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Abstract— We present an analytic method to determine the provably
smallest possible slot length that must be allocated in a TDMA resource,
to serve an event-triggered hard real-time load with arbitrary determin-
istic timing behavior. Based on this method, we then present constructive
methods to find all feasible as well as the optimal cycle length in a TDMA
resource, and we show how to determine the minimum required band-
width of a TDMA resource. We demonstrate the applicability and com-
putational efficiency of the presented methods in a case study of a large
distributed embedded system with a TDMA bus, where we will find the
optimal parameter set for the TDMA bus.

I. INTRODUCTION

In large distributed embedded systems, TDMA scheduling poli-
cies play an increasingly important role. TDMA is often employed
in such systems on backbone communication resources that typically
interconnect a large number of the present embedded computing units
(ECU’s), as shown in Fig. 1. This trend can best be observed in the
area of safety-critical automotive and avionic systems, where TDMA-
based communication protocols such as TTP, or more recently the
mixed TDMA/FTDMA-based FlexRay replace more and more the
formerly omnipresent CAN protocol. But also for communication
on MpSoC’s [7], as well as to provide QoS guarantees in network on
chips [6], TDMA gets increasingly important.
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Fig. 1. A distributed system with TDMA communication.

TDMA protocols possess a number of advantages compared to
event-triggered communication protocols such as CAN, that make
them interesting for the use in such systems. First of all, TDMA
resources support temporal composability, by clearly separating re-
source access of different subsystems that therefore do not interfere
with each other. Moreover, TDMA resources have a very determin-
istic timing behavior, can be made fault tolerant, and support error
detection, as well as error contention, i.e. a faulty subsystem does not
affect the correct behavior of the remaining system. Note, that due
to these properties, TDMA is also often applied for single proces-
sor scheduling, for example to enable composable and hierarchical
scheduling, see e.g. [13].

A major difficulty that arises however during the design process

of systems with TDMA-scheduled resources is parameter selection
for the TDMA resources. Customizable parameters are typically the
total bandwidth B of the resource, the cycle length c of the TDMA
round, as well as the individual slot lengths si for the different service
consumers of the TDMA resource.

In purely time-triggered systems, an optimal communication sched-
ule that defines slot and cycle lengths can be constructed at design-
time [8], but in reality heuristics are often used to find a valid com-
munication schedule due to the computational complexity of finding
the optimal schedule.

Many large distributed embedded systems are however not any-
more designed as purely time-triggered systems, but contain instead
mixed time- and event-triggered components. Be it because of the co-
existence of time- and event-triggered subsystems (clusters) that are
connected with each other by bridges, as considered in [12], or be it
because of the existence of some event-triggered ECU’s, as consid-
ered for example in [10] . Both is shown in Fig. 1.

When we get to such mixed time- and event-triggered systems, pa-
rameter selection for TDMA resources gets even more challenging.
In [11], slot lengths are chosen as a fraction of a fixed cycle length,
such that every service consumer with event-triggered load receives
an individual total bandwidth from the TDMA resource. While the
method presented in [11] can be used for systems with non-real-time
event-triggered loads, it is only applicable by trial-and-error for sys-
tems with real-time event-triggered loads, i.e. loads with deadline
constraints. For such systems, [12] presents a heuristic to assign slot
lengths of a TDMA resource with fixed bandwidth and cycle length.
[12] however only deals with strictly periodic loads and does there-
fore not consider buffering effects that may occur when serving loads
with jitter or bursts.

Very recently, a method for slot as well as cycle length optimiza-
tion based on evolutionary search techniques was presented in [7].
This method can be used to parameterize slot and cycle lengths of
TDMA resources with fixed bandwidth, and it can handle real-time
event-triggered loads with jitter and bursts. Since the method is based
on evolutionary algorithms, it is however computationally expensive,
and cannot guarantee a global optimal solution for a predetermined
optimality criterion.

Contributions of this work:

• We present an analytic method to determine the provably small-
est possible slot length that must be allocated in a TDMA re-
source with fixed cycle length and bandwidth, to serve a hard
real-time load with arbitrary deterministic timing behavior.

• We present constructive methods to find the optimal cycle length
and minimum required bandwidth of a TDMA resource.

• We show the applicability and computational efficiency of the
presented methods in a case study of a large distributed embed-
ded system, where we will find the optimal parameter set for a



TDMA bus that interconnects 21 ECU’s that send a total of 30
different hard real-time message streams with jitter and bursts
over this shared communication resource.

• The presented work is based on an existing theoretical frame-
work for modular system level performance analysis of hard
real-time systems. We present a TDMA component that will
extend this framework to enable performance analysis and inter-
face-based design of distributed real-time systems with TDMA.

II. MODULAR PERFORMANCE ANALYSIS

In the domain of communication networks, powerful abstractions
have been developed to model flow of data through a network. In par-
ticular Network Calculus [9] provides means to deterministically rea-
son about timing properties of data flows in queuing networks. Real-
Time Calculus [14] extends the basic concepts of Network Calculus
to the domain of real-time embedded systems, and in [5] a unifying
approach to Modular Performance Analysis with Real-Time Calculus
has been proposed. It is based on a general event and resource model,
allows for hierarchical scheduling and arbitration, and can take com-
putation and communication resources into account.

The following sections introduce some concepts of Network and
Real-Time Calculus, that build the foundation of this work. While we
introduce these concepts from a communications point of view, all
results can also be applied directly to the analysis and design of hard-
ware/software components in a system. Then, messages correspond
to tasks, and the message size to a task’s execution time.

A. From Components to Abstract Components

In this work, we consider distributed embedded systems, consisting
of a number of embedded computing units and a shared communica-
tion network. Every embedded computing unit (ECU) is connected
to the communication network (CN) via a communication network
interface (CNI), that uses the services of the communication network
via a communication controller (CC). The ECU processes incoming
event streams, and generates message streams that must be sent in
real-time to other ECU’s via the communication network. To initiate
the sending of a message, the ECU places the message into one of
possibly several FIFO buffers of the CNI. For real-time communica-
tion, every message stream has an associated maximum communica-
tion delay, that denotes the maximum time interval between the time
a message of the stream is placed into the buffer, and the required de-
livery time of the message. The CNI uses the services of the CC to
send the buffered messages over the network, and it applies an arbi-
tration policy to share the available communication resource amongst
the queued messages. Figure 2 shows on the left side a block diagram
of the connection of an ECU to a communication network.
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Fig. 2. A concrete ECU connected to a communication system (left),
and the corresponding Real-Time Interface model (right).

We will use Real-Time Calculus [14, 5] to abstractly describe the
real-time properties of such a CNI component. In comparison to

the concrete CNI, an abstract CNI sends an abstract message stream
over an abstract communication resource. In Real-Time Calculus,
the timing and resource demand properties of the concrete message
streams that enter the CNI are abstracted by Variability Characteriza-
tion Curves (VCC) that are called arrival curves α(∆), following [9].
Together, α(∆) and the maximum allowable delay D of every mes-
sage stream describe the properties of a message stream that are es-
sential for real-time analysis, see [14]. The communication resource
that enables the sending of the messages is modeled by a service curve
β(∆), see also [9]. β(∆) is also a VCC, and describes the essential
properties of the communication resources that are available to an ab-
stract CNI component.

B. Variability Characterization Curves

An arrival curve α(∆) ∈ R
≥0, ∆ ∈ R

≥0 provides an upper bound
on the communication resource demand that messages arriving from
an ECU in any time interval of length ∆ create on a CNI, i.e. the
messages that arrive on a stream within a time interval [t, t+∆) may
create a resource demand of at most α(∆) on an CNI, for all t ≥ 0.

Arrival curves substantially generalize the classical representations
of standard event arrival patterns such as sporadic, periodic, periodic
with jitter or others. For example a message stream with messages
of size e, that arrive with a period p, a jitter j, and a minimum inter
arrival distance d, can be modeled by an arrival curve as follows:

{p, j, d, e} ⇒ α(∆) = min

j‰
∆ + j

p

ı
e,

‰
∆

d

ı
e

ff
(1)

Besides being able to represent any message stream with known tim-
ing behavior, it is also possible to determine arrival curves corre-
sponding to any finite length message trace, obtained for example
from observation or simulation. Some examples of arrival curves are
shown in Fig. 3.
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Fig. 3. Arrival curves for standard event arrival patterns.

Similarly, the resource availability of an abstract communication
resource is modeled by a VCC called service curve. A service curve
β(∆) ∈ R

≥0, ∆ ∈ R
≥0 provides a lower bound on the available

resources, e.g. bus cycles, in any time interval ∆, i.e. in a time interval
[t, t + ∆) at least β(∆) bus cycles are available.

C. Real-Time Calculus

Network and Real-Time Calculus provide powerful methods to an-
alyze different performance properties of systems, as for example de-
tailed throughput or resource consumption analysis, see [9], [14] and
[5]. Here, we however only consider delay and backlog analysis.

In Real-Time Calculus, the maximum delay Delmax experienced
by messages of a message stream with arrival curve α(∆) that is sent
over an abstract communication resource with service curve β(∆)
is bounded by the maximum horizontal distance between α(∆) and
β(∆):

Delmax ≤ sup
∆≥0

{inf{τ ≥ 0 : α(∆) ≤ β(∆ + τ )}} (2)



Analogously, the maximum backlog Bufmax of a message stream
in the buffer of a CNI is bounded by the maximum vertical distance
between α(∆) and β(∆):

Bufmax ≤ sup
∆≥0

{α(∆) − β(∆)} (3)

If a CNI serves more than one message stream, i.e. if it has more
than one arrival curve as input, the total required buffer can be com-
puted by replacing α(∆) with the sum of all arrival curves

P
αi(∆)

in (3). It is also possible to compute the different maximum delays,
experienced by the message streams. For this, the arbitration policy
of the CNI must be considered, see [5].

D. Real-Time Interfaces

Real-Time Interfaces were first introduced in [2], and they connect
the principles of interface-based design [?] and Real-Time Calculus.
The central idea of interface-based design is to describe components
by a component interface that, if well-designed, provides enough in-
formation to decide whether a component can work properly in a
system together with other components. Real-Time Interfaces can
thereby be considered as a special instance of assume/guarantee inter-
faces, see also [?]. Components with an assume/guarantee interface
make assumptions on the values of their input variables and give in
return guarantees on the values of their output variables.

When we look at the connection of an ECU to a communication
network in Fig. 2, then we see that the communication network pro-
vides a communication resource supply, represented as a service curve
β(∆), to a CNI. β(∆) is therefore the output of an abstract commu-
nication network, and the input to an abstract CNI.

A communication network can therefore be modeled as an abstract
component with a service output variable β(∆), and its real-time in-
terface would provide the output guarantee β(∆) ≥ βG(∆) on this
output variable. Through this output guarantee, the network compo-
nent expresses that the service β(∆), that is provided by the commu-
nication network is larger or equal βG(∆). βG(∆) is sometimes also
referred to as supply bound function sbf(∆), see e.g. [4] or [13].

An abstract CNI on the other hand can be modeled as a component
with a service input variable β(∆), and its real-time interface would
make the input assumption β(∆) ≥ βA(∆) on this input variable.
Through this input assumption, the abstract CNI expresses that the
service β(∆), that is provided on its service input must be larger or
equal βA(∆). In return, the abstract CNI then guarantees to send all
messages within the required maximum delay. βA(∆) is sometimes
also referred to as demand bound function dbf(∆).

Figure 2 shows on the right side the Real-Time Interface model of
an abstract communication network component with service guaran-
tee βG(∆) that is connected to an abstract CNI component with ser-
vice assumption βA(∆). In order to determine, whether the commu-
nication network provides enough service to the CNI, we only need
to check that the following predicate is true:

βG(∆) ≥ βA(∆) ∀∆ ≥ 0 (4)

The difficulty is then to find appropriate values for βG(∆) and
βA(∆). The service assumption βA(∆) of an abstract CNI that serves
a message stream with arrival curve α(∆) and maximum delay D is
given by (see also Example 1):

βA(∆) = α(∆ − D) (5)

If on the other hand the CNI serves several message streams with
an EDF arbitration policy, the service assumption can be computed
as βA

EDF (∆) =
P

αi(∆ − Di), and for FIFO it can be computed
as βA

F IF O(∆) =
P

αi(∆ − Dmin). To compute the service as-
sumption under a fixed priority arbitration policy is slightly more in-
volved and is described in detail in [2], while [1] describes how to

obtain the service assumption of components with mixed static and
dynamic arbitration policies. βG(∆) on the other hand can be given
as βG(∆) = B ·∆ for a fully available communication network with
bandwidth B, and in the next section, we will establish βG(∆) for a
communication network with TDMA.

III. PERFORMANCE ANALYSIS OF TDMA SYSTEMS

In this work, we analyze a real-time communication system con-
sisting of n communication network interfaces that access via com-
munication controllers a bus with bandwidth B that implements a
TDMA protocol. The TDMA cycle length is denoted as c̄ and can
only take on values that are multiples of the cycle length quantum qc.
In every TDMA cycle, one single communication slot of length si

is assigned to every CNI that is connected to the bus. In a realistic
system, the slot lengths si can only take on values that are multi-
ples of a slot length quantum qs. We denote a quantized slot length as
s̄i = �si/qs�·qs. Further, every slot typically involves a slot overhead
os, while the cycle itself involves a cycle overhead oc. These over-
heads account for example for required network idle times between
consecutive slots and cycles, CRC codes for channel fault detection,
time synchronization data, or any other protocol related overhead. De-
pending on the different timing specifications, some bandwidth may
remain unused in every communication cycle. Fig. 4 depicts the tim-
ing specifications in this TDMA protocol.
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Fig. 4. TDMA protocol timing specifications.

In the CNI, a message service layer provides a packet service that
fragments outgoing messages into packets and that reassembles in-
coming packets into messages. This message service layer guaran-
tees that a CNI can always use the complete time slot assigned to it,
as long as there are messages waiting to be sent. The overhead for
the message fragmentation is accounted for in the slot overhead os.
Since this fragmentation overhead depends on the message sizes and
the arbitration policy of a CNI, one could introduce individual slot
overheads os,i for every CNI. The methods in this work could easily
be extended accordingly.

A. TDMA Resource Component Interface

An abstract communication (or computation) resource with TDMA
can be modeled by a real-time interface as depicted in Fig. 5. The
component has an input B, that determines the total bandwidth of
the underlying resource, and the cycle length of the TDMA proto-
col is specified by the parameter c̄. The component further has n
service outputs, that provide a service with the output guarantees
βi(∆) ≥ βG

i (∆) to n connected CNI components with input as-
sumptions βA

i (∆).
Internally, the service output guarantee βG

i (∆) can be determined
by the slot length guarantee sG

i that is assigned to the ith CC. Anal-
ogously, we show in section IV, how the service input assumption
βA

i (∆) of a connected CNI component can be transformed into a
minimum slot length assumption sA

i . The fulfillment of the commu-
nication service demand of a connected abstract CNI component can
then be guaranteed directly by guaranteeing sG

i ≥ sA
i .
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B. Service Supply, Schedulability, Feasibility and Utilization

In a communication resource with TDMA, the ith communication
controller may not have access to the resource during a time interval
that is limited by ∆ = c̄−sG

i . After this interval, the CC has exclusive
access to the resource during a time interval of length sG

i . A CC can
therefore not guarantee any service to a connected CNI during any
time interval 0 ≤ ∆ < c̄ − sG

i , but it can guarantee a service of
B(∆− (c̄− sG

i )) in any time interval c̄− sG
i ≤ ∆ < c̄. This service

guarantee can be expressed as

βG
i (∆) = B max

„—
∆

c̄

�
sG

i , ∆ −
‰

∆

c̄

ı
(c̄ − sG

i )

«
(6)

or more compactly as

βG
i (∆) = B sup

0≤λ≤∆

j
λ −

‰
λ

c̄

ı
(c̄ − sG

i )

ff
(7)

We define that a real-time communication system is said to be
schedulable, if the connected CNI’s can fulfill the real-time require-
ments of all message streams, i.e. if all messages in the system can
be delivered within an time interval that is limited by their maximum
allowable delay D. According to the theory of Real-Time Interfaces,
a real-time communication system is therefore schedulable if

βG
i (∆) ≥ βA

i (∆) ∀i,∀∆ ≥ 0 (8)

or equivalently if sG
i ≥ sA

i ∀i.
We further define that a real-time communication system with TDMA

is feasible, if the sum of the required slot lengths and the protocol
overhead is less or equal the cycle length, i.e. if

c̄ ≥
X
∀i

sA
i + oc + nos (9)

Following this definition of feasibility, the slot length guarantee sG
i

to the ith CC can then be computed as

sG
i = c̄ −

0
@X

∀j �=i

sA
j + oc + nos

1
A (10)

We define the utilization σA
i as the quotient of the slot length sA

i

divided by the cycle length c̄. Analogously to (9), a TDMA system is
then feasible if the total utilization is less or equal one:

1 ≥
X
∀i

σA
i +

oc + nos

c̄

def
= σtot(c̄) (11)

C. Delay and Backlog

For delay and backlog analysis in a communication system with
TDMA as defined above, we may now use (2) and (3). We only need
to replace β(∆) with βG

i (∆) in the corresponding formulas.

EXAMPLE 1. Suppose we have a message stream M0 with p0 =
198ms, j0 = 387ms and d0 = 48ms. The single messages have a
size of 12 units, and a maximum allowable delivery delay of D0 =

110ms. The messages are sent over a communication resource with
TDMA, that has a total bandwidth of B = 1′000units/s. The TDMA
cycle has a length of c̄ = 80ms, and a slot of length sG

0 = 20ms is
assigned to the CNI that sends the message stream M0.

Figure 6 shows the arrival curve α0, the service assumption βA
0 ,

as well as the service guarantee βG
0 of the above system, computed

according to (1), (5) and (7), respectively. Since βG
0 ≥ βA

0 , we know
that the real-time requirements of the message stream are fulfilled,
following (8). And using (2) and (3), we can compute the maximum
delay experienced by a message as Delmax,0 = 96ms, and the max-
imum backlog in the CNI as Bufmax,0 = 24units.
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IV. MINIMUM SLOT TIME ALLOCATION

Based on the powerful abstractions of service guarantee and ser-
vice assumption curves, and the explicit schedulability requirement
(8) coming from the theory of Real-Time Interfaces, it is possible to
determine the exact minimum time slot sA

i that must be assigned to a
CNI with service assumption βA

i (∆) to be schedulable on a TDMA
communication network with bandwidth B and cycle length c̄. For
this, we need to construct the inverse of (6) with respect to sG

i as the
smallest sG

i that leads to a service supply that fulfills the schedulabil-
ity requirement (8):

sA
i = sup

∆≥0

(
min

 
βA

i

B
¨

∆
c̄

˝ , βA
i − B∆ + B

˚
∆
c̄

ˇ
c̄

B
˚

∆
c̄

ˇ
!)

(12)

This minimum time slot sA
i is provably the smallest possible time

slot allocation that guarantees a service supply βG
i (∆) ≥ βA

i (∆) on
a TDMA resource with bandwidth B and slot length c̄.

EXAMPLE 2. Figure 7 shows the minimum slot length sA
0 (c̄) of

message stream M0 from Example 1, as a function of the TDMA cycle
length c̄. We see that the minimum required slot length increases with
increasing cycle length, and it is lower bounded by sA

0 (c̄) ≥ c̄ −
(D0 −e0), because the gap between two consecutive slots must never
be greater than D0 − e0.
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Figure 8 shows the minimum service guarantees βG
0 (∆) for three

different cycle lengths, computed by setting sG
0 (c̄) = sA

0 (c̄).

Using (12), we can now compute the minimum slot lengths for all
CNI’s in a communication network with bandwidth B and TDMA
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cycle length c̄. If a slot allocation with these minimum slot lengths
leads to a feasible communication system according to (9), i.e. if the
sum of the minimum slot lengths plus the protocol overhead is smaller
than the cycle length, then we can use c̄ and si = sA

i (c̄) as TDMA
settings. Otherwise we are guaranteed that no feasible slot allocation
exists for the cycle length c̄.

EXAMPLE 3. Consider a communication network with 10 CNI’s,
each one serving one of the message streams M0 to M9 specified in
Table I. This specification equals the specification of System 3 in [7].
According to [7], this was the most difficult system to optimize in [7].

TABLE I– EXAMPLE SYSTEM WITH 10 MESSAGE STREAMS.
M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

p 198 102 283 354 239 194 148 114 313 119
j 387 70 269 387 222 260 91 13 302 187
d 48 45 58 17 65 32 78 - 86 89
e 12 7 7 11 8 5 13 14 5 6
D 110 140 115 145 180 140 200 120 140 100

To find feasible TDMA parameters for this system, we computed
σtot(c̄) for c̄ ∈ [0.1ms . . . 600ms] with a cycle quantum qc = 100µs.
In [7] no slot length quantization or protocol overhead was consid-
ered, Fig. 9 depicts the corresponding results. Additionally, we com-
puted σ̄tot(c̄) with a slot length quantum qs = 10µs, but still without
protocol overhead. The results are also shown in Fig. 9.
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Remember, that feasible TDMA parameters exists for a cycle length
c̄ if, and only if σtot(c̄) ≤ 1. Without considering quantization, this
is the case for all values in the grey shaded areas in Fig. 9. When we

consider a small slot quantization however, only the four encircled
values of c̄ still lead to feasible TDMA parameters.

In general, if we do not consider quantization effects and protocol
overhead, then the smallest possible c̄ will always lead to feasible
TDMA parameters, if the total bandwidth B is large enough. As soon
as we consider quantization effects and protocol overhead however,
arbitrary small values for c̄ are not feasible anymore.

But also arbitrary large values for c̄ will not lead to feasible TDMA
parameters, because the slot lengths are lower bounded by sA

0 (c̄) ≥
c̄ − (D0 − e0). σtot(c̄) will therefore strive towards the number of
CNI’s in the system for large c̄, i.e. towards 10 in Example 3.

Feasible TDMA parameters will therefore only exist for cycle lengths
c̄ that are not too small and not to large. And as we can be seen in
Fig. 9, the total utilization σtot(c̄) as a function of the TDMA cycle
length has a very complex and nonlinear behavior. Often, intervals of
feasible cycle lengths are even non-contiguous.

V. OPTIMAL CYCLE LENGTH

In a typical TDMA system, not only the slot lengths si, but also the
cycle length c̄ is a customizable parameter. To find an optimal cycle
length for a TDMA system, we first need to define an optimality cri-
terion. One possible optimality criterion that we will use in this work
is the average remaining bandwidth σr = 1 − σtot. This remaining
bandwidth could be distributed additionally to the existing CNI’s, or
it could be used to admit additional future load in a dynamic system.

Note, that if we want to account for up to m dynamically added
CNI’s in a dynamic system, we need to consider the slot overheads
for these dynamically added CNI’s. Further, for systems with a slot
quantum, we need to consider that only multiples of full slot quantums
can be assigned to existing or future CNI’s:

σ̄r(c̄) =

$ 
1 −

X
∀i

σ̄i(c̄) − (n + m)os + oc

c̄

!
c̄

qs

%
qs

c̄
(13)

In Fig. 9, we have seen that the total utilization σtot(c̄) as a func-
tion of the TDMA cycle length has a very complex and nonlinear
behavior. To find the optimal cycle length with the maximum remain-
ing bandwidth σr, we therefore have no choice but to compute σr for
all possible values of c̄.

However, in Example 2 and in Fig. 7, we have seen that the required
slot lengths are lower bounded by sA

1 (c̄) ≥ c̄ − (D1 − e1). It is
therefore possible to find an upper bound to feasible cycle lengths:

c̄max = sup
c̄≥0

(
c̄ : c̄ ≥

X
∀i

max(0, c̄ − (Di − ei))

)
(14)

Due to this upper bound, σr needs only to be computed for c̄max/qc

different values. The upper bound for the system in Example 3 is
c̄max = 134, 7ms and is indicated by the vertical bar in Fig. 9.

VI. MINIMUM TOTAL SERVICE BANDWIDTH

At design time, the service bandwidth B is often also a customiz-
able parameter. The minimum total service bandwidth Bmin is the
smallest possible service bandwidth B of a TDMA system with ser-
vice assumptions βA

i , for which feasible slot allocations si exists:

Bmin = inf
B≥0

{B : σtot,min(B) ≤ 1} (15)

with

σtot,min(B) = inf
c̄≤c̄max

{σtot(c̄, B)} (16)



From (12), it can be seen that the minimum slot length sA
i is monoton-

ically decreasing with increasing service bandwidth B, i.e. sA
i (B +

dB) ≤ sA
i (B). Because of this, the total utilization σtot is also

monotonically decreasing, and as a consequence also the minimum
total utilization σtot,min is monotonically decreasing with increasing
service bandwidth B, i.e. σtot,min(B+dB) ≤ σtot,min(B). We can
therefore find the minimum total service bandwidth Bmin (or BA in
Real-Time Interface notation) by using binary search.

VII. CASE STUDY

The case study systems consists of 21 ECU’s that are intercon-
nected with a TDMA bus, and that send a total of 30 different hard
real-time message streams with jitter and bursts that are specified in
Table II. The TDMA bus has a cycle quantum qc = 1ms, a slot quan-
tum qs = 0.5ms, a slot overhead os = 0.5ms, and a cycle overhead
oc = 2.5ms. On ECU0 and ECU1, EDF is used to arbitrate the
sending of M0 − M3 and M4 − M6, FIFO is used on ECU2 to ar-
bitrate M7 − M9, and FP is used on ECU3 to arbitrate M10 − M12.
The remaining 17 ECU’s send only a single message stream each.

TABLE II– CASE STUDY SYSTEM WITH 30 MESSAGE STREAMS.
M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

p 196 245 105 147 231 308 275 234 273 182
j 387 70 269 387 222 260 91 387 70 269
d 48 - 58 17 65 - - 48 - 58
e 7 4 6 1 8 2 3 5 5 3
D 176 237 115 488 206 311 275 207 178 198

M10 M11 M12 M13 M14 M15 M16 M17 M18 M19

p 153 357 476 302 258 424 287 451 539 309
j 80 70 177 967 719 257 38 159 11 153
d - - - 27 89 - - - - -
e 2 2 3 2 2 4 7 6 13 11
D 153 423 556 511 371 315 210 245 196 413

M20 M21 M22 M23 M24 M25 M26 M27 M28 M29

p 506 357 304 510 298 243 457 502 247 226
j 250 393 278 296 184 400 300 312 365 278
d - 3 40 - - 18 - - 83 85
e 4 3 4 5 4 5 7 3 8 7
D 245 336 378 126 161 469 574 560 133 301

We first search the minimum required total service bandwidth for
the TDMA bus in this system. From this we learn, that a minimum
bandwidth of Bmin = 1.27Mbit/s is required. With this bandwidth,
feasible TDMA settings exist for a cycle length c̄ = 92ms, and lead
to a total utilization of σ̄tot = 1.

In a next step, we choose a TDMA bus with total bandwidth of B =
1.5Mbit/s ≥ Bmin. We want to optimize slot and cycle lengths on
this bus according to section V, such that 5 additional ECU’s could
be added at a later point of time. For this we compute (13) up to
c̄max = 169ms. The results are shown in Fig. 10 and suggest to
use a cycle length of again c̄ = 92ms. This leads to a maximum
remaining average bandwidth of σ̄r = 0.11.
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Fig. 10. Remaining average bandwidth in the case study system.

VIII. COMPUTATIONAL COMPLEXITY

To analyze the examples and case study in this paper, we used a
prototype implementation of Real-Time Calculus and Real-Time In-
terfaces that is implemented in Java and uses Matlab as user frontend.
We run this prototype tool on a Pentium Mobile 1.6 GHz.

Computing Fig. 9 took 7.5s, while computing the same results up
to the required upper bound c̄max took only 1.1s. In the case study,
finding the minimum total bandwidth and the corresponding cycle and
slot lengths took 0.31s per iteration, and optimizing the cycle and slot
lengths for the TDMA bus with fixed bandwidth took also 0.31s.

When computation needs to be faster (e.g. for exploration), lin-
ear approximated VCC’s could be used, that trade off computational
complexity with the tightness of the results, see e.g. [3].

IX. CONCLUSIONS

We presented an analytic method to determine the provably small-
est possible slot length that must be allocated in a TDMA resource,
to serve an event-triggered hard real-time load. We further presented
constructive methods to find the optimal cycle length as well as the
minimum required bandwidth of a TDMA resource. Using these new
methods, it is now possible to determine the minimum required band-
width, as well as the optimal slot and cycle parameters for a TDMA
resource, when we are initially only given a set of real-time load spec-
ifications that must be served by the TDMA resource. The applicabil-
ity and computational efficiency of the presented methods was shown
in a case study, where finding the optimum TDMA parameter set for a
large distributed embedded system with 21 ECU’s that send a total of
30 different hard real-time message streams took less than a second.
Finally, we extended an existing theoretical framework for modular
system level performance analysis of hard real-time systems by intro-
ducing a component that models a TDMA resource. This component
enables to use the framework for performance analysis and interface-
based design of complete distributed real-time systems with TDMA.
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