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Abstract8

The quarantine of identified close contacts has been vital to reducing transmission rates and averting9

secondary infection risk before symptom onset and by asymptomatic cases. The effectiveness of this10

contact tracing strategy to mitigate transmission is sensitive to the adherence to quarantines, which11

may be lower for longer quarantine periods or in vaccinated populations (where perceptions of risk12

are reduced). This study develops a simulation model to evaluate contact tracing strategies based on13

the sequential testing of identified contacts after exposure as an alternative to quarantines, in which14

contacts are isolated only after confirmation by a positive test. The analysis considers different number15

and types of tests (PCR and lateral flow antigen tests (LFA)) to identify the cost-effective testing16

policies that minimize the expected infecting days post-exposure considering different levels of testing17

capacity. This analysis suggests that even a limited number of tests can be effective at reducing18

secondary infection risk: two LFA tests (with optimal timing) avert infectiousness at a level that is19

comparable to 14-day quarantine with 90% adherence; adding a third test (PCR or LFA) reaches the20

efficiency of a 95% quarantine adherence. These results are robust to the exposure dates of the contact,21

which suggests that simple testing rules can be effective for improving contact tracing in settings where22

strict quarantine adherence is difficult to implement.23

1 Introduction24

The COVID-19 pandemic has imposed many challenges on societies around the world. The virulence of25

the outbreak has required strict nonpharmaceutical interventions, such as massive lockdowns, curfews,26

contact quarantines, sanitary measures, travel restrictions, and testing surveillance. Although many of27

these policies have been useful for containing outbreaks (Chinazzi et al. 2020, Tang et al. 2020), they have28

also imposed a significant social and economic burden on most countries (Jin et al. 2021).29

Since the first outbreak of COVID-19 in early 2020, new scientific knowledge has been rapidly de-30

veloped regarding the characteristics of this virus, such as the viral load evolution of an infected indi-31

vidual (Larremore et al. 2021), infectiousness profile (He et al. 2020), transmission patterns (Meyerowitz32

et al. 2020) and cardinal symptoms (Zoabi et al. 2021). A significant challenge in containing trans-33

mission is to halt infections generated before symptom onset and by asymptomatic cases, thus mak-34

ing symptom monitoring insufficient to contain the spread of the virus (Ferretti et al. 2020, Li et al.35

2020), even with close monitoring of close contacts (Peak et al. 2020). Therefore, preventive quaran-36

tines of potentially exposed individuals have been a fundamental mitigation measure to reduce trans-37

mission in the community. These quarantine policies vary across countries, both in terms of the tar-38

get population and the quarantine protocol. Most countries require preventive quarantine of traced39

contact between 10 and 14 days (UK 2021,CDC 2021). Restrictions to incoming international travel-40

ers also vary across countries, ranging from no quarantine when a recent negative test result is pro-41

vided to others requiring strict quarantines ranging from 10 to 14 days. Some countries even use42

dedicated facilities to quarantine incoming travelers. These traveling restrictions have led many trav-43

eling website hubs to provide detailed information on quarantine and testing protocols by country,44

(Wego: https://blog.wego.com/covid19-travel-restrictions-by-destination-country/; Kayak:45

https://www.kayak.com/travel-restrictions).46

https://blog.wego.com/covid19-travel-restrictions-by-destination-country/
https://www.kayak.com/travel-restrictions


The design of quarantine protocols for traced contacts and higher-risk individuals should account1

for the associated risk reduction of the policy as well as the costs imposed on the target population.2

Quarantines have been associated with economic cost and adverse mental health effects (Brooks et al.3

2020, Bonaccorsi et al. 2020), and quarantine measures that are too strict may reduce compliance and4

the incentives to report close contacts, thereby reducing the effectiveness of contact tracing strategies5

(Webster et al. 2020). Approximately 75% of U.S. subjects who were surveyed indicated that they would6

adhere with quarantine for 14 days when mandated by a health official; however, compliance can be as7

low as 60% in specific demographic groups (McClain and Rainie 2020). Of those who declare their lack8

of willingness to comply, 44% indicate that they do not think that quarantining is necessary.9

Improvements in testing technologies have helped to shorten quarantine periods while maintaining a10

low risk of secondary infections by exposed contacts (Xu et al. 2020). For example, the WHO quarantine11

recommendations for contacts of individuals with a confirmed or probable case of COVID-19 have been12

made more flexible and evolved from 14 days from their last exposure (WHO 2020b) to more discretionary13

measures, such as advising local public health authorities to account for local conditions and needs to14

determine the length of quarantine. These options include stopping quarantine for contacts that have15

not presented symptoms after day 10 or after day 7 with a negative diagnostic specimen test (CDC 2021,16

CDC 2020).17

As vaccination campaigns continue to advance, transmission rates are expected to fall, thereby reducing18

the risk of infection of contacts exposed to a confirmed case. Nevertheless, some risk of transmission is19

still present due to the lower effectiveness of some vaccines and uncertainty associated with virus variants20

(WHO 2020a); therefore, contact tracing will continue to be relevant. However, vaccination is likely to21

reduce the perception of risk of exposed contacts, which could lower compliance with strict quarantine22

measures (Webster et al. 2020). Hence, the focus of this study is to analyze alternatives to quarantine of23

traced contacts to reduce the risk of secondary infections.24

Access to low-cost PCR and lateral flow antigen (LFA) tests has become widespread (Mercer and25

Salit 2021), and this massive availability of detection tests enables the close monitoring of traced contacts26

without the need to confine exposed individuals (unless a positive test result), which lowers the quarantine27

costs without increasing the secondary transmission risks. Thus, we analyze the optimal timing of different28

types of tests to reduce the risk of exposure of active (not quarantined) unconfirmed contacts to susceptible29

individuals, thereby helping to reduce both infection risk and the costs of quarantine through a cost-30

efficient use of testing resources. This finding is particularly important for minimizing disruptions in31

essential activities, such as highly specialized workers, teachers, students and healthcare workers, where32

quarantines may require major re-organization of the operations. Similar strategies could be used to ease33

quarantine requirements on foreign travel.34

Our study contributes to the literature on the analysis of quarantine strategies of traced contact35

in different settings. Several modeling studies suggest that quarantine periods can be shortened to 736

days with a negative PCR test at the end of this period because it has a residual risk equivalent to a37

quarantine period of 14 days with no testing (van der Toorn et al. 2021, Wells et al. 2020). The recent38

modeling study by Quilty et al. 2021 also suggests that daily LFA testing of traced contacts over 5 days39

without quarantine if all tests are negative can actually reduce the risk of secondary infections relative to40

a mitigation strategy of 14 quarantine days with moderate levels of adherence. Following that idea, we41

evaluate alternative sequential testing schemes when different numbers and types of tests are available42

to monitor traced contacts that are not under quarantine, with isolation only triggered when the case is43

confirmed through a positive test.44

This study was motivated through the design of testing and quarantine policies for schools in Chile,45

where in-person teaching has been prohibited during most of the pandemic. In planning a safe return to46

in-person schooling, Chilean health authorities have developed protocols on how to handle confirmed cases47

and require quarantines of the complete classroom of an infected student with flexibility on the quarantine48

strategies for teachers, who received priority in the immunization campaign and whose quarantine may49

induce severe disruptions in the school operation. An alternative to quarantine is to allow teachers to50
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continue face-to-face teaching but closely monitor them through an optimal design of PCR and LFA1

tests to reduce the risk of secondary infections. A similar strategy could be used to ease the quarantine2

requirements of the classroom of infected students, where the risk of transmission has been shown to3

be relatively low for younger students (Viner et al. 2021) along with the adoption of masks and other4

mitigation measures (Chernozhukov et al. 2021, Lessler et al. 2021).5

Our modeling approach is similar to that of Larremore et al. 2021 and Wells et al. 2020 and used6

simulation methods to generate scenarios of viral loads of infected contacts that may or may not present7

symptoms. These simulated viral load paths relate the infectiousness of the contact with test sensitivity8

during post-exposure time, enabling us to model the reduction of secondary infections under alternative9

sequential testing schemes. Our modeling analysis confirms the findings of Larremore et al. 2021 that10

despite the lower sensitivity of LFA tests relative to PCR, they are more efficient in averting infections11

when PCR tests take more than one day to confirm the results. We also corroborate the result of Wells12

et al. 2020 that daily LFA testing during 5 days postexposure, with isolation required after a positive test13

result, essentially averts all the risk of secondary infections and is equivalent to a 14-day quarantine policy14

for high adherence scenarios. We show that these results are robust to the days of exposure of the traced15

contact with the index case and to alternative models of viral load evolution. When testing resources are16

scarce, our modeling analysis suggests that using three LFA tests with an appropriate timing during the17

postexposure period can also achieve a very low risk of secondary infections, which is superior to that of18

a 14-day quarantine policy with 90% adherence. Our analysis shows that the timing of these sequential19

tests is important because suboptimal testing schedules may substantially increase the risk of secondary20

infections.21

Another important difference of our work compared to that of Larremore et al. 2021 and Wells et al.22

2020 is that we analyze settings with uncertainty on the exact day of exposure of the contact. This23

difference is important for study settings with structured contact networks that meet recurrently, such24

as workplaces, schools, healthcare facilities and households. We show that modeling this uncertainty is25

relevant for the design of an optimal testing schedule and should also account for different types of index26

cases: we cover scenarios where the index case is identified at symptom onset or by surveillance testing,27

among others.28

Our modeling analysis suggests that an optimal design of testing strategies of traced contacts after29

exposure can be effective for gradually easing quarantine requirements for essential activities where the30

costs of quarantines are high or have low adherence rates. Nevertheless, the implications of the proposed31

quarantine/testing strategies need to be evaluated with caution because they might impact the behavior32

of confirmed cases and their contacts in multiple dimensions. On the positive side, easing quarantine33

requirements may lead to higher adherence of these policies by the traced contacts and a higher proportion34

of contacts reported by an index case. On the negative side, relaxing quarantine policies may reduce35

the adoption of other mitigation measures in the community and work environments (such as the use of36

personal protective equipment and physical distancing). Further research is needed to empirically evaluate37

the overall impact of the proposed contact monitoring schemes on community transmission.38

2 Overview of the Modeling Approach39

To relate test sensitivity with infectiousness, we model the evolution of viral load of infected individuals by40

replicating the methodology used in Larremore et al. 2021. Given a set of days of exposure, we generated41

a sample of random paths describing potential scenarios of viral load evolution over time. Individuals42

become infectious when their viral load exceeds 106 cp/ml. Each viral load path is simulated using five43

control points generated as random variables: (1) the day of infection; (2) the time (since the infection44

date) at which the minimum level of detection (LOD) with PCR test is reached; (3) the peak level of45

viral load and the time it is reached; (4) the time of symptom onset for symptomatic cases; and (5) the46

time at which the infectious period ends. This simulation procedure is illustrated in Figure 1, where the47

horizontal axis is a timeline, with t = 0 representing the time at which the index case is confirmed and the48
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Figure 1: Description of the simulation of viral load paths. The horizontal axis represents a timeline, with
t = 0 representing the date of detection of the index case and its contact. Each gray line indicates one simulated
viral load path of the infected contact, which is generated randomly using 5 control points shown with squares for
2 independent paths (with light and dark colors). Control 1 is the day of infection, which in the example includes
days -1 and -2 for each respective path. Control point 2 is the day on which a viral load is detectable by PCR.
Control 3 is generated only for symptomatic cases and corresponds to the day of symptom onset (represented with
a dark circle). Control 4 is the peak viral load and the day it is attained. Control 5 is the day at which the
infectious period ends and indicates the slope of the viral load decline. Red dots indicate the infectious days on
each viral path; individuals self-isolate the day after presenting symptoms; therefore infecting days post-symptoms
are averted. The top part of the figure shows the probability that the infected contact is contagious on that day
(excluding days where infection is averted). Expected infecting days, which are conditional on the contact being
infected, are equal to the sum of these probabilities.

individual is identified as contact. Exposure dates of the contact occur during or before the confirmation1

date (t ≤ 0). Further details on the simulation, including the probability distributions used to simulate2

the control points, are described in the Appendix B.3

The red points in Figure 1 show the days on each path in which the individual was infectious, i.e.,4

when the viral load exceeds the level of infectiousness (106 cp/ml). Symptomatic cases are assumed to5

self-isolate after symptom onset, whereas asymptomatic cases are not isolated and therefore continue to6

infect throughout the infectious period. Conditional on being infected at exposure, the probability that the7

individual is infecting others on a given day is the fraction of sample paths that are above the infectiousness8

threshold on that day. The expected number of infecting days is the sum of these probabilities across9

all days after the first exposure date. An example of these calculations is provided in Figure 1 for the10

illustrative sample paths that were simulated. In the actual simulation, we consider 200,000 sample paths11

for each exposure date. The probability distribution of the exposure data is described next.12

4



2.1 Modeling uncertainty in the exposure time1

Our methodology incorporates uncertainty on the day in which the contact has been infected, considering2

a range of possible exposure days of index case with the traced contact. This modeling approach is more3

realistic in settings with structured contact networks that interact frequently (e.g. school and workplace).4

The uncertainty in the exposure time is modeled using a probabilistic approach, deriving the prob-5

ability distribution for the days in which the transmission from the index case to the contact may6

have occurred; this probability distribution is used to simulate the contact’s viral load. Specifically,7

let t ∈ {0,−1, . . . ,−14} represent the set of possible exposure days, where t = 0 is the day of index case8

confirmation (we consider up to two weeks before confirmation as possible exposure dates). Infection9

occurs on day t when: (i) the index case is during the infectious period on that day, which is presented by10

the probability pt; and (ii) the contact was not previously infected and transmission from the infectious11

index to the susceptible contact. The latter is represented by the infectivity parameter β, which represents12

the transmission probability, conditional on the index case been infectious.13

The probability distribution pt (index case is infectious on day t) depends on how the index case14

was detected at t = 0. The model considers three types of index case detection: (1) symptomatic index15

case detected at symptom onset; (2) asymptomatic index case detected by a randomly performed LFA16

test; and (3) asymptomatic index case detected by a weekly surveillance screening with LFA test. To17

compute pt on each of these three scenarios, we simulate a large sample of viral load paths of the index18

case starting on each possible infection date t ∈ [−14,−1]. From this large sample, we select the paths19

that are feasible with the index case detection on t. For example, for the scenario where the index case is20

detected at symptom onset, only the simulated paths that present symptoms on day t = 0 are selected.21

For the scenario detected by a random LFA, the selected paths include the simulations with viral load22

above the LOD (105cp/ml)) on day t = 0. Using this selected sample, pt is computed as the fraction of23

selected paths that exceed the infectious threshold (106) on day t. The top panel of Figure 2 shows the24

calculations of pt for the three scenarios considered in the model. The area under the curve represents25

the average number of days in which the index case was infectious previous to detection.26

Conditional on been infectious, the probability that the index case infects the contact on a given day27

is given by the infectivity parameter β (we assume that the infectivity is constant during the infectious28

period, that is, when the viral load is above 106). Define the events: (i) St= the contact has not been29

infected up to time t; and (ii) It= index case is infectious at time t. The probability that the contact is30

infected at day t can be expressed as:31

rt = β Pr(It|St) ·
∏

j≤t−1

(1− β Pr(Ij |Sj)),

where the term in the product represents the probability that the contact was not infected up to time32

t (i.e. Pr(St)). Appendix B provides further details on how to compute rt using simulation methods.33

Conditioning on the event that the contact was infected, the probability that the exposure occured in day34

t is obtained by normalization, rt
/
∑−14

j=0 rj . Note that this exposure time distribution depends on the35

infectivity parameter β. The bottom panel of Figure 2 shows the (normalized) probability distribution of36

the exposure date for an infected contact for two values of β equal to 0.1 and 1.0 (Low and High) under37

the different scenarios of index case confirmation. As the figure illustrates, increasing the infectivity38

parameter β moves the distribution of the infection time to the left, because the the exposure time is39

more likely to occur during the first interactions of the index case with the contact. This effect is larger40

for the scenario where the index case is detected at symptom onset, which has a narrower range of possible41

exposure days. The figure suggests that for the other two scenarios (random LFA test and weekly LFA42

test), the exposure time distribution is not very sensitive to the infectivity parameter.43

The simulations were generated using multiple values of β (0.01, 0.1, 0.5 and 1.0) to assess whether44

the efficiency of the testing schedules are sensitive to the infectivity profile. This is important because45

infectivity may vary depending on the context, including the usage of personal protective equipment,46
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Figure 2: The top panel shows the probability of the index case been infectious on each day prior to the confirmation
date (t = 0). Each facet describes a different scenario on how the index case was detected: (i) at symptom onset;
(ii) asymptomatic detected with a random LFA test; (iii) asymptomatic detected with a weekly surveillance LFA
test. The bottom panel shows the distribution of the exposure time of a contact that was infected on or before the
index confirmation date, for each scenario. The distribution is calculated using two infectivity parameter values,
Low (0.1) and High (1.0). The overlap between these distributions is shown in purple color.
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indoor ventilation, vaccine adoption, type of contact (e.g. household) and potential risk factors (Hu et al.1

2021).2

2.2 Modeling testing strategies3

Expected infecting days can be reduced with contact tracing and immediate quarantine. Note that4

quarantine at t = 1 does not fully mitigate the contact’s infecting days because the infectious period of5

the contact may start before the index case was detected. As an alternative to quarantine, identified6

contacts may continue with active circulation with a test schedule to detect a potential infection, thereby7

reducing the costs of unnecessary quarantines when the contact case has not been infected. A test schedule8

is defined as a set of test interventions on specified dates, where each test performed has an associated LOD9

and delay to inform the test result. Two types of tests were considered for this analysis: (1) PCR test,10

with LOD=103 and a one-day delay to report results; and (2) LFA test, with LOD=105 and immediate11

reporting (zero delay).12

The sensitivity of the test depends on the scheduled date and its LOD. The false negative rate (FNR)13

of a test is defined as the probability of obtaining a negative test result on an infected subject. In our14

simulation, the FNR can be calculated as the fraction of sample paths with viral load below the LOD of15

the test. The panel of Figure 3 illustrates an example of a test schedule with one LFA test implemented16

one day after the index case detection (t = 1). When obtaining a positive test, the contact is immediately17

isolated, and the identified infecting days correspond to the purple dots shown in the figure. Negative18

results filter out all the sample paths with viral loads above LOD=105 on day t = 1: all of these paths19

are discarded; therefore, an infected individual could evolve on only one of the remaining paths with viral20

loads below the LOD on the test date. The discarded paths are “grayed-out“ in the figure, and their21

infection days are eliminated.22

If the contact was infected at exposure with the index case, the red dots in Figure 3 represent the23

possible infecting days when the contact remained active in the community after a false negative test24

result. The fraction of paths above the infectious threshold that have not been isolated represents the25

probability that the individual is infectious on that day. These infecting days, which are referred to as26

the residual risk (van der Toorn et al. 2021), are generated by the paths that were not filtered out by the27

LFA test on day 1. Considering both scenarios, namely, a true positive and false negative test result, the28

expected infecting days (conditional on infection at exposure) is equal to 3.07 in this example (shown in29

the bottom-right of the top panel).30

The middle panel of Figure 3 shows a test schedule with an LFA test performed at day t = 3. Note31

that the FNR drops (relative to a test on day 1) because a larger fraction of sample paths exceeds the32

LOD on day 3, thus implying a higher test sensitivity. The expected infection days for individuals with33

positive test results increase for this test schedule; however, this increase is compensated with a large34

reduction in the residual risk of false negative results. The overall effect is that delaying the LFA test35

from day 1 to day 3 reduces the overall expected infection days from 3.07 to 2.24.36

The bottom panel of Figure 3 illustrates a test schedule with two sequential LFA tests conducted37

on days 1 and 3. A comparison of this strategy with the previous one with a single LFA test on day 338

showed that the remaining paths after a negative test result on day 3 are the same in both cases (hence39

their residual risk is the same). However, the first test on day 1 was capable of detecting infected contact40

in scenarios where infection occurred on earlier exposure dates, which reduces the infection days for the41

scenarios that are detected with the LFA test on day 3. This initial “filtering“ of cases at day 1 also42

increases the FNR of the LFA test on day 3. Altogether, incorporating an additional LFA test on day 143

to a test scheduled on day 3 reduces the expected infecting days from 2.24 to 1.55.44

The above examples are provided to illustrate our modeling approach, which can also be applied to45

PCR tests by adjusting the LOD and delaying case isolation by one day after a positive result. We applied46

this methodology to study all possible test combinations that can be generated with up to two PCR tests47

and five LFA tests within the 8 days following the index case detection date, considering different numbers48
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of tests and testing dates.1

The results of the analysis are presented next. All the data used in this analysis is synthetic and2

generated via simulation using Python and R code, to be made publicly available.3

3 Results4

We evaluated all testing policies considering a maximum of 2 PCR and 5 LFA tests. Figure 4 shows the5

results for the scenario where the contact was exposed to an index case detected at symptom onset. The6

top panel shows the performance of different numbers and combinations of tests, thus allowing two tests of7

different types on the same day, and different values of the infectivity parameter β (0.01, 0.1, 0.5 and 1.0).8

Each dot in the plot shows the expected infecting days of a feasible testing policy for a fixed infectivity9

parameter. The dispersion across testing policies is illustrated with dot plots and box plots, and the10

policies are grouped by the number of PCR and LFA tests used, with each pair (#PCR,#LFA) indicating11

the number of tests of each type. Dot plots with higher densities represent clusters of policies that achieve12

similar performance. Testing policies are ordered from lower to higher costs on the horizontal axis; because13

PCR tests are typically more costly, policies within the same group are reported in increasing order of14

PCR tests. We notice that the costs of PCR testing can be lowered by pooling specimens from multiple15

samples; however, this cost reduction is less effective when prevalence is high, as would be expected with16

effective contact tracing (Cherif et al. 2020).17

The horizontal red line shows the expected number of infecting days of the traced contact when18

he/she remains active in the community until self-isolation only at symptom onset (for asymptomatic19

cases, there is no isolation), giving an upper bound of 5.44 expected infecting days when neither testing20

nor quarantine are used. The horizontal blue line shows the lowest expected number of infecting days21

of the traced contact if he/she is immediately quarantined upon confirmation of the index case (with22

100% adherence), and it is equal to 0.26 expected infecting days, which represents a lower bound on the23

performance of all possible testing policies. The analysis suggests that with four tests, the averted risk24

reaches this lower bound; therefore, all reported results are limited to 4 tests or fewer (LFA and PCR25

combined).26

For each pair (#PCR,#LFA), we identified the optimal policy by selecting the testing schedule that27

minimizes the expected infecting days; we found that the optimal testing schedule was similar across all28

the parameter values of infectivity (β) that were used to simulate the exposure time distribution, with29

some exceptions. An example where the optimal policy changes with β is when a single test is available:30

the simulations using a higher infectivity parameter suggest that earlier testing is more efficient to avert31

risk, because it is more likely that the contact was exposed earlier (see Figure 2). When the optimal testing32

schedule changes depending on the infectivity parameter, we also identify the policy that minimizes the33

worst-case scenario (i.e. highest expected infecting days) across all values of β, hereon referred to as the34

robust testing policy.35

The middle panel of Figure 4 shows in further detail the performance of the robust testing policy for36

each pair (#PCR,#LFA). The small squares represents the average expected infecting days and the gray37

rectangles the range of expected infecting days, across all the values of the infectivity parameters used in38

the simulation. The error bars indicate the 10% and 90% percentiles of the number of infecting days across39

all the simulated sample paths for the selected policy. This graph also includes two additional benchmarks40

indicated by the light blue and purple horizontal lines, which correspond to a 14-day quarantine with 90%41

and 80% adherence (with full isolation at symptom onset).42

The bottom panel shows in further detail the days in which the tests are performed for the robust43

testing policies (black squares represent the days when the PCR/LFA tests should be performed). For44

visualization purposes, this detailed testing schedules are only shown for the policies with the lowest45

expected infecting days for a given number of tests (In Appendix D, Tables 1, 2, and 3 show the detailed46

testing schedules for all the policies).47
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Figure 3: Examples of test schedules for an infected contact and their impacts on the infecting days.

The top panel shows a schedule with the LFA test on day 1 after index case confirmation. Purple dots indicate
infecting days for the contact when detected by the test; and red dots show the infecting days for undetected cases.
Viral paths are shown in light gray after they are detected by the corresponding test. The middle panel shows the
performance of an LFA test on day 3. The bottom panel shows the performance of two sequential LFA tests on
days 1 and day 3, with the yellow dots representing the infection days for the scenarios that are detected with the
second test.

9



Figure 4: Evaluation of testing policies for a traced contact exposed to an index case identified by

symptom onset. In the upper and middle panels, the horizontal axis contains the number of PCR and LFA
tests. Blue, green, purple, and red horizontal lines correspond to the average infecting days when traced contact
is quarantined for 14 days with adherence of 100%, 90%, 80%, and 0%, respectively. In the upper panel, each dot
displays the performance of a testing schedule and infectivity parameter, and the lower and upper limits of boxes
are the 25% and 75% quartiles. For the robust testing policies, the middle panel displays the average expected
infecting days (small squares), the range of the expected infecting days across all parameters (gray rectangles) and
the 10% and 90% percentiles. The lowest panel shows the schedule of the robust testing policy for each group of
tests.
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Figure 4 suggests that sequential testing strategies can be an effective alternative to quarantines to1

avert secondary infection risk of traced contacts. For example, two LFA tests can lead to a lower risk2

relative to a 14-day quarantine with 90% adherence; and three tests (1 PCR combined with 2 LFA) can3

be as effective as a quarantine with 95% adherence.4

However, the results also suggest that the timing of these tests is highly relevant. The optimal schedule5

of the two LFA tests is on days 1 and 3, thus leading to 0.73 expected infection days. However, changing6

to a testing schedule on days 1 and 2 deteriorates the performance to 1.38 expected infecting days, thereby7

almost doubling the risk relative to the optimal strategy. Similarly, when using 2 LFAs and 1 PCR, the8

optimal schedule on days 1 and 2 for the LFA and day 3 for the PCR leads to an average of 0.54 infection9

days compared to 1.35 days when using a schedule of LFAs in days 1 and 2 and PCR at day 1 (a 150%10

increase in the risk of secondary infection). The top panel of Figure 4 shows significant dispersion on11

the performance across testing strategies using the same number of tests, suggesting that optimizing the12

dates of the tests matters.13

Figure 5 shows the results for the scenario when the contact was exposed to an index case detected by14

a LFA test. In this scenario, the index case has no symptoms at the moment of detection and hence could15

be presymptomatic or asymptomatic, which in turn affects the possible dates of exposure. Specifically,16

since we model an environment where contacts are recurrent, the range of possible dates of infection is17

longer when the index case is asymptomatic (see Figure 2). This longer time period of exposure increases18

the likelihood that the contact is already infectious at the time the index case is detected. Consequently,19

the lower bound represented by the blue horizontal line, which was attained with immediate quarantine20

of the traced contact at t = 1 and 100% adherence, leads to an expected infecting days of 0.78, which is21

significantly higher than the 0.26 bound attained when the index case is detected at symptom onset, see22

Figure 4. The upper bound, illustrated by the red line, is the expected infecting days without quarantine23

or testing, with isolation only at symptom onset. Hence, this upper bound does not depend on the24

exposure time of the contact.25

In qualitative terms, the results of Figure 5 (i.e. index case detected by LFA) are similar to those26

obtained in Figure 4. Two LFA tests with optimal testing time reduce the secondary infection risk relative27

to a 14-day quarantine with 90% adherence, and adding a third LFA test attains a lower risk relative28

to a quarantine with 95% adherence. The optimal testing schedule for each PCR/LFA combination was29

similar across all the infectivity parameters applied in the simulation.30

The two scenarios analyzed in Figures 4 and 5 differ in the probability distribution of the exposure31

days (presented in Figure 2). An intermediate scenario can be analyzed when the index case is detected by32

a weekly surveillance LFA test, with a range of 7 exposure days prior to index case detection. The results33

of this scenario, as reported in Figure 1 in the Appendix, are qualitatively similar to those obtained34

in the previous two scenarios. The main difference is that the lower bound attained with immediate35

quarantine with 100% adherence reaches 0.28, which represents a 64% reduction relative to the bound36

attained when the index case is detected with a random LFA test. Hence, increasing the frequency of a37

surveillance testing program is useful for improving the case detection rate and simultaneously increasing38

the efficiency of contact tracing.39

4 Discussion40

Most countries use quarantines for traced contacts and isolation for confirmed cases of COVID-19, with41

the purpose of avoiding the further spread of the virus. These strategies are costly, and qualitative studies42

show that adherence to them is highly dependent on risk perception and the degree of monitoring by the43

health authority (Reynolds et al. 2008, Saurabh and Ranjan 2020).44

In this paper, we propose an alternative to quarantines for traced contacts based on sequential PCR45

and/or LFA tests (with isolation of confirmed cases) and show that by choosing the appropriate test mix46

and timing, it is possible to reach the same risks of secondary infections compared to that of strict quar-47

11



Figure 5: Evaluation of testing policies for a traced contact exposed to an index case detected by

random LFA test. In the upper and middle panels, the horizontal axis contains the number of PCR and LFA
tests. Blue, green, purple, and red horizontal lines correspond to the average infecting days when traced contact
is quarantined for 14 days with adherence of 100%, 90%, 80%, and 0%, respectively. In the upper panel, each dot
displays the performance of a testing schedule and infectivity parameter, and the lower and upper limits of boxes
are the 25% and 75% quartiles. For the robust testing policies, the middle panel displays the average expected
infecting days (small squares), the range of the expected infecting days across all parameters (gray rectangles) and
the 10% and 90% percentiles. The lowest panel shows the schedule of the robust testing policy for each group of
tests.
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antines (100% adherence). For example, the use of 4 consecutive LFAs since notification or 3 consecutive1

LFAs since notification and 1 PCR on the third day is equivalent to a 100% adherence quarantine.2

When considering more realistic adherence to quarantines of 80-90%, a testing approach that consists3

of two or three LFA tests can actually attain a lower risk of secondary infections compared to those with4

quarantines. We show that the optimal timing of these tests is important to effectively avert infectiousness5

of the exposed contact. For example, in the case of an index case detected at symptom onset, conducting6

LFA tests on the first and third days after contact is determined is more effective at averting secondary7

risk infections relative to a 14-day quarantine with 90% adherence (assuming 100% compliance in the8

isolation of the contact when confirmed by a positive test).9

Our modeling analysis captures three important aspects that determine the effectiveness of sequential10

testing to reduce the infection risk of traced contacts.11

First, for a number of available tests, not all feasible schedules lead to good results; therefore, among12

all possible test allocations during the contact tracing period, choosing the optimal one leads to significant13

differences in terms of effectiveness in reducing secondary infection risk.14

Second, for a given number of available tests, using LFA tests to avoid quarantines dominates PCR15

testing (or PCR/LFA combinations). This result extends the conclusions of Larremore et al. 2021 ob-16

tained when analyzing surveillance testing strategies. Using PCR is effective to confirm traced contact17

while maintaining strict quarantine; however, when compliance with quarantine is imperfect, the delay18

in reporting results increases the risk of secondary infection. This risk can be more effectively managed19

with a lower-sensitivity LFA test with immediate results, and its cost is usually lower.20

Third, our analysis suggests that in environments with structured contact networks with recurrent21

risk of exposure, the effectiveness of quarantines and post exposure testing of traced contacts depends22

on how the index case is detected. In this environment, asymptomatic index cases may lead to a wider23

range of possible exposure dates, thereby increasing the likelihood that the exposed contact is already24

infectious at the time of case notification. Increasing the frequency of surveillance testing is useful for25

reducing this risk, thereby improving the efficiency of the contact tracing strategies analyzed in this26

work. Interestingly, although the effectiveness of post exposure testing varies depending on the range and27

probability distribution of the exposure days, the optimal testing schedules that should be implemented28

to avert secondary infection risk are relatively similar across all the scenarios that were analyzed, and29

their performance relative to quarantines with different levels of adherence was also similar.30

Our modeling approach is subject to limitations. First, we assume that confirmed cases fully adhere to31

strict isolation, which is plausible to implement in environments with stricter control, such as workplaces,32

healthcare facilities and schools, or where isolation in dedicated facilities is feasible. However, strict33

isolation may be difficult to implement in other environments, such as households or for social contact34

networks. Second, our analysis is based on simulated viral load trajectories that have been calibrated35

in previous work (Larremore et al. 2021). However, recent work in progress by Li et al. 2021 suggests36

that the viral load of new variants (such as Delta) may exhibit important differences from those reported37

for the original strains during the initial waves of the COVID-19 pandemic. Hence, our results must be38

interpreted with caution and may require further analysis with alternative models of viral load evolution.39

Third, testing strategies may lead to changes in the behavior of the traced contacts on their adoption of40

complementary prevention measures, such as masking and personal hygiene, which are relevant when the41

individual is actively in contact with the susceptible population.42

Our analysis is focused on improving contact tracing for essential workers, such as medical staff,43

teachers, and specialized workers, among others, where quarantines might heavily disturb the normal44

functioning of crucial activities. The proposed sequential testing strategy was implemented in practice at45

two schools in Chile with teachers that were identified as contacts with students or other school personnel,46

in environments with low risk of exposure (i.e. wearing mask and with air ventilation). Monitoring47

teachers through frequent testing during school activities was useful to avoid unnecessary quarantines,48

increasing in-person teaching hours and controlling anxiety on the school community. No secondary49

infections were identified from these cases.50

13



Furthermore, as countries are working on finding ways to normalize certain economic activities, foreign1

travel has been at the center of discussion. Travel has been restricted, and testing at airports and2

quarantines upon arrival have been implemented in many countries. However, these strategies will become3

difficult to implement and enforce at a large scale as airport traffic approaches pre-pandemic levels.4

Therefore, the sequential testing strategies studied in this work might become an effective alternative to5

complement quarantines for travelers or other settings where adherence to quarantine mandates is low.6
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