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Time is an essential feature of most decisions, because the reward earned from decisions

frequently depends on the temporal statistics of the environment (e.g., on whether deci-

sions must be made under deadlines). Accordingly, evolution appears to have favored a

mechanism that predicts intervals in the seconds to minutes range with high accuracy on

average, but significant variability from trial to trial. Importantly, the subjective sense of

time that results is sufficiently imprecise that maximizing rewards in decision-making can

require substantial behavioral adjustments (e.g., accumulating less evidence for a decision

in order to beat a deadline). Reward maximization in many daily decisions therefore requires

optimal temporal risk assessment. Here, we review the temporal decision-making litera-

ture, conduct secondary analyses of relevant published datasets, and analyze the results

of a new experiment. The paper is organized in three parts. In the first part, we review

literature and analyze existing data suggesting that animals take account of their inherent

behavioral variability (their “endogenous timing uncertainty”) in temporal decision-making.

In the second part, we review literature that quantitatively demonstrates nearly optimal

temporal risk assessment with sub-second and supra-second intervals using perceptual

tasks (with humans and mice) and motor timing tasks (with humans). We supplement

this section with original research that tested human and rat performance on a task that

requires finding the optimal balance between two time-dependent quantities for reward

maximization. This optimal balance in turn depends on the level of timing uncertainty. Cor-

roborating the reviewed literature, humans and rats exhibited nearly optimal temporal risk

assessment in this task. In the third section, we discuss the role of timing uncertainty in

reward maximization in two-choice perceptual decision-making tasks and review literature

that implicates timing uncertainty as an important factor in performance quality. Together,

these studies strongly support the hypothesis that animals take normative account of their

endogenous timing uncertainty. By incorporating the psychophysics of interval timing into

the study of reward maximization, our approach bridges empirical and theoretical gaps

between the interval timing and decision-making literatures.

Keywords: decision-making, interval timing, optimality, psychophysics, reward maximization, risk assessment,

uncertainty

INTRODUCTION

Evolution appears to have favored at least two well-regulated

neurobiological time-keeping mechanisms that are shared by

many organisms. One of these mechanisms, circadian tim-

ing, captures periods with approximately 24-h cycles. Many

events in nature, on the other hand, are non-periodic,

and capturing their temporal structure requires a flexible

time-keeping apparatus that can be started and stopped as

required. To that end, a stopwatch-like mechanism enables

many organisms, with high accuracy but limited precision,

to time intervals between arbitrary events that range from

seconds to minutes. This ability is referred to as interval

timing.

Timing intervals allows organisms to organize their relevant

activities around critical times (Drew et al., 2005), keep track

of reward rates (RRs; Gallistel et al., 2007), or prefer rewards

that occur after a short rather than a long delay (Gibbon and

Church, 1981; Cui, 2011). Importantly, these apparently sim-

ple time-dependent decisions and inferences are inevitably made

under endogenous timing uncertainty, and thus entail temporal

risk assessment. In this paper, we will evaluate whether humans

and animals take normative account of their endogenous tim-

ing uncertainty when making decisions. Here, endogenous tim-

ing uncertainty specifically refers to an agent’s inherent scale-

invariant response time variability (imprecision) around a target

time interval.

Frontiers in Integrative Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 56 | 1

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/about
http://www.frontiersin.org/Integrative_Neuroscience/10.3389/fnint.2011.00056/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=21074&d=1&sname=FuatBalci&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=35695&d=1&sname=DavidFreestone&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=21587&d=1&sname=PatrickSimen&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=35419&d=1&sname=LauradeSouza&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=13223&d=0&sname=PhilipHolmes&name=all people
mailto:fbalci@ku.edu.tr
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Balcı et al. Optimal timing

Across species and within individuals, temporal judgments in

a wide range of tasks conform to Weber’s Law, suggesting that

endogenous timing uncertainty is proportional to the represented

time interval: i.e., the standard deviation (SD) of time estimates is

proportional to the target time intervals. This time scale invariance

property appears ubiquitous in animal timing (Gibbon, 1977).

Consequently, different individuals across species capture and

exploit the temporal structure of their environment under sim-

ilar scale-invariant temporal precision constraints irrespective of

the signal modality or the behavioral goal (e.g., choice, avoidance,

approach).

It is evident that representing time intervals can serve to max-

imize reward. For instance, when making choices between two

options that deliver identical rewards, but at different delays, the

option with the shorter delay (with the higher RR) is chosen. The

temporal discounting curve – a curve which shows how prefer-

ences change as delay increases –is hyperbolic (Rachlin, 2006).

Traditionally, researchers have tended to overlook the role of sub-

jective time in generating the hyperbolic discounting curve, but

more recently, some have proposed a strong role for subjective

time (Takahashi, 2006; Ray and Bossaerts, 2011). In particular,

Cui (2011) derived a mathematical expression for a hyperbolic dis-

counting curve whose only assumption is Weber’s law for timing.

These studies support our contention that representing time inter-

vals and the underlying endogenous uncertainty of those intervals,

is likely an important contributor to temporal discounting. It is

less evident how different levels of that endogenous timing uncer-

tainty affect reward maximization in these, and other, types of

decisions. For instance, when one has to withhold responding for a

minimum duration before acquiring a potential reward, how does

timing uncertainty interact with the optimal (reward-maximizing)

temporal decision strategy? And to what extent does temporal

uncertainty come into play in maximizing reward in two-choice

perceptual discrimination tasks?

In this paper, we will discuss a number of scenarios in which

reward maximization depends not only on the temporal task struc-

ture but also on the level of uncertainty in its representation. We

will formally evaluate human and animal performance in these

tasks within the framework of optimality, and demonstrate that

organisms ranging from mice to humans behave nearly optimally

in these dissimilar tasks. In the first section of the paper, we review

and discuss experimental data supporting the hypothesis that rats

account for their endogenous timing uncertainty when making

time-related decisions. In this section, we also perform a new, sec-

ondary data analysis on an existing data set. In the second section,

we review and discuss data supporting the hypothesis that humans

and non-human animals can optimally incorporate their endoge-

nous timing uncertainty in their time-related decisions. In this

section, we also present new human and rat datasets collected

from the differential reinforcement of low rates of responding task

(DRL) and evaluate their performance within the framework of

optimality. In the third section, we discuss recently published data

from a perceptual decision-making task suggesting that humans

use time and timing uncertainty to maximize rewards, even when

the task has no obvious temporal component. Together, these

results strongly suggest that humans and rodents exercise nearly

optimal temporal risk assessment.

ENDOGENOUS TIMING UNCERTAINTY AND TIMING

BEHAVIOR

If animals can account for their endogenous timing uncertainty

in modifying their behavior, then individuals with more pre-

cise timing should be expected to be more confident in their

time-related choices and responses. For example, anticipating a

temporally deterministic reward, actors should respond at a higher

rate around the critical interval when their timing uncertainty is

low, and at a lower rate when their uncertainty is high.

Foote and Crystal’s (2007) experiment with rats lends indirect

support for this prediction. In their study, rats were trained to

categorize a series of durations as either short or long based on

a 4-s bisection point between the two durations (Stubbs, 1976).

Correct categorizations resulted in a reward. Because of endoge-

nous timing uncertainty, any duration close to the bisection point

is harder to discriminate as short or long. Foote and Crystal (2007)

modified this task by adding a sure reward option; responses on

this option were always rewarded (regardless of the duration), but

the reward magnitude was smaller. This allowed a test of whether

rats took account of their temporal precision, because when a rat

is less certain about its temporal judgment, it should choose the

small but sure reward. This was indeed what they observed; while

the rats almost always chose short or long for extreme durations

(i.e., 2 and 8 s), a subgroup of rats often chose the small but sure

reward for the more ambiguous durations (close to the bisection

point). This finding suggests that rats may have taken into account

their endogenous temporal uncertainty when deciding to choose

short, long, or neither. On the other hand, rats in this experi-

ment might simply have learned the differential reinforcement of

different time intervals rather than accounting for their timing

uncertainty (Jozefowiez et al., 2010).

An alternative way of testing this hypothesis without reinforc-

ing the intermediate durations is to assess the relative response

rates emitted for each probe interval in a bisection task. In such

a design, subjects seeking to maximize rewards should exhibit

a higher response rate on the “short” operandum for the short

target interval and a higher response rate on the “long” operan-

dum for the long target interval. These response rates should

decrease as the target interval gets longer or shorter, respectively. Yi

(2009) modified the bisection task by introducing a 10-s response

period following the offset of the timing signal and, in a sub-

set of trials, rewarding the rats for their correct responses (for

reference intervals) on a random-interval schedule during the

response period. This allowed the characterization of short and

long response rates for different intervals. Response rate as a func-

tion of probe intervals qualitatively confirmed this response rate

prediction.

We performed a secondary data analysis to conduct a different

test of this hypothesis using published data (Church et al., 1998)

from rats engaged in a “peak procedure” task (Catania, 1970). In

the peak procedure, subjects are presented with a mixture of rein-

forced discrete fixed interval (FI) trials and non-reinforced “peak”

trials that last longer than the FI trials. In the FI trials, subjects

are reinforced for their first response after the FI elapses since the

onset of a conditioned stimulus. No reinforcement is delivered in

the peak trials, and responding typically falls off after the expected

time of the reward. We examined the relation between temporal
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precision and timed-response rate in this data, using response

rate as a behavioral index of confidence for temporal judgments

(Blough, 1967; Yi, 2009). For this analysis, we used the dataset

of Church et al., 1998; Experiment 1), in which three groups of

rats (five rats per group) were trained on the peak procedure. The

Church et al. (1998) experiment used 30, 45, and 60 s schedules

for 50 sessions of the peak procedure, with a single schedule for

each group of rats. We analyzed data from the last 20 sessions, by

which point performance had stabilized.

When responses are averaged across many peak trials, the

resulting response curve approximates a bell curve (with a slight

positive skew) that peaks at the reinforcement availability time

(Roberts, 1981). In individual peak trials, however, responding

switches between states of high and low rates of responding

(Church et al., 1994), following a “break–run–break” pattern.

Specifically, subjects abruptly increase the response rate about

midway through the FI (start time) and they abruptly decrease

the response rate after the FI elapses with no reinforcement (stop

time). The length of the run period (stop time minus start time) is

used as an index of temporal precision, with shorter periods indi-

cating lower timing uncertainty. Subjects with higher uncertainty

about the time of reinforcement availability initiate responding

earlier (earlier start times) and terminate it later (later stop times).

Within a run period, subjects respond approximately at a con-

stant rate, which we used as an index of the rat’s confidence in

their estimate of reinforcement availability time in that given

trial. Under our timing uncertainty hypothesis, if timing preci-

sion fluctuates across trials, then rats should respond at a higher

rate in trials in which they exhibit shorter run periods. A detailed

description of modeling single-trial responding is presented in the

Appendix.

In our analyses, we applied a log transformation to normalize

the dependent variables. We first established that response rates

were approximately constant within a run period by regressing

inter-response times (IRTs) on their order within the run period

(e.g., 1st, 2nd, 3rd. . . IRT) separately for each subject (mean

R2 = 0.02 ± SEM 0.01). Overall response rate (defined over the

entire peak trial) was also independent of the run period length

(mean R2 = 0.03 ± SEM 0.01). In order to test our prediction, we

then regressed the response rates within a run period on the run

period length. Supporting our hypothesis, rats exhibited lower

response rates in longer run periods (mean R2 = 0.17 ± SEM

0.03). This was a statistically reliable relation in all rats after

Holm–Bonferroni correction for multiple comparisons. Note that

although we tried to minimize it through our choice of measures,

a level of analytical dependence might still exist between these

measures (e.g., response rate and run period length). Thus, these

results should be interpreted with special caution.

These findings from different tasks suggest that rats took

account of their endogenous timing uncertainty in organizing

their time-dependent responding with two different behavioral

goals. (1) In the case of temporal discrimination, when a given

duration proved difficult to discriminate due to timing uncer-

tainty, a subset of rats chose not to categorize that duration, and

instead settled for a smaller but sure reward. (2) On a similar task,

rats exhibited higher response rates for intervals that were closer

to the short and long references (i.e., easier conditions). (3) In

the case of peak responding, rats responded less vigorously for a

temporally deterministic reinforcement when they appeared less

certain about the reinforcement availability time. These results

constitute qualitative support for the role of temporal uncertainty

in shaping timed choice behavior. With the research that we are

about to describe, we will further argue that humans and rodents

not only appear to represent their endogenous timing uncertainty,

but that they also appear to behave nearly optimally in assessing

temporal risk: that is, they adapt to different levels of uncertainty

in a way that tends to maximize rewards.

OPTIMAL TEMPORAL RISK ASSESSMENT

In Foote and Crystal’s task, taking account of timing uncertainty

is adaptive. Many natural tasks pose similar problems with respect

to the dependence of reward maximization on timing uncertainty.

For example, consider a foraging experiment in which two patches

are far apart (imposing travel cost), and both deliver reward on a

FI schedule (i.e., the first response following the FI is rewarded).

After visiting a patch, it can suddenly and unpredictably stop deliv-

ering rewards without a signal (unsignaled patch depletion). Once

a patch depletes, the critical decision is when to stop exploiting the

current patch and move onto the other one.

In this example, representing the fixed inter-reward interval

allows detection of reward omissions during a given visit to a

patch. Here, a subject with perfectly accurate and precise timing

would stop exploiting the current patch (Brunner et al., 1992) as

soon as the patch is depleted – i.e., as soon as the fixed inter-reward

interval elapses with no reward. Despite being accurate however,

animal timing abilities are imprecise, and thus the optimal time

to stop exploiting a given patch depends on the level of timing

uncertainty: the likelihood that a timed duration has exceeded a

given value (i.e., the FI), given a subject’s level of noise in time esti-

mation, will grow at different rates for different levels of timing

uncertainty.

Figure 1 depicts this sort of dependency by a cumulative normal

distribution with the schedule as its mean (accurate timing) and a

SD that reflects the subject’s endogenous timing uncertainty (lim-

ited precision timing). When the cumulative distribution function

(cdf) reaches, say, 0.95 (well past the schedule), the subject stops

exploiting the current patch. When there is very little temporal

uncertainty (implying a nearly step-like sigmoidal function), the

cdf will reach this threshold earlier, leading to an earlier termina-

tion of patch exploitation. When there is high timing uncertainty

however, it will take longer to reach the same threshold and the

subject will stop exploiting later (Figure 1). Brunner et al. (1992)

and Kacelnik and Brunner (2002) tested starlings in this task and

found that the average termination time on the current patch after

its unsignaled depletion was a constant proportion of the FI sched-

ule (approximately 1.5·FI: ∼95% of the cdf for a CV of 0.25; see

also Davies, 1977). This observation suggests that starlings not

only adopted an exploitation strategy with a termination time

longer than the FI schedule, but that this latency was modulated

by scale-invariant endogenous timing uncertainty.

We now discuss temporal decision-making scenarios for which

optimal decisions depend explicitly on the level of timing uncer-

tainty. For these tasks, we formalize optimality as a function of the

level of timing uncertainty and then compare the performance of
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FIGURE 1 | Standard normal cumulative distribution functions with

the same mean (i.e., 2 s) but different coefficients of variation (CV, σ/µ).

Solid curve illustrates the normal cdf for a CV of 0.1 and the dotted curve

illustrates the normal cdf for a CV of 0.3.The probability of a random variable

taking on a value shorter than the trial time, indicated by vertical solid and

dotted lines, respectively, is 0.95. Note that this value is much lower for the

simulated subject with smaller timing uncertainty (solid curve).

humans and rodents to optimal performance given the observed

level of timing uncertainty.

WHEN TO SWITCH FROM A RICH TO A POOR PROSPECT

Using a task similar to that of Brunner et al. (1992; see also

Balcı et al., 2008), Balcı et al. (2009) investigated the extent to which

humans and mice behave normatively in incorporating estimates

of endogenous timing uncertainty into temporal decisions made

in the face of additional, exogenous uncertainty. In their experi-

ment, subjects tried to anticipate at which of two locations a reward

would appear. On a randomly scheduled fraction of the trials, it

appeared with a short latency at one location; on the complemen-

tary fraction, it appeared after a longer latency at the other location.

Switching prematurely on short trials or failing to switch in time

on the long trials yielded either no reward, or yielded a penalty,

depending on the payoff matrix. The exogenous uncertainty was

experimentally manipulated by changing the probability of a given

trial type (short or long). For humans, the payoff matrix was also

manipulated by changing the magnitude of rewards and penalties

associated with different consequences (e.g., switching early on a

short trial). Mice received equal rewards and no penalty.

The optimal response policy in this“switch task”is to begin each

trial assuming that the reward will occur at the short location, and

when the short interval elapses with no reinforcement, to switch

to the long location. The trial time at which the subject leaves the

short option for the long one is called the “switch latency.” Switch

latencies were normally distributed, to a close approximation.

The mean of the best-fitting normal distribution was assumed

to represent the subject’s target switch latency, and the coefficient

of variation (CV = σ/µ) was taken to reflect endogenous timing

uncertainty.

The expected gain (EG) for a given target switch latency is the

sum of the relative values of the options. The relative value is the

gain for a given option weighted by the probability of attaining it.

In this case, it is the payoff matrix weighted by the probability of the

corresponding consequences determined jointly by endogenous

timing uncertainty and exogenous uncertainty (i.e., probability of

a short trial). Equation 1 defines the EG for an estimate of target

switch point (t̂ ) and endogenous timing uncertainty (ω̂) :

EG
(

t̂
)

= g (∼ TS) p (TS) Φ
(

TS, t̂ , ω̂t̂
)

+ g (TS) p (TS)
(

1 − Φ
(

TS, t̂ , ω̂t̂
))

+ g (TL)
(

1 − p (TS)
)

Φ
(

TL, t̂ , ω̂t̂
)

+ g (∼ TL)
(

1 − p (TS)
) (

1 − Φ
(

TL, t̂ , ω̂t̂
))

(1)

where ω̂ = σ̂/t̂ , t̂ is the subject’s temporal criterion for switching,

T S and T L are the short and long referents, p(T S) is the proba-

bility of a short trial, and g denotes the payoff matrix [e.g., g (T S)

reflects the payoff for a correct short trial and g (∼T S) reflects the

loss for an incorrect short trial]. Φ is the normal cdf with mean t̂

and SD ω̂t̂ , evaluated at T S or T L.

Figure 2 depicts the dependence of optimal switch latencies on

the timing uncertainty for a given payoff matrix and on two exoge-

nous probability conditions. For equally probable durations, the

optimal switch latency (to, the t that maximizes the EG in Eq. 1)

approaches the short target interval T S as the timing uncertainty

ω increases, due to scalar timing noise. Different combinations of

the probability of a short trial p(T S), and the payoff matrix g, result

in different EG surfaces (gain for each combination of t and ω).

Figures 2A,B depict the normalized EG surface for p(T S) = 0.5

and p(T S) = 0.9, respectively, with a penalty for early and late

switches. Balcı et al. (2009) compared the empirical target switch

latencies t̂ to optimal switch latencies t̂o for the estimated level

of timing uncertainty ω̂ by experimentally manipulated exoge-

nous uncertainty p(T S), and the payoff matrix g. They found

that both mice and humans performed nearly optimally in this

task, achieving 99 and 98% of the maximum possible expected

gain (MPEG), respectively. The average slopes of the orthogonal

regression between empirical and optimal target switch latencies

were 0.81 and 1.05 for human and mouse subjects, respectively

(Figure 3A: Humans; B: Mice). These values were significantly

different from 0 (both ps < 0.05) but not from 1 (both ps > 0.5).

These results indicate that subjects tracked the optimal target

switch latencies.

In line with reports reviewed earlier, these findings showed

that humans and mice adapted performance to account for their

endogenous timing uncertainty. It further demonstrated that sub-

jects performed nearly optimally in adapting to exogenous uncer-

tainty and to payoffs along with their endogenous uncertainty:

i.e., they planned their timed responses such that they nearly

maximized their expected earnings. This experiment thus lends

strong support to the hypothesis that both humans and rodents

can optimally assess temporal risk in certain contexts.

However, this work addresses only decisions about tempo-

ral intervals between a stimulus and a reward in a discrete-trial

paradigm. Many natural tasks, on the other hand, are better char-

acterized as free-response paradigms. Unlike discrete-trial tasks,
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FIGURE 2 | Expected gain surface (normalized by the maximum

expected gain for different levels of timing uncertainty) as a function

of target switch latency and the level of timing uncertainty (ω̂). Shades

of gray indicate the percentage of normalized maximum expected gain for

the corresponding parameter values, t̂ and ω̂. (A) is for equally probable

short (2 s) and long (3 s) target intervals p(T S) = 0.5. The ridge of this surface

(bold black curve) shows the optimal switch latencies for different levels of

timing uncertainty. (B) is for a higher probability of the short target interval,

p(T S) = 0.9. For both cases note the dependence of optimal target switch

latencies on the level of timing uncertainty (y -axis). Also note the

differences in optimal target switch latencies for two different exogenous

uncertainty conditions.

FIGURE 3 | Empirical performance of human and mouse subjects as a

function of optimal performance, calculated for the critical task

parameters and subjects’ estimated level of endogenous timing

uncertainty. Dashed line denotes the identity line. S: subject. Reprinted

from Balcı et al. (2009). (A) Humans; (B) Mice.

these tasks impose tradeoffs between the speed and accuracy of

decisions that are analogous to speed–accuracy tradeoffs in per-

ceptual decision-making (see The Drift–Diffusion Model – An

Optimal Model for Two-Choice Decisions). A prototypical tim-

ing task with this property is the differential reinforcement of low

rates of responding (DRL) task. This task poses an interesting,

naturalistic problem in which reward maximization depends on

achieving the optimal level of patience, which is equivalent to find-

ing the optimal tradeoff between two time-dependent quantities

(as we now describe). In the following section, we will use reward

rate (RR) in place of “EG” since we will evaluate the performance

in free-response rather than discrete-trial protocols.

OPTIMAL TRADEOFF BETWEEN TWO TIME-DEPENDENT QUANTITIES

(NEW EXPERIMENT)

In the DRL task, subjects are taught to space each successive

response so that it occurs after a fixed minimum interval (or“with-

hold duration”) since the last response. Each response immediately

starts a new trial and only those responses emitted after the mini-

mum withhold duration are rewarded. For instance, in a DRL 10 s

schedule, subjects are reinforced for responding after at least 10 s

following the previous response. If they respond sooner, then the

trial timer restarts with no reward. Reward maximization in this

simple task depends on the optimal tradeoff between two time-

dependent quantities with opposing effects on the rate of reward:

the probability of reward, p(R), and the average IRT. The reward

probability increases as IRTs increase (serving to increase the RR),

but with sufficiently long IRTs, the mean inter-reward interval

increases as well. The RR is the probability of reward divided by

the average time between responses (see Eq. 2):

RR =
p (R)

IRT
(2)

Importantly, the optimal tradeoff between p(R) and IRT that

maximizes RR depends on the subject’s endogenous timing uncer-

tainty (see also Wearden, 1990). Equation 3 defines the RR in the

DRL task assuming inverse Gaussian (Wald) distributed IRTs. This

assumption accurately describes our DRL data, and it is consistent

with a recently developed random walk model of interval tim-

ing (Rivest and Bengio, 2011; Simen et al., 2011). In this model, a

noisy representation of time rises at a constant rate (on average) as

time elapses. Responses are emitted when this increasing quantity

crosses a single, strictly positive threshold (this model is described

in more detail in the discussion). Our inverse Gaussian assump-

tion also accurately describes other human and animal datasets

from paradigms in which subjects emit a single response or a tar-

get interval can be estimated (see Simen et al., 2011). For the DRL

procedure, the expected RR for a given, normalized target IRT (t̂ )

and a given level of timing uncertainty (ω̂) is:

RR
(

t̂
)

= t−1
(

1 − waldcdf
(

T , t̂ , λ̂

))

(3)

Here, T is the DRL schedule, t̂ is the schedule-normalized mean

IRT (i.e., the average target withhold duration divided by the DRL

schedule), and λ̂ � 0 is the Wald distribution’s shape parame-

ter, which captures the noisiness of the underlying random walk

(the Wald cumulative distribution function – waldcdf in Eq. 3 –

is defined in the Appendix). The timing uncertainty equals the
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coefficient of variation, or SD divided by the mean, of this IRT

distribution.

Figure 4 shows the normalized EG surface for the DRL task as

defined by Eq. 3. The ridge of the surface (dark solid line) denotes

the optimal IRTs as a function of timing uncertainty (ω̂). As the

coefficient of variation increases, the optimal IRT diverges from

the DRL schedule in a negatively accelerating fashion.

Methods

To assess the optimality of rat and human DRL performance, we

tested rats in a new experiment for 42 sessions with 7, 14, 28, and

56 s DRL schedules1 (∼12 rats per group), and humans in sin-

gle session experiments with DRL schedules that ranged between

5 and 15 s (varied across participants). Methodological details of

these experiments are presented in the Appendix. Rats exhibited

two types of responses: timed and untimed. This created a mixture

distribution for the IRTs that was best fit by an exponential-Wald

mixture distribution. The IRTs that were best fit by the exponen-

tial component were considered to be untimed responses, which

occurred relatively quickly after the previous response. The IRTs

that were best fit by the Wald component were considered to be

timed responses.

Results

Human performance. Figure 4A depicts the performance of

humans (asterisks). It suggests that humans tracked the mod-

ulation of optimal IRTs as a function of temporal uncertainty.

Statistical analyses corroborated these observations. The median

performance of humans provided 98% [interquartile interval

(IQI) 4%] of the MPEG. Similar estimates of nearly maximal

EG were obtained when we used an independent estimate of

endogenous timing uncertainty from a temporal reproduction

1Rat performance in DRL 28 and 56 s schedules did not reach steady state

performance, and thus was not included in the analysis.

task with parametric feedback on each trial (see Appendix for

details). Optimal IRTs were significant predictors of the empirical

IRTs, R2 = 0.56, F(1,13) = 16.29, p < 0.01. When one outlier was

excluded from the dataset (using 2 SD as the exclusion criterion),

this relation became even stronger and more reliable, R2 = 0.71,

F(1,12) = 29.45, p < 0.001. During debriefing this outlier partic-

ipant reported that s/he was not engaged in the task. Humans’

earnings were significantly larger than what they would have

earned if they had aimed at the schedule, t (14) = 11.06, p < 0.0001,

and their empirical IRTs were significantly longer than the mini-

mum withhold duration, t (14) = 3.96, p < 0.01. When data were

fit with an exponential–Gaussian mixture distribution instead, the

median earnings were 99% of the MPEG.

Rat performance. Median performance of rats for 7 and 14 s

DRL schedules were 98% (IQI 3%) and 96% (IQI 5%) of the

MPEG. Figures 4B,C show that rats’ average withhold durations

tracked the optimal duration. Corroborating this observation,

optimal IRTs were significant predictors of empirical IRTs for

both 7 and 14 s schedules, R2 = 0.60, F(1,10) = 14.68, p < 0.01

and R2 = 0.38, F(1,9) = 5.60, p < 0.05, respectively. The earnings

of rats were significantly larger than they would have been if

they had aimed for the DRL schedule itself for 7 s [t (11) = 18.97,

p < 0.0001], and 14 s [t (10) = 6.84, p < 0.0001]. Empirical IRTs

were significantly longer than the minimum withhold duration for

7 s [t (11) = 11.42, p < 0.0001], and 14 s [t (10) = 7.30, p < 0.0001].

When data were fit with an exponential–Gaussian mixture distri-

bution instead, median proportions of the MPEG were 99% for

both schedules.

In a theoretical work, Wearden (1990) conducted essentially

the same analysis as ours to characterize the optimal target IRTs

in the DRL task. He showed that linear “overestimation” of the

DRL was the optimal strategy, and that the degree of over-

estimation depended on the level of timing uncertainty. His

reanalysis of a pigeon dataset (Zeiler, 1985) from a DRL-like

FIGURE 4 | Normalized expected reward rate surface as a function of

the normalized target IRT and the level of timing uncertainty. Shades

of gray denote the proportion of normalized MPEG, which decreases from

light to dark. The solid black curve is the ridge of the normalized expected

reward rate surface and denotes the optimal IRT for different levels of

timing uncertainty. The dashed vertical black line shows the normalized

DRL schedule (in actuality ranging from 5 to 15 s). Each symbol

corresponds to the performance of a single rat or human subject in the

novel experiment. (A) (Asterisks) shows the human data (DRL 5–15 s), (B)

(circles) shows the rat data (DRL 7 s) and (C) (crosses) shows the rat data

(DRL 14 s). Data points were clustered near and to the left of the ridge of

the expected reward rate surface.
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task revealed nearly optimal “overestimation” of the scheduled

reinforcement availability time. Wearden’s reanalysis of human

DRL data from Zeiler et al. (1987), with target intervals rang-

ing from 0.5 to 32 s, also revealed very nearly optimal perfor-

mance. Our secondary analyses of two independent, published

datasets from rats corroborated our and Wearden’s observations

from rats, pigeons, and humans. We compared the performance

of control group rats in Sanabria and Killeen (2008 – 5 s DRL),

and Orduña et al. (2009 – 10 s DRL) to the optimal perfor-

mance computed for their estimated levels of timing uncertainty.

Rats in these experiments achieved 93, and 94% of the MPEG

for 5 and 10 s schedules, respectively, under an exponential-

Wald fit. These values reached 96% for both datasets, when

exponential–Gaussian mixture distributions were fit to the data

instead.

Other examples can be found in the literature in which IRT dis-

tributions peak long after the DRL schedule at least for schedules

up to 36 s. These data qualitatively corroborate our observations

[e.g., Fowler et al., 2009 (Figure 2A); Stephens and Cole, 1996

(Figure 4A), Cheng et al., 2008, (Figures 5 and 6), Sukhotina et al.,

2008 (Table 1 and Figure 3)]. With longer DRL schedules (e.g.,

DRL 72 s), on the other hand, subjects perform pronouncedly

sub-optimally [e.g., Balcells-Olivero et al., 1998 (Figure 1), Fowler

et al., 2009 (Figure 2B), Paterson et al., 2010 (Figures 1–4)]. In

line with our observations with 28 and 56 s DRL schedules, the

sub-optimal performance in longer schedules might simply be

due to the need for longer training. Wearden (1990) alterna-

tively argued that the “underestimation” of the DRL schedules

might be due to a satisficing strategy to obtain a certain sat-

isfactory rate of reinforcement, an adaptive response bias the

extent of which also depends on the level of endogenous tim-

ing uncertainty (Wearden, 1990, Figure 4). Overall, in line with

our findings from the discrete-trial switch task, human and rat

performance in the free-response DRL task suggests that these

species can assess temporal risk optimally when timing uncer-

tainty is a determinant of the optimal tradeoff between waiting

and responding.

In the DRL task, subjects are not rewarded (thereby suffer-

ing an opportunity cost) for responding prior to the minimum

response–withholding duration. On the other hand, being late is

also commonly “penalized” in nature, as in the case of losing a

precious resource to a competitor by virtue of not claiming it

early enough. In the next section, we describe a task with this

characteristic, in which reward maximization requires avoiding

late responses, and we re-evaluate human performance data from

Simen et al. (2011) within the framework of optimality.

BEAT-THE-CLOCK TASK

In the beat-the-clock (BTC) task (Simen et al., 2011), participants

are asked to press a key just before a target interval elapses, but

not afterward. The reward for responding grows exponentially in

time, increasing from approximately 0 cents immediately after the

cue appears to a maximum of 25 cents at the target interval. Thus

responding as close to the target interval as possible is adaptive.

Failing to respond prior to the target interval is not rewarded

(imposing an opportunity cost). Response times collected in the

BTC task were best fit by a Gaussian distribution, with the mean

reflecting the target response time and the CV reflecting endoge-

nous timing uncertainty. Equation 4 defines the EG for a given

target response time t̂ , timing uncertainty ω̂, and schedule T.

EG
(

t̂
)

=

∫ T

x = 0
p

(

t |t̂ , ω̂
)

g (t ) dt (4)

where t is a possible response time, t̂ is the target response time,

p is the probability of responding at t given the subject’s mean

(t̂ ) and coefficient of variation (ω̂), and g is the exponentially

increasing reward function that drops to zero after the deadline.

The optimal aim point to is the one that maximizes EG for a

given level of timing uncertainty ω̂. We performed a secondary

data analysis on this dataset, originally presented in Simen et al.

(2011). Figure 5 depicts the dependence of optimal aim points on

psychologically plausible levels of timing uncertainty and shows

that human participants tracked the optimal target times.

Consistent with Figure 5, optimal target times were significant

predictors of empirical target times [R2 = 0.76, F(1,15) = 47.67,

p < 0.0001). Participants earned 99% median (IQI 3%) of the

MPEG for their level of timing uncertainty. The proportion of

earnings was 99% median (IQI 2%) of the MPEG when the timed

responses were assumed to be Wald distributed, instead. As in the

switch and DRL tasks, these results suggest a nearly optimal human

capacity for taking endogenous timing uncertainty into account

when planning timed responses – in this case, in scenarios in which

late responding is maladaptive.

In three different temporal decision-making tasks that impose

different time constraints on the problem of reward maximiza-

tion, we have demonstrated that optimal performance depends on

endogenous timing uncertainty. We have further demonstrated

that humans, rats, and mice incorporate their endogenous timing

uncertainty nearly optimally in their temporal risk assessment, at

least for supra-second target durations.

FIGURE 5 | Normalized expected gain surface as a function of

normalized aim point and level of timing uncertainty. Shades of gray

denote the proportion of normalized MPEG, which decreases from light to

dark. The black curve is the ridge of the expected gain surface and denotes

the optimal aim points for psychologically plausible levels of endogenous

timing uncertainty. Each point (asterisk) corresponds to the performance of

a single subject and points are clustered around the curve of the optimal

aim points. Figure is redrawn based on the data presented in Simen et al.

(2011).
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OPTIMALITY IN THE SUB-SECOND RANGE

The characterization of temporal risk assessment in the switch,

DRL, and BTC tasks pertains exclusively to decisions about supra-

second intervals. There is, however, substantial evidence that dif-

ferent neural circuits might underlie supra-second and sub-second

intervals (e.g., Breukelaar and Dalrymple-Alford, 1999; Lewis and

Miall, 2003). Thus, there is reason to believe that optimality

of temporal risk assessment might be exclusive to supra-second

interval timing. Using a simple temporal reproduction task with

humans, however, Jazayeri and Shadlen (2010) showed that opti-

mal temporal risk assessment also applies to sub-second target

durations.

In their task, participants were asked to reproduce time

intervals that were sampled from different underlying distri-

butions (including sub-second intervals). When reproductions

fell within a temporal window of the target interval, partic-

ipants received positive feedback. The resulting reproductions

of target intervals were observed to regress to the mean of

the encountered intervals, and thus the reproduction of the

same interval could change depending on the underlying dis-

tribution of intervals experienced. Importantly, Jazayeri and

Shadlen (2010) demonstrated that a reward-maximizing model

that took account of the statistics of the target interval distri-

bution and incorporated knowledge of scale-invariant endoge-

nous timing uncertainty accounted for the performance of the

participants. Their findings demonstrate that humans take nor-

mative account of endogenous timing uncertainty to maximize

reward, even in the case of sub-second target durations. Tem-

poral decision-making with sub-second target intervals is more

common in simple motor planning tasks, which we discuss

next.

OPTIMAL MOTOR TIMING

Hudson et al. (2008) reported an experiment in which human

participants were asked to touch a computer screen at a par-

ticular time (e.g., 650 ms) to earn monetary reward. A small

time window around this target interval served as the reward

region (e.g., 650 ± 50 ms). There was also a penalty region,

which imposed monetary costs. Lastly, there was a region in

which neither reward or penalty occurred. The temporal posi-

tion of the penalty region was manipulated. Sometimes it per-

fectly straddled the reward region (and anything outside the

reward region was penalized). Sometimes it was adjacent to

the reward region on one side but not the other (thus aiming

toward the other side was a good strategy). The participant’s task

was to maximize the monetary reward during the course of the

experiment.

There were two sources of variance: (1) the participants’ own

timing uncertainty (ω) and (2) experimentally added exogenous

noise (α) that was applied to every temporal aim point (drawn

from a Gaussian with µ = 0 and σ = 25 ms). Empirical data sug-

gested that participants incorporated both endogenous and exoge-

nous temporal uncertainties (ω and α) as they aimed at a time

that very nearly compensated for both the timing uncertainty and

the payoff matrix (i.e., the temporal positions of the reward and

penalty regions). Thus, consistent with earlier reports, these find-

ings showed that humans can take nearly normative account of

their endogenous timing uncertainty and that they can also learn

to take account of experimentally introduced temporal noise in

planning their movement times. Analogous nearly optimal timing

of single isolated movements was also reported in other studies

(e.g., Battaglia and Schrater, 2007; Dean et al., 2007).

Further work (Wu et al., 2009), however, discovered a bound

for optimal performance in these tasks and showed that optimality

of timed motor planning does not hold when subjects are asked

to allocate time across two options to complete a sequence of

movements under stringent time pressure (i.e., 400 ms). Specifi-

cally, they observed that subjects spent more time than optimal

on the first target, even when the payoff for the second target

was five times larger. Based on this finding, Wu et al. (2009)

claimed that the optimality of motor timing is restricted to iso-

lated, single movements, and fails in the context of a sequence

of movements. One important feature of their task that should

be considered, however, is the very stringent response deadline

imposed on the completion of the movement sequence (although

subjects could take as much time as they wanted before initiating

the trial). These findings overall suggest that except in the case of

a sequence of movements made under a strict response deadline,

humans exercise optimal motor timing with sub-second target

intervals.

In the last two sections, we described decision-making scenar-

ios that were explicitly temporal in nature, both with sub-second

and supra-second target durations. In these tasks, subjects made

explicit judgments about time intervals and exhibited optimal

temporal risk assessment. The adaptive role of interval timing is

however not at all limited to explicitly temporal decision-making.

It also plays a crucial but understudied role in reward maximiza-

tion in perceptual decision-making. In free-response paradigms

for instance, timing uncertainty interacts with two-choice per-

formance because reward maximization requires subjects to keep

track of RRs and thus inter-reward times. In the case of time-

pressured decisions (i.e., with response deadlines), interval timing

is even more directly instrumental for reward maximization, since

optimality then requires taking account of the deadline, as well as

uncertainty in its representation. In the next section, we discuss the

role of interval timing in perceptual two-choice decision-making

tasks.

INTERVAL TIMING AND REWARD MAXIMIZATION IN

NON-TEMPORAL DECISION-MAKING

The likely connection between RR estimation and time estima-

tion suggests that endogenous timing uncertainty should translate

into uncertainty about RRs. As we describe below, within the

framework of optimality, this dependence generates a predic-

tion that a decision-maker with higher timing uncertainty will

respond more slowly than optimal (favoring accuracy over RR) in

free-response two-choice tasks (Bogacz et al., 2006). Under this

hypothesis, Bogacz et al. (2006) and Balcı et al. (2011) argued that

such “sub-optimally” conservative responding in these paradigms

might in fact reflect an adaptive bias in decision threshold setting

in response to endogenous timing uncertainty. Our analysis and

discussion of optimal temporal risk assessment in these tasks will

heavily rely on the drift–diffusion model (DDM) of two-choice

decisions, which we describe next.
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THE DRIFT–DIFFUSION MODEL – AN OPTIMAL MODEL FOR

TWO-CHOICE DECISIONS

The sequential probability ratio test (SPRT; Barnard, 1946; Wald,

1947) is an optimal statistical procedure for two-alternative

hypothesis testing in stationary environments that provide an

unlimited number of sequential data samples. The SPRT min-

imizes the number of samples for any given level of accuracy,

and maximizes accuracy for any given number of samples (Wald

and Wolfowitz, 1948). In an SPRT-based model of choice reaction

time in two-choice tasks, Stone (1960) proposed that decision-

makers computed the likelihood ratio of the two hypotheses

when sampling a noisy signal, equating the total sample count

with the decision time. In the DDM this discrete sequence of

samples is generalized to a continuous stream, in which the

time between samples is infinitesimal (Ratcliff, 1978; Ratcliff and

Rouder, 1998).

The DDM assumes that the difference between the evidence

supporting the two hypotheses is the decision variable, that this

variable is integrated over time, and that when the integrated evi-

dence crosses one of two decision thresholds – one (+z) above

and one (−z) below the prior belief state – the corresponding

decision is made. The first crossing of a threshold is identified as

the decision time. The DDM in its most simplified form, is given

by a first order stochastic differential equation in which x denotes

the difference between the evidence supporting the two different

alternatives at any given time t ; it can be interpreted as the current

value of the log-likelihood ratio:

dx = Adt + σdW , x (0) = 0 (5)

Here, Adt represents the average increase in x during the tiny

interval dt, and σdW represents white noise, Gaussian distributed

with mean 0 and variance σ2dt (see Ratcliff and McKoon, 2008 for

a detailed description of the DDM).

In the DDM, the clarity of the signal is represented by the

drift A (the signal-to-noise ratio is A/σ). Speed–accuracy tradeoffs

arise in the DDM because of the threshold parameter z : Due to

noise, lower thresholds lead to faster but less accurate decisions

and vice versa. The pure form of the DDM in Eq. 5 (e.g., Ratcliff,

1978) often provides reasonably good fits to behavioral data, and

benefits from extremely simple, analytically tractable predictions

regarding RR maximization (Bogacz et al., 2006). Versions of the

DDM with additional parameters (e.g., Ratcliff and Rouder, 1998)

are needed for fitting a broader range of data, especially data with

unequal mean RTs for errors and correct responses.

OPTIMAL TWO-CHOICE DECISION-MAKING AND INTERVAL TIMING

The pure DDM (i.e., a model without the additional variability

parameters used in the model of Ratcliff and Rouder, 1998) pre-

scribes a parameter-free optimal performance curve that relates

decision time to error rate (Bogacz et al., 2006). Optimal perfor-

mance, however, requires decision thresholds that are a function

of the response-to-stimulus interval (RSI). Better estimation of

the RSI by participants with more precise timing abilities may

therefore result in better decision-making performance. Devia-

tions from optimal performance may thus derive from timing

uncertainty. The shape of the function relating the expected RR

to the decision threshold in the DDM suggests why this may be

the case. Specifically, this function is an asymmetric hill, whose

single peak defines the optimal threshold. For a given level of

deviation from the optimal threshold, setting the threshold too

high earns a higher expected RR than setting it too low by the

same amount [Balcı et al., 2011 (Figures 7 and 10), Bogacz et al.,

2006 (Figure 15)]. Thus, if decision-makers are to minimize loss

in RR due to endogenous timing uncertainty in RR estimates,

they should err toward overestimating instead of underestimating

the optimal threshold. The behavioral manifestation of overesti-

mating a threshold is longer response times coupled with greater

accuracy (which in model fits appears to suggest a suboptimal,

“conservative,” emphasis on accuracy over speed, and thus RR).

In a single session of two-alternative forced choice tasks, human

participants have indeed been shown to set their decision thresh-

olds higher than the optimal decision threshold (Bogacz et al.,

2010). Balcı et al. (2011) replicated this finding (but also showed

that this deviation decreased nearly to zero with sufficient practice)

and observed that deviations from optimality during early train-

ing could be accounted for by participants’ timing uncertainty

(assessed independently). Balcı et al. (2011) quantified deviation

from optimality in two different ways: (1) deviations between opti-

mal and observed RTs; and (2) deviations between optimal and

fitted thresholds. For both measures, Balcı et al. (2011) reported

that the regression of deviations from optimality on CVs revealed

a significant relationship F(1,15) = 12.1, p < 0.01 (R2 = 0.45) and

F(1,14) = 22.57, p < 0.001 (R2 = 0.62; excluding one outlier based

on a 2 SD rule), respectively (see Figure 6). They also reported that

this relationship held even after first accounting for suboptimal

performance by another model that included a parameter rep-

resenting a self-imposed penalty for errors (Maddox and Bohil,

1998; Bogacz et al., 2006).

Zacksenhouse et al. (2010) recently analyzed the data presented

in Bogacz et al. (2010) using a decision strategy that maximized

the minimal RR achievable for a given level of timing uncertainty.

This decision strategy fit the Bogacz et al. (2010) dataset better than

an optimally parameterized DDM, and better than the alternative

models that contained an assumed penalty for errors. Conservative

FIGURE 6 | Deviation from the optimal performance curve of the pure

DDM as a function of CV redrawn based on the data presented in

Balcı et al. (2011). Solid line is the linear regression line fit to the data.
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decision thresholds can therefore be viewed as an intrinsic, adap-

tive bias in response to endogenous timing uncertainty, a dynamic

that underlies nearly optimal performance in the switch, BTC, and

DRL tasks. These findings suggest the importance of timing uncer-

tainty in shaping behavior and determining how much reward is

earned even in non-temporal decision-making.

TWO-CHOICE DECISION-MAKING UNDER TIME PRESSURE

Interval timing plays a more direct role in two-choice decisions

when a response deadline sets an upper bound for rewarding

responses and/or for viewing time. Frazier and Yu (2008) showed

that optimal performance in these scenarios requires subjects to

start collapsing decision thresholds so that by the time the deadline

is reached, the decision threshold converges on the starting point

of the accumulation process (see also Rapoport and Burkheimer,

1971; Latham et al., 2007; Rao, 2010). This strategy ensures that

a decision is made prior to the response deadline while maximiz-

ing accuracy for a given response time. According to this model,

for a given level of timing uncertainty, subjects should start col-

lapsing decision thresholds earlier for shorter response deadlines.

Conversely, for a given response deadline, subjects with higher

timing uncertainty should start collapsing decision thresholds

earlier compared to subjects with lower timing uncertainty. We

are currently testing these two specific predictions with human

subjects. Preliminary results do not fully support the notion of

optimal, within-trial modulation of response thresholds. Never-

theless, they do suggest some amount of threshold modulation

within and across trials in response to changing deadlines. They

further suggest a relation in the expected direction between the

level of subjects’ timing uncertainty and the degree of accuracy

reduction in their conditional accuracy (or micro speed–accuracy

tradeoff) curves in response deadline conditions (i.e., accuracy

levels in each of a set of binned RTs, which should be flat for the

pure DDM with a fixed threshold, but which must decrease for RT

bins near the deadline if thresholds collapse).

Discussion

Time is a defining feature of behavior. By incorporating the well-

characterized psychophysics of interval timing into the study of

reward maximization, we have demonstrated that temporal inter-

vals and uncertainty in their representation are critical factors

in both temporal and non-temporal decisions. The findings we

reviewed show that humans and animals come close to maximiz-

ing their earnings in simple timing and decision-making tasks,

which suggests that they can normatively compensate for their

endogenous timing uncertainty in their decision-making. Subjects

nearly maximized the reward earned in scenarios that spanned

sub-second and supra-second target durations, in the presence and

absence of speed–accuracy tradeoffs (i.e., free-response vs. fixed

viewing time), and explicitly temporal and perceptual decisions.

These findings contrast with the assertions of classical decision-

making research that has repeatedly shown that humans are

irrational decision-makers about probabilistic prospects (e.g.,

Kahneman and Tversky, 1979). Here, we have shown that when

uncertainty is endogenous and specifically temporal in nature,

humans in fact make nearly optimal decisions. Supporting this

view, a series of experiments on motor planning have also shown

that humans decide (plan their motor end-points) optimally when

confronted with other ubiquitous sources of endogenous uncer-

tainty, such as motor noise (e.g., Trommershäuser et al., 2008).

These results suggest that when the origin of uncertainty is endoge-

nous, as in interval timing or motor planning, the resulting uncer-

tainty is accounted for by mechanisms that organize and adapt

behavior optimally in response to environmental statistics. We

note, however, that these findings do not necessarily indicate that

endogenous uncertainty is explicitly represented via a domain-

general, metacognitive ability. They simply show that humans and

other animals can make decisions that are adapted to endoge-

nous timing uncertainty in a way that tends to maximize rewards.

Depending on the task representation (avoiding being early or

late), the level of timing uncertainty can be implicitly translated

into a response bias signal that in turn partially determines the

temporal characteristics of behavior. In fact, the task representa-

tion might simply determine the direction, whereas the timing

uncertainty might determine the magnitude, of the response bias.

An important observation with humans is that reward max-

imization in perceptual decision-making (i.e., dot motion dis-

crimination) requires extensive training (e.g., Simen et al., 2009;

Balcı et al., 2011), whereas optimal performance in temporal

decision-making appears within a single session: i.e., in the switch

task (Balcı et al., 2009), DRL (current experiment), and BTC

(Simen et al., 2011). This difference is possibly due to the relatively

extensive exposure of humans to temporal intervals compared to

the specific visual stimuli (e.g., dot motion patterns) typically used

in perceptual decision-making tasks. Time, after all, is a funda-

mental quantity that factors critically into the outcome of almost

all human and animal behavior. The ubiquity of time experience

may have allowed animals to establish a veridical, scale-invariant

model of their endogenous timing uncertainty, which can be used

normatively in decision-making. Estimating the signal-to-noise

ratios of novel stimuli (e.g., dot motion stimuli), on the other

hand, requires extensive new training, which is likely the primary

factor in the delayed achievement of optimal performance in per-

ceptual decision-making. Timing might therefore appear to be a

special case in which optimal decisions are made in single session

experiments simply due to the degree of previous experience. Con-

sistent with this interpretation, when timing uncertainty also has

an exogenous source, human participants require some additional

experience before exhibiting optimal performance (Hudson et al.,

2008).

In addition to addressing the optimality of temporal risk assess-

ment, a reward maximization framework also offers a novel, prin-

cipled resolution to a psychophysical controversy in the domain

of interval timing: namely the location of the point of subjec-

tive equality (PSE) between different durations. The PSE is the

time interval that is subjectively equidistant to two other inter-

vals, which subjects are equally likely to categorize as short or

long. The PSE for animals is often found to be close to the geo-

metric mean of the referents (e.g., Church and Deluty, 1977) but

closer to the arithmetic mean for humans (e.g., Balcı and Gallistel,

2006). This inconsistency has been a source of theoretical con-

troversy because of its implications regarding the subjective time

scale – i.e., whether it is logarithmic or linear (Montemayor and

Balcı, 2007; Yi, 2009). The optimality-based account of temporal
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discrimination (switch or bisection) performance offers a princi-

pled account of the location(s) of the PSE; it quantitatively predicts

this difference based on cross-species differences in the level of

endogenous timing uncertainty on a linear subjective time scale.

The switch task is essentially a free-operant variant of the

temporal bisection task, in which subjects can emit responses

throughout the trial rather than just a single, terminal choice

after an experimenter-determined probe interval elapses. In fact,

in temporal bisection trials, animals move from the short to the

long response option as the elapsed time approaches and exceeds

the PSE (Machado and Keen, 2003). This suggests that despite the

retrospective nature of the temporal bisection task, animals make

real-time judgments about the elapsing interval in this task, just

as in the case of the switch task. Balcı and Gallistel (2006) further

showed that in temporal bisection tasks, human participants set a

single criterion between the referents and judge intervals as short

or long relative to that criterion (see also Allan, 2002; Penney et al.,

2008).

Based on the parallels between decision strategies employed

in both temporal discrimination tasks, the expected reward func-

tion of the switch task also applies to the temporal bisection task.

Accordingly, when Figure 2A is evaluated for the temporal bisec-

tion task, where the short and long target intervals refer to the short

and long reference durations, it predicts that PSEs are closer to the

geometric mean for higher endogenous timing uncertainty (as in

animals) and closer to the arithmetic mean for lower endoge-

nous timing uncertainty (as in humans). This account, based

on the same principles, also predicts the effect of task difficulty

(short/long ratio) on the location of the PSE in humans (Wearden

and Ferrara, 1996): more difficult task conditions mimic higher

timing uncertainty and easier task conditions mimic lower, and

the PSE moves across conditions accordingly.

Finally, for the rat DRL dataset, we only considered what are

referred to as “timed responses” for our optimality analysis (see

also Wearden, 1990). Wearden (1990) showed that untimed short

responses (responses occurring almost immediately after the pre-

ceding response) did not exert much cost on the reward earned in

the DRL task. For instance, 75% of untimed mostly short responses

(uniformly distributed between 0.25 and 0.75 s) resulted in 92%

of the reward that could be obtained without any untimed short

responses for a DRL 20 s schedule, mean IRT of 20 s, and CV of 0.3.

We further argue that particularly given their low cost regarding

reward earned, untimed short responses could in fact constitute an

optimal strategy in the long run for non-stationary environments.

For instance, these responses would enable subjects to detect a

shift to a richer schedule (DRL20 → DRL10 s) and thus adjust

responding accordingly. On the other hand, the detection of this

change would be more difficult and/or delayed for a subject who

exclusively exploits the DRL schedule (i.e., emitting only timed

responses).

Despite our claim about the ability of humans and non-human

animals to account for their endogenous timing uncertainty, we

have not proposed a mechanistic account of this ability. What

are the possible mechanisms by which organisms infer and repre-

sent their timing uncertainty? We assume that this ability relies on

keeping track of the discrepancies between the time of maximal

expectancy of an event and the actual time of its occurrence over

many instances. The stochastic ramp and trigger (SRT) model

of Simen et al. (2011) allows keeping track of such experien-

tial discrepancies. The SRT model approximates a drift–diffusion

process with a single, fixed threshold, and a noise coefficient pro-

portional to the square root of the drift (see also Rivest and

Bengio, 2011). This model, which contains the Behavioral Theory

of Timing of Killeen and Fetterman (1988) as a special case (where

accumulation is effectively a pulse counting process), exploits the

same mechanism used to account for response times in decision-

making. In the simplest terms, the model times an interval by

accumulating a quantity at a constant rate until it crosses a thresh-

old, call it z. This accumulation is perturbed by the addition of

normally distributed random noise with mean 0. Time intervals

of duration T are timed by setting the accumulation rate (the

“drift”) equal to the threshold divided by T, and simple learning

rules can tune the drift to the right value after a single exposure to a

new duration. The resulting threshold crossing times exhibit scalar

invariance and predict response time distributions that account for

human and animal empirical data.

Importantly, as in models of decision-making (e.g., Simen et al.,

2006), adjustments can be made in the intended time of respond-

ing relative to T by setting a response threshold that is either higher

or lower than the timing threshold. Optimality requires that it be

higher for the DRL task, and lower for the BTC task. Although this

threshold-adjustment approach to optimizing timed performance

appears to be novel in the timing literature, it is standard fare in the

literature on perceptual decision-making. Thus, both the under-

lying model (the drift–diffusion process) and the techniques for

adapting its speed–accuracy tradeoffs (via threshold-adjustment)

emerge as potentially common computational principles in two

distinct psychological domains.

The SRT model allows keeping track of discrepancies from

veridical times. When ramping activity hits the threshold prior

to the occurrence of the event (early clock), the organism can time

the interval between the threshold crossing and the event. Likewise,

when ramping activity fails to hit the threshold at the time of the

event (late clock), the organism can now time the interval between

the event and projected threshold crossing. When these values

are divided by the target interval (threshold/drift), it indicates the

scale-invariant measure of endogenous timing uncertainty. Simen

et al. (2011) in fact used these values to adjust the clock speed to

time veridical intervals in their model (see also Rivest and Bengio,

2011, where the same learning rules were proposed). The same

mechanism can be conveniently used to keep track of timing noise

through experience.

How this function might be embedded in the neural circuitry

(i.e., corticostriatal loops) that have been implicated in interval

timing is an important question that deserves special attention.

In parallel to the striatal beat frequency model (Matell and Meck,

2004), different roles can be assigned to different brain regions

within the SRT framework. For instance, the clock role can be

assigned to the cortex and the effective role of decision thresh-

old to the striatum. Within this scheme, it is possible that the

reinforcement contingent dopamine activity serves as a teaching

signal, which, via long-term synaptic plasticity (i.e., LTP and LTD),

changes the excitability of the striatal medium-spiny neurons that

are innervated by cortical glutamatergic and nigral dopaminergic
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input. This activity might effectively set the decision thresholds

in the direction and magnitude that maximizes the RR. In cases

where the reward function depends on endogenous timing uncer-

tainty, dopamine activity would thus inherently serve as a signal

of the interaction between endogenous timing uncertainty and

task structure. In tasks like the DRL and BTC, brain regions

involved in inhibitory control (e.g., orbitofrontal cortex) would

also be assumed to factor into this process. This framework how-

ever suffers a critical problem, namely: “If the striatal neurons

are ‘trained’ to respond specifically at intervals that maximize

the reward (which are systematically shorter and longer than the

critical interval), how do they represent the veridical critical tem-

poral intervals?” This question suggests that the adaptive response

bias signal should perhaps be assigned to an independent process

controlled by an independent structure such as the orbitofrontal

cortex. This scheme allows that task representation to be coded

independently from the critical task parameter values.

There are two interesting issues, which should motivate and

guide future research seeking a more comprehensive understand-

ing of temporal risk assessment ability. One of these questions

regards the correspondence between the temporal risk assessment

performance of participants across multiple tasks. Considerable

overlap between performances would constitute strong evidence

for the assertion that the ability to account for timing uncer-

tainty is an inherent (i.e., not entirely task-dependent) property

of organisms. The second question regards the possible rela-

tion between decision-making performance under endogenous

uncertainty (e.g., timing uncertainty) and exogenous uncertainty

(e.g., discrete probability of reward delivery). Balcı et al. (2009)

observed close to optimal performance in a task that involved

both kinds of uncertainties. However, it would be informative to

test the same subjects in independent tasks in which the reward

function depends exclusively on either endogenous or exogenous

uncertainty in a given task.

In this paper, we have presented both published and novel

datasets that support the claim that humans and other animals can

take approximately normative account of their endogenous tim-

ing uncertainty in a variety of timing and decision-making tasks.

This notion contrasts with the now-traditional view of humans

as irrational decision-makers under uncertainty, a difference that

may be driven by differences in the origin of the uncertainty (i.e.,

endogenous vs. exogenous uncertainty) and by the ways in which

estimates of this uncertainty are acquired (i.e., by experience or

by explicit description). Or it may be that timing is simply so

critical for reward-maximizing behavior that the resulting selec-

tive pressure on animals’ timing abilities dominates the costs of

maintaining those abilities.
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APPENDIX

PEAK RESPONDING SINGLE-TRIAL ANALYSIS

The single-trial analysis involved modeling each individual trial

as a three-state system (break–run–break) with a period of low

responding followed by a period of high responding followed by a

final period of low responding (Church et al., 1994). An exhaustive

search of the parameter space with 1-s bins yielded the best fits for

a start time (transition from low to high rate of responding) and

stop time (transition from high to low rate of responding). From

these, start and stop times were calculated. Trials with bad fits

were defined as those in which the single-trial analysis resulted in

start times that occurred later than the criterion interval and stop

times that were earlier than the criterion interval or three times

longer than the fixed interval. These trials were excluded from the

analysis.

DRL METHODS

Subjects

Humans. Fifteen adults (7 males and 8 females), aged 18–30 years,

were recruited via announcements posted online and around the

Princeton University campus. The experiment was approved by

the Institutional Review Panel for Human Subjects of Princeton

University and all participants provided written consent for their

participation.

Rats. Forty-eight male Sprague Dawley rats (Taconic Laborato-

ries, Germantown, NY, USA) were used in this experiment. The

rats were kept in a colony room on a 12:12 light–dark cycle (lights

off at 8:30 a.m.). Dim red lights provided illumination in the

colony room and testing rooms. Upon arrival, the rats were 8 weeks

of age and weighed between 75 and 100 g. During the first week, the

rats were on a free-feeding schedule. After a week, their daily food

(FormuLab 5008) was rationed to 16 g per day. During the exper-

imental session, the rats were fed 45-mg Noyes pellets (Improved

Formula A) as a reward. Water was available ad libitum in both the

home cage and the testing chamber. The rats were previously used

in an experiment that used lights and sounds as stimuli. They were

previously trained on a Fixed Interval procedure with gaps. All

procedures were approved by the Brown University Institutional

Animal Care and Use Committee.

Stimuli and apparatus

Humans. The visual stimulus consisted of a white square on

black background. The display was generated in MATLAB on

a Macintosh computer, using the Psychophysics Toolbox exten-

sion (Brainard, 1997; Pelli, 1997). Responses were collected with a

standard computer keyboard.

Rats. Twenty-four experiment chambers (Med Associates,

dimensions 25 cm × 30 cm × 30 cm) were situated in two sepa-

rate experiment rooms (12 in each room). Each chamber was

contained in a sound-attenuating box (Med Associates, dimen-

sions 74 cm × 38 cm × 60 cm) with a fan for ventilation. Each

experimental chamber was equipped with a pellet dispenser (Med

Associates, ENV-203) on the front wall that delivered the reward

into a food cup. A head entry into this cup interrupted a photo

beam (Med Associates, ENV-254). On both sides of the food cup,

there were two retractable levers. On the opposite wall, a water

bottle protruded into the chamber allowing ad libitum access to

water during the session. A lick on the spout of the water bottle

completed an electric circuit. Four Gateway Pentium III/500 com-

puters running Med-PC for Windows (version 1.15) controlled

the experiments and recorded the data. The interruption of the

photo beam and the completion of the lick and lever circuits were

recorded in time-event format with 2-ms accuracy.

Procedure

Rat experiment. In each of the 42 sessions, the rats were placed in

the box and a lever was inserted (counterbalanced across rats). Rats

were rewarded for spacing their lever presses (the time between

lever presses or IRT) by at least the DRL schedule. Any IRT shorter

than the DRL schedule was not rewarded. There were four groups,

each with a different DRL schedule. The DRL schedules were 7, 14,

28, and 56 s. There were 12 rats in each group. The session lasted 1-

h. The amount of reward per session for an optimal animal ranged

from about 60 (DRL 56) to about 515 food pellets (DRL 7).

Human experiment. Humans were tested in single session exper-

iments with one of the following DRL schedules per session: 5, 8,

10, 12, 15 s. Subjects were told that they would earn money for

each response after a minimum withhold interval since their last

response and that any earlier response would reset the trial clock

with no monetary reward. They were also told how much they

would earn per correct response, that the session time was fixed

and that they should try to make as much money as possible. Trial-

based monetary gain in DRL blocks was parameterized such that if

the participant always responded at the DRL schedule, s/he would

earn at most around $20 per session. This equated the reward

rate for different schedules/participants. Thus, monetary gain per

response increased with longer DRL schedules. Participants were

also explicitly instructed not to count, tap, or adopt any rhythmic

activity in order to time the intervals.

At the beginning of the session, participants were presented

with the minimum withhold duration for three times. This

duration was signaled by a white square presented on a black

ground. Following demonstrations of the target interval, partici-

pants familiarized themselves with this interval by reproducing it

for around 50 times over two blocks. During this familiarization

phase, in each trial a white square appeared in the middle of the

screen and participants were asked to press the space key when they

thought the target interval elapsed. Once the space key was hit, the

square disappeared and participants were given feedback on a fixed

length horizontal line about how far their reproduction was from

the target interval in that trial. The reproduction discrepancy was

signaled by the horizontal distance between two vertical lines, one

representing the target (white) and the other (red) reproduction

in that particular trial. This distance was normalized by the DRL

schedule, so that the same number of pixels corresponded to the

same proportion of discrepancy. Following two blocks of repro-

duction, participants were presented with eight, 5 min-long blocks

of DRL testing (one schedule per subject).

Before the first DRL block, participants were told that the actual

experiment was about to start and were again reminded of the

DRL task rules (see above). Test blocks started with the appear-

ance of a white square in the middle of the screen. Participants

could respond at any time and as often as they chose during the
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trial. If a response was emitted at or after the minimum withhold-

ing duration since the previous response, the square turned green,

and was accompanied by a brief auditory feedback (beep) and

presentation of the money earned in that trial. If the response

was emitted prior to the minimum withholding duration, the

square turned red and was accompanied by a brief buzzer. Follow-

ing feedback, the square turned white again. Cumulative earning

was presented at all times on top of the screen during the test

blocks.

A secondary task was used during familiarization and DRL test-

ing in order to prevent explicit counting. At the beginning of each

block, participants were presented with a four-digit number and at

the end of each block they were presented with a single digit num-

ber. Participants were asked if the four-digit set contained that

single digit. At the end of the session, earning from the timing tri-

als was multiplied by the proportion of correct recollections in the

working memory task. At the beginning of the experiment, par-

ticipants were told about the secondary task and that their earning

from timing trials would be weighted by their performance in the

working memory task.

One of the participants reported that s/he was not engaged in

the task during testing. We include this participant in graphical

depictions and analyses for completeness. However, we also report

results based on the analysis of data after excluding this participant.

WALD CUMULATIVE DISTRIBUTION FUNCTION
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where Φ is the standard Gaussian distribution cdf.
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