and azimuthally-averaged velocity field as:

ˆ̄u(r, z) = 〈û(θ, r, z, t)〉θ,t . (2.6)

This time- and θ-independent velocity is used to quantify the large time scale circulation
through the wind Reynolds number:

Rew =
Uwd

ν
with Uw = U〈ˆ̄u2

r + ˆ̄u
2

z〉1/2r,z . (2.7)

As mentioned in eq. (2.1), U ∝ Rei−ηReo scales as Ta
1/2; the non-dimensinal transverse

velocity fluctuations may or may not lead to corrections of this basic scaling.

The convective dissipation per unit mass can be calculated either from its definition
as a volume average of the local dissipation rate for an incompressible fluid

ǫu = ν
〈

(∇u)2
〉

V,t
(2.8)

or from the global balance (EGL 2007):

ǫu − ǫu,0 =
ν3

d4
σ−2Ta(Nuω − 1) , (2.9)

where ǫu,0 is the volume averaged dissipation rate in the basic, azimuthally symmetric
laminar flow, cf. eq. (1.16).

In order to validate the code we have calculated ǫu from both (2.8) and (2.9) and
checked for sufficient agreement. We define the quantity ∆ǫ measuring the relative dif-
ference

∆ǫ =
ν3d−4σ−2Ta(Nuω − 1) + ǫu,0 − ν

〈

(∇u)2
〉

V,t

ν 〈(∇u)2〉V,t
. (2.10)

∆ǫ is equal to 0 analytically, but will deviate when calculated numerically.

The strictest requirement for numerical convergence was that the radial dependence of
Nuω(r) had to be less than 1%. This is a much harder condition to satisfy than torque
equality at both inner and outer cylinders, which is satisfied if the Nuω at both cylinders
is equal. Indeed, in many cases the torques were equal to within 0.01% but Nuω(r) was
not constant within 1%, which meant either a higher resolution had to be chosen or that
the simulation had to be run for longer time. The time-average of the energy dissipation
calculated locally (equation 2.8) was also checked to converge within 1%; see section 3.3
for more details.
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Rei Nuω (present study) Nuω (Fasel & Booz 1984) Nuω (Pirro & Quadrio 2008)
60 1.0005 1.0000 1.0000
68 1.0006 1.0000 1.0000
70 1.0235 1.0237 1.0238
75 1.0835 1.0833 1.0834
80 1.1375 1.1371 1.1372

Table 2: Nuω for low Rei number and Reo = 0, Γ = 2, η = 1

2
and rotational symmetry

of order 4.

3. Code validation

3.1. Validation against other codes at low Reynolds number

First of all, the code was validated against numerical results from Fasel & Booz (1984)
and Pirro & Quadrio (2008). This comparison was done through Nuω measurements at
low Rei numbers, in the range between 60 and 80. Only a quarter of the TC system was
used, assuming a rotational symmetry of order four. The aspect ratio Γ was taken as
two, the radius ratio η as 0.5. These geometrical parameters are different than the ones
used in the rest of the paper, but they are used here for validation. The resolution of
the simulation (Nθ x Nr x Nz) was taken as 32x64x64, the same as in Pirro & Quadrio
(2008). The results can be seen in Table 2. The values show a match up to three significant
figures, or sometimes even higher.
For the two smallest Reynolds numbers, both references obtain the same result, while

we obtain a slightly different result. This probably comes from the fact that they measure
the torque directly at the inner cylinder, which we then convert to Nuω for comparison,
while we measure Nuω by taking an average value of J(r) and converting this to a value
for the torque and thus Nuω. The difference between these approaches is probably the
origin of the discrepancy. However, as it is very small (below 0.1%) it is not worrying.

3.2. Comparison with experiment

The code was also validated by comparing responses obtained at higher Taylor numbers
versus data from Lewis & Swinney (1999). This was done through the Nusselt number
for pure inner cylinder rotation (a = 0) at fixed η = 5/7 and Γ = 2π. The overlap
between the simulations and experimental data can clearly be seen in the higher Taylor
number range, which we have achieved with the numerics. The shift of about 5% might
be attributed to the difference in both aspect ratio and boundary conditions at the top
and bottom because of the vertical confinement in the experiment. As we also have an
overlap at the lower Taylor range with other numerical simulations as shown in Section
3.1, we feel sufficiently confident to proceed with our code.

3.3. Resolution tests

To achieve reliable numerical results, the grid’s temporal and spatial resolution have to
be adequate. Sufficient temporal resolution is achieved by using an adaptive time step
based on a CFL criterium. If the CFL number is too large, the code destabilizes and the
velocities grow beyond all limits. As long as the CFL number is low enough to guarantee
numerical stability, the results do not change with further lowering of this number.
The requirements for spatial resolution have been studied in Stevens et al. (2010) for

RB flow. There it was shown that the effect of underresolved DNS is mainly visible in
the convergence of the thermal dissipation rate ǫθ = κ〈(∂iΘ)2〉, which in essence is the
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Figure 4: Nuω versus Ta for η = 5/7. Experiments (circles) and numerics agree in shape,
but there is a slight shift between the data, which we attribute to the different boundary
conditions in lateral direction.

thermal Nusselt number Nu. The kinetic dissipation rate ǫu = ν〈(∂iuj)
2〉 turned out to

be less sensitive to underresolution. We note that even when if kinetic dissipation rate
has converged within 1% the simulation can still be underresolved. It is important to
have grid lengths in each direction of the order of the local Kolmogorov or Batchelor
lengths.

In TC the corresponding fields to Θ and u are the azimuthal velocity uθ and the
perpendicular components ur and uz, respectively. But these are more closely related
by the Navier-Stokes equations than the u,Θ fields in RB. Therefore we tested the grid
spatial resolution at a = 0 by calculating Nuω beyond onset of Taylor vortices (Nuω > 1)
and ∆ǫ from eq.(2.10), which analytically is equal to 0, checking the (relative) difference
between the transport (Nuω) and the dissipation rate (ǫu). Both were done for different
grid resolutions with increasing Taylor number. For all these simulations we took Γ = 2π,
η = 5/7 and a = 0. The results are shown in Table 3.

Spatial convergence required more grid points than initially expected as satisfying the
torque balance alone is a necessary but not a sufficient condition for grid resolution
independence. The top two graphs in figure 5 show a plot of the radial dependence of
Nuω(r̃) at Ta = 2.44 · 105 (Rei = 400) for an underresolved case (100x50x50, Nuω =
2.70845), a reasonably resolved case (200x100x100,Nuω = 2.76208) and a extremely well
resolved reference case (300x150x150, Nuω = 2.77855). Nuω should not be a function
of the radius as mentioned previously, but numerically it does show some dependence.
For the underresolved case we can see that the torque balance is satisfied very well
(0.06%), even if other criteria are not satisfied, E.g. the peak-to-peak variation of Nuω

is approximately 1% and the relative error in comparison to the reference case is 2.5%.
The graph also shows that taking the value of Nuω at one of the cylinders gives a higher
result for the transport current than taking the radial mean.

The bottom two panels in figure 5 show the same plots for Ta = 1.91 ·106 (Rei = 1120)
and the three cases: underresolved (192x96x96, Nuω = 4.8354), reasonably resolved
(256x128x128, Nuω = 4.4600) and extremely well resolved reference (384x192x192,
Nuω = 4.4776). For this Taylor number, the underresolved case shows a smaller de-
viation of Nuω from the mean value and the torque difference in comparison to the lower
Taylor number case. However, the discrepancy in the mean value of Nuω between the
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Rei Ta Nθ x Nr x Nz Nuω ∆ǫ Case
160 3.90 · 104 128x64x64 1.86927 0.0159 R
160 3.90 · 104 256x128x128 1.85562 0.0074 E
260 1.03 · 105 160x80x80 2.40536 0.0215 R
260 1.03 · 105 256x128x128 2.40216 0.0322 E
400 2.44 · 105 100x50x50 2.70845 0.0392 U
400 2.44 · 105 200x100x100 2.76208 0.0102 R
400 2.44 · 105 300x150x150 2.77855 0.0062 E
680 7.04 · 105 256x128x128 3.49816 0.0147 R
680 7.04 · 105 384x192x192 3.51268 0.0056 E
1120 1.91 · 106 192x96x96 4.83540 0.0949 U
1120 1.91 · 106 256x128x128 4.46000 0.0174 R
1120 1.91 · 106 384x192x192 4.47765 0.0065 E
1600 3.90 · 106 300x144x144 5.42553 0.0216 R
1600 3.90 · 106 432x216x216 5.37264 0.0063 E
2500 9.52 · 106 384x192x192 6.42160 0.0168 R
2500 9.52 · 106 641x321x321 6.34068 0.0078 E
3960 2.39 · 107 641x321x321 7.46617 0.0161 R
5600 4.77 · 107 800x400x400 8.76601 0.0166 R
8000 9.75 · 107 1024x500x512 10.4360 0.0170 R

Table 3: Resolution tests for η = 0.714 and Γ = 2π. The first column displays the inner
Reynolds number, the second column displays the Taylor number, the third column dis-
plays the resolution employed, the fourth column the calculated Nuω, the fifth column
the relative discrepancy ∆ǫ between the two different ways of calculating the energy
dissipation, and the last column the ’case’: (U)nderresolved, (R)esolved and (E)rror ref-
erence. The resolution is sufficient for all cases, as the variations are small. ∆ǫ turns
out to be positive; thus the code gives for the dissipation rate a smaller value for the
derivatives-squared-based definition than for the Nuω-based balance expression.

underresolved and the reference case is much larger (7.9%). For this Ta the value of Nuω

at the cylinder walls is larger than the average value of Nuω, too.

If we look at the Nuω(r) profiles at given Taylor numbers Ta, they show similar radial
dependences, whose magnitudes decrease with increasing resolution. However, the shape
of this dependence is different for both Taylor numbers. The peaks of Nuω(r) are located
close to the boundaries, indicating that they are probably produced by some boundary
layer features and are not a systematic bias of our solver.

According to EGL 2007, dissipation should be equal, irrespective of the way in which
it is calculated, directly from its definition or indirectly via the Nusselt number balance
cf. eq. 2.9. Stevens et al. (2010) also mentioned the importance of the corresponding
equality in RB flow, especially for low values of Pr, as a way to ensure that the flow field is
sufficiently resolved and that the gradients are captured adequately. Underresolving a flow
in Taylor-Couette will result in a value of ∆ǫ which is too large in magnitude. This can be
seen in Table 3 for the underresolved simulations at Ta = 2.44·105 and Ta = 1.91·106. But
as was elaborated at the beginning of this subsection, we should consider the convergence
of ∆ǫ towards zero (becoming smaller than any chosen threshold) as a neccesary but not
as a necessarily sufficient way to ensure grid convergence.

Besides ∆ǫ being small enough, at least also Nuω(r) must be converged.
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Figure 5: Radial dependence of Nuω(r̂) for three different grid resolutions (see legends).
The top two figures are for Ta = 2.44 · 105 and the bottom two are for Ta = 1.91 · 106.
The figures on the left show the absolute values, an error bar indicating a 1% error for
reference. The resolved cases lie within this error bar. The figures on the right show the
curves normalized by their average value to compare the radial fluctuations of Nuω.

3.4. Dependence on initial conditions

For the lower Taylor numbers Ta the flow was started from rest (u = 0). The Taylor
vortices start forming within a couple of revolutions. After enough time, a steady state
with three pairs of Taylor vortices was reached. However, the simulations can also be
started from non-resting conditions. Depending on these conditions a different number
of vortex pairs can arise. This has a strong influence on both the global and the local
response of the system. Once the vortices have formed, they are persistent in time during
the simulation. Therefore, it is possible to bias a simulation through the initial conditions
to have a higher or lower amount of vortex pairs, which results in a different response.

Although the importance of these coherent structures gets smaller and smaller with
increasing Ta (Section 5), at lower Ta the number of vortex pairs must be fixed to
determine the response. The three vortex pair state has been chosen to be the base state,
to keep the aspect ratio of the vortices as close to 1 as possible (2Npairs/Γ = 0.96). The
effect of having 3 or 4 vortex pairs on the response for selected Ta is shown in figure 6. It
is important to note that this effect is different from the effect caused by neutral surface
stabilization, which occurs when the vortices cannot penetrate the whole flow, and the
number of vortices is changed as a result. That will be featured in more detail in Section
6.5.
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Figure 6: Dependence of Nuω − 1 vs Ta on the number of vortices. Although the values
of Nuω are different, the scaling behavior with Ta is the same. The error bar indicates
a 5% difference.

4. Global response

In this section, the global response of the Taylor-Couette system is shown across the
parameter space. First the onset of Taylor vortices is analysed. Then the scaling laws are
revealed for pure inner cylinder rotation. Finally, the effect of the outer cylinder rotation
on the scaling laws is investigated and an optimum of Nuω as a function of a for given Ta
is found, as has been reported for large Ta from experiment, cf. van Gils et al. (2012).

4.1. Transport Nuω and wind Rew for pure inner cylinder rotation

The global response of the system is quantified through Nuω and Rew. These two quanti-
ties measure two different flow responses.Nuω quantifies the transport of angular velocity
and Rew the “wind”, i. e. the additional velocity on top of the azimuthal flow. For the
purely laminar-azimuthal flow Nuω = 1 by definition, and Rew = 0 as this laminar flow
only has an azimuthal velocity component.
First of all we analyse how the onset of Taylor vortices is reflected in the global response

quantities Nuω and Rew. Nuω−1 is is the additional transport of angular velocity on top
of the laminar transport and the wind is the fluid motion on top of the purely laminar-
azimuthal flow. Figure 7 shows the numerically calculated Nuω−1 and Rew as functions
of Ta close to onset of the Taylor-vortex state. The critical Taylor number (Tac) for
the onset of Taylor vortices is calculated to be around 1020 for our value of η. This
DNS value can be compared with Tac as obtained from the analytical approximation
of Esser & Grossmann (1996), which is 1038 for the present η. The agreement is within
1.6%. Later on we shall use these analytically calculated onset Taylor numbers.
After the Taylor vortices have appeared in the system, they are the dominating feature

of the flow for several decades of Ta. The top two panels in figure 8 show the response of
the system with increasing Taylor number in the case of resting outer cylinder and pure
inner cylinder rotation. We plot Nuω vs. Ta-Tac rather than vs. Ta as it then shows a
better scaling for the points at low Ta.
There seems to be a clear change in the scaling law of Nuω versus Ta, but not so

in the scaling law for the wind Rew as a function of Ta. This change occurs between
Ta = 1.91 · 106 and Ta = 3.90 · 106 and has been seen in other numerical simulations too
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Figure 7: System responses Nuω − 1 (left) and Rew (right) as a function of Ta for pure
inner cylinder rotation near the onset of Taylor vortices. Onset in the present DNS occurs
at Ta ≈ 1020.

(Coughlin & Marcus 1996). Nuω − 1 scales as (Ta − Tac)
0.34 for Ta < 2 × 106 and as

Nuω − 1 ∼ (Ta− Tac)
0.21 for Ta > 2 × 106. We attribute the change in scaling to the

changes in the coherent flow structures that affect the angular velocity transport but not
the global wind amplitude. As will be discussed later in detail, we expect coherent flow
structures to lose importance for increasing Ta, see Section 5. We note already here that
although the loss of influence of coherent structures in RB flow (for Pr = 1) and in TC
flow sets in at similar values of Ra and Ta respectively, i.e. around 107 (Sugiyama et al.

2007), there is a large difference in the shear Reynolds numbers Res of the boundary
layers in these two systems. This will be discussed in the following Section.
Rew measures the amplitude (strength) of the Taylor vortices, which persist at long

time scales. The nondimensional characteristic speed for these vortices remains approxi-
mately constant with Ta, viz. about 5-6% of the inner cylinder velocity ui, throughout
the whole Taylor number range considered, and that is why we see a direct scaling law
of Rew ∼ U ∼ (Ta− Tac)

1

2 , cf. eq.(2.1).
The mutual functional dependence of the two responses Nuω and Rew is presented in

the bottom left panel of figure 8. As expected from figures 8a-8b, the relation between
Rew andNuω also shows the change in the scaling. We interpret this as follows. Before the
change, mainly the Taylor vortices are responsible for the additional transport. Beyond
the change, some short time scale fluctuations appear, indicating other structures, which
disrupt the flow and finally become its dominating features, while the Taylor vortices
lose importance. In order to see these time scales, we show the temporal dependence
of Nuω(t) in the bottom right panel of figure 8. The Nusselt number shows almost no
time dependence for lower Taylor numbers. But it shows two different time scales at
Ta = 3.90 · 106. The short time scale gains much more importance for the highest Taylor
numbers, causing fluctuations of about 10%.

4.2. The effect of outer cylinder rotation and optimal transport

In this section the effect of the outer cylinder rotation on the global responses Nuω and
Rew will be studied. This effect is felt by the flow as a Coriolis force (Equation 2.2), so
plots in this section will be done versus Ro−1 ∝ −a/|1 + a| with a = −ωo/ωi.

Ro−1 =
2dωo

U
= −2

1− η

η

a

|1 + a| = 2
1− η

η

ωo

|ωi − ωo|
. (4.1)
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Figure 8: The top two figures show the system response as a function of Ta with best
fit lines for pure inner cylinder rotation, Nuω − 1 on the left and Rew on the right. The
middle plots show the date of the two top plots compensated by the scaling factor to
test the quality of the scaling behavior. The bottom left figure presents the functional
relation between the two responses Nuω− 1 and Rew, and the bottom right figure shows
the temporal dependence Nuω(t) for three different Ta. The time dependence can be
seen to set in between Ta = 1.91 · 106 and Ta = 3.90 · 106, just where we see the
change in the effective scaling in the two left figures. The analytical approximation of
Esser & Grossmann (1996) is used, i.e. Tac = 1038 for the present η.

The inverse Rossby number Ro−1 runs from 2η/(1 + η) to −1 if ωo runs from η2ωi, the
inviscid Rayleigh-line in the first quadrant of the (Reo, Rei)-plane, to −∞. It is useful to
note that for a given Ta constant Ro−1 means constant a and vice versa. Thus a seems
the preferable notion as it is more direct; Ro−1 will be used only when it provides a clear
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for which Nuω is maximum at a given Taylor number

advantage in visualization or later in the paper when we will trace back the occurrence
of the maximum to the Navier-Stokes equation.

Figure 9 shows the complete results for Nuω as a function of Ro−1 and Ta. In order to
better quantify the results from figure 9, cross sectional cuts are taken. By taking cross
sections of constant a, scaling laws can also be discovered for non-zero values of a, i.e.
for co- and counter-rotation ωo 6= 0. This is shown in figure 10 for five different values
of a, two under co-rotation ωo > 0, two under counter-rotation ωo < 0, and as reference
case ωo = 0.
For counter-rotating cylinders and Taylor numbers prior to the change in scaling hap-

pens, a universal scaling of approximately Nuω − 1 ∼ (Ta− Tac)
0.34 is seen. However,

the change in scaling and its exponent happens earlier in Ta for a = 0, while the scaling
prevails to larger Ta for the other a (0.2 and 0.4). The scaling is different for co-rotating
cylinders, and is approximately Nuω − 1 ∼ (Ta − Tac)

0.27. Tac = 1038 has been sub-
tracted as done previously so that the scaling is not lost for the first points.
The time independence of Nuω is broken for much smaller Ta, if the outer cylinder is

rotating. For both co- and counter-rotating cylinders time dependence can be noted to
set in at Ta as low as 105. Also, the scaling of Nuω with Ta is maintained throughout a
much larger range of the Taylor number. Therefore, the breakdown of time independence
cannot be associated anymore to the change in scaling, as one could conclude when only
considering pure inner cylinder rotation, where the loss of time-independence and change
in scaling happened at about the same Ta.
Cross sections of constant Ta are shown in figure 11. Nuω − 1 = 0 indicates points

for which the flow is purely laminar-azimuthal. For co-rotating cylinders, the maximum
value of Ro−1 reaches the inviscid Rayleigh stability line Ro−1

Ra = 0.833 for even the lowest
values of Ta. On the other hand, the minimum Ro−1 which destabilizes the laminar state
can be seen to decrease (become more negative) with increasing Ta.



16 R. Ostilla, R.J.A.M. Stevens, S. Grossmann, R. Verzicco and D. Lohse

10
4

10
5

10
6

10
7

10
8

10
−1

10
0

10
1

N
u

ω
-
1

Ta-Tac

a=0
a=-0.2
a=-0.4
(Ta - Tac)

0.27

10
4

10
5

10
6

10
7

10
8

10
−1

10
0

10
1

N
u

ω
-
1

Ta-Tac

a=0
a=0.2
a=0.4
(Ta - Tac)

0.33

10
4

10
5

10
6

10
7

10
8

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(N
u

ω
-
1
)/

(T
a
-T

a
c
)0

.2
7

Ta-Tac

10
4

10
5

10
6

10
7

10
8

0.01

0.015

0.02

0.025

0.03

0.035

0.04
(N

u
ω

-
1
)/

(T
a
-T

a
c
)0

.3
3

Ta-Tac

Figure 10: Nuω−1 versus Ta−Tac for three values of co-rotating a (left) and pure inner
cylinder and two values of counter-rotating a (right). Compensated plots are shown
below. Numerical uncertainties are less than 1%. Tac depends on a and is determined
respectively from the analytical approximation (Esser & Grossmann 1996); for a=0 it is
Tac = 1038.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

2

4

6

8

N
u

ω
-1

1/Ro

Ta=3.90e4
Ta=1.03e5
Ta=2.44e5
Ta=7.04e5
Ta=1.91e6
Ta=3.90e6
Ta=9.52e6
Ta=2.39e7

Figure 11: Nuω−1 as a function of Ro−1 across the available Ta range. The advantage of
plotting versus Ro−1 can be seen as some of the graphs show piecewise linear behaviour
and the value of Ro−1 at the inviscid Rayleigh stability limit a = −η2 (denoted as Ro−1

Ra)
is Ro−1

Ra = 0.833, appears for all Ta.



Optimal Taylor-Couette flow: direct numerical simulations 17

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

N
u

ω

1/Ro

Ta=3.90e4
Ta=1.03e5
Ta=2.44e5
Ta=7.04e5
Ta=1.91e6
Ta=3.90e6
Ta=9.52e6
Ta=2.39e7

Figure 12: Nuω versus Ro−1. The shift of Ro−1

opt with increasing Ta can be appreciated
here.

−4000 −2000 0 2000 4000
0

2000

4000

6000

8000

R
e i

Reo

1/
R

o

T a
10

4
10

5
10

6
10

7
10

8

−0.5

0

0.5

1

Figure 13: Location of the optimal transport (hollow black dots connected by thick black
line) in the (Reo, Rei) phase space of figure 2a, and in the (Ta, 1/Ro) phase space of
figure 2c. On the left, the solid blue line represents the onset of instability according
to Esser & Grossmann (1996) and the thin dashed line is the line of equal distance to
the left and right branch of the Esser-Grossmann instability line. The solid line is the
bisector of the Rayleigh instability line (a = −η2) and the line of pure outer cylinder
rotation (a = ∞).

In order to better visualize the results it is useful to define a normalized Nusselt number
as Nuω = (Nuω(Ro−1) − 1)/(Nuω(Ro−1 = 0) − 1), which allows easier visualization of
the dependence of Nuω on Ro−1 across the Ta range of interest. The numerator of Nuω

goes to zero, if Ro−1 becomes too large or too small, i. e. reaches the stability lines
(where Nuω becomes 1, since the flow is laminar-azimuthal in the stable ranges), while
the denominator is always larger than zero, as long as Ta > Tac.
If Ta is large enough the shape of the graph resembles two straight lines from the

maximum value of Nuω to Ro−1

Ra and Ro−1

min. These straight lines have already been
seen when plotting Nuω versus a slightly different version of Ro−1 in Paoletti & Lathrop
(2011) and are the reason we chose to plot Nuω versus Ro−1 in this section.
For smaller Ta an optimum transport for co-rotation can be seen, i. e., for positive

values of Ro−1. This holds for Ta less than the discussed change of the scaling behavior of
Nuω versus Ta. For the two lowest values of Ta the deviation of Ro−1 beyond 0 may still
be within numerical uncertainties. However, Ro−1

opt is definitely positive for Ta = 7.5 ·105
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and Ta = 2 · 106 and seems to fit with the piecewise linear shape of the graphs. At
around Ta = 4 ·106, which is beyond the change in scaling, the maximum Nuω begins to
drift to negative Ro−1, i. e., towards counter-rotation. This can be seen in figure 12. In
fig. 13 we plotted the positions of the optimum transport in the (Reo, Rei) phase space.
Clearly, the curve does not have equal distance to the two instability branches of the
Esser-Grossmann approximation, as was speculated in van Gils et al. (2012). Another
feature of the drift of Ro−1

opt is the following: While the curve of Nuω has a prominent

peak at Ro−1

opt for values of Ta of around 106 − 107, this turns into a plateau for the

highest value of Ta and Ro−1

opt becomes hard to identify. For the highest value of Ta, the

lower border Ro−1

min already is beyond our parameter range of negative Ro−1.
Experiments (van Gils et al. 2011b; Paoletti & Lathrop 2011) have found an optimum

transport aopt ≈ 0.33− 0.35, corresponding to Ro−1

opt ≈ −0.20 for Taylor numbers of the
order of 1012. Thus the position of the maximum shifts for higher Taylor numbers.
Figures 11 and 12 show some anomalous jumps in the graph around Ro−1 ≈ −0.2

which corresponds to a ≈ 0.3. These are caused by different vortical states as mentioned
in section 3.4. These may be present even if the simulations are started from the same
initial conditions for different values of Ro−1 and Ta. If the number of vortices is higher,
the vortices become stronger, and the value of Rew, which measures their strength, also
becomes higher. Since Nuω is monotonously related to Rew, it also increases. We will
further analyse this multi-vortex state in Section 6.5.

5. Characterization of the flow state

In this section we will analyse two characteristic Taylor number ranges in TC flow.
The first, lower one, is the range in which the importance of coherent flow structures is
lost, since these have become too small in size. In section 4 we have observed a change
in the scaling law for the angular velocity flux from Nuω ∼ (Ta − Tac)

0.34 to Nuω ∼
(Ta− Tac)

0.21. Although the Taylor number for this change coincides with the onset of
time dependence for pure inner cylinder rotation, when adding outer cylinder rotation
the onset of the time dependence is much earlier, and a transition in the scaling laws
cannot even be seen.
Therefore, the onset of time dependence cannot be linked satisfactorily to the change

in the Nuω-scaling. Another way of explaining this change is by estimating when the
spatially coherent flow structures loose influence because their size becomes too small.
We do this by defining an average, global coherence length in terms of the Kolmogorov
length scale (Sugiyama et al. 2007) resulting from the volume averaged dissipation rate:

ℓc = 10ηK = 10(ν3/ǫu)
1/4 = 10d(σ−2Ta(Nuω − 1) + ǫ̂u,0)

−1/4. (5.1)

where eq. (2.9) has been used for the second equality. We compare the global coherence
length ℓc with the gap width d or, equivalently with the extension of the remnants of
the Taylor vortices, whose length can also be estimated as d, since they tend to have a
square aspect ratio.
Figure 14 shows the variation of ℓc/d with increasing Taylor number. The loss of

importance of coherent structures happens in the range where ℓc/d is between 0.1− 0.5,
corresponding to Ta ≈ 106 − 107. It is just within this Ta range, where the change in
the Nuω scaling law occurs. The graph is consistent with that change taking place at
approximately the same Ta for different values of a, which is what is seen in figure 10.
This transition is further analysed in section 6.1.
A second characteristic Taylor number is connected with the shear instability of the
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Figure 14: The graph on the left shows ℓc/d versus Ta for η = 5/7 and three values of a
as shown in the inset. The blue region indicates the range of decreasing importance of the
coherence structures. – The graph on the right shows the shear Reynolds number Res of
the boundary layers versus Ta. In the blue shaded region we expect a shear instability
of the boundary layers, in which the Prandtl laminar boundary layers become turbulent.
The TC system then is in the so-called ‘ultimate’ regime, cf. Grossmann & Lohse (2011).

boundary layers (BL). Here the laminar Prandtl type BLs become turbulent. Beyond that
Ta the flow is fully turbulent throughout and this state is known as the ultimate state,
cf. Grossmann & Lohse (2011). This happens if the BL shear Reynolds number becomes
Res > 250 − 420 and Res is calculated from the shear velocity Us as (van Gils et al.
2012):

Res =
Usδ

ν
= aPB

√

Rei − Rew . (5.2)

The empirical constant aPB is taken as 2.3 as in van Gils et al. (2012) for Prandtl-Blasius
type boundary layer in TC flow. This value is obtained by a fit to experimental data,
detailed in van Gils et al. (2012).
For RB flow this transition is expected at Ra ≈ 1014 (Grossmann & Lohse 2001;

Ahlers et al. 2009; Grossmann & Lohse 2011), while figure 14b shows that the transition
in TC is expected for 108 . Ta . 109. Recently, experiments have confirmed the ultimate
scaling both for Nuω and Rew. Huisman et al. (2012) have shown that in TC flow Nuω ∼
Ta0.38 and Rew ∼ Ta0.50 when Ta & 109. A confirmation of the analogy between RB
and TC is obtained by the high Ra number experiments by He et al. (2011) as they
measured that Nu ∼ Ra0.38 and Rew ∼ Ra0.50 for Ra & 5 × 1014. These measured
scaling exponents agree exactly with the predictions by Grossmann & Lohse (2011). In
contrast to the experiments of van Gils et al. (2011b, 2012), in our present numerical
simulations the ultimate state is not yet achieved, as clearly seen from fig. 14b.

6. Local results

This section contains the analysis of local results. For convenience we skip in this
section the ”hat” on the dimensionless flow field variables, but still understanding them
as being dimensionless. The angular velocity profiles are shown and the ratio of the
BL thickness is calculated and compared with the theory of EGL (2007). The angular
velocity profiles reflect the interplay of bulk and boundary layers and that of the mean
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Figure 15: The two plots show the areas in red where ℓc/d < 0.1 for pure inner cylinder
rotation and Taylor numbers of (a) Ta = 1.91 · 106 and (b) Ta = 9.52 · 106. In these
areas the breakup of the coherent structures is likely to occur. The arrows indicate u in
magnitude and direction.

flow and added perturbations. The importance of convective versus diffusive transport is
quantified through the bulk slope of the angular velocity profile, and again we will find
a maximum as function of a, which we will connect with the maximum in the angular
velocity transport Nuω.

6.1. Local coherence length and vortex characterization

Figure 15 shows the local coherence length calculated from the local dissipation in analogy
to eq. (5.1). This figure adds details on where we expect the Taylor vortices to break
down. At low Taylor number, the local coherence length is smaller than 0.1 only very
near to the wall, where the highest local dissipation takes place. With increasing Taylor
number, the highest local dissipation still is near the wall, but the dissipation rate is
large enough in the whole domain to break up the dominance of the coherent structures,
even if they do not fully disappear but become small enough.
From figures 14-15 we expect coherent structures to break up at Taylor numbers in the

range of Ta ≈ 106 − 107. This may at first sight contradict the earlier finding that the
scaling of the wind remains constant across the whole Taylor range studied (cf. section
4), especially as the characteristic wind velocity is defined from a time-averaged field.
One might expect that the perturbations destroy the large scale structures and as a
consequence completely modify the wind. In order to analyse this transition in more
detail, we investigate the instantaneous velocity fields before and after the breakdown
of coherence. For this, vortices will be characterized employing the so-called λ2-criterion
(Jeong & Hussain 1995).
The top two panels of figure 16 shows full 3D isosurfaces of λ2 for two Taylor numbers,

on the left for Ta = 7.04 · 105 before the transition, and on the right for Ta = 2.39 · 107,
after the transition. The bottom two panels of figure 16 show an azimuthal-cut contour
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plot of λ2 for two Taylor numbers. The instantaneous “wind” is superimposed. It is
important to note that for the left panel time dependence has not yet set in, so the
instantaneous and mean velocity fields are indistinguishable. In this panel we can see
that the lowest values of λ2 are located in the centre of the gap, coinciding with an area
of positive ur wind and almost no uz wind. Structures of negative λ2 occupy a significant
portion of the space between the cylinders.
On the right panels, we can see a different picture. The structures of negative λ2 are

now much smaller, and no longer occupy a significant region of the domain, unlike in
the left panel. These stuctures are also in a different place- clustered near the inner
cylinder, from where they seem to originate. The instantaneous wind is superimposed
on the contour plot. A similar structure as the one in the left panel is seen, indicating
that even though the coherent structures are no longer dominant, the underlying wind
behaves in a similar manner. Indeed, once the velocity field is averaged in time, the large
scale Taylor vortices are recovered. This result is consistent with the findings reported
by Dong (2007).

6.2. Angular velocity profiles

The angular velocity ω is the transported quantity in Taylor-Couette flow. Analysing
the dependence of the ω(r) profiles on the driving parameters Ta and a seems useful
to understand how transport takes place in the flow. ω(r) profiles are shown in figures
17 and 18. Beyond the breakdown of the laminar, purely azimuthal flow, three distinct
regions in the gap appear. These are the inner and outer boundary layers (BL), in which
the transport mechanism is dominantly diffusive, and a flatter bulk zone, in which the
transport mechanism is dominantly convective, see figure 20b for a sketch, in which we
approximate the profile of the mean azimuthal velocity 〈ūθ〉z by three straight lines, one
for each boundary layer and one for the bulk. For the boundary layers, we calculate the
slope of the lines by fitting (least mean square) a line through the first three computa-
tional grid points. For the bulk, we first force the line to pass through the inflection point
of the profile (the nearest grid point). Then, its slope is taken from a least mean square
fit using two grid points on either side of this inflection point. The respective boundary
layer line will cross with the bulk line at a point which then defines the thickness of that
boundary layer.
In the next two subsections we will discuss the BL and bulk regimes separately.

6.3. Angular velocity profiles and resulting boundary layer thicknesses

With increasing Ta, in order to accommodate the increasing angular velocity transport,
the boundary layers become thinner and the ω-slopes steeper. What is striking is the
strong asymmetry between the inner BL and the outer BL, which is much thicker. Figure
19 shows the ratio between the outer and the inner boundary layer thicknesses versus
rotation ratio a for two Taylor numbers. This asymmetry is a consequence of the exact
relation ∂r〈ω〉|o = η3∂r〈ω〉|i, obtained from the r-independence of Jω, cf. eq. (1.4 ): The
slope at the inner cylinder is a factor of η−3 larger than at the outer one and thus the
outer boundary layer is much more extended than the inner one. Since for the present
Ta-range the shear Reynolds number Res is still below the threshold value range for
the transition to turbulence in the boundary layers (see section 5), we can compare the
numerically obtained boundary thickness ratio with that one obtained by EGL (2007),
which had been derived in the spirit of the Prandtl-Blasius (i.e. laminar-type) boundary
layer theory, namely

λo
ω

λi
ω

= η−3
|ωo − ωbulk|
|ωi − ωbulk|

. (6.1)
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Figure 16: The two top plots show isosurfaces of λ2 for pure inner cylinder rotation and
Taylor numbers of (a) Ta = 7.04 ·105 and (b) Ta = 2.39 ·107. The bottom two plots show
contour plots of λ2 truncated for λ2 > 0. The darkest blue represents the minimum value
of λ2 in each plot and white represents λ2 > 0. The arrows indicate u in magnitude and
direction. The topography of the negative λ2 areas changes from large coherent regions in
the centre of the gap -indicating Taylor vortices- to small regions near the inner cylinder
-indicating hairpin vortices. The underlying wind, however, remains unchanged.

Here the value of ωbulk is a characteristic bulk angular velocity chosen to be the value
of ω at the inflection point of the ω-profile (see figure 20). It is calculated from the
numerical simulations. The result for the BL thickness ratio λo

ω/λ
i
ω is shown in figure

19. The agreement with the numerically obtained ratio is satisfactory for the counter-
rotating a-cases, getting even better with increasing Ta. This is because the estimate is
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Figure 17: The t, θ and also z-averaged angular velocity 〈ω̄〉z versus r̃ for four Taylor
numbers. The boundary layers of the ω profiles become thinner around slight counter-
rotation than they are for higher values of a as well as for co-rotation as an indication
of increased transport. For strong co-rotation a = −0.4 as well as high a, i. e., strong
counter-rotation, at low Ta there is not yet a flat bulk zone since the flow is not yet
turbulent enough.

based on a flat profile in the bulk, and indeed the profile becomes flatter with increasing
Ta. For co-rotation, formula (6.1) apparently fails. This had to be expected, because the
approximation of the profile of 〈ūθ〉z by three straight lines, which was assumed in the
derivation of (6.1), is then no longer appropriate.

6.4. Angular velocity profiles in the bulk

We now come back to the mean profiles in the bulk. As can be clearly seen from comparing
figures 17 and 18, both the mean angular velocity and its slope are controlled by a (or
Ro−1) rather than by Ta. This behavior can be understood from equation (2.2): The
outer cylinder rotation is reflected in that equation as a Coriolis force. This force is
present in the whole domain, while Ta controls the strength of the viscous term, which is
dominant in the boundary layer. Therefore the profile is controlled by the Coriolis force,
i.e. Ro−1 or a, and not by Ta.
To further quantify this, the gradient of 〈ω̄〉z is calculated. This is done by fitting a

straight line to 〈ω̄〉z(r̃) at the point of the profile’s inflection, numerically using the grid
points around it. An example of how this is done can be seen in figure 20a. The results
for the profile slopes in the bulk as functions of Ta and a or Ro−1 are shown in figure
21.
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Figure 18: 〈ω̄〉z versus r̃ for four values of a and increasing Ta. The boundary layers
for the ω transport become thinner with increasing Ta indicating increased angular
velocity transport. The boundary layers get steeper with increasing Ta and the bulk
region becomes more extended. For low values of Ta the bulk region is rather small. The
〈ω̄〉z profile in the center remains approximately unchanged with Ta.

The graphs collapse on each other for co-rotation (a < 0), which is what we expected
from figure 18 and our previous analysis. An almost linear relationship between Ro−1

and the bulk slope of ω(r) is found. If pure inner cylinder rotation (a = 0) is approached,
the graphs for the various Ta start to differentiate and reach a plateau. The absolute
value of the slope decreases with increasing Ta. This is due to the increasing impor-
tance of convection at higher Ta. Note however that also this counter-rotating case, for
large enough Ta the center slopes again lose their Ta dependence, i.e. are again mainly
controlled by Ro−1 and thus the Coriolis term.
We now come back to the corotating regime a < 0 and want to connect the numerically

found approximately linear relationship between the slope of ω(r) in the bulk and Ro−1

with the dynamical equation (2.2), which for the θ-component of the velocity can be
rewritten as

∂tuθ + ur∂ruθ +
uθ

r
∂θuθ +

uruθ

r
+ uz∂zuθ = Ro−1ur − ∂θp . (6.2)

The linear relationship can be obtained if we assume that the Coriolis force term Ro−1ur

and convective term ur∂ruθ + uruθ/r balance each other, i.e. we assume that the axial,
azimuthal, and temporal dependences are small in eq. (6.2), which then boils down to
ur(∂ruθ + uθ/r) ∼ urRo−1. Next, we use the fact the radial velocity component ur – the
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ω versus a for four values of Ta. The agreement between theory and

simulation is better for counter-rotation and with increasing Ta, but does not match for
co-rotation. A dashed line indicates the optimal rotation ratio aopt.
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Figure 20: Example of the two fitting procedures for Ta=1.91 · 106 and a=−0.2. The left
panel shows a linear fit to the bulk part of the angular velocity 〈ω̄〉z . The right panel
shows in addition the fit to 〈ūθ〉z for its boundary parts, which will be used in Section
6.3. Both bulk fits are done at the inflection point, but for different variables (ω̄ or ūθ),
which gives a slight difference.

wind - in its non-dimensional form is constant along the present Ta-range (cf. Section 4,
seen also in experiment of Huisman et al. (2012)). Therefore, and as uθ hardly depends
on Ro−1, an increased Coriolis force can only be balanced by a larger slope ∂ruθ. The
only alternative is that the wind ur vanishes altogether, ur = 0, and the flow state returns
to the purely azimuthal, laminar case.
To further substantiate this argument, we now decompose the flow field into a (t, θ, z)-

averaged mean azimuthal flow component Uθ, depending on the radial position r only,
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Figure 21: The average slope of the angular velocity d〈ω̄〉z/dr̃ versus a (left) and Ro−1

(right) in the bulk. For co-rotation and only slight counter-rotation, there is a nearly
linear relationship linking Ro−1 with d〈ω̄〉z/dr̃. A black straight line has been added in
this region to artificially extend this relationship up to d〈ω̄〉z/dr̃ = 0. There is also a
plateau of d〈ω̄〉z/dr̃ at counter-rotation. Here the r-slopes are smaller, i. e., the profiles
flatter, for increasing Ta, reflecting an increased convective transport.

plus fluctuations u′, as well as a decomposition of the pressure into a mean pressure P
plus the pressure fluctuations p′. Inserting these Reynolds type decompositions into the
radial and azimuthal momentum equations – in which besides Uθ only its r-derivative
survives and ignoring viscosity for now, we arrive at the following equations:

∂tu
′

r+u′

r∂ru
′

r+
u′

θ

r
∂θu

′

r−
U2

θ

r
−Uθu

′

θ

r
−u′2

θ

r
+u′

z∂zu
′

r = −∂r(P+p′)−Ro−1(Uθ+u′

θ), (6.3)

∂tu
′

θ + u′

r∂rUθ + u′

r∂ru
′

θ +
u′

θ

r
∂θu

′

θ +
u′

rUθ

r
+

u′

ru
′

θ

r
+ u′

z∂zu
′

θ = Ro−1u′

r − ∂θp
′. (6.4)

It is important to note that Ur and Uz are both equal to zero, so ur = u′

r and uz = u′

z.
As long as Ro−1 is larger than Ro−1

opt, we assume that already the mean flow contributions
alone balance in eqs. (6.3) and (6.4),

− U2

θ

r
∼ −∂rP +Ro−1Uθ , (6.5)

and

u′

r∂rUθ = u′

r

(

r
d〈ω̄〉z
dr

+ 〈ω̄〉z
)

∼ −u′

r

(

Ro−1 +
Uθ

r

)

. (6.6)

As in the bulk r ≈ ra is almost constant, the linear relationship ∂rω ∝ const − Ro−1

between Ro−1 and bulk slope d〈ω̄〉z/dr̃ is obtained.
Figure 21b, displaying this linear relationship, can be used to obtain a quantitative

estimate for optimal transport for large Ta. We can see two distinct features in the slope
d〈ω̄〉z/dr̃ versus Ro−1 curve. There is a plateau, where the value of the slope is linked
to Ta (and therefore to the viscous term in the equation of motion), and there is a line
to the right of the plateau where the value of d〈ω̄〉z/dr̃ is independent of Ta and thus
linked only to the Coriolis force. From the previous discussion and from the experimental
evidence of van Gils et al. (2012) we know that optimal transport is linked to the flattest
ω-profile. We can interpret the shift of Ro−1

opt with Ta as that value of Ro−1 where the
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plateau meets the co-rotation linear relationship, i.e. the flattest possible ω-profile that
does not break the large scale balance discussed before. If Ro−1 becomes more negative,
the profile would have to become flatter to keep on satisfying the large scale balance. As
this does not happen, the transport decreases for more negative Ro−1.
With increasing Ta, the value of d〈ω̄〉z/dr̃ at the plateau increases, and the curves cross

at a smaller value of Ro−1, which corresponds to a shifted maximum. Eventually, the
plateau value of d〈ω̄〉z/dr̃ will tend to zero as seen in the experiments of van Gils et al.
(2012), and the co-rotation line will cross the plateau at the x-axis. We can extend the
straight line to get an estimate for when this happens and obtain Ro−1

opt(Ta → ∞) =
−0.20, corresponding to aopt ≈ 0.34, an estimate consistent with the experimental values
aopt ≈ 0.33± 0.05 of van Gils et al. (2012) and aopt ≈ 0.35 of Paoletti & Lathrop (2011).
If Ro−1 is too negative, Ro−1 < Ro−1

opt, the large scale balance of equation (6.6) can
no longer be satisfied. This can be seen as the Coriolis force now has values which would
require a smaller (or even a negative) value of dω̄/dr̃ for the balance to hold. Since this
is not possible to accommodate, bursts will originate from the outer cylinder towards
the inner cylinder, because the flow tries to accommodate a large Coriolis force. These
bursts increase in importance until they end up stabilizing parts of the flow, or even the
whole flow which will drastically reduces the transport. Therefore, a maximum transport
is reached just when the Coriolis force balances the large scale convective term. If it is
further increased, stabilized regions start appearing. This is linked to the appearance of
a neutral surface, which is analyzed in the next section.
The large scale balance cannot be satisfied either if Ro−1 is too positive. The Coriolis

force then requires a value of dω̄/dr̃ > 1 to be balanced through the convective accel-
eration forces due to the average flow, and this cannot be accomodated for. Unlike the
previous case, the flow cannot be separated into stable and unstable regions. Instead,
this can be linked to the complete dissapareance of the radial and axial components of
the flow (the so-called wind). This causes Nuω to drop to the purely azimuthal value, as
seen in figure 11.

6.5. Neutral surface

In this subsection, we will take a break from using the rotating reference frame, and
return to the inertial reference frame to analyze the neutral surface which is defined as
that surface where, in the inertial reference frame, ω is zero. This surface only exists
for non-negative values of a and coincides with the outer cylinder in the case of pure
inner cylinder rotation. In an inertial reference frame, it marks the division between the
Rayleigh (inviscid) stable and unstable regions. This means that this surface separates
two regions, an unstable inner region and a stable outer region. In the stable region,
perturbations to the azimuthal flow (both large scale wind as in Taylor vortices and
small scale perturbations such as plumes) cannot grow. Therefore we expect this surface
to play a significant role for the behaviour of the flow. It was already shown to be
important in controlling optimal transport by van Gils et al. (2012).
In general, the position rN of the neutral surface depends on the height z. figure 22

shows contour plots of the angular velocity with rN (z) indicated. Indeed, rN (z) shows
a strong axial dependence, showing heights with positive or negative ur, at which the
neutral surface is pushed more outside or inside, respectively. This strong axial depen-
dence of rN is a measure for the vortex strength and becomes weaker, when the vortices
lose importance at very high Ta. By comparing figures 22 and 24 the effect of the Taylor
number on the position of the neutral surface can be seen. Its distortion happens at larger
a for increasing Ta, as expected.
If a is large enough, the vortices are no longer able to penetrate the whole gap. There
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the neutral surface separates the Rayleigh stable and unstable regions. The vortices are
mainly located in the unstable range, but enter partially also into the Rayleigh stable
region. Being restricted to part of the gap, they also shrink in horizontal direction.
Because the vortices try to remain as square-like as possible, their height (wave length)
also shrinks, allowing new vortices to appear in the available given height. This is visible
in the right panel of figure 23. These vortices are also associated with a stronger wind. If
the value of a is not very large, they thus will fill up again the distance between the two
cylinders but with a distorted aspect ratio. A zoom-in of this effect can be seen in the
middle panel of figure 23. This causes both the rise in Nuω for positive a seen in figure
12 around a ≈ 0.3 at low Ta and the crossovers seen in figure 25a.
Next, in addition to the temporal and azimuthal average, we also average rN (z) in

axial direction and call this average r̄N . Figure 25a shows how r̄N varies with a and Ta.
The position of the neutral surface for the laminar, purely azimuthal flow is plotted for
comparison. For slight counter-rotation and fixed a, the mean neutral surface is increas-
ingly pushed towards the outer cylinder with increasing Ta due to enhanced turbulence.
On the other hand, with increasing a the Coriolis force pushes the neutral surface more
and more towards the inner cylinder. Once the neutral surface reaches the laminar and
purely azimuthal flow value, the flow is stabilized.
The curves r̃N (a) for different Ta can also cross. At a constant rotation ratio, some of

the lower Ta have a neutral surface which is further away from the inner cylinder than
for some of the higher Ta. This is due to changes in the number and strengths of vortex
pairs in the flow, which happen earlier for lower Ta. With a further increase of a the
trend reverses again, since respectively smaller values of a stabilize the flow at already
lower Ta. In an inertial reference frame, this simply means that there is no longer a radial
velocity which can push the neutral surface outwards, so r̄N falls back to the laminar,
purely azimuthal flow value.

7. Conclusions

An extensive direct numerical simulation (DNS) exploration of the parameter space
of a Taylor-Couette (TC) system at Taylor numbers in the range of 104 < Ta < 108

was presented. First the code was validated versus existing numerical and experimental
data. After this, the transition from the laminar but still purely azimuthal regime to the
Taylor vortex state was analyzed. The regime where these vortices dominate the flow
was studied in detail, revealing scaling laws between the Taylor number Ta, the angular
velocity flux Nuω − 1, and the wind Reynolds number Rew. These scaling laws ceased
to be valid when the Taylor number was increased beyond Ta ≈ 3 · 106. At this driving
strength the coherence structures become so small that they lose importance and are no
longer the dominating feature of the flow.
Then the effect of the outer cylinder rotation on these scaling laws was analyzed. If

both cylinders are co-rotating, the scaling laws were (slightly) modified, but for counter-
rotating cylinders no significant differences could be seen. After the shrinking of the
coherent structure and loss of their importance the value for optimal transport aopt
shifted towards counter-rotation. This drift is expected to continue at higher Taylor
numbers and will be the course of future DNS investigations.

Next, the behavior of local flow variables was studied. Analyzing the profiles ω(r) sheds
light on the two transport mechanisms, convective and diffusive, cf. the two contributions
in (1.4). The optimal transport of ω could be linked to a balance between the Coriolis
force and the inertial terms in the equations of motion. This balance is best achieved
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Figure 22: Contour plots of the dimensionless angular velocity ω̄(r̃, z̃) with indicated
neutral surface (black line) for Ta = 1.03 · 105. Left: a = 0.2 and three vortex pairs.
Middle: a = 0.4 and four vortex pairs with a non-square aspect ratio and a highly
distorted neutral surface. Right: a = 0.6, four vortex pairs which do not penetrate the
whole gap. See also figure 23 for a zoom-in.

0 1
3

3.5

4

4.5

r̃

z̃

0 1
2

2.5

3

3.5

r̃

z̃

0 1
2

2.5

3

3.5

r̃

z̃

0

0.2

0.4

0.6

0.8

1

Figure 23: Zoomed-in contour plots of ω̄(r̃, z̃) for Ta = 1.03 ·105 with the neutral surface
indicated as a black line. Left: a = 0.2, normal state with three vortices. Middle: a = 0.4,
the distorted vortices are strong enough to fully penetrate the gap. Right: a = 0.6, the
distorted vortices cannot penetrate the whole gap due to the stabilizing effects beyond
the neutral line. Moreover, with increasing a the distance between the vortex centers
shrinks.
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Figure 24: Contour plots of ω̄(r̃, z̃) with neutral surface indicated for Ta = 3.90 · 106 and
a-values (left to right) of 0.2, 0.4, and 0.6. All of them have three vortex pairs.
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Figure 25: Left panel, the neutral surface location r̃N of the time, azimuthally, and axially
averaged angular velocity versus rotation ratio a for various Ta. The neutral radius r̃N
is moving inwards with increasing counter-rotation (increasing a), but is pushed back to
the towards the outer cylinder for increasing Ta at given a. The black line shows the
position of neutral radius r̃N,0 in laminar, purely azimuthal flow. Right panel, r̃N − r̃N,0

is shown, quantifying the pushing of the neutral line towards the outer cylinder with
increasing Ta.
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when the bulk profile is flattest and is broken with increasing counter-rotation. This leads
to the appearance of a neutral line and of “stabilizing” bursts.
The outer boundary layer of the ω-profile is much thicker than the inner boundary

layer. The quality of the approximation of the ω-profiles by three straight lines was
found to improve with increasing Ta, as the (bulk-)turbulence becomes stronger. But
although the bulk is turbulent, the boundary layers are still of Prandtl-Blasius type.
TC flow only reaches the ultimate state, if also the boundary layers undergo a shear
instability and become turbulent, too. The present analysis showed that this transition
is expected to happen in the Ta range between 108 and 109, which is just outside the
range of the present DNS. It will be analyzed in future work.
Our ambition is to further extend the Ta number range in our DNS of TC in order

to allow a one-to-one comparison between experiments and simulations in the ultimate
regime of TC turbulence and to explore the physics of this ultimate regime, in particular
to understand the transition to this regime, and the bulk-boundary layer interaction in
that regime. This ultimate regime in TC flow has recently been observed and analysed
in the experiments by Huisman et al. (2012) and van Gils et al. (2012), as well as in
Rayleigh-Bénard (RB) experiments of He et al. (2011). As the mechanical driving in TC
is more efficient than heating in RB convection, it is easier to reach the ultimate regime
in TC experiments than in RB experiments. Therefore also numerically we expect to
reach the ultimate regime earlier in TC flow than in RB flow.
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