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Abstract
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geo-

graphical range of malaria. Most malaria models to date assume constant or linear responses of mosquito

and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are

at odds with field observations of transmission dating back nearly a century. We build a model with more

realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empiri-

cally derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than

previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures

> 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria

transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these

more accurate nonlinear thermal-response models will aid in understanding the effects of current and

future temperature regimes on disease transmission.
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INTRODUCTION

Malaria presents a substantial public health and financial burden

(WHO 2011). In 2010 alone, there were an estimated 216 million

cases worldwide and at least 655 000 deaths, with most morbidity

and mortality occurring in sub-Saharan Africa (WHO 2011). An

estimated US$ 2 billion was spent on malaria control in 2011

(WHO 2011). Despite the enormous global burden of malaria, after

more than a century of research we still have a poor understanding

of the mechanistic link between environmental variables, such as

temperature and malaria risk (Lafferty 2009; Paaijmans et al. 2009;

Pascual et al. 2009). Temperature is fundamentally linked to malaria

mosquito and parasite vital rates, and understanding the role of

temperature in malaria transmission is particularly important in light

of climate change. The goal of this article is to determine how envi-

ronmental temperature drives malaria transmission via its combined

effects on the mosquito and parasite vital rates that determine

transmission. By determining the temperature sensitivity of malaria

transmission, we can then apply our model to understand both the

effect of current ambient conditions and the potential effect of

future changes in temperature on malaria transmission.

A key epidemiological metric for understanding malaria risk is the

Basic Reproductive Number (R0), which defines the number of

cases of a disease that arise from one case introduced into a popula-

tion of susceptible hosts. Epidemics can proceed only if R0 exceeds

one, and disease prevalence increases with R0. This transmission

metric depends on mosquito density, biting rate, vector competence

and survival rate as well as parasite development time within the

mosquito (i.e. extrinsic incubation time) and human recovery rate.

Mosquito density is in turn a function of adult survival and fecun-

dity, and immature development time and survival (see Appendix

S1 in the Supporting Information; Table 2).

Given that all of these parameters except human recovery rate

relate to mosquito abundance, biology or physiology, and that mos-

quitoes are small cold-blooded insects, it is clear that environmental

temperature will influence the transmission intensity of malaria

(Craig et al. 1999; Rogers & Randolph 2006; Parham & Michael

2010). Existing malaria risk models that factor in effects of climate

(Martens et al. 1997; Craig et al. 1999; Hoshen & Morse 2005;

Parham & Michael 2010; Alonso et al. 2011; Ermert et al. 2011;

Gething et al. 2011) have used monotonically increasing relationships

between temperature and mosquito and parasite vital rates. Other

variables are assumed to be temperature insensitive (see Table 1).

In reality, ectotherm performance measures, such as development

rate, survival probability and reproductive rate, increase from zero

at a critical minimum temperature (CTmin), peak at an optimum tem-

perature (Topt), then sharply decline to zero at a critical maximum

temperature (CTmax; Angilletta 2009; Dell et al. 2011). These unimo-
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dal temperature responses are used for a wide range of ecological

and evolutionary applications (Huey & Berrigan 2001; Amarasekare

& Savage 2012), including the effects of climate change on ecto-

therms (Deutsch et al. 2008; Neuheimer et al. 2011). Such relation-

ships have been established for several malaria mosquito and

parasite life-history traits, including immature development and sur-

vival (Lyimo et al. 1992; Bayoh & Lindsay 2003), gonotrophic cycle

length (Lardeux et al. 2008) and parasite development times (Ikem-

oto 2008; Paaijmans et al. 2009). However, most models of R0 or

other transmission metrics for vector-borne diseases such as malaria

use linear or monotonic thermal responses, putting the accuracy of

existing models into question (Table 1; Martens et al. 1997; Craig

et al. 1999; Parham & Michael 2010).

Here, we fit unimodal temperature responses to all mosquito and

parasite life-history traits that shape R0, using published data from

laboratory studies of Anopheles mosquito species and Plasmodium

falciparum malaria parasites conducted across a range of constant

temperatures (Table 2). Although there is a wealth of field data on

how mosquito (e.g. Bodker et al. 2003) and parasite (e.g. Afrane

et al. 2007) traits vary in the field, mechanistic models of responses

to temperature need to separate the effect of temperature from

other variables such as differences in temperature variability, humid-

ity, household occupancy and household practices between the stud-

ied areas. In addition, to build such models, responses to constant

temperature are needed, repeated across a range of temperatures.

Such data were available for many traits. However, in some cases,

we had to approximate responses from other species, prompting us

to determine the sensitivity of our results to these parameters (see

Materials and Methods). We combined these novel temperature–life
history relationships to derive the relationship between malaria

transmission (R0) and temperature.

We validated the model using an independently published data

set. Our proxy for R0 was the Entomological Inoculation Rate

(EIR) from Africa (1979–1996). EIR is the rate at which people are

bitten by infectious mosquitoes and is a combination of several

mosquito and parasite life-history traits, including parasite extrinsic

incubation period (EIP), vector competence, mosquito survival and

biting rate (Smith et al. 2007). We plotted EIR against mean temper-

ature during the transmission season and compared the shape of

this observed relationship with estimates from our model.

MATERIALS AND METHODS

Data collection

We collected data on mosquito and parasite vital rates from labora-

tory studies that measured Anopheles spp. mosquitoes and P. falciparum

parasites at a range of constant temperatures (Table 2). Laboratory

studies with constant temperatures were required to isolate the effect

of temperature and remove confounding variables such as variation

in temperature and humidity. Although daily temperature variation is

important for transmission, it can be incorporated by integrating our

model over a realistic temperature regime (Paaijmans et al. 2009,

2010), and this work is currently in progress. We recorded data by

hand or digitised figures using DigitizeIt (Borland 2001–2010) and
Enguage (GNU General Public License, digitizer.sourceforge.net)

software. We derived mortality rate data from time series of mos-

quito survival over time, as described in Appendix S1. Although

Bayoh & Lindsay (2003) data used for mosquito development rateTa
b
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(MDR) and egg-to-adult survival give water temperatures, rather than

air temperatures, the experiments were carried out in climate cham-

bers, so water temperatures should be similar to air temperatures.

We made exceptions to our standards for data inclusion in two

instances. No reliable Anopheles spp. fecundity data at controlled tem-

peratures were available, so we used data from the tropical species

Aedes albopictus. Although using temperature-sensitive fecundity data

from a different genus of mosquitoes is not ideal, these were the best

available data with which to estimate this relationship. Two labora-

tory Anopheles gambiae fecundity studies conducted at 27 °C indirectly

suggest that the A. albopictus fecundity data were appropriate for our

predictions (Takken et al. 1998, 2002). Egg production was high in

these studies, indicating that 27 °C was an ideal temperature for egg

production and suggesting that it is near the optimum for A. gambiae.

Because we found that the peak fecundity for A. albopictus was at

28 °C, we can assume that the temperature–fecundity response of

the two species overlap considerably. This, along with the insensitiv-

ity of our results to variation in the temperature for peak fecundity

adds more confidence to this critical assumption. Shifting the fecun-

dity peak by 3 °C would only shift the R0 peak by 0.3 °C (see Results

for further sensitivity analysis). In addition to fecundity, vector com-

petence data for Anopheles mosquitoes with P. falciparum were not

available, so we used Anopheles with Plasmodium vivax. Although

P. vivax can tolerate cooler temperatures than P. falciparum, the vector

competence data were similar to results from a poorly controlled

P. falciparum study (Siddons 1944), suggesting that vector competence

is a mosquito trait. Regardless, increasing the vector competence

peak by 3 °C would only shift the R0 peak by 0.2 °C (see Results for

further sensitivity analysis); therefore the use of P. vivax vector com-

petence data was unlikely to affect the model outcome.

Fitting thermal-response models

Theory and data concur that biological rates typically show unimo-

dal responses to temperature because underlying biochemical

processes change irreversibly with temperature (Johnson et al. 1974).

Metabolic reaction rates tend to increase exponentially up to an

optimal temperature, then decline due to protein degradation and

other processes (Johnson et al. 1974; Dell et al. 2011). Because the

decline often occurs more rapidly than the rise, unimodal tempera-

ture responses are often left skewed (Dell et al. 2011; Englund et al.

2011). Two recent meta-analyses on the response of biological traits

to temperature, including life-history parameters in insects, support

these generalities (Dell et al. 2011; Englund et al. 2011). As all rate

parameters in the temperature-dependent R0 model are expected to

be unimodal with respect to temperature, we fit quadratic and Brière

functions (Briere et al. 1999) to each life-history parameter, as well

as a linear function for comparison (Table S1). The Brière function

is a left-skewed unimodal curve with three parameters, which repre-

sent the minimum temperature, maximum temperature and a rate

constant (Briere et al. 1999). The unimodal functions are defined as

Brière [cT(T � T0)(Tm � T)1/2 ] and quadratic [qT 2 + rT + s], where

T is temperature in degrees Celsius and c, T0 and Tm and q, r and s

are fit parameters of each function respectively [Correction

added on 5 November 2012, after first online publication:

c(T0 � T )(Tm � T )1/2 has been changed to cT(T � T0)(Tm � T)1/2

in the preceding sentence, and in the caption of Table 2].

We fit all models using nonlinear least squares, with the ‘nls’

function in R (R Core Development Team, version 2.10.0), whichTa
b
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converges on the ordinary least squares (OLS) fit for the quadratic

and linear functions (Seber & Wild 2003). Where possible, we chose

among the candidate models using Akaike Information Criterion

corrected for small sample sizes (AICc; Table 1). For fecundity

(EFD), there were only four data points, so we chose the quadratic

function visually. More data would clarify the precise relationship

between Anopheles spp. fecundity and temperature.

Temperature-sensitive R0 model

To formulate a fully temperature-sensitive R0 model for malaria, we

started with the widely used formula (Dietz 1993),

R0 ¼ Ma2bce�lEIP

Nrl

� �1=2

ð1Þ

where M is mosquito density, a is the per-mosquito biting rate, bc is

vector competence (the product of the proportion of the bites by

infective mosquitoes that infect susceptible humans and the bites by

susceptible mosquitoes on infectious humans that infect mosqui-

toes), l is the adult mosquito mortality rate, EIP is the extrinsic

incubation period of the malaria parasite in mosquitoes, N is human

density and r is the rate at which infected humans recover and

acquire immunity. Note that some have used the square of this

formula to represent R0 (Dietz 1993), but the choice of model

formula does not affect the estimated maximum, minimum or opti-

mum temperatures for transmission.

We assumed that all mosquito and parasite parameters are tem-

perature sensitive and that N and r, which depend directly on

human physiology, are independent of environmental temperature.

For mosquito density, M(T ), we used a formula based on the popu-

lation density model developed by Parham & Michael (2010; see

Appendix S1 for derivation). We expressed all times as rates

(Table 2). The full temperature-sensitive malaria R0 model is

R0ðT Þ ¼ aðT Þ2bcðT Þe�lðT Þ=PDRðT ÞEFDðT ÞpEAðT ÞMDRðT Þ
Nrl3ðT Þ

� �1=2

ð2Þ
where (T ) denotes a temperature-sensitive parameter response fitted

from the data, PDR is the parasite development rate, EFD is the

number of eggs laid per female per day, pEA is the probability that

a mosquito egg survives to become an adult and MDR is the larval

mosquito development rate. We parameterised this model using the

data and functional forms described in Table 2.

The fully parameterised temperature-sensitive R0 model is pre-

sented in Fig. 2 (‘new estimate’). For comparison, we also plotted a

curve using Parham & Michael’s (2010) temperature-sensitivity

assumptions (‘previous estimate’). We chose this curve to represent

the predictions of previous models (Table 1) because it has the

most temperature-sensitive parameters and its peak is similar to the

other models. For direct comparison, we used the square-root R0

formula for both curves (squaring the formula does not change the

location of the curves along the temperature axis).

Validating the model using field data

We checked the accuracy of our model predictions using a pub-

lished data set on the rate at which people were bitten by infectious

mosquitoes – the EIR – from 14 countries in Africa [Mapping

Malaria Risk in Africa (MARA), http://www.mara.org.za/] (Hay

et al. 2000). We collated these EIR data with temperature and rain-

fall data from the ERA40 reanalysis project from the European

Centre for Medium-Range Weather Forecast (Uppala et al. 2005).

EIR, a measure of transmission intensity, is defined as the product

of the number of vectors per host (m), the mosquito daily biting

rate (a) and the proportion of mosquitoes with the parasite in their

salivary glands (s, sporozoite index). We used EIR because extensive

data on R0 in the field were not available across a broad geographi-

cal range and the two indices have an c. 1 : 1 relationship (Smith

et al. 2007). The strength of the EIR data set is its broad geographi-

cal and temporal coverage (spanning the African continent from

1979 to 1996) and its methodological consistency.

To derive the mean temperature during the transmission season,

we matched the length and timing of the transmission season with

climate data from the ERA40 database. Because the MARA data-

base provided the length but not the start and end months of the

transmission season, we derived the transmission season using the

MARA georeferenced start-of-season and the end-of-season maps

(Fig. S3), combined with the length of transmission season data

from the MARA database. When there were discrepancies in the

length of transmission season derived from the maps vs. the MARA

database, we assumed that the database was correct. We then used

the derived start and end dates of the transmission season to extract

a time series of the temperature and rainfall characteristics for each

site from the ERA40 database. We aggregated the climate data to

the monthly time-step and selected the one-degree grid cells that

were associated with the field study locations. We did not include

study locations that mapped into the ‘no transmission’ category or

that lacked length of transmission season information, resulting in a

loss of 50 (of 193) sites recorded in the database.

Rainfall is also important for malaria transmission. For this rea-

son, we excluded locations that were too dry for transmission. We

initially included rainfall as a covariate in our analysis, but it

explained little additional variance, probably because rainfall suffi-

ciently exceeded the threshold for transmission at all sites (the

uncorrected data are plotted). Although mean transmission season

temperature is an imperfect measure, it is the best available data

with which to test the predictions of our model. We did not include

temperature variation in the plot of EIR because our goal was to

evaluate the model fit to mean temperature. Some of the unex-

plained variations in the relationship between transmission and

mean temperature may be due to temperature variation; if we were

attempting to explain variation in EIR, including temperature varia-

tion potentially would have been important. Nonetheless, because

the R0 curve is nearly symmetrical, temperature fluctuation would

likely have little effect on the optimal mean temperature for trans-

mission (Paaijmans, K.P., Ben-Horin, T., Lafferty, K.D., Johnson,

L.R., McNally, A., Mordecai, E.A., Pawar, S., Ryan, S.J. & Thomas,

M.B., in preparation).

To check that our temperature estimates from the ERA40 database

were accurate, we compared them with the values for mean tempera-

ture during the transmission season listed in the original articles from

the MARA database. Overall, our estimates were accurate. Of the 17

articles that provided temperature data, 15 had mean transmission-

season temperatures within 1 °C of our estimate (corresponding to

36 of the 39 EIR data points we verified). For the three data points

in which our temperature estimates did not match those in the article,

we used the mean transmission-season temperatures listed in the ori-
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ginal articles. While the remaining 43 articles did not provide trans-

mission-season temperature information, the ERA40 temperature

estimates are just as likely to be accurate for these studies.

We assumed that temperature would have the strongest impact

on transmission in the sites with the highest EIR within areas of

similar temperature, implying that malaria was most difficult to

control in these locations. To visualise this relationship, we high-

lighted the maximum EIR within each bin of 10 consecutive data

points ordered by temperature (maxima are the filled circles in

Fig. 2). Bin size did not strongly affect the results: maximum

EIR always occurred around 25–26 °C (Fig. S1). We overlaid the

new and previous R0 curves on the same figure for ease of com-

parison.

Parameter sensitivity

We determined the effect of each life-history parameter on the tem-

perature peak for R0 by performing a sensitivity analysis (Fig. 3a).

We calculated the additive contribution of the temperature sensitiv-

ity of each parameter to the overall sensitivity of R0 (see Appendix

S1 for equations). Because mosquito mortality rate had the strongest

effect on the thermal response of R0, we examined the sensitivity

of R0 to error in the mortality thermal response. We calculated 95%

simultaneous prediction bounds Pl (Seber & Wild 2003) for the

fitted l (mortality rate) model, which are given by

Pi ¼ ŷ � f
ffiffiffiffiffiffiffiffiffi
xSx 0

p

where ŷ is the fitted value for temperature value x, f is calculated

from the F distribution at a = 0.05, and S is the covariance matrix

of the coefficient estimates obtained from the OLS fitting. These

prediction bounds measure the confidence that a new observation

lies within the interval regardless of the predictor value. Thus, calcu-

lating R0 at the upper and lower prediction bounds indicates the

robustness of the location of the peak and width of the thermal-

dependence curve to variation in the mortality function (Fig. 3b).

We also plotted R0 vs. T curves in which each parameter is held

constant with respect to temperature to visualise the effect of each

parameter on the temperature sensitivity of R0 (Fig. 3c). Doing so

also allows us to indirectly test sensitivity of our results to variation

in thermal-response parameters (such as Tpk) that may differ across

mosquito species and geographical location.

RESULTS

All mosquito and parasite trait–temperature relationships were uni-

modal (Fig. 1, Tables 1 and S2). In contrast to the assumptions of
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previous models (Table 1), all parameters were thermally con-

strained at both low and high temperatures, and unimodal curves

[i.e. quadratic or Brière (Briere et al. 1999); see Materials and Meth-

ods] fit the data better than linear relationships (Table S1). Biting

rate (the inverse of gonotrophic cycle length) was not measured

above 34 °C, making the upper thermal limit more ambiguous than

for the other measures. Still, the Brière curve was the best fit to bit-

ing rate (Table S1), which declined slightly above 30 °C.
Incorporating these unimodal curves into a model of R0 predicts

that the optimal temperature for malaria transmission is 25 °C, with
transmission occurring between 16 °C (CTmin) and 34 °C (CTmax;

Fig. 2). This predicted optimum is 5–7 °C cooler than previous esti-

mates from models that assumed linear or constant relationships

between life-history parameters and temperature (Table 1). The pre-

dicted optimum temperature for malaria transmission, which

depends heavily on mosquito physiology, matches the optimal tem-

perature of 24.7 ± 0.48 °C for population growth measured for

eight other Diptera species (Huey & Berrigan 2001).

The response of observed transmission potential (EIR) to local

mean temperature during the transmission season in Africa was

consistent with model predictions. The highest observed EIR values

were recorded when mean transmission season temperature ranged

from 24 to 26 °C (Fig. 2, Fig. S1), and transmission potential

declined steeply below 20 °C and above 28 °C. This matches the

predicted temperature optimum and range for malaria risk from the

model. The variability among data points with similar mean temper-

atures reflects the influence of other climate and socio-economic

factors, including vector control, on malaria transmission.

We examined the sensitivity of malaria transmission to each of its

component life-history parameters by performing a sensitivity analy-

sis on the fully parameterised R0 model (Fig. 3a). The figure depicts

the effect of each parameter on the temperature sensitivity of R0,

with each line crossing the x-axis at that parameter’s temperature

peak. Adult mosquito mortality, l, had the strongest effect on the

temperature sensitivity of R0, first because it enters both the original

R0 equation (1) and the mosquito density equation (Appendix eqn 5),

resulting in a l�3 term in the final model (2), and second because

its peak of 22.1 °C is several degrees lower than the peaks of most

other parameters. Nonetheless, shifting l to its upper and lower

prediction bounds shifted the temperature peak for transmission by

< 1 °C (Fig. 3b). Even under the extreme assumption that mos-

quito survival was constant across temperature, the optimum trans-

mission temperature only increased by c. 3 °C, still 2–4 °C lower

than current model estimates (Table 1, Fig. 3c). This indicates that

although mosquito mortality lowers the thermal optimum for

malaria transmission, the 6 °C difference between previous models

and ours is driven by the combined effect of all life-history parame-

ters, and not by mortality alone. In addition, the model predictions

were not sensitive to the other life-history parameters, indicating

that any error in individual thermal responses resulting from the use

of mosquito species other than African Anopheles species, or our

choice of functional form (Brière or quadratic), was unlikely to

affect our overall result (Fig. 3).

DISCUSSION

Consistent with a large body of thermal physiology work (Angilletta

2009; Dell et al. 2011), all of the mosquito and parasite life-history

traits we examined peaked at intermediate temperatures well within

the range experienced in nature (Fig. 1, Table 2). Ours is the first

mechanistic model of malaria transmission to include empirically

derived unimodal thermal responses for all mosquito and parasite

traits involved in transmission. Combining the thermal responses

that are constrained at both high and low temperatures limits

malaria transmission (R0) to temperatures between 16 and 34 °C
with a peak at 25 °C. This new temperature optimum is 6 °C lower

than estimates from previous mechanistic models (Martens et al.

1997; Craig et al. 1999; Parham & Michael 2010; Fig. 2, Table 1).

For comparison, this difference in predicted optimal temperature is

equivalent to a century of temperature change projected by the

worst-case climate change scenarios [A1FI economic growth, fossil

fuel intensive (Solomon et al. 2007)].

Our results help to explain earlier results from observational studies

showing that malaria transmission often peaks in the autumn rather

than summer, that temperatures above 30 °C may be detrimental to

parasite development, and that mean monthly temperatures are 25 °C
or above during the hottest month in tropical and equatorial zones,

where transmission is greatest (Gill 1938; Pampana 1963). Because

high temperatures often coincide with periods of low humidity in the

tropics, it is difficult to discern the impact of temperature vs. humidity

using observational models alone (Gill 1938). Early work attributed

low transmission during the summer to low humidity, rather than high

temperatures (Gill 1938), but our mechanistic model suggests temper-

ature alone could suffice as an explanation.

One possible reason for the prior lack of biologically realistic

thermal-response models is the scarcity of data relating Anopheles

vital rates to temperature. Although many studies measure mosquito

and parasite vital rates at a single temperature or in the field, few

studies measure vital rates across a range of constant temperatures.
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Figure 2 Temperature dependence of malaria risk. The blue curve is our

estimate (‘new estimate’), whereas the red curve (‘previous estimate’) uses the

temperature-dependence assumptions from the Parham & Michael (2010) model.

The points are the published entomological inoculation rate (EIR) data from

Africa, plotted against the mean temperature during transmission season

(n = 122). The y-axis for R0 is not scaled because its absolute value depends on

other climatic and socio-economic factors. Filled circles represent the maximum

EIR within each bin of 10 sequential temperature points; the open circles

demarcate the remaining data points. We highlight the maximum EIR in each

bin because it represents the location where malaria is most difficult to control,

and most likely to be influenced by temperature.
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In particular, no estimates for Anopheles fecundity at a range of con-

trolled temperatures were available – clearly a much-needed avenue

for future study. Nonetheless, sensitivity analysis suggests that our

model predictions would not change substantially with additional

data. The predicted relationship between malaria risk and tempera-

ture is robust to variation in temperature sensitivity of the various

organismal traits. Although adult mosquito mortality has the largest

effect on the temperature sensitivity of transmission, mortality alone

cannot explain the 6 °C difference between the new optimal

temperature estimate and previous estimates (Table 1).

Recent work has emphasised the importance of daily temperature

variation in driving malaria transmission (Paaijmans et al. 2009,

2010). The rate summation approach applied in Paaijmans et al.

(2009) only works using thermal performance curves based on

constant temperatures: a basic thermal-response model such as ours

is required for understanding the influence of temperature in a vari-

able world (Paaijmans et al. 2009; Bozinovic et al. 2011). One appli-

cation of our model is to integrate it over a range of temperature

means and daily ranges to understand the influence of daily temper-

ature variation on malaria transmission; this is the subject of

ongoing research.

Our approach of incorporating empirically validated temperature-

response curves for all organismal traits that govern transmission

could be applied for a range of infectious diseases, especially vector-

borne diseases. The predicted optimal transmission temperature of

31 °C from previous models (Table 1) is inconsistent with the

observation that locations with mean transmission season

temperatures above 28 °C had very low transmission potential (EIR;

Fig. 2), (Pampana 1963; Ikemoto 2008). By contrast, our model pre-

dictions indicate that temperate regions are suitable for transmission.

This is consistent with historical records of malaria incidence (Hay

et al. 2004) and suggests that economic development and vector con-

trol, not temperature, currently impede transmission in temperate

climates (Lafferty 2009; Gething et al. 2010; Béguin et al. 2011).

Nonetheless, vector control may become more challenging if climate

change pushes temperatures closer to the 25 °C optimum.
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The role of temperature in driving malaria transmission has been

debated (Gething et al. 2010), in part because field data often

confound the causative role of temperature with other climatic, geo-

graphical and socio-economic factors. In addition, these other cli-

matic and societal factors can overwhelm the influence of

temperature in some places (Gething et al. 2010). Our approach

ensures that temperature is a driver and not a covariate by using

thermal performance data measured at invariant temperatures, iso-

lating the effects of temperature mean from variability. Although

economic, demographic and direct control measures can outweigh

the influence of temperature in some areas (Gething et al. 2010), it

is clear that the strongest effects of temperature will occur in the

locations where malaria is most difficult to control – the poorest

and most vulnerable regions (Béguin et al. 2011).

Understanding the unimodal influence of temperature on malaria

transmission will contribute to more accurate predictions about how

climate change will affect malaria risk. R0 is also a guiding tool for

allocating disease control efforts effectively. Our model mechanisti-

cally links R0, thermal physiology models, and empirical data from

Anopheles mosquitoes and P. falciparum parasites, and it agrees well

with independently published field data. The model suggests that vec-

tor control will likely become more important, difficult and expensive

in temperate areas as temperatures increase, but that some warm areas

may simply become too hot to support malaria. This second conclu-

sion is in contrast to previous models that predicted an optimum of

31 °C, which suggest that warming would increase malaria risk nearly

everywhere (Table 1, but see Ikemoto 2008; Lafferty 2009). Our

results further suggest that near their temperature limits, mosquitoes

may seek more moderate microclimates, such as wells in tropical cli-

mates and human habitations in temperate zones. This model is not

sufficient to predict malaria risk from mean temperatures in the field

because variable temperature regimes that occur in nature might con-

siderably alter transmission (Paaijmans et al. 2009; we intend to con-

sider variability in future work). Quantitative predictions will

additionally require global geographical data on current malaria bur-

den, temperature, precipitation and land cover, and are clearly a

much-needed topic for future research.
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