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Abstract—Finite state machines and pushdown systems are
frequently used in model based testing. In such testing, the
system under test is abstractly modeled as a finite state machine
having a finite set of states and a labeled transition relation
between the states. A pushdown system, additionally, has an
unbounded stack. Test inputs are then generated by enumer-
ating a set of sequences of transitions labels from the model.
There has been a lot of research that focussed on generation
of test input sequences satisfying various coverage criteria. In
this paper, we consider the problem of generating a set of
test input sequences that satisfy certain coverage criteria—
cover all transition labels or cover all length-n transition label
sequences at least once—while minimizing the sum of the length
of the sequences in the set. We show that these optimal test
input generation problems can be reduced to integer linear
programming (ILP) problems. We also prove that our optimal
test input generation problems are NP-Complete. We report
our experimental results on a prototype implementation for
finite states machines.

I. INTRODUCTION

Finite state machines (FSM) [1], [2], [3], [4], [5] and
pushdown systems (PDS) with labeled transitions are often
used in model based testing. Such models have a finite
set of states representing the abstract states of the system
under test. Pushdown systems [6], [7] additionally have an
unbounded stack. The transitions are labeled by a finite set
of symbols. The labels on the transitions denote inputs to the
system. A sequence of labels generated from such models
are often used for testing. Such sequences are called test
input sequences. We consider a particular problem of test
input sequence generation for such models—we want to
generate a set of test input sequences such that the following
two conditions are met:

« the test input sequences must cover all labels of the
system, and

« the sum of the length of the test input sequences must
be minimal.

We call this the optimal test input sequence generation
problem.

Our particular test input generation problem is motivated
by model based testing of graphical user interfaces (GUISs).
A graphical user interface (GUI) is an event-driven system
where the system gets input from the user and changes its
state in response to each user input. The inputs are called
events. Model based testing approaches are often employed
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to test graphical user interfaces [8], [9], [10], [11]. Such
approaches model the behavior of the GUI abstractly using a
suitable formalism such as event-flow graphs [8], [9], finite
state machines [12], [10], or Petri nets [11]. The models
are then used to automatically generate a set of sequences
of inputs (or events), called a test-suite. The constituents
of a test-suite depend on the coverage criteria used for the
generation of the test inputs, where a coverage criterion is
a set of rules that determine if a test-suite has adequately
tested a GUI. Such coverage criteria include state coverage,
event coverage [13], [14], and length-n event sequence
coverage [13].

In our setting, we wanted to test the user interfaces of
various mobile applications adequately with respect to some
coverage criteria. An important restriction that we have is
that the number of user interactions or user inputs must be
minimal during testing. Moreover, we do not have access
to the source code of such mobile applications. Therefore,
we need to use a model based testing approach where
the application is treated as a black box. We used finite
state machines to model the behaviors of the mobile-phone
application GUIs, where the states of a model represent the
abstract states of the GUI and the transitions in the finite
state machine denote various key or touch inputs that can be
performed on the GUI. For certain GUIs, we found that finite
state machines are not sufficient for modeling purposes;
therefore, we used recursive state machines such as push-
down systems as models. Note that pushdown systems are
more expressive than finite state machines—such systems
have infinite state space due to the presence of an unbounded
stack. One coverage criterion that we use in the generation
of test inputs is that all labels or inputs in the model must
be exercised at least once. This real-world setup motivated
our optimal test input generation problem.

In this paper, we describe algorithms that reduce the op-
timal test input generation problem for finite state machines
and pushdown systems to an integer linear programming
(ILP) problem, an optimization problem known to be NP-
complete. We also prove that our optimal test generation
problem is NP-complete; therefore, we cannot develop an
asymptotically better algorithm than the one we propose.
Apart from its real-world motivation, our problem of optimal
test input generation for finite state machines and pushdown



systems is in itself an interesting theoretical problem. We
believe that these particular problems and their solutions
could be applied to other domains.

Note that in our particular problem setting, we consider a
minimal coverage criteria: all inputs must be covered at least
once. However, this minimal coverage criteria may not be
adequate under other circumstances. Previous research [13]
has proposed the use of other powerful coverage criteria such
as one where all length-n input sequences must be covered
at least once. In this paper, we also consider the problem
of generating a minimal set of test input sequences for a
finite state machine so that all length-n input sequences are
covered at least once. We prove that this problem is also
NP-complete and show that the problem can be reduced to
an integer linear programming problem.

We have only implemented the optimal test input gen-
eration algorithm for finite state machines in a prototype
tool and our experiments on a few models show that we
can effectively generate optimal test input sequences for
these models within a few seconds despite the fact that
the problem is NP-complete. A key advantage of reduc-
ing our optimal test generation problem to integer linear
programming problem is that there are heuristics based
efficient solvers available both freely and commercially and
we can readily use those solvers to make our test generation
implementation efficient.

Related Work

Our optimal test input generation problem for FSM is
most closely related to two problems: the Chinese postman
problem [15] and the Rural Chinese Postman problem [16].
In Chinese postman problem [15] one needs to cover all
transitions irrespective of their labels. The problem is solv-
able in polynomial time. However, unlike our problem, a
solution to the Chinese postman problem results in longer
test input sequences. The Rural Chinese postman problem is
a well known NP-hard problem where a subset of transitions
are required to be traversed at minimal cost [16]. Our
optimization problem is different—we require at least one
transition for each label to be traversed, but we do not
specify exactly which transitions need to be traversed. The
above two problems have been formulated and solved for
finite state machines and have not been considered for
pushdown systems.

State machines have been commonly used to model and
generate tests for software designs in general and GUIs in
particular [17], [18]. The key idea here is to model GUIs as
a state machine with each GUI event triggering a transition
in the machine. A path of transitions in the state machine
represents a test case for the GUI The test coverage criteria
used is typically event pair coverage or more generally
covering all event sequences of length-n.

Early research on testing of finite state machines has
focused on conformance testing (see [19] for a survey) where

the goal of the testing is to check if an implementation,
ie. a “black box”, conforms to a specification given in
the form of a finite state machine with inputs and outputs
(e.g. Mealy machines) under certain assumptions. Another
line of research has focussed on the state identification
problem [19]—if a finite state machine with inputs and
outputs is in an unknown state, what sequence of inputs can
be applied so that the unknown state can be identified from
its input/output behavior. Both of these testing methods are
concerned with models with inputs and outputs and they test
if the input/output behavior matches the specification. In our
optimal test generation problem, we are only concerned with
input sequence generation and their optimality. We expect
that the output will be checked manually (or visually in
the case of a GUI). Therefore, none of the solutions from
conformance testing can be applied to our problem.

II. MODEL DEFINITIONS

We formally define finite state machines and pushdown
systems.

Definition 1 (Finite State Machines): A finite state ma-
chine (FSM) is a tuple T'= (Q, L, — , qo), where

e () is a finite set of states,

o L is a finite set of labels,

e —C @ x L x (@ is a transition relation, and

e qo € Q is the initial state.

We also define the following notations and terms:

1) We use ¢ —= ¢ to denote (¢,a,q') €— .

2) A string of labels 7 = ajay...a, is a trace of
an FSM T = (Q, L,— ,qo) iff there exists states
q1,G2,---,qn € Q such that gg — q1 2 qo —%
2 .

3) We use |7| to denote the length of the string 7 € L*.

4) We use 7]i] to denote the label at location 4 in 7.

5) We use [7] to denote the set of all labels present in 7.

6) We use 7;.72 to denote the string obtained by concate-
nating the strings 71 and 7».

7) We say 7’ is a sub-trace of 7, if and only if there exists
71,72 € L* such that 7 = 71.7".75.

8) We say 7 is a sub-trace of the FSM T, if there exists
a trace 7' of T such that 7 is a sub-trace of 7’.

9) We use [7], to denote the set of all sub-traces of 7
whose length is n.

Definition 2 (Pushdown Systems): A pushdown system
(PDS) [6] is a tuple P = (Q,T', L, , qo,70), where

e ( is a finite set of control states,

o I'is a finite stack alphabet,

o L is a finite set of labels,

e »C (QxT)xLx(QxTI*)is a transition relation,

e ¢o € @ is the initial state, and

e 7o €I is the initial stack content.

We next define a few notations and terms for pushdown
systems:



1) A configuration of P is a pair (g, w) where ¢ € @ is
a control state and w € I'* is a stack content.

2) We use (g,7) <4 (¢,w) to
((¢:7), 4, (¢, w)) €.

3) If (¢,7) < (¢/,w) and v € I'*, then the pushdown
system can transition from configuration (g,~yv) to
configuration (¢, wv) in one step and we denote this
transition by (¢, vv) — (¢, wv).

4) A string of labels 7 = ajas . .. a, is a trace of a PDS
P = (Q,I,L,— ,qo,7o) iff there exists configu-
rations C1,Cs,...,C), and labels a1, as,...,a, such
that (QQ,’Y()) i) (& £> Cy £> &) C,.

5) A configuration C'is reachable iff there exists for some
n > 0 configurations C1,C5,...,C,—1 and labels
ai,as,...,a, such that (QQ,’}/()) i) & ﬂ) Cy &
L C

6) We use Cp to denote the set of all reachable configu-
rations with non-empty stack contents of PDS P. Note
that a PDS can reach a configuration whose stack is
empty. We do not include such configurations in Cp.

denote

III. PROBLEM DEFINITION

Without loss of generality, let us assume that all states
and labels of an FSM are reachable from the initial state.!
Similarly, we assume that all control states and labels of a
pushdown system are reachable. Once we have a finite state
machine 7' (or a pushdown system P), we generate a set of
traces such that the sum of the length of all traces in the
set is minimal and either (1) each label in L is present in
at least one trace in the set, or (2) each sub-trace of T (or
P) of length n, where n is a given finite positive integer, is
present in at least one trace in the set. We next define these
problems formally.

Problem 3: (Optimal Trace Generation for an FSM)
Given an FSM T = (Q,L,— ,qo), find a set of traces
{m,72,...,7m} of T such that L = [r1] U [12] U... U [7y]
and |71| + |72| + ... + |7 | is minimal.

For example, an optimal set of traces for the model
in Figure 1 is {select unselect edit unedit,
select edit copy edit cut edit paste}.

Problem 4: (Trace Generation Decision for an FSM)
Given an FSM T = (Q, L, — ,qo) and an integer k, find
a set of traces {m1,72,...,Tm} of T such that L = [r;] U
[T2] U...U[%y] and |71| + |72| + ... + |Tm| is less than or
equal to k.

Note that the optimal trace generation problem is con-
cerned only with covering all the labels in L. Such an
optimal set of label sequences will guarantee event-coverage
as defined in [13]. The optimal trace generation problem
can also be generalized to length-n event coverage [13] as
follows.

UIf for an FSM T = (Q,L — ,qo), only Q' C Q and L' C L is
reachable from the initial state go, then we generate test input sequences for
the FSM T" = (Q', L', — ', q0), where — ' =— N(Q' x L' x Q").

unsele:

%

Figure 1. FSM model of copy-cut-paste behavior of an editor. node0 is
the initial state.

Problem 5: (Generalized Optimal Trace Generation for

an FSM)
Given an FSM T = (Q, L, — ,qo) and a constant n, find
a set of traces {71, 72, ..., Tm} of T such that L' = [r],, U
[T2]n U...U[Tm]n and |71 | + |72| + . .. +|7n | is minimized,
where L’ is the set of all sub-traces of T' of length n.

Note that the optimal trace generation problem (i.e. Prob-
lem 3) is a special case of the generalized optimal trace
generation problem (i.e. Problem 5) with n = 1.

The decision problem corresponding to the generalized
optimal trace generation problem is as follows.

Problem 6: (Generalized Trace Generation Decision for

an FSM)
Given an FSM T' = (Q, L,— , qo) and a constant n and a
positive integer k, find a set of traces {71, 72,..., Ty} of T
such that I’ =[], U [1=]n U ... U [Tim]n and |71 | + |72| +
...+ |7m] is less than or equal to k, where L’ is the set of
all sub-traces of 7' of length n.

Similarly, we can define the optimal trace generation
problem for a PDS as follows.

Problem 7: (Optimal Trace Generation for a PDS)
Given a PDS P = (Q,T', L, — , qo,70), find a set of traces
{m1,72, ..., 7m} of P such that L = [11] U [r2] U...U [7p]
and |71| 4 |72| + ... + |7n| is minimized.

The decision version of this problem is as follows.

Problem 8: (Trace Generation Decision for a PDS)
Given a PDS P = (Q,T',L,— ,qo,70) and an integer k,
find a set of traces {71, 72,...,T:m} of P such that L =
[T1]U[m=]U...U[Ty] and |71|+ |72 +. ..+ |7m] is less than
or equal to k.



IV. OPTIMAL TRACE GENERATION
ALGORITHM FOR AN FSM

We next describe algorithms to solve both the optimal
trace generation and the generalized optimal trace generation
problems and prove that both problems are NP-complete.
For simplicity of exposition, we first describe the reduction
for the optimal trace generation problem, which is a special
case of the generalized optimal test generation problem. In
our tool we have implemented this reduction. The reduction
works as follows. If {71, 72,...,T;n} is an optimal set of
traces, then we first show that there is a bound on m and
the maximum length of a trace. We then create a set of
0-1 variables to denote that a label is present at location
i in the j'" trace. We set up a set of constraints on these
variables to ensure that the traces are generated by the FSM
and minimize the sum of the length of these traces. The
bound on m and the maximum length of a trace is given by
the following simple lemma.

Lemma 9: Given an FSM T = (Q, L,— , qo), if there
exists a set of traces {71, 72,...,Tm} of T such that L =
[11]U[re]U. . .U[1y] and |71]+|72|+. . .4 |Tm| is minimized,
then |71| + |72| + ... + |7 is less than or equal to |Q|.|L]|
and m < |L|.

Proof: Any state g € @ can reached by a trace of length
at most |@Q| since we assume that all states and transitions
are reachable from the initial state in the FSM. Therefore,
the minimum length of any trace containing a label a € L
is bounded by |@|. Since in the worst case, we will have a
trace for each label in L, m < |L| and |71|+|72|+. . .+ |7m]
is less than or equal to |Q|.|L|. [ |

We next describe an algorithm to solve the optimal trace
generation problem. The algorithm first creates and solves
an integer linear programming (ILP) problem and then uses
the solution of the ILP problem to compute the optimal set
of traces. Let T' = (Q, L, — , qo) be an FSM. We want to
find a set of traces {71, 72, ..., Tm } of T such that L = [r;]U
[T2]U. . .U[Tm] and |71|+|72|+. . .+|7m | is minimized. Let k
be an upper bound on the optimization function |7 |+ |72| +
...+|7m| and p be an upper bound on m. Then by Lemma 9,
k = |Q|.|L| and p = |L|. For each ¢,¢' € Q, 1 < i <k,
1 <j < p and a € L create a variable Xgq/qi;. Any
Xyq'aij can assume a value of 0 or 1. Intuitively, if X 47445
is 1, then it denotes that the j'" trace in the set of optimal
traces has the label a at location 7. Consider the integer
linear programming (ILP) problem shown in Figure 2. We
next state the intuition behind each constraint in the ILP.

o Constraint (1) and (2) ensure that the solution to ILP
considers only valid traces of the FSM i.e. if a transition
does not exist in the FSM it is not considered in the
solution of the ILP.

o Constraint (3) ensures that the first transition in any
trace must be from the state gq.

o Constraint (4) ensures that for a given ¢ and j, there is

at most one Xgqq4; such that Xggrq:5 = 1.

« Constraint (5) ensures that if the j* trace has a label
a’ at location ¢ and ¢ > 1, then it must have some label
a at location (¢ — 1) i.e. a trace constructed from the
solution of the ILP is valid trace of the FSM.

o Constraint (6) ensures that each label a € L is covered
by at least one trace.

Let a solution of this ILP assign 4q/qi; t0 each Xgqr445.
Then the optimal set of traces is

T=A{r] 3a1,...,qc1 €L.q1,....q1 €Q
such that 7; = a;...q
and for all 5 € [1,1] . g, ,qiaiij =1
and (I=korVge Qa€ L. xgq041); =0)}

We next prove the correctness of the algorithm.

Theorem 10: The trace generation decision problem for
an FSM is in NP.

Proof:

[Claim 1] Each sequence of labels in T is a trace of 7". By
constraints (1) and (2) of the ILP, x4, 4;; = 1 implies that
q —= ¢'. Since for all i € [1,1] . 24, _,4;a:i; = 1, we have
qo TN qr--- LN q;. Therefore, each a; ...a; is a trace of
T.

[Claim 2] For each i € [1,k],j € [1,p], if z4qai; = 1 for
some ¢,¢' € Q,a € L, then for all q1,q2 € Q,a’ € L,
if g # q1 or ¢ # g2 or a # d, then z4,4,0/i; = 0. This
follows from constraint (4) of the ILP.

[Claim 3] If for some ¢,¢’ € Q,a € L,i € [1,k],j € [1,p],
we have z44qi; = 1, then the trace 7; € 7T has a at
location 7. The proof is as follows. Since Zgqrqi; = 1,
by constraint (5) and (2) of the ILP, if ¢ > 1, we can
find qf),¢},...,¢;_1,q} € Q and ay,aq9,...,a;—1,a; € L
such that ¢ = ¢/, ¢ = ¢}, a = a;, and Ty 410,15 =
1, Tyl ghas2j = 1, ..., Tg_ qlaij = 1. Further, if
Tgrq,ars1(r+1); = L, then for all ¢”,¢"" € Q,a" € L, if
q #q"orq .y #q" ora" # apy1,thenzgrgig i)y =0
by [Claim 2]. Therefore, if g, = qo, then ajas...a; is the
prefix of the trace 7;. The case g # go is not possible by
constraint (3) of the ILP. Therefore, the trace 7; has a at
location <.

[Claim 4] The sum of the length of all traces in 7 is equal
to the sum of all 44 4;. By the construction of 7 (i.e. for
each a; in 7;, we have x4, ,4.4,; = 1), we have the sum
of the length of all traces is less than or equal to the sum
of all £44/4;5. By [Claim 2] and [Claim 3], the sum of the
length of all traces is greater than or equal to the sum of all
Zqq'aij- Therefore, the sum of the length of all traces in 7
is equal to the sum of all x4¢/q45.

[Claim 5] For each a € L there is a trace in 7 that contains
a. By constraint (6) of the ILP, there must exist ¢, ¢’ € Q,i €



minimize

Figure 2.

E X qq’aij

q,9'€Q,a€L,ic[1,k],j€[1,p]

subject to
Xyqraij =0 for all ¢,¢' € Q,a € L,i € [1,k], and not ¢ — ¢ (1)
Xyqaij <1forall ¢,¢ € Q,a € L,i€[1,k], and j € [1,p] 2)
Xyqgarj =0forall g€ Q\{q},¢d €Q,j€1,p], anda€c L 3)
D> Xygaij <1foralli€[1,k] and j € [1,p] 4)
4,¢'€Q,a€L
Xoqraij > Xggrarivny; forall ¢,¢',q¢" € Q,a,a’ € Lyi e [1,k —1], and j € [1,p] 5

4,9’ €Q,i€[1,k],j€[1,p]

Integer Linear Program for the Optimal Trace Generation Problem

Xgqaij > 1 foralaecL (6)

[1,k],j € [1,p] such that 244/4i; = 1. Therefore, by [Claim
3], there is a trace in 7 that contains a.

[Claim 6] The sum of the length of all traces in 7 is optimal.
We prove this by contradiction. By [Claim 4] and [Claim
5], T is a set of traces of T such that for each label a € L,
there is a trace in 7 that contains a and the sum of the length
of all traces in 7 is minimized in the ILP. However, it does
not imply 7 is the set of traces of 7" whose sum of length
of traces is minimal. Assume that 7/ = {7{,...,7.} be a
set of traces such that 77 is a solution of the optimal trace
generation problem of 7" and the sum of the length of all
traces in 7" is strictly less than that of 7. Let a trace 7; be

of the form af . ..aan. Then we can find q{, .. .,qﬁnj €qQ
al ; ap, .
such that go — q{ ... — g}, . Set X1 qlats; to 1if and

i

only if j € [1,r] and i € [1,m;]. Any other Xgq/qi; is set
to 0. It is easy to see that such an assignment satisfies all
six constraints of the ILP. Therefore, it forms a solution of
the ILP. This implies that the original solution from which
we constructed 7 is not minimum—a contradiction.

By claims 5 and 6, we proved that 7 is a set of optimal
traces for 7. Since finding a solution of an ILP is NP-
complete and the size of ILP is polynomial in the size of the
FSM (i.e. the reduction from the optimal trace generation
problem to ILP is polynomial time), the optimal trace
generation problem is in NP. [ ]

Theorem 11: The trace generation decision problem for
an FSM is NP-hard.

Proof: The weighted set cover problem is defined as
follows. Given a universe X and a family S of subsets of
X and an integer k, find a subfamily C C S such that
X =U.cccand ) . cost(c) < k, where cost : S — R
maps each set in S to a positive real. The weighted set cover
problem is NP-complete [20].

NP-complete weighted set cover problem for

X={a, b, ¢, d}and S={S,, S,, S;} where S,={a,d,b}, S,={a,d}, and S;={c,b}

is reduced to the test generation decision problem on the FSM below

Figure 3. Construction example for NP-hardness proof. A weighted set
cover problem reduced to test generation decision problem on an FSM.

Consider a weighted set cover problem (X, S, k) where
cost(c) is defined as the cardinality of the set c. We will
reduce this weighted set cover problem to a trace generation
decision problem.

Construct an FSM T = (Q, L,—> ,qo) as follows. Let
L = X U X’ where e € X iff ¢ € X. Suppose S =
{S1...,Sn} and suppose each S; be {e},... e, }. Then
let @ = {90} UUicpt ) Ujepnm{4;}- For each i € [1,7n],

let g%, — ¢, for each a € S;. For each i € [1,n] and for
each j € [1,m; — 1], let ¢} EAR g}, For each i € [1,7],

let go — ¢i. An example of this reduction is shown in
Figure 3. Next we prove that the trace generation decision



minimize

Figure 4.

E X qq’aij

q,9'€Q,a€L,ic[1,k],j€[1,p]

subject to
Xyqraij =0 for all ¢,¢' € Q,a € L,i € [1,k], and not ¢ — ¢ (1)
Xyqaij <1forall ¢,¢ € Q,a € L,i€[1,k], and j € [1,p] 2)
Xyqgarj =0forall g€ Q\{q},¢d €Q,j€1,p], anda€c L 3)
Z Xyqraij < 1forall i € [1,k] and j € [1,p] )
4,9’ €Q,a€L
Xoqraij > Xggrarivny; forall ¢,¢',q¢" € Q,a,a’ € Lyi e [1,k —1], and j € [1,p] 5
0<Y;jr<lforallie[l,k—n],je[lp], and T € L (6)
Z Xyqirirlitrj = n.Yajr forall i € [Lk —n],j € [1,p], and 7 € L’ (7
7,9’ €Q,r€[1,n]
Z Yijr > 1forall 7€ L ®)
i€[1,k],5€[1,p]

Integer Linear Program for the Generalized Optimal Trace Generation Problem

problem on T and k+|X| has a solution if an only if the set
cover problem for X, S, and k has a solution. A proof of
the above claim will prove that the trace generation problem
is NP-hard.

(proof of [only if]). First, we show that if the trace
generation decision problem on T and k+|X | has a solution,
then there exists another solution to the same problem where

1) [Condition 1]. the traces in the solution have exactly
one occurrence of each label in X', and

2) [Condition 2]. each trace in the solution is of the form
T1.79 (i.e. concatenation of 7; and 75), where 71 has
labels from X and 7 has labels from X’. Further,
there exists an S; € S such that [11] = S;.

If the traces in a solution on 7' and k + | X| has more
than one occurrence of a label, say a’ € X', then we can
safely remove all such labels except one from the traces.
The resultant traces will still be a solution of T" and k + | X|
because each transition with label o' € X’ creates a self
loop on some state of the form ¢, , where i € [1,n] and
such transitions could be made the last transition of a trace.

Note that each trace of T has the form 7.7, where the
labels in 77 are in X, the labels in 7 are in X', |71| > 1, and
|72| > 0. This is because by the construction of the FSM,
a trace must have a prefix eje)...el (ie. qo NN
RN gp) for some i € [1,n] and p < m;. If p = m;, then
the rest of the trace will loop over the state gy, and will be
a string in {ef,... e }*.

Assume the solution on 7" and k + |X| has a trace 71.72,
such that [ry] # S; for all i € [1,n]. Therefore, 7 is of the
form ejej ... el for some i € [1,n] and p < my. If p = m,,
the [r1] = S;—a contradiction. Therefore, p < m; and 75 is

empty. In this case, we claim that we can safely remove the
trace 71.72 from the solution and get another solution.

If the above claim is not true, then there is a label a € [71]
which is not present in the remaining traces of the solution.
However, since 75 is empty, there must be trace 7.7 in the
remaining traces that contains a’, the primed version of a.
If @’ is present in the trace, then by the construction of the
FSM, a must be present in 7{—a contradiction. Therefore,
our claim holds. This implies that we can remove all traces 7,
where 7 has labels only in X and [r1] # S, for all ¢ € [1,n],
from the solution and obtain a smaller solution. Therefore,
if there is a solution on 7" and k + | X|, then there is another
solution on 7" and m + | X| where the above two conditions
hold.

Now we show that if there is a solution on 7" and k +
| X| that satisfies the above three conditions, then there is
a solution of the set covering problem on X, S, and k. By
[Condition 2], each trace in the solution is of the form
71.72 Where [71] = S; for some i € [1,n]. Let the traces in
the solution be 7i.75,...,77.75. Then each [r{] = S, for
some j € [1,7] and ¢ € [1,n]. Further, the traces being a
solution must contain all labels in X U X'. Therefore, [r{]U

.U [r]] = X. Therefore, [r{],...,[r]] is a set covering
of X, S. The set covering has a cost of at most £ because
|7t + ... + 77| = (k + |X]) — |X]| by [Condition 1].
Therefore, we have a solution of the set covering problem
on X, S, and k.

(proof of [if]). Let {S;,,...,S;, } be a solution of the set
cc_)vering problem on X ,_S, and k. Given each Sij isin S,
er,... ,e%ij L€, ... eni is a trace of T by construction
of the FSM. The set of all such traces contain all labels in
X and X'. Further, the cost of all traces is 2k. From these




trace we can remove labels in X’ so that each label in X’
occurs exactly once in the traces. The resultant traces will
have a total cost of k + |X|. Therefore, the traces form a
solution of the trace generation decision problem on X, S,
and k + | X|. [

V. GENERALIZED OPTIMAL TRACE GENERATION
ALGORITHM FOR AN FSM

Consider a generalized optimal trace generation problem,
i.e. given an FSM T = (Q,L,— ,qo) and a constant n,
find a set of traces {71, 72,...,7m} of T such that L/ =
[T1]n U [2)n U ... U [Ti]n and |71| + |72] + ... 4 |7m] 18
minimized, where L’ is the set of all sub-traces of 7' of
length n. In order to solve this problem, we construct another
FSMT' = (Q,L',— ', qo) as follows.

Define —»y=—>. Construct —>; for ¢ > 0 as follows.

—i={ (¢,7.a,¢") | 3¢" € Q such that

(qua q”) E—i—1 and (q//aavq/) €— }

Note that this construction can be done using dynamic
programming. Then define — ' =——,, and L’ as follows.

L'={rel"|3¢,q¢d €Qand (¢,7,¢) e—'}

L’ represents the set of all sub-traces of length n of the
FSM T. The construction of 7’ takes O(| — |™) time
(note that n is constant). Further, |L/| < L™ as L' C L™ and
| —' | <1Q|.IL].1Q| as —'C @ x L’ x Q. Therefore, the
size of T is polynomial in the size of T". Set k = |L'|.|Q)|
and p = |L/|.

Foreach q,¢ € Q, 1 <i<k,1<j<p,anda € L
create a variable Xgq/q:;. Further, for each 1 < ¢ < k,
1 <j <p, and 7 € L', create a variable Y;;r. Consider
the integer linear programming (ILP) problem shown in
Figure 4. This ILP is same as the ILP in Figure 2, except
that we replace constraint (6) in the latter by constraints (6),
(7), and (8) in the former. These new three constraints ensure
that each sub-trace of T' of length n, i.e. each sub-trace in
L’ is present at least once in the optimal set of traces. More
specifically, a variable Y;;, can assume a value of 0 or I,
which is ensured by constraint (6) of the ILP. If Y;;, = 1,
then the j*! trace has the sub-trace 7 starting at the location
. Constraint (7) ensure this condition. Constraint (8) in the
ILP ensures that for each 7 € L', there is at least one trace
that contains 7.

Let a solution of this ILP assign @445 to each Xgqr445.
Then the optimal set of traces is

T=A{r| 3a1,...,act € L,q1,...,q € Q,j € [1,p]
such that 7; = a; ... a; and
forall i € [1,1] . ©4, ,q,0;i; = 1 and
(l=korVge Q,acL.xgsuse1); =0)}

Theorem 12: The generalized trace generation decision
problem for an FSM is in NP.

The proof of this theorem is very similar to the proof of
the Theorem 10—we need to modify [Claim 4] appropri-
ately. We skip the proof in the interest of space.

Theorem 13: The generalized trace generation decision
problem for an FSM is NP-hard.

Proof: This follows from the proof of Theorem 11
because the trace generation decision is a generalized trace
generation problem with n = 1. [ ]

VI. OPTIMAL TRACE GENERATION
ALGORITHM FOR A PDS

We next describe a reduction of the optimal trace gener-
ation problem for a PDS to an ILP. The reduction depends
on the following two crucial lemmas, which upper bound
the sum of the length of the optimal set of traces.

Lemma 14: Givenaq € () and a~y € T, if a configuration
of the form (g, yw) is reachable in the PDS P = (Q, T, —
,4o,7o) from the initial configuration (go,7o), then there
exists a configuration of the form (g, yv) such that the con-
figuration can be reached in at most (|Q|.|T'|+1)2.(|T'| +1)
steps.

Proof: Given a pushdown system P = (Q,T,—
,4o,70), We use a P-automaton to represent the set of
reachable configurations with non-empty stack contents.

A P-automaton is a tuple A = (S,I,0, f), where S is a
finite set of states such that Q xI' C S, § C Sx (T'U{e})x S
is a transition relation, and f € S is the final state. We define
the transition relation ~ C S x I'* x S as the smallest
relation satisfying:

e 5-5 s for each s € S,

o if (s,7,8") € & then s s, and

o if s~ " and s <L ¢’ then s ~J §'.

A P-automaton accepts a configuration (g, yw) iff (¢, ) ~>

I

We construct a P-automaton A = (S, T, 6, f) that accepts
all reachable configurations with non-empty stacks of P (i.e.
accepts Cp) as follows. We assume that each transition rule
(¢,7) <% (q,w) of P satisfies |w| < 2. Note that we do not
loose generality due to this restriction because any pushdown
system can be transformed into an equivalent PDS of this
form. We denote the relation (-5)* b (-5)* by ==

Initially, S is the empty set. For each ¢ € Q and v € T,
add (gq,) to the set S. Add f to S.

Add ((g0,70),€, f) to 0. Add new transitions to J ac-
cording to the following rules iteratively until no more new
transition can be added to §:

D) If (¢,7) <> (¢,¢) and (q,7) ~% f for some w €
", then for all s € S such that (¢,7) 4 s, add
((¢',7'), € 8) to 0.

2) If (¢,) <> (¢',7) and (g,7) > f for some w € I,
then add ((¢',7'),¢€, (g,7)) to 4.
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3) If (¢,7) < (¢',v'+") and (g,7) ~> f for some w €
I, then add ((¢',7),7", (¢,7)) to 6.



The P-automaton thus constructed accepts all reachable

configurations of the PDS P = (Q,I', < , g0, 7).
Maximum number of transitions that can be added to 9 is

(Q[-|T| + 1)2.(|T| + 1). This is because S has |Q|.|T'| + 1

states and between any pair of states there can be |I'| + 1

transitions. Therefore, the above 3 rules can be applied at

most (|Q|.|T|+1)2.(JT'|+1) times. If a transition of the form

((g,7),7', s) is added in the k'" iteration, then by induction

on the number of iterations we conclude that a configuration

of the form (gq,~v) is reachable in the PDS in at most k

steps. k is upper bounded by (|Q|.|T| +1)2.(T|+1). =

Lemma 15: Given aPDS P = (Q,T,— , qo,70), if there

exists a set of traces {71, 72,...,7n} of P such that L =

[11]U[m2]U. . .U[1y,] and 71|+ |72|+. . .+ |7 | is minimized,

then |71|+|72|+. ..+ |7 is less than or equal to |Q]2.(|T'|+

1)3.|L| and m < |L|.

Proof: Given a ¢ € @, a vy € I', and a transition of
the form ((¢,7) < (¢, w)), if a configuration of the form
(g,~v) is reachable in the PDS in at most k steps, then the
transition can be reached in at most k£ + 1 steps. Therefore,
by Lemma 14, any transition can be reached in (|Q|.|T| +
1)2.(|0|+1) +1 steps. Since in the worst case, we will have
a trace to reach each label in L, m < |L| and |7y | + |72| +
oot T < ((|1Q]-T] + 1)2.(IT| + 1) + 1).|L| which is less
than or equal to |Q|%.(|T| + 1)3.|L|. [ ]

As in FSM, the optimal trace generation algorithm for

PDS first creates and solves an integer linear programming
(ILP) and then uses the solution of the ILP to compute the
optimal set of traces. Let P = (Q,T',— , qo,70) be a PDS.
We want to find a set of traces {71, 72,..., 7} of P such
that L = [11] U [12] U... U [7] and |71| + |72| + ... + |7
is minimized. Let K be an upper bound on the optimization
function |71| 4 |72| + ... + || and p be an upper bound
on m. Then by Lemma 15, K = |Q|?.(|T| + 1)3.|L| and
p=|L].

We create a set of 0 or 1 valued variables as follows.

e Foreach 1 <i< K+1,1<j<K+2 1<k<p,
and v € T U {T} create a variable X;jpy. X;jpy = 1
denotes that the " configuration of the k*" trace has
the stack symbol ~ at the stack position j. T denotes
the empty stack symbol.

e For cach ¢ € Q, i € [1,K 4+ 1], and k € [1,p],
create a variable Z;,. Z4, = 1 denotes that the ith

configuration in the k' trace has the state .

o Foreachi e [1,K], j € [l,K+1], k € [1,p], and each
rule 7 in < , create a variable Y;;x,. Y;j1 = 1 denotes
that in the k' trace the i'" transition is triggered by
the rule r and the stack has j elements at the time of
transition.

o Foreachi e [1,K],je[1,K+1], k€ [l,p], q€Q,
and v € TU{T}, create a variable Wrqy. Wijrgy = 1
means that the in the k' trace the i'" transition does
not change the configuration. The first occurrence of
Wijkqy = 1 in the k'!' trace thus denotes that the k"

trace has a length of 7 — 1.

Consider the integer linear programming (ILP) problem
shown in Figure 5. We next state the intuition behind each
constraint in the ILP.

o The length of any trace is bounded by K. Therefore,
the stack can have at most K + 1 elements in a trace.

« The first three constraints ensure that the initial config-
uration of any trace is (qo,70)-

o Contraint (4) ensures that a configuration at a location
i in the kP trace has a unique state.

o Constraints (5) ensures that if the configuration at the
i*? location in the k" trace has a stack with j elements,
then all the elements in the stack above j elements are
T, i.e. the empty stack element.

« Constraint (6) ensures that the configuration at the ‘"
location in the k" trace has a unique stack element at
the 5" location in the stack of the configuration.

o Constraints (7), (8), and (9) encodes the transition rules
in <.

o Constraints (10) and (13) ensure that if the end of the
k™ trace is reached after (i — 1) transitions, then the
configuration remains unchanged from i*® location in
the trace.

o Constraints (11) and (12) ensure that the stack remains
unchanged after each transition except for the top
element and elements beyond the top element in the
stack.

« Constraint (14) ensures that the i*" transition in the k"
trace is unique.

« Constraint (15) ensures that a trace contains a transition
whose label is a for each a € L.

Let a solution of this ILP assign ;. to each Yj;z,. Then
the optimal set of traces is

T={m| Ja1,...,a; € L,k € [1,p] such that
Tk =a1...q; and for all ¢ € [1,1] . yijpr =1
for some j and label of 7 is a; and
(I = K or w(;41)jkqy = 1 for some j, ¢, and ~}

Theorem 16: The trace generation decision problem for
a PDS is in NP.

The proof of this theorem follows from the above con-
struction of the integer linear programming. The integer lin-
ear programming has size polynomial in K and p. Therefore,
the reduction takes polynomial amount of time. We skip the
formal proof of this theorem in the interest of space—the
intuitive explanation of the constraints in the ILP provides
information to carry out the formal proof.

Theorem 17: The trace generation decision problem for
a PDS is NP-hard.

Proof: This follows from the proof of Theorem 11
because an FSM is a spacial case of a PDS where each
transition is of the form (g,70) < (¢,70), i.e. the stack
remains unchanged. u



minimize Z Yijkr
i€[1,K],je[1,K+1],ke[1,p], and for each rule r
subject to
Zgo1x = 1 for all k € [1, p] (1)
Xiiky, = 1 for all k € [1,p] 2)
Xk =1 for all k € [1, p] 3)
Z Zgr=1forallic[1,K+1] and k € [1,p] )
9€Q
XijeT < Xigj4yet forall i € [1, K +1],5 € [1, K + 1], and k € [1,p] o)
> Xijgy=1forallie[1,K+1],j€[1,K+2], and k € [1,p] (6)
yelru{T}
Zaik + Zg (ir1)k T Xijey + XiGrrT + Xr)jeT = 5Yijer
foralli e [1,K],j€[l,K+ 1],k € [1,p], and each rule r of the form (g,~) S (e (7
Zgik T Zg i+1)k + Xijky + XiG+reT + Xir)jey + X+1)G+0rT = 6Y5jk0
forall i € [1,K],j € [1,K + 1],k € [1,p], and each rule r of the form (g,7) < (¢',7') 8)
Zgik T Zg i+ 1)k + Xijey + XiGrorT + XiG+2)kT
FX(i+1)jky T X(i+1)G+1)ky T X1 G2 2 8Yijkr
for all i € [1,K],j € [1, K],k € [1,p], and each rule r of the form (¢,7) < (¢',~'~") )
Zgik T Zg(ir 1)k T Xijiy + XiGGr0eT + X1 1)jky T Xarn)Gr0eT = 6Wijkgy
forallge Q,yeTU{T},ie[1,K],j€[1,K+1], and k € [1, p] (10)
XiG—1yky — X(it1)G—1)ky < 1= ( Z Yierr + Z Witkgy')
¢elj,k+1] and for each rule » Le[j, K+1],q€Q,v' €TU{T}
forallie [1,K]|,j€[2,K+1],k€[l,p], andy €T an
X1 G-Dky — XiG=1)ky < 1= ( Z Yierr + Z Witkar')
¢e[j,k+1] and for each rule » Ce[j,K+1],q€Qy' €TU{T}
Wijkq'y < W(i+1)jkq'y for all q¢c Qa/y el'v {T}’Z € [17K]7j € [17K + 1]7 and k € [Lp] (13)
> Yijir + > Wijkgy = 1 for all i € [1, K] and k € [1,p] (14)
jel1,K+1] and for each rule JE[L,K+1],¢€Q,veTU{T}
> Yijhr > 1 (15)
i€[1,K],je[1,K+1],ke[1,p], and for each rule » with label «
Figure 5. Integer Linear Program for the Optimal Trace Generation Problem for a PDS. Each variable in the ILP can have a value O or 1.
GUI FSM Size Time to | Total optimal
total solve time | sequence VII. EVALUATION
(states, transitions) | ILP (ms) | (ms) size
Registration 98 (17, 81) 3811 4139 6 We have implemented the optimal test sequence genera-
ffiFl"r clipboard g; 8(2) ;(1); ﬁgg ijgg 151 tion algorithm in a tool. We only focussed on label coverage
ail composer y . B . .
Bookmark manager 60 (19 . 41) 08 3673 3 for an FSM and implemented the algorlthn.l described in
Browser navigation 108 (21, 85) 4139 4579 g Section IV. The tool could be extended to implement the
Phone book manager 152 (44, 108) 5982 6388 15 a]gorithms in Sections V and VI.
Mail viewer 215 (39, 176) 8576 8981 14 In our evaluation, we created FSM models for seven

Table I mobile applications: Registration, Editor clipboard, Mail
EXPERIMENTAL RESULTS .
composer, Mail viewer, Phone book manager, Browser nav-
igation, and Bookmark manager.



We applied our tool to generate optimal input sequences
for these seven models. In our experiments, we mainly tried
to evaluate the time taken by our tool to generate optimal
input sequences for these GUI models.

Table I shows the results of our experiments on a Pentium
IV with 2GB RAM. The first column in the table reports the
name of the model. The second column reports the size of
the FSM model. The third and fourth columns report the
time taken in milliseconds to solve the ILP and the total
time taken to generate the optimal set of test sequences,
respectively. The last column reports the sum of the length
of all input sequences in the optimal solution. The table
shows that the total time taken for optimal input sequence
generation is less than 9 seconds for all the models. This
shows that we can generate optimal input sequences for these
models in a reasonable amount of time.

VIII. CONCLUSION

We considered the theoretical problem of generating a set
of test input sequences that cover all transition labels or
cover all length-n transition label sequences at least once
while minimizing the sum of the length of the sequences in
the set. We showed that this optimal test input generation
problem is NP-complete for both finite state machines and
pushdown systems. We experimentally demonstrated that the
optimal test input sequence generation algorithm for FSM
works efficiently for some benchmark models. In future,
we would like to solve the optimal test generation problem
for other kinds of coverage criteria. We would also like to
develop and evaluate some approximation algorithms for the
optimal test generation problems.
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