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ABSTRACT

This paper derives asymptotically optimal tests for testing problems in which a
nuisance parameter exists under the alternative hypothesis but not under the null. For
example, the results apply to tests of one-time structural change with unknown change-
point. Several other examples are discussed in the paper. The results of the paper are of
interest, because the testing problem considered is non—standard and the classical asymp-
totic optimality results for the Wald, Lagrange multiplier (LM), and likelihood ratio (LR)
tests do not apply.

A weighted average power criterion is used here to generate optimal tests. This cri-
terion is quite similar to that used by Wald (1943) to obtain the classical asymptotic
optimality properties of Wald tests in "regular" testing problems. In fact, the optimal
tests introduced here reduce to the standard Wald, LM, and LR tests when standard regu-
larity conditions hold. Nevertheless, in the non—standard cases of main interest, new

optimal tests are obtained and the LR test is not found to be an optimal test.

JEL Classification No.: 211.

Keywords: Asymptotics, changepoint, exponential average test, multiple changepoint test,
nonstandard testing problem, optimal test, structural change test, test of common factors,
test of cross—sectional constancy, test of variable relevance, threshold autoregressive model.



1. INTRODUCTION

This paper considers the non—standard problem of testing whether a subvector of a
parameter 8 € © C RS equals zero when the likelihood function depends on an additional
parameter 7 € I1 under the alternative hypothesis. A variety of testing problems of interest
in econometrics are of the above type. Examples include tests of one-time structural
change, of multiple structural changes, of cross—sectional constancy of parameters, of the
threshold effect in threshold autoregressive models, of common factors in autoregressive-
moving average models, and of variable relevance and functional form in nonlinear models.
In the structural change case, for example, the parameter 7 that appears under the altern-
ative but not under the null is the time of structural change.

The purpose of this paper is to derive asymptotically optimal tests for the testing
problems described above. This is of interest because the classical asymptotic optimality
properties of Wald, Lagrange multiplier (LM), and likelihood ratio (LR) tests do not hold
in these non—standard problems.

To derive optimal tests, we use a2 weighted average power criterion function similar
to that used by Wald (1943). In fact, for any fixed value of =, the weight function we con-
sider has the same contours as that considered by Wald. The difference is that we consider
multiple values of 7 under the alternative whereas Wald’s results are applicable only for a
single value.

The optimal tests that we derive can be given a Bayesian interpretation. If one
views the weight function referred to above as a prior, then the optimal tests are of a
Bayesian posterior odds ratio form or, more precisely, are asymptotically equivalent to a
Bayesian posterior odds ratio. The optimal test statistics have two advantages over an
actual Bayesian posterior odds ratio. First, they circumvent the need for placing a prior
over those nuisance parameters that appear under both the null and the alternative.

Second, they are much easier to compute, partly as a consequence of the first advantage.



The optimal tests are of an average ezponential form. In particular, for a fixed value
of 7, let Wp(7) denote the standard Wald test of § = 0 against the alternative that §# 0
and that the value in II that is true is 7. For example, in the one—time structural change
example, 1 denotes the time of structural change as a fraction of the sample size, (6i, é)'
denotes the true parameter vector before structural change, (61 + g, éé)' denotes its
value after structural change, and WT(1r) is the Wald test of § = 0 against the alternative
that §# 0 and change occurs at time 7. Returning to the general case, an asymptotically
optimal test in terms of weighted average power in the class of all tests of asymptotic sig-

nificance level a is based on the statistic

(1.1) Exp-Wq = (1+c)_p/2 Jexp [51_,- T-(I:-—CWT(")] dJ(x) .
Here, p is the dimension of §, J(-) is the weight function over values of 7 in II (such as
uniform or [, 1 — 1r0] for some ) > 0 in the one—time structural change case), and ¢ is a
scalar constant that depends on the chosen weight function and determines whether one is
directing power against close or distant alternatives. The choice of ¢ is discussed below.
Exponential LM and LR tests are defined analogously to Exp—WT with the stand-
ard LM(7) and LRp(7) test statistics replacing Wr(7). The exponential LM and LR
tests are also found to be asymptotically optimal tests.

The likelihood ratio test is of the form sup LRT(vr), which is not of the optimal
mell

average exponential form. It is found to be a limit of an average exponential test, but only
if one considers the limit as a parameter is pushed beyond an admissible boundary. Thus,
the likelihood ratio test is not found to be an optimal test. Simulations reported in
Andrews, Lee, and Ploberger (1992) show that an optimal exponential test dominates the
likelihood ratio test over a fairly wide variety of alternatives.

The general optimality properties of exponential tests are established here under a
set of high—level assumptions. These assumptions are verified in the paper under primitive

conditions in the leading example of one—time structural change with unknown change



point. The general results are also applicable to a number of other examples as mentioned
above. For brevity, primitive conditions under which the general high level assumptions
hold are not given for each of these examples.

The examples covered by the general results include:

(i) Tests of One—Time Structural Change: This example is described in detail in Section 7

below.

(ii) Tests of Multiple Structural Change: This example consists of a parametric model
with parameters (§:, 65)' that may undergo m changes at unknown times (Tvrl, ey Tvrm)
for 0 < A< < < 1, where T is the sample size, f €(0,1) Vj<m, and m is some
given integer. Under the alternative hypothesis, the true parameter vector is (67, 6é) for
t < Ty, (6i + 81, 6é) for Try <t < Ty, .., (61 + B 1 ‘6§)' for Tr_, <t ¢ T,
and (Ji + B, é) for Tz <t<T. Under the null hypothesis, ‘the parameter
g= (ﬁi, ceny ﬁﬁl)' =0 and the distribution of the data does not depend on
1= (7, ) )

(iii) Tests of Cross—sectional Constancy: In this example, the observations are indepen-
dent and the unknown parameter = partitions the sample space of some observed vari-
able(s) into m+1 regions. In one region the model is indexed by the parameter (4, Jé)'
and in other regions it is indexed by (61 + ﬁj, 6é)' for j<m. For example, in a linear
regression model, 7 might be an unknown real number that partitions the regressor space
into two regions according to whether a single regressor xlt exceeds 7 or is less than .
Alternatively, = might be two unknown lines in R? that partition the regressor space of
two regressors (Xlt’ th) into four regions. The extension to different parametric models

is straightforward.

(iv) Tests of Threshold Effects in Threshold Autoregressive (TAR) Models: The simplest
TAR model is of the form



Y, + U, for Y,

(6, +8)YY, 1+ U forY, ,>n

<

(1.2) Y, =

t fort=1,..,T,

where U, ~ iid N(0, 8,)- This model and generalizations of it, including smooth transition
AR models, have been appliéd in the physical and biological sciences, e.g., see Tong {1983,
1990), as well as in economics, e.g., see Potter (1989), Terdsvirta and Anderson (1991), and
Hansen (1991a). A test of a threshold effect, viz., ]'1’0 : =0 versus H1 : f# 0, exhibits the
feature that the threshold parameter 7 appears only under the alternative. Note that in
smooth transition AR models the parameter = is not necessarily scalar. It is given by the

vector of parameters that index the transition function.

(v) Tests of Common Factors: Consider a stationary ARMA (1,1) model parameterized as
(1.3) Y, —7Y, ;=(1-71)6 + U, —(7+ AU, jfort=1,..,T,

where U, ~iid N(0, §,). Let 6= (§, 5')', where § = (61, 6y)’. The null hypothesis for a
test of a common factor in the antoregressive and moving average components of the model

is given by HO : = 0. Under the null, the model is Yt = 61 + Ut’ which does not depend

on 7. Under the alternative, however, all four parameters g, 51, b,, and = are identified.

(vi) Tests of Variable Relevance and Functional Form in Nonlinear Models: Consider the

nonlinear regression model
(1.4) Y, =g(X,, 6,) + Mz, r)+ U fort=1,..,T,

where U, ~ iid N(0, 6,). For example, if Z, is a scalar, h(Zt, 7) might be of the Box—Cox
form (Zf— 1)/7. Let 6= (8, 6’)', where § = (62, 62)'. Suppose X, and Zt are exogenous
regressor variables. A test for the relevance of the regressors Zt has null hypothesis
H0 : = 0. Under the null, the parameter vector 7 disappears because the Tegressor vector
Zt does not belong in the model. The extension of this test to other parametric models is

straightforward. We note that the general results below cover the case where 7 is finite or



infinite dimensional, although the resulting optimal test statistic may be difficult to com-
pute if 7 is infinite dimensional.

If one takes Z, = X, in model (1.4), then a test of H,: B = 0is a test of functional
form of the nonlinear regression function and is covered by the general results of this paper.
Neural network tests of functional form and some consistent tests of model specification are
designed for this testing problem. The results of this paper provide optimal forms for the

test statistics in these cases.

We note that several of the testing problems considered above have been analyzed
recently by Hansen (1991a), though he does not address the question of choosing an opti-
mal test. We also note that tests of regime switching in switching models with unobserved
regimes (which includes tests of homogeneity in mixture models) are not covered by the
results of this paper.2

The remainder of this paper is organized as follows. Section 2 reviews related litera-
ture. Section 3 introduces the testing problem under consideration and the optimal test
statistics. Section 4 provides an outline of the proof of optimality. Section 5 presents and
discusses the assumptions employed, the optimality results, and the asymptotic null distri-
bution of the optimal test statistics. Section 6 discusses the choice of a scalar constant c
that indexes the class of optimal exponential test statistics. Section 7 treats the case of
tests of structural change in nonlinear models with non-trending observations. Primitive

conditions are given for these applications under which the assumptions of Section 5 hold.

2. RELATED LITERATURE

Here we briefly discuss results in the literature that are related to the optimality
results given here. First, Davies (1977) has established the asymptotic optimality as the
sample size T goes to infinity and the significance level a goes to zero of the likelihood ratio

test (i.e., the sup LR test) in the context considered here. His results for scalar parameters



are extended to vector—valued parameters in Andrews (1989). These optimality results are
very weak, however, and are not indicative of finite sample performance. The reason is
that the power of the likelihood ratio test with unknown 7 is equivalent to that with known
7 when T+ o and o+ 0. This equivalence is not found even approximately with typical
sample sizes and significance levels.

Second, Chernoff and Zacks (1964, Sec. 8) have derived the average LM test statis-
tic (i.e., JLMT(r)dr) via a local Bayesian approach in a very simple model of structural
change with unknown changepoint. They consider iid normal variables with known vari-
ance and a mean that is subject to one—time change. They put a half~normal prior with
variance v on the magnitude of change (which is appropriate for one-sided alternatives,
such as positive changes in the mean), a normal prior with variance 72 on the pre—change
value of the mean, and a uniform prior on the changepoint. They then show that the (one-
sided)} likelihood ratio statistic when these priors are used to specify the alternative is
asymptotically equivalent to the (one—sided) average LM statistic as v - 0 and a0
This approach has been extended by Gardner (1969) to two—sided tests in the model above,
by Sen and Srivastava (1973) to multivariate normal random variables, and by Jandhyala
and MacNeill (1991) to the normal linear regression model. Farley and Hinich (1970)
present closely related results for the simple linear regression model.

Although the results of Chernoff and Zacks (1964) et al. are useful and interesting,
we believe they have several drawbacks relative to the results giver in the present paper.
First, the tests are designed to have power against very local alternatives — alternatives
that are so close to the null that only trivial power is obtained asymptotically. In contrast,
the alternatives considered in this paper are local, but are such that the tests have non-
trivial power even asymptotically. Second, the Chernofi~Zacks method requires that one
puts a prior over certain nuisance parameters that appear under the null and the alterna-
tive, such as the pre—change value of the mean. The procedure used in this paper does not

require a prior or weight function for these parameters. Third, with some effort the



Chernofi—Zacks method has been generalized to cover tests of one—time structural change
in several models. It has not been operationalized, however, in models that are nearly as
general as those covered by the results of the present paper. Nor has it been operational-
ized in the variety of testing problems (besides one—time change tests) to which the present
paper applies.

Next, Nyblom (1989) presents optimality results for tests of parameter constancy in
general parametric models. He considers martingale parameter alternatives rather than
one—time change alternatives. His results are quite interesting, but can be criticized in
that (1) they direct power only against very local alternatives and (2) they only apply
when there are no unknown parameters under the null hypothesis, which rarely occurs in
practice.

Lastly, King and Shively (1991) consider locally mean most powerful tests for prob-
lems of the sort considered in this paper. They employ a transformation of parameters,
which provides a useful alternative perspective on the testing problems under study. As
with the other papers discussed above, their tests direct power only against very local
alternatives. In addition, the particular method of averaging power in the transformed
parameter space seems subject to criticism, because it yields the fixed changepoint test
with changepoint at 7 = .5 to be optimal and this test has relatively poor overall power

properties, e.g., see Andrews, Lee, and Ploberger (1992).

3. DEFINITION OF THE OPTIMAL TESTS

In this section we comsider the general problem of testing whether a subvector
B e RP of a parameter f€ © C R® equals zero when the likelihood function depends on an
additional parameter = € I under the alternative. We introduce tests that we call the
(average) ezpomential Wald, Lagrange multiplier (LM), and likelihood ratio (LR) tests,
denoted Exp-—WT, Exp-LMT, and Exp—LRT respectively.



We begin by introducing some notation and definitions. Let (£, 7, P) denote a
probability space on which all of the random elements introduced below are defined. Let
Y denote the data vector when the sample size is T for T =1, 2, .... Consider a para-
metric family {{(y, 6, 7) : 6 € ©, 7 € I} of densities of Y. with respect to some o—finite
measure fi, where © ¢ R® and I is some topological space (usually a subset of Euclidean
space). The likelihood function of the data is given by fT(ﬂ,vr) = {p(Yrp, 6, 7). In many
cases, the likelihood function fT(B,-fr) can be written as a product of two terms, one that
depends on # and another that does mot. Often the latter term is the product over
t=1,..., T of the conditional distribution of some weakly exogenous variables at time t
given all of the preceding variables (exogenous or not). In such cases, these conditional
distributions of the weakly exogenous variables need not be known in order for one to con-
struct the test statistics considered here. The optimality results stated below hold for any
such distributions for which the assumptions on fp(6,7) hold. See Section 7 for a more
explicit discussion of the factoring of fT(G,fr) into known and unknown terms in the context
of tests of structural change.

The parameter & is taken to be of the form 4 = (4, 6')’, where # € RP, §e RY, and
s = p+q. For example, in the case of tests of one—time structural change, the parameter
7 € (0,1) indicates the point of structural change as a fraction of the sample size, 61 is a
pre-change parameter vector, 61 + fis a post—change parameter vector, and 62 is a par-
ameter vector that is constant across regimes.

The null hypothesis of interest is -
(3.1) Hy: 8= 6, where 0y = (07, 66)' for some §; € R®.

In the structural change case, this is the hypothesis of no structural change. The altern-
ative hypothesis is

H1 8= (ﬁé, 66)' for some ,60 € RP such that ‘60 # 0 and some 50 e R%and

(32)
the likelihood function depends on the parameter  for some v € I .



Under the null hypothesis, the likelihood function fT(BO, 7) does not depend on the
parAmeter 7 and is denoted fT( 00). For example, in the one—time structural change case,
if no structural change occurs, the time 7 of structural change is redundant. It is the
appearance of the parameter = under the alternative hypothesis, but not under the null,
that makes the testing problem described above non—regular and outside the domain of
standard asymptotic optimality results. In particular, the standard Wald, LM, and LR
statistics do not have their standard asymptotic distributions or their standard asymptotic
local optimality properties in the situation described above.

To derive asymptotically optimal tests of HO’ we consider local alternatives to H0
of the form fT(B0 + BElh, 7) for some 7 € II, some h € R, and some non-—random s x s
diagonal matrix B, that satisfies [B'T'l]jj-»o as T+o Vj<s. (In models with non-
trending variables, By, = vT I, where I_ is the s xs identity matrix.) For particular
weight functions (i.e., probability measures) Q w(h) on the values of h and a chosen weight
function J(x) on the values of 7, we show that the tests Exp—Kn for K =W, LM, or LR
have the greatest weighted average power asymptotically in the class of all tests of asymp-

totic significance level a. That is, these tests maximize

(3.3) 1T JP((,DT rejects| 6, + B h, m)dQ,_(1)dI(m)
- m

over all tests o, of asymptotic level a (and the TI im equals 1im for the tests Exp—KT).
+m T

Furthermore, if one considers the local alternative density jfT(BO + BElh, 7)dQ, (h)dJ(7)
to fT(eo, 7), then the tests Exp—Kr. for K = W, LM, or LR have greatest power asymptot-
ically against this alternative in the class of all tests of asymptotic level a.

The asymptotically optimal test statistics Exp—WT, Exp-—LMT, and Exp-—LRT are
defined by

(34)  ExpKp=(+)P/ 2Jexp [% ﬁ-éKT(W)] dJ(n) for K = W, LM, and LR,

where Wp(7), LM(7), and LRq(7) are just the standard Wald, LM, and LR tests, respec-
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tively, of H0 versus H, given the parameter x and ¢ > 0 is a scalar constant that depends
on the weight functions Q 1r(')' For example, for the case of one—time structural change,
Wo(7) is just the standard Wald test of structural change occurring at the time [T7] (see
Andrews and Fair (1988) for a general treatment of such tests). One rejects H, if Exp—Koq
exceeds a critical value kT a that is determined using the asymptotic null distribution of
Exp—Kr, (or its finite sample distribution in some cases).

Note that Exp—K depends on the weight functions Q,(-) only through the scalar
¢. The larger is c, the more weight is given to alternatives for which £ is large, where
8= (g, 5('))" For example, for tests of structural change, larger values of ¢ correspond to
greater weight being given to large structural changes. In the special case where J(7) is a
pointmass at a single value m), Exp—K. reduces to (1+c)_p/ 2exp [%- 'ﬁc-EKT(’rO)]’ the
optimal test rejects if and ornly if KT(TI'O) exceeds some constant (i.e., the optimal test
equals the standard Wald, LM, or LR test for fixed 1r0), and the optimal test is indepen-
dent of c. When J(7) is not 2 pointmass distribution, however, the optimal tests Exp—KT
for K = W, LM, and LR depend on ¢. The larger is ¢, the more power is directed at altern-
atives for which £ is large.

The limits as ¢ + 0 of the exponential Wald, LM, and LR statistics (suitably normal-
ized) are equal to the "average Wald," "average LM," and "average LR" statistics respec-

tively. In particular,

(3.5) lim 2(Exp—Kp, —1)/c = JKp(7)dd(7) for K = W, LM, and LR,
c+0

where Exp—KT c denotes the statistic Exp—-KT constructed using the constant ¢. Thus, the
average Wald, LM, and LR statistics are the limiting cases of the exponential Wald, LM,
and LR statistics, respectively, that are designed for alternatives that are very close to the
null hypothesis. For different models, the average LM statistic has been considered
previously in the literature by Chernoff and Zacks (1964), Gardner (1969), Nyblom (1989),
Jandhyala and MacNeill (1991), and Hansen (1990) among others.
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At the other extreme, the limits as ¢ + » of the exponential Wald, LM, and LR

statistics (suitably normalized) are given by

(3.6) lim log[(1+c)p/ 2Exp—KTc] - logJexp [éKT(w)] dJ(r) for K = W, LM, and LR.

C+wm
Thus, for testing against distant alternatives, the optimal test statistics are still of an
average exponential form. These statistics have not been considered previously in the liter-
ature.

We note that if the constant ¢/(1+c), which appears in the definition of Exp—Kr,, is
replaced by a constant r, which can take any positive value, then the limits as r + w of the
exponential Wald, LM, and LR statistics (suitably normalized) are the "sup Wald," "sup
LM," and "sup LR" statistics respectively. More specifically, let II* ¢ II be the support of
J(-). Then,

(3.7) lim(log Exp—KX)/r = sup Km(r) for K = W, LM, and LR,
I+ m T rell* T

where Exp—K,i. denotes the statistic Exp—K with ¢/(1+c) replaced by r and (1+c)p/ 2
replaced by 1. Hence, the sup Wald, LM, and LR tests are designed for distant alterna-
tives, but are of a more extreme form than the optimal test, which is of an exponential
average form. The sup Wald, LM, and LR tests have been considered in the literature by
Davies (1977, 1987), Hawkins (1987), Kim and Siegmund (1989), and Andrews (1989)

among others.

4. OUTLINE OF THE PROOF OF OPTIMALITY

We now give an outline of the proof of the asymptotic optimality properties of
Exp-WT, Exp—LMT, and Exp—LRT. (The proof yields the asymptotic null distribution of
Exp-W.or, Exp—LMn, and Exp—LRq as a by-product.) Consider the likelihood ratio sta-
tistic LR, for the alternative density IfT(BO + B'T'lh, w)dQW(h)dJ (7). By definition,

(4.1) LRy = JfT(ﬂo + BTk, 1)4Q_(0)d3(r)/fp(6,) -
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By the Neyman—Pearson Lemma, a test based on LR is a best test of a given significance
level for testing the simple null hypothesis that fT( 90) is the true density versus the simple
alternative that JfT(BO + B;lh, 7)dQ,_(h)dJ(n) is true. In addition, a test based on LRy
has the best weighted average power for weight functions Q 5 and J of all tests of a given
significance level for testing the simple null hypothesis that fT(BO) is the true density
versus the alternative that {(6, + BElh, 7) is true for some h € R® and 7 € II.

The LRT statistic, however, has two drawbacks. First, it depends on the unknown
parameter 80, and second, it involves a computationally burdensome double integral. In
consequence, we introduce the exponential Wald, LM, and LR statistics in place of LRT.
These statistics do not depend on 00 and involve only single integrals with respect to J(r),
which are usually relatively easy to compute. For example, in tests of structural change,
they just equal finite sums.

The asymptotic optimality of Exp—WT, Exp—-LMT, and Exp—LRT (Theorem 4
below) follows from the optimality of LRy if we can show that LR, Exp—Wo, Exp—LMr,
and Exp-LRy are asymptotically equivalent (i.e., LRp—Exp-Wi £, 0, Exp-Wr,
— Exp-LM, 2.0, and Exp-~LMT - Exp—LRT -2, 0) under the null and under the local
alternatives {JIT( b + B'.ITlh, 7)dQ L0)dI(m) : T2 1}. The proof of the latter requires
several steps. First, we show that the normalized maximum likelihood (ML) estimator for
each fixed , viz., Bry( f(r) — 6,), is uniformly well approximated under the null, i.e., under
fp by its linear expansion %) (Lemma 1). We then show that the LRy statistic is
asymptotically equivalent under 00 to a double integral of an exponential function of the
(unobserved) approximate ML estimator &), call this statistic L'RT (Lemma 2). Next, we
‘show that if Q?r is a particular normal distribution for each , then L'RT simplifies to a
single integral approximate exponential Wald statistic that is based on &), call it
Exp—WT (Theorem 1(b)). In addition, we show that Exp—WT is asymptotically equiva-
lent to Exp——WT under 00 (Theorem 1(c)), that EXP—WT is asymptotically equivalent to
Exp—LMT under 60 (Theorem 1(d)), and that Exp—LMT is asymptotically equivalent to
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Exp—-LR under 00 (Theorem 1(e)). This gives the asymptotic equivalence of LRr,
Exp-WT, Exp—LMT, and Exp—LRT under the null hypothesis.

Next, we obtain straightforwardly the asymptotic distribution of the approximate
exponential Wald statistic Exp—W., (Theorem 2(a)). Given the asymptotic equivalence
under 80 established previously, this yields the asymptotic distributions of LB.T ,
Exp~W.p, Exp—LMr, and Exp—LRy, under the null (Theorem 2(b)—(e)). The convergence
in distribution of LRy under 00 is used to establish the contiguity of the local alternatives
{jfT( §, + By'h, m)aQ (R)d(r) : T 2 1} to {£(4,) : T 2 1} (Lemma 3). Contiguity plus
asymptotic equivalence under 80 imply that LRT, Exp—WT, Exp—LMT, and Exp—LRT
are asymptdtically equivalent under the local alternatives {J-f’I‘(aO + BElh, m)dQ W(h)d.] (m
T 1} (Theorem 3). The latter result plus the optimality of the LR, statistic give the
asymptotic optimality of Exp—W.o, Exp—LMo, and Exp—LRp (Theorem 4).

5. ASSUMPTIONS AND OPTIMALITY RESULTS

First, we introduce some notation. Let 4p(6,7) = log fr(6,7). Let D/ (6,7) denote
the s—vector of partial derivatives of !T(G,'zr) with respect to 6. Let D2Lr(0,7r) denote the
s x 5 matrix of second partial derivatives of &T(ﬁ,r) with respect to 4. (Note that
D (8, 7) and D?4(8,, 7) depend on 7 in general even though £(6, 7) and £y (8, 7) do
not.) Let 6 denote the true value of § under the null Hy.

We consider the case where the appropriate norming factors for DLT(B,TI') and
D2LT(0,1r) (so that each is Op(l) but not op(l)) are non—random diagonal s x s matrices
BEI and B;l x BEI respectively. For non—trending data, the matrix B, is just JT I.
For data with deterministic time trends, B'I‘ is more complicated. For example, in a nor-
mal linear regression model with r non—trending regressors plus the regressors ¢ and tz, By
equals diag{yT I, T, 3/ 2}. Note that the matrices {B} that are suitable for norming

DLp(6,7) and D2LT(8,1r) dictate the form of the local alternatives fp.(6, + BElh, 7) that
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we consider, since such alternatives are the ones for which good tests have non—trivial
asymptotic power.

All limits below are taken "as T -+ o" unless stated otherwise. We say that a state-
ment holds "under 00" (i.e., under the null hypothesis) if it holds when the true density of
Yo is {T(ao,ir) for T=1,2,.. Let A . (A) denote the smallest eigenvalue of a matrix A.

The likelihood function/parametric mode] is assumed to satisfy:

- ASSUMPTION 1: (a) {1(#,7) does not depend on 7 when § = Oy

(b) 8, 1s an interior point of ©.

() fT( 0,7) is twice continuously partially differentiable in 8 for all f ¢ G-)O and 7€ I1 with
probability one under 00, where @0 is some neighborhood of 90.

(d) ~—B;1D2&T(0,1r)B;1 ~L, 1(0,7) uniformly over €11 and ¢ ©, under §, for some
non—random s x 8§ matriz function I(6,7) and some sequence of non—random diagonals x s
matrices {By : T > 1} that satisfies [BT]jj +0asTHu Vj<s.

() I(0,7) is uniformly continuous in (7,6) over II x 0.

() Z(8y, 7) is uniformly positive definite over 7 € 11 (i.e., :r:lif AmintZ(6y, 7)) > 0).
—1 N
(g) :'EIPI"BT Dép(fy, m = Op(l) under 0.

The matrix function I(#,7) introduced in Assumption 1 is the asymptotic information
matriz for @ for given 7, which depends on both # and 7.

We briefly comment on Assumption 1. Assumption 1(a) specifies the crucial feature
of the testing problem under consideration. Assumptions 1(b) and (c) are standard
maximum likelihood (ML) assumptions (though ML regularity conditions that do not
require differentiability in 6§ exist). For a fixed value of =, Assumption 1(d) can be verified
under standard ML assumptions using a suitable weak law of large numbers (WLLN). Uni-
form convergence over 7€ Il can then be obtained, e.g., by using the generic uniform
convergence results in Newey (1991) or Andrews (1992). Assumptions 1(e) and (f) also are

standard ML assumptions except that they are required to hold uniformly over values of
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the nuisance parameter 7 € II. Nevertheless, Assumption 1(f) does not hold even for a fix-
ed value of 7 in mixture models or, more generally, in regime switching models with unob-
served regimes. The uniformity requirements in Assumptions 1(d)—(f) restrict the class II
that can be considered. For example, in the one—time structural change case, uniformity
requires that the closure of II is bounded away from 0 and 1. That is, one cannot consider
change points that are arbitrarily close to the beginning or end of the sample. In the
regime switching example with observed regimes, uniformity requires that II is such that
the probability of a regime occurring is not arbitrarily close to 0 or 1. Assumption 1(g) is
implied by Assumption 4 below, so we defer discussion of it.

Let &(x) (= @T(ar)) be the (unrestricted) mazimum likelihood (ML) estimator of 6 for
fixed 7 € TI. That is, 8(r) satisfies

(5.1) bp(8(m), m) = nglzg Lp(8,m) Ve Tl

with probability that goes to one as T + o under 00. We assume that the parametric model
is sufficiently regular that the ML estimator f(x) is consistent for 6, under the null

hypothesis uniformly over 7 € II.

ASSUMPTION 2: sup||#() — 6| - 0 under ¢ .
7ell

For some applications, this assumption can be verified using results in the literature. In
other cases, one can use a result given in Andrews (1989, Lemma A-1), which provides suf-
ficient conditions for uniform consistency of a family of estimators. These conditions entail
uniform convergence of the criterion function to some limit function and a uniform identifi-
ability condition on the limit function.

Let @ be the restricted mazimum likelihood estimator of 6. That is, 0 satisfies
Be®={6co:0=(0",86) forsome 5€ R} and

LT(?,W) = max p(b,m)
00

(5.2)
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with probability that goes to one as T + o under 00. Note that since &T(B,vr) does not
depend on 7 when @ is in the null hypothesis, # does not depend on .

For known = € Il, the standard Wald, LM, and LR test statistics for testing H(}
against H, (as defined in (3.1) and (3.2)) are given by

| , , -1
Wo(r) = (BB d(x) BRI (d(n), OB | EByd(x),

LMp(7) = [BEID&T(?J)] 171 (0,mB Dey(9,7), and

LR (7) = —2(&p( or) — &r( #(), 7)), where
H=[1,} 0] c RP* and Ip(6r) = -B7'D% (4B .

Alternatively, one can define I T(9,1r) to be of outer product, rather than Hessian, form.
Note that only the first p elements of BEIDLT(P,W) are non—zero in the definition of
LM(7), because 'g'b'&l‘( 8,7) = 0 by the first order conditions for the restricted estimator @
(with probability that goes to one as T + »). Also, note that the LMT(vr) statistic is con-
structed using only the restricted ML estimator # and, hence, only requires estimation of
the model one time. This has considerable computational advantages, especially in non-
linear models.

The exponential Wald, LM, and LR statistics, Exp—WT, Exp—LMT, and
Exp—LR, respectively, are defined by combining (3.4) and (5.3).

As shown in the following lemma, the (unrestricted) ML estimator #(7), suitably
shifted and scaled, can be approximated under 00 by the score function DET(BO, T) suitably

scaled. We refer 10 the latter as the approrimate ML estimator @(x). By definition,

(5.4) Ur) = 7718, HBLDLL(4,, 7).

LEMMA 1: Under the null hypothesis and Assumptions 1 and 2,
SEIQIIIBT@(W) —8) —Hml| 0.
e

This result is useful, because the large sample properties of #(7) are usually easy to deter-
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mine. For each fixed #, 0(r) usually satisfies the conditions for a central limit theorem.
For example, in the simple case of independent identically distributed (iid) random vari-
ables (rv’s), 9(n) is just 1/y/T times the sum of T iid rv’s that typically have mean zero and
finite variance.

We now show that the LR statistic of (4.1) is asymptotically equivalent to the fol-

lowing function of the approximate ML estimator &(r):

(55) TRp= J exp [%?(w) 126, 1) 1r)] Jexp[ L(0(m)b) 1(6 1r)('9(1r)—h)] 4Q_(h)dI(r) .
To obtain this result, we assume ITand {Q_: 7€ I1} satisfy:

ASSUMPTION 3-: {Qw(') : € 11} is uniformly tight (ie, Ve >0 3M <o such that
Q ({h € R®: ||b]] > M}) < ¢ Vre I, where |- || is the Buclidean norm).

Assumption 3’ is satisfied by the particular weight functions {Q 7r(') : 7€ I1} that are

introduced below.
LEMMA 2: Under the null hypothesis and Assumptions 1, 2, and 3°, LRq —~ IRT -£,0.

Next we introduce a particular choice for the weight functions {Q_(-) : 7€ IT} that
allows the double integral in L'RT to be reduced to a single integral. For each 7, the
chosen weight function Qﬂ_(-) gives constant weight on the same ellipses in © as were con-
sidered first by Wald (1943) in his demonstration of the property of asymptotically greatest
weighted average power of Wald tests for the (now standard) testing scenario where 7 is
fixed and known. These ellipses are also the same ones over which the power of asymptot-
jcally invariant tests are required to be constant when considering locally most powerful
invariant tests in the testing scenario where 7 is fixed and known. The chosen weight
functions er( +) are natural from a theoretical perspective in that they give equal weight to
alternatives that are equally difficult to detect when 7 is known — no direction away from
the null is favored over any other.

Let V denote the linear subspace of R® defined by
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(5.6) V={0eR%: 0=(0", §) for some é ¢ RY} .

The null hypothesis can be expressed as H0 :0€®=0nV. For eath 7 € II, we consider a
weight function Q_(-) on R® that concentrates on the orthogonal complement of V with
respect to the inner product <h,£>7r = h'I(BO, mifor h, L€ RS; call it V‘;r. Since Visagq
dimensional subspace of R®, V; is a p dimensional subspace of R®. Let {2y, a, - be

some basis of V;“r and define A,’r = [ahr “en e R®P. For example (by the proof of

2r
Lemma A-1 in the Appendix), one can take

I ( ) 1r17r 1271'
5.7 A_= , where I(4., 7) =
57) T |17l 0 I, 1
3r° 27 27 “37

p=p pxq a=q
forIlweR ,I%ER , and IMER . In consequence,

A
for some ) € RP

17170

(5.8) Vi={heR’:h=| _
3" 27

Next, define

rs —1 ’
T, = A (A1(0, mA YA,

-1 -1
1., _ 1., -1
(5' 9) [Il T 1211'1511'12 1r] - [Il T 12 1rf3:1r12 ‘lr] 12 7rI3 T

-1 -1 :
-1, 1,, -1, _ -1, 1
_137r127r{111r - I21rI§1rI 21r] I31r1 2W[Il1r I21r131r127r] I21rI§7r
Let N(0,X) denote a multivariate normal distribution with mean 0 and covariance
matrix ¥ (possibly singular).

We assume:

ASSUMPTION 3: Q. = N(o, cEw) Vre Il for some positive constani ¢ (that does not
depend on 7).

Under Assumption 3, the weight function Q, on R isa singular multivariate normal dis-

tribution with covariance matrix of rank p. (Its covariance matrix is nonsingular only in
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the unusual case where p =s. In the latter case, there are no unknown parameters under
the null.) The support of Q Tris V;. Note that Assumption 3 implies Assumption 3’ when
1( 00, ) satisfies Assumption 1(f). Hence, the conclusion of Lemma 2 holds under Assump-
tions 1-3.

We now introduce an approximate exponential Wald statistic denoted Exp—WT.
Corresponding to the Wald statistic for known m, Wr(7), we define an {(unobserved)

approximate Wald statistic for known 7 based on the approximate ML estimator & 7) by

-1
(5.10) Wp(r) = (BH())’ [HI_I(GO, W)H’] HY(r) .
The approximate exponential Wald test statistic is defined by combining (5.10) with

—p/2 1
(5.11) Exp-Wop = (1+¢) P/ Jexp[ET-_?_—CWT(r)]dJ(vr).
We require the following assumption regarding the restricted ML estimator 8. In

particular applications it can be verified using existing proofs of the consistency of ML

estimators.

ASSUMPTION 4: (a) {T(H,vr) does not depend upon = for all 8 in the null hypothesis, i.e.,
Ve 0 nV. (b) 8L g under 4

The following result shows that when {Qw: 7 € 11} is taken as in Assumption 3,
LR, IHT, Exp—WT, Exp-Wrp, Exp—LMr, and Exp-LR. are all asymptotically equiva-

lent under 90.

THEOREM 1: Under the null hypothesis and Assumptions 14, (a) LRy -IIRT -2, ¢,
(b) ET{T = Exp—Wr,, (¢) Exp~Wrp — Exp—Wq 2,0, (d) Exp—Wr — Exp-LMq L.,
and (e) Exp—LMp — Exp-LR -2 0.

Here and in the results below that invoke Assumption 4, Assumption 4 is required only for

the parts of the results that involve Exp—LM, and Exp—LRn.
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Next, we determine the asymptotic null distribution of the approximate exponential
Wald statistic Exp—WT. In view of Theorem 1, this also yields the asymptotic null distri-
bution of the test statistics of interest Exp—WT, Exp—LMT, and Exp—LRT and of the
statistic LRo.

Let n_d,u denote convergence in distribution. Let "=%" denote weak convergence of
stochastic processes indexed by 7€ Il. Note that the definition of weak convergence
requires the specification of a metric on the appropriate space of functions on II. Below we
consider weak convergence of 2 process vp(m) = (v;p(7), vop(7)) (€ R® x R**®) t0 a pro-

cess () = (v)(7), vo(7)). We assume that the metric on the space of functions in which

vp(-) and ¢(-) lie is chosen such that the function

(5.12) A-) » (1+¢) P/ 2Jexp [% 1%(Hyl(w))f(Hu2(w)ﬂf)“111;;1(1@] dJ(x)

is continuous with 1(-)—probability one when () has bounded uniformly contiruous
sample paths with probability one. This holds, for example, if the uniform metric is used,
as in Pollard (1984), or if the Skorohod metric is used in the case where II ¢ [0‘,1] or
Ic [O,I]I, as in Billingsley (1968).

We assume that the normalized score function satisfies:

ASSUMPTION 35: BZEID(T(B , ) = G(0y, -) under §; (as processes indezed by 7€ I1)
for some mean zero R°—valued Gaussian stochastic process {G(BO, T): 7€ I} that has
EG(GO, 1r)G(00, m) =1( 60, 7) V7 € I and has bounded uniformly continuous sample paths
(as functions of x for fized 80) with probability one.

In applications, Assumption 5 is verified by applying a functional central limit theorem for
a partial sum process, as with tests of structural change, or by applying an empirical pro-
cess central limit theorem, as with the other examples mentioned above.

Note that the stochastic processes VT(vr) and {r) referred to in the discussion of
weak convergence above correspond to (I 1(90, W)BEIDZT(E?O, %), T 1( by ™) and
(I 1(90, mG(6y, 1), I 1( 0y, 7)) respectively. Under Assumptions 1 and 5, the latter pro-



21

cess satisfies the conditions on i{7) stated above for the continuity of the function defined
in (5.12).
The asymptotic null distribution of Exp—WT, Exp—Wq, Exp—LMq, Exp-LRo,

and LRT is shown in the following theorem to equal that of the random variable

x(8y, ©) = (1+c)‘P/2JexpB BTNy, 18, )’

(5.13)
« (HY(8,, MY 2HT (6, G(4, 1r)] dJ(x) .

THEOREM 2: Under the null hypothesis and Assumptions 1-5, (a) Exp—‘?‘vT d, x( 90, c),
(b) Exp-Wr, 4, X(8y, ), (c) Exp—LMy, R x(6y, c), (d) Exp-LR., 4, x(8y, ), and
(e} LRy 4, x(ﬁo, ¢).

COMMENT: In many applications, e.g., structural change applications, the limit distnibu-
tion x( By c) does not depend on §,. Hence, one can obtain critical values for the expon-
ential Wald, LM, and LR tests by simulating the distribution x(ﬁo, c), see Section 7.2
below. In other applications, x{ 00, c) does depend on 80. In such cases, one can obtain
asymptotically valid critical values by simulating x(6*, c), where £* is some estimator of 8
that is consistent under the null, provided G(ﬂo, 7) is continuous at f; uniformly over
reIl. See Hansen (1991a, Sec. 7) for a method of simulating a single realization of
x(#*, ¢) (which is a function of the stochastic process G(#*, -)). See Andrews, Lee, and
Ploberger (1992) for a sequential method that minimizes the number of repetitions that are
needed to obtain critical values via the simulation of (&, 7).

Next, we establish the asymptotic equivalence of the test statistics considered above
under the local alternatives. To do this, we establish the contiguity of the densities
UfT(aO + B7'h, m)dQ_(h)dJ(r) : T 2 1} to the densities {f7(f,) : T2 1}. By definition,
contiguity holds if JCTfT( ,)dup + 0 implies JcTJfT("o + Bp'h, m)dQ_(h)dI(r)dup + 0

for any sequence of (measurable) sets {Cp: T 2 1} such that Cr is determined by Yo,
where _[C fT(ﬂo)de denotes the probability of C.. when Yo, has density fT(f)O) and like-
T
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. -1 L .
wise for JCTJfT(ﬂo + Bp'h, r)de(h)dJ(vr)de.. Contiguity is used to establish the

asymptotic equivalence of LRy, IHT, Exp—WT, Exp-Wo, Exp-LMy and Exp~LR.,
under the local alternatives ”fT( 0y + BElh, m)dQ, (h)dI(#) : T > 1} by taking the sets
Cr to equal {|LRy —LRy| > ¢}, {ILR — Exp-Wr| > €}, etc. for arbitrary € > 0.
Since these sets converge in probability to zero under {fT( BO) : T 2 1} by Theorem 1, they
also do under the local alternatives if contiguity holds. We establish contiguity by using a
result of LeCam that states that the convergence in distribution under {f1(6;) : T 2 1} of

the likelihood ratio LRT to a distribution with expectation one implies contiguity.

LEMMA 3: Under Assumptions 1-3 and 5, the densities {JfT(HO + BElh, 1)dQ, (h)dI(7) :
T?> 1} are contiguous to the densities {f1(,) : T > 1}.

THEOREM 3: Under the local alternative densities J{T( By + BTlh, m)dQ, (h)dI(7) for Yo
for T 2 1 and Assumptions 1-5, (a) LRy — IRT ~B, 0, (b) EPCT = Exp—W..,

(c) Exp—WT — Exp-Wq 2,9, (d) Exp-Woq — Exp~LMq 2,0, and

(e) Exp-LM, — Exp-LRp, £ 0.

Theorem 3 and the optimality of the LR test for testing the simple null fT( 6’0)
against the simple alternative JfT( 0 + BElh, w)dQW(h)dJ(w) (via the Neyman—Pearson
Lemma) yield the main result of this paper — an asymptotic optimality result for the
exponential Wald, LM, and LR tests.

Let o, denote a test of H,. That is, p is a [0,1]—valued function that is determin-
ed by YT (and perhaps some randomization scheme) and rejects H0 with probability «
when pp =7 The test oy is of asymptotic significance level a if J tprT( 90)d,uT + ¢ for
all ﬂo that satisfy the null hypothesis HO’ where JwaT( Bo)de denotes the probability of
rejection of HO using pp- Similarly, the power of pp egainst the local alternative
(8, + BT'h, ) is denoted J;onT( 4y + B3h, m)dur.

Let {kp,: T > 1} be a sequence of critical values (possibly random) such that the
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exponential Wald, LM, or LR tests, i.e.,

b = 1(Exp—Wrp > kTa)’ {1 = 1(Exp—LMqp > kq ), or
(5.14)

respectively, has asymptotic level a. Such critical values can be determined by the method
described following Theorem 2.

The following theorem establishes that the exponential Wald, LM, and LR tests
have greatest asymptotic weighted average power for the weight functions {Q“;r(') : re I}
and J(-) against the local alternatives {fp(6, + B".ITlh, 7):T>1} for he R® and 7€Ml

amongst all tests of asymptotic level a:

THEOREM 4: Under Assumptions 1-5, for any sequence of asymptotically level a tests
{gaT : T 21}, ¢ sequence of asymptotically level a ezponential Wald, LM, or LR iests
{&p : T 2 1} satisfies

TrrﬁJUgonT( g, + Bg'h, r)de]dQ (h)dJ(x)
¢ Lim mngT(ao + BT, w)duT]dQW(h)dJ(-rr).

(In addition, the 1im on the right—hand side equals 1im.)

T-a T

COMMENTS: 1. The asymptotic optimality result of Theorem 4 can be interpreted in two
ways. First, it provides a greatest asymptotic weighted average power result for the
exponential Wald, LM, and LR tests against the alternatives {f1(f, + BElh, 7):heR®,
7€ I} for T > 1. Second, it shows that the exponential Wald, LM, and LR tests have the
greatest asymptotic power against the single sequence of local alternatives

{JfT(B + BTlh m)dQ (h)dJ(vr) T?> 1} amongst all tests of asymptotic level a. This
follows from Theorem 4 because J.U‘PT{T(HO + BTlh w)duT] dQ,(h)dXm)

= JQDT (6, + B'h, w)dQW(h)dJ(r)] dyi by Fubini’s Theorem.
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2. The weighted average power of a test @ can be re—written as an integral with
respect to a normal distribution that is not singular as follows. Let
1., -1 oy, , 1,7 A .
Aw N(o0, c(IlW—I%IgTI%) )and h= (A", -AI, I5°) . Then, X has nonsingular vari-

ance and h ~ Q-:r = N{0, c).‘._ﬁ) as desired. In consequence, we have
- -1
J{jgonT(BO + B, m)dupldQ, ()dI(r)

(5.15) 4 T 1,, 1
= J opdg(0y +BT'| g | g 0% 0, el ~ Ty T3t ) )arad(s),

T3 2
where n(A; 0, ¢(Z 17r_121r15:rréw)-1) denotes a multivariate normal density with mean 0

and nonsingular covariance matrix ¢(Z; - I, FIE; 5 _’r)"1 evaluated at the p—vector ).

6. CHOICE OF ¢

In this section, we discuss the choice of the constant ¢ that appears in the definition
of the optimal exponential test statistics. Recall that ¢ is the scale factor of the weight
function Q_ that is used in constructing the exponential tests (see Assumption 3). Small
values of ¢ place most weight on alternatives for which g is small. Large values of ¢ place
most weight on alternatives for which fis large. The optimal test depends on the choice of
C.

There are two ways of choosing ¢. One can choose some fixed value of ¢ or one can
formulate some data—dependent method of determining c. In the context of tests of struc-
tural change, see Section 7 below, the first method is preferable, because the power and size
properties of the optimal tests are relatively insensitive to the choice of ¢ and given a fixed
value of ¢ critical values can be tabulated. In the one—time structural change case, our pre-
ferred choice of c is the limiting value ¢ = o, see Section 7.5 below. Asymptotic critical
values for this choice of ¢ and for the other limiting case ¢ = 0 are given in Section 7.2

below.
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In some applications, the power properties of the optimal tests of parameter con-
stancy may be more sensitive to the choice of ¢ than in the structural change example. In
such applications, it is useful to have available a more finely—tuned value of c. We suggest
the following data—dependent method. Suppose the practitioner can supply a vector of par-
ameters §* against which he would like to direct power. Then, a data-dependent choice of

cis given by

(61) e= [y [qu(b,«)ﬂf]_lﬁ*da(r)/p.

(The estimator # can be replaced by 8(x) if desired.) This formula chooses ¢ such that the
mean of (H)’ [Hf’l(ao, W)H']-IHH "y [Hrl(ao, W)H’]_lﬁ, when (f,) are distributed

under (Qﬂ_, J), is approximately (§*)’ [HI_ 1( Bp w)H’]—lﬁ*. That is, ¢ is chosen such that
the mean of the "magnitudes" of the jump £ under (Q » J) approximately equals the mag-
nitude of the jump #* against which one wants to direct power. The approximation arises
due to the use of I;l(b,r) in place of the unobserved quantity I(fy, ) in (6.1). The

approximation error goes to 0 as T + o, because IEI(?,'N) consistently estimates I(f,, )

uniformly over 7 € II. The use of § [HI' 1(8 , r)H']_lﬁ to measure the "magnitude” of a
jump B is natural in some sense, because for fixed # the power of a Wald, LM, or LR test
depends on f only through this quantity.

The formula for & given in (6.1) is relatively easy to compute in most cases. It
requires that one simulate the critical value for the test on a case by case basis, however,
since the dependence of the critical value on ¢ and the consideration of all values of ¢ in

[0,] precludes tabulation of critical values.
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7. OPTIMAL TESTS OF STRUCTURAL CHANGE IN
NONLINEAR MODELS WITH NONTRENDING OBSERVATIONS

In this section we consider tests of one—time structural change with unknown
change point. The tests are designed to detect a one—time change in the value of a par-
ameter (but they have power against more general forms of structural change, e.g., see
Andrews (1989, Thm. 5 and Cor. 2) and Ploberger, Kramer and Kontrus (1989, Cor. 1)).
The models we consider are dynamic nonlinear models that are suitable for ML estimation
and are based on nontrending observations. The tests can be applied to both "pure" struc-
tural change problems and "partial" structural change problems. With pure structural
change, the entire parameter vector is subject to change at some time point under the
alternative hypothesis. With partial structural change, only a specified subvector of the
parameter is subject to change under the alternative hypothesis.

A simple example where the results of this section can be applied is in a test for
constancy of fhe intercept in an AR or ARMA model for the growth rate of a macroeco-
nomic variable such as GNP. Tests of this sort have attracted some attention in the
literature, e.g., see Perron (1991) and Bai, Lumsdaine, and Stock (1991). A more compli-
cated example is a test of parameter constancy in a nonlinear rational expectations model
estimated by GMM methods. Again, tests of this sort have atiracted attention in the liter-

ature, e.g., see Nason (1991). There are endless possibilities for further applications.

7.1. The Model and the Optimal Test Statistics
We now introduce the model, the hypotheses of interest, and the optimal test statis-
tics. The sample of observations is given by

(7.1) Yo = {(S, X,): t < T},

where {S, : t < T} are endogenous variables and {X, : t < T} are weakly exogenous vari-

ables. (Weak exogeneity of {Xt : t < T}, see Engle, Hendry, and Richard (1983), means
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that the likelihood function for YT can be factored into two pieces, one of which contains
conditional distributions of St and depends on # and the other of which contains condi-

tional distributions of Xt and does not depend on 6, see below.) Let
{gt(él, 62) : 61 €8, 6¢ Az}

= {8,(S,1S, - Sy_yi Xp» s Xyi By, Bg) : 8 € Ay, € Ay}

(7.2)

denote a parametric family of conditional densities (with respect to some measure) of S

given Sl’ vy St-l’ Xl, vees Xt evaluated at the rv’s Sl’ ey St’ Xl, ey Xt’ where Al ¢ RP,

A,c RYP and p<q. Let

X X

(7.3) h, = h,(X,[Sy, - S T

t—1’
denote the conditional demsity (with respect to some measure) of X, given
Sl, ""St—l’ Xl""’xt-l evaluated at the 1v’s Sl’ ey St-l’x vy X
assumption of weak exogeneity, h, does not depend on b= (Gi, 65)'.

By the

Iy t

Note that g, (é;, )b, is the conditional likelihood function for (S,, X,) given

(Sl’ ey St—l’ ) S Xtul)' Thus, when no structural change occurs, the likelihood func-
tion of the sample is

T T T
(7.4) I g,(5y, )by = [tglgt(al, 52)] [tglht].

Let T ¢ (0,1) and let = c II. Suppose the parameter vector equals (61, 62) for the
observations t = 1, ..., {T7] and (61 + 4, 62) for the observations t = [Ta]+1, ..., T, where
B e B c RP and [-] denotes the integer part of -. Then, 7 indexes the point of structural
change as a fraction of the sample size and 6 = (§*, 6’ )' for 6 = (67, 6é)’ contains the pre—
and post—change parameter values. For the nonlinear models considered here, we consider
the case where II has closure contained in (0,1). That is, the point of structural change is

bounded away from the beginning and end of the sample. In linear models with exogenous
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regressors, 11 does not need to be restricted in this way, see Andrews, Lee, and Ploberger
(1992), since finite sample (rather than asymptotic) results can be obtained.

In the present case, the likelihood function fT(ﬂ,'fr) and the log likelihood function
{p(8,) of Sections 3 and 5 are given by

| [Tx] T T
. (6 = | T e 62)] [tz[Tl;lr]Hgt(al +6,6)) [tglht] and
7.5
tp(6,m) = 2 Thog g,(5,, 8,) + z'fTﬂ +11088,(8 + B, 6,) + 51 logh, ,

'f=1. Also, the norming matrix B of Section 3 is

where, here and below, E}I denotes ¥
taken to be JHS. Note that the conditional densities {ht 1t < T} of {Xt :t < T} drop out
of the first and second partial derivatives of £.(6,r) with respect to #.

The null and alternative hypotheses of interest are

Hj: 6= 0, where 6 = (0, b0 650) for some 610 €A, and 620 € A,
(7.6)  Hy:6=(8 & 63) , where fy # 0, € B, 6, € A}, and &y € A,

and the point of structural change is 7 for some 7 € II.

Note that the parameter 620 is constant across the whole sample under H0 and H,. Ifa

I
parameter 620 appears in the conditional likelihood functions, then the problem is one of
testing for partial structural change. If no parameter 620 appears in the conditional like-
lihood functions, then the problem is one of testing for pure structural change.

Next, we define the exponential Wald, LM, and LR statistics for testing HO VErsus
Hl‘ In addition, we define simplified asymptotically equivalent forms of the exponential
Wald and LM statistics. To this end, let 8(r) = (8(7)’, Bl(w)’, 32(1r)’)' be the unrestrict-

ed ML estimator of 4 for fixed 7 ¢ II. That is, #(7) maximizes

T T
(7.7) 2{Tog g, (6,, 6,) + 5 [Trj4 116 &6 + B, 8)
over 6= (8, 6i, Jé)' €Bx A4« A, =©. In the case of pure structural change, 31(7r) is

just the standard ML estimator of § based on the observations t=1, ..., [T7] and
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31( + f(r) is the same based on the observations t = [Tx]+1, ..., T. In this case, 8(7)

)
= (A7), 61(1r) ) is straightforward to compute. Returning to the general case, let
(8

8=(f, 1, 2) be the restricted ML estimator of 4. That is, § maximizes

(7.8) 21 log g, (6, 8,)

over = (0’, 1, )' € © (= ©nV). Since § does not depend on 7, it is generally much
easier to compute than {#(x) : 7€ II}.

By definition, we have

1p(6m); Ip(fim)yy Ip(m)ys
Tp(6,7) = —aDUp(8,7) = |Ip(6:m)y Tp(Bim)gg Tp(6,m)gy|, where
_IT(H,w)iS I1(0,m)54 IT(0,7r)33_

1T

Ip(8m)y =~ T2 Tr+1 Bﬂ%bg g,(6) + £, by),

15T &
Lp(8m)p = = T2 Taj4+1 P00 08 Bi(Ey + B &) = In(Omyy,

13(0m)3 = = 1% a1 Bﬁg%l"g g(6y + B, &),

&

1.[Tr] & 1,T
(19) Ip(6m)yy = 1%k 163;331‘105 881 &) — T2 41 T5 B0 08 B8+ &)
14[Tn & 14T &
Ty(67)g3 = ~ 12} ]m;a;sgl"g (61 8) T a1 70557108 By(6y+A dp), and

Tr__ & 1,1 &
Ip(0m)gs = - 12} “]ng 8(6y,0) — T% [ T4]41 FE02508 B (61 +Ar6p), and

D(3) = [FF 741 7108 1B 23] giplon 8,3, 357 o (B8]

We are now in a position to deﬁne We(7), .- , LRp(7). We also define two statis-
tics W() and LMy F(7) that are simplified asymptotically equivalent versions of Wp()
and LM (7):
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Wp(r) = TR [BIg (Bm)m)B ] BC),

W(n) = TB()* [151(0(m),m)y + I5H(H(m), w)u] K,
Dty (B,m) I8, ’f)er‘r(‘? T

LM3(T) = Jr¥ mape1 7028 & (Fp B) [I'fl(”")oo + 17 ()
(7.10) 711' [Tw]+133 log g,(4;, 8) , an
LR [ ZTlog g,(5;, B,) — 5| L Mog g,(,(), 3,(r))
27 11108 8(8,(7) + B(r), 8,(m)], where
Ip(8m)gy =—n51" %i%’%log g (6, &)

The asymptotic equivalence of WT(W) and W () and of LMp(7) and LM1() under the
null and local alternatives is established in the Appendix following the proof of Theorem 4.
As noted above, the Hessian matrices IT(H,vr) and IT(BJr)ii could be replaced by outer pro-
duct matrices without affecting the asymptotic distributional or asymptotic optimality
results. Note that Wop(r) = Wi () and LMy(7) = LMX(7) in the case of the pure struc-
tural change.

The asymptotically optimal test statistics Exp—WT, Exp——LMT, and Exp—LRT are
now defined by combining (3.4) and (7.10). Analogously, we define asymptotically
equivalent statistics Exp~W4 and Exp—LMZ using the formula (3.4) with K = W* and
K = LM*, where Wi(r) and LM}(n) are as in (7.10). Note that Exp-LM% and
Exp—LMT are usually the easiest of the Exp—K., statistics to compute because they only

involve the computation of a single estimator 4.
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7.2. Asymptotic Critical Values
We now describe the asymptotic null distribution of Exp-—WT, Exp—-WZX,
Exp—LMu, Exp—LMZX, and Exp—LRq. Let Bl(-) be a p—vector of independent Brownian

motions on {0,1]. Then, under Hy and Assumption SC given below,
Exp-K —3 x(fy, ¢) for K = W, W¥, LM, LM*, and LR, where

x(0y) = (1+6) P2 [exp[§ (B, (r)—7B, (1)) (B (m)—7B, (1))/[n{1-)] | 43(r).

That is, the asymptotic null distribution of Exp—KT is an exponential average of the

(7.11)

square of a standardized tied—down Bessel process of order p. Since x(ﬂo, ¢) does not
depend on 00 in the present case, the limit distribution of Exp——KT is nuisance parameter
free and asymptotic critical values can be tabulated.

The limit distribution of Exp—Kr under general local alternatives to H0 (not just
one—time change alternatives) can be obtained from Theorem 5 and Example 2 following
Theorem 4 of Andrews (1989). It is an exponential average of the square of a noncentral
standardized tied—down Bessel process of order p.

The most common case in practice is when the weight function J(-) is uniform on
[71, 7] for some 0 < 7; < 7y < 1. In this case we can show that the critical values based
on the limit distribution x(f,, c) defined in (7.11) depend on (my, m,) only through the
scalar A = mo(1 —7;)/[m (1 — 7y)]. This greatly simplifies the calculation and presenta-

tion of critical values for the optimal tests. In particular, we have

P

(1+c)_p/2 J:zexp [% -1—_—$_-(—:BB(11') ’ BB('n')/[1r(1—1r)]] dz > kp,a]
1

(7.12)

=P (1+c)_p/2 Jiexp [1 ¢ BM(s)’BM(s)/s] ds > kp,

21+c

o )

where BB(7) = Bl(vr) - 11'81(1) is a p—vector of independent Brownian bridge processes on

[0,1}, BM(s) is a p—vector of independent Brownian motion processes on [0,o), and kp,a
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denotes the level a critical value that corresponds to x( 90, c¢). The proof of (7.12) follows
from the proof of Corollary 1 of Andrews (1989).

Simulation results reported in Andrews, Lee, and Ploberger (1992) show that the
power of the optimal tests is not sensitive to the choice of c. In consequence, it suffices to
report critical values for just the two limiting cases where ¢ = w and ¢ = 0. As noted in
Section 7.5 below, we have a mild preference for the ¢ = w test over the ¢ = 0 test.

For reporting critical values, we consider the case where J(-) is uniform on [1r1, 12]
for some 0 < T < Ty < 1. Table I reports asymptotic critical values for the ¢ = w statistic

1-7

(7.13) log 1-71%0[ Oexp(K (m)/2)dr

o

for a range of values of T between .02 and .5, for p =1, ..., 20, and for significance levels
a = .10, .05, .01. Table I provides the value of A corresponding to each value of T consid-
ered (viz., A=(1- 70)2/1%). This allows one to obtain critical values for all intervals
I = [, my] whose corresponding value of A = (1 — 7 )/l (1 — m,)] either is tabulated
or can be interpolated from the Table. The Table covers values of A between 1 and 2,401,
so almost any interval of interest can be considered.

Table II reports analogous asymptotic critical values for the ¢ = 0 statistic

1 I
Kt
0

Critical values for asymmetric intervals [r), 7,] can be obtained in the same manner as
above.

When the time of structural change (if it occurs) is completely unknown, we suggest
taking my = .02 in (7.13) or (7.14). This choice puts little restriction on the time of
change. It does not yield the same power problems as when the "sup" statistic (e.g.,

sup WT(vr)) is defined over such a broad interval, because
m€[mg, 1-7,]



33

J;exp[%BB(I)’BB(W)/[W(I—‘K)]]d1r<m as. and J;BB(W)’BB(W)/[ﬂ(l—vr)]d1r<m as.,

whereas sup BB(7)’BB(7)/[7(1-7)] =« a.s. When the time of structural change is
7€{0,1

known to lie in some restricted interval [r, 7,] (see the discussion in Andrews (1989, Sec.
2) regarding such cases), then the test statistic should incorporate this information to max-
imize power. Tables I and II allow one to obtain asymptotic critical values for a wide
range of such intervals.

The values reported in Tables I and II are estimates of the desired asymptotic crit-
ical values obtained by (i) approximating the distribution of the integrals over 7, 1 - 7}
in (7.13) and (7.14) by averages over a fine grid of points II(N) and (ii) simulating the
resultant averages by Monte Carlo. The grid II(N) is defined by

(7.15) I(N) = [rg, 1 =7y n{r=j/N:j=0,1,..,N}.

The value of N was chosen to be 3,600 based on a comparison of the approximations
generated by this method for the "sup" statistic with the numerical results for the "sup"
statistic given by DeLong (1981) for p ¢ 4. A single realization from the asymptotic
distribution of the discretized version of (7.13) or (7.14) was obtained by simulating a
p—vector Bp(-) of independent Brownian motions on [0,1] at the discrete points in II(N)
and then computing the discrete average of the appropriate function of
(Bp(w)—pr(l))'(Bp(vr)—pr(l))/[r(l—';r)]. The number of repetitions R used was
10,000. The error in the rejection probabilities due to simulation has mean 0 and standard
error approximately equal to (a(l-a)/R)ll 2 Fora= .01, .05, .10, the standard errors are
.001, .002, and .003 respectively.



7.8. Assumptions and Optimality Results

Before stating assumptions, we introduce some additional notation. Let

ZIUTY R AONY, &
To(61,85) Jo(6,,6)

&

. 1T
Jo(61:80) = 'i‘.l.l: -T2 E‘ayl—azglog 8 (6;.45),

J(61:62) =

(7.16)
Talb:,6) = lim — 48T & 1 (8,,6,)
3\l = BT 1E‘33‘33'2 5 8 B\l
J =60 bpg) » and J, =T, (6,4, b)) for a=1,2,3.
Using this notation, 7(4,7) and I (60, ) of Section 5 are given in the present case by

(1-7)7,(6,+8,6,) (1-m) 7 (8,48, 65)
H0,x) = |(1=m),(6,4B,8)  nTy(6y,6,)+(1-7) T (6,+B,5)
(1-mTy(6,+8,6) mIp(8,,b,)*+(1-7) Tyl b,+B,6,)"

(I_W)Jz(51+ﬁ; ‘52)
(7.17) 7Jo(61,89)+(1-m) J (6, +5,6,) | and
WJ3(61:62)+(1'7")-73(61+ﬁ; 52)_

(1-n)1, (-m)3, (1-m)7,
iy m = [1-n7, 1, 7

In turn, some algebra shows that

» Jy(8pd) = lim ~ 121 Egsg578 8,(éy.0
+o 1771

34

9):
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V=1{he R®:h= (0, 61, 65)' for some 6, € RP and by € RYPy,

V;:{h € RS th= (A’*;—(].—'ﬂ'))\’, 0')’ for some A € Rp} 3 and

(7.18) : :
1 1 1,1

O =1 — @1 O

Q ~ N0 C-l 1 l-_lfl 0
" ’ ﬂj; ™Y1

0 0 6 0

L

We use the following assumption for the problem of testing for one-time structural

change (SC) in nonlinear models. It is sufficient for Assumptions 1, 2, 4, and 5 of Section 5.

ASSUMPTION SC: (a) II has closure contained in (0,1).

1T
(b sup " 27 (log g.(6,,6,) —E log g, (6.,6 ” + 0 a.5. under 6,
)61€A1’526A2T1 1(61:85) 1(61,8))

Q(61,05) = ’}‘.I.I: ,‘}.E}‘E log gt(61,62) ezists uniformly over 6 € A, and &y € Ay, and

sup |Q(61:62)| <o
6IEA1,625A2

(c) Eor all neighborhoods & 14 of 8, and Ay of by,

sy P (Q(8;,8,) — Q(&;: b)) < 0.

(d) 0, 1s in the interior of ©.

(e) gt(Ytlyl’ s Yt—l’ Xpo o X 61, 62) is twice continuously particlly differenticble in
(61, 62) Jor all 6, € By and 62 € A20 with probability one under 00 for allt 2 1, where AIO
and A20 contain neighborhoods of 610 and 620 respectively.

6y sup
615.’_\10, 526/_\20

1T
|T31 {B(E’ T ) )18 &l 6y.6p)

- EH( 5 52‘)32 T, 6:'2)105 gt(él,éz)] + 0 as. under 6 and Ja(al, 62) ezists unsformly over

(61, 62) € AIO x A20 and is uniformly continuous for (61, 52) in AlO x A20 Ya=1,2,3,
where &, and Ay are as in part (e).
(g) J is positive definite.
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(h) { 108 8, (8 s b)) 1t 2 1} satisfies an invariance principle with covariance
i | 61 , 325 t\10° "20 ey ,
. . 1 - .
matriz J under 8.,. That is, 5p2 108 .{, 0, b5n) 2 KB(-) as a process indezed
0 yIl BiEl,Ezi t\10° “20

by 7€ [0,1], where XK’ = J and B(-) is ¢ q—vector of independent Brownian motions on

[0,1].

We now comment on (Assumption) SC. Parts (a)—(c) of SC are used to verify
Assumption 2 of Section 5 (i.e., uniform consistency of #(r) under f)- SC(a) is needed in
the proofs to obtain convergence results that hold uniformly over x ¢ II. It is not overly
restrictive. For non—trending observations, SC(b) can be verified under broad assumptions
regarding temporal dependence and non—identical distributions using a uniform strong law
of large numbers (SLLN). A uniform SLLN can be obtained by taking any standard SLLN
(e.g., see McLeish (1975) or Hansen (1991b) for dependent rv’s) and sirengthening it to a
uniform SLLN using the results of Andrews (1987, 1992) or Pétscher and Prucha (1989,
1990). SC(c) is the standard uniqueness assumption that ensures that the ML estimator of
(610, 620) for the case of no structural change is comsistent. This assumption is closely
related to the identification of (6,5, &y) in the model with no structural change.

Parts (a) and (d)—(g) of SC are used to verify Assumption 1 of Section 5. SC(d)
and SC(e) are standard assumptions. SC{f) can be verified under broad conditions using a
uniform SLLN as above. SC(g) requires the asymptotic information matrix for (610, 520)
for the model with no structural change to be positive definite. This is a standard
assumption.

Parts (g) and (h) of SC are used to verify Assumption 5 of Section 5. For non-
trending observations, SC(h) can be verified under broad conditions by employing a
multivariate invariance principle (e.g., see Phillips and Durlauf (1986) and Eberlein (1986)
for multivariate invariance principles for dependent non—identically distributed rv’s). Note
that univariate invariance principles can be converted into multivariate invariance

principles under suitable assumptions by Lemma A—5 of Andrews (1989).
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Sufficient conditions for Assumption SC in the stationary ergodic, m-th order
Markov case are given in Section 7.4 below. For more general cases, Assumption SC can be
verified using near epoch dependence assumptions along the lines of Assumptions A* and

1* and Theorems A—1 and 1 of Andrews (1989).

THEOREM 5: For fT( 0,7) as defined in (7.5), Assumption SC implies Assumptions 1, 2,
4, and 5.

COMMENTS: 1. Theorem 5 implies that the asymptotic null distribution given in
Theorem 2 of Section 5 and in (7.11) and the asymptotic optimality properties given in
Theorem 4 of Section 5 hold for the tests based on Exp—KT for K = W, W*, ., LR.

2. In the present context, the weighted average power of a test P can be written in

terms of an integral with respect to a normal distribution that is not singular as follows:

(7.19) JUwaT(eO + (A7, <(1-m)A7, 0°) YT, w)de]n[A; 0, cmi_ﬂql]dm(w) .

7.4. The Stationary Markov Case
In this section we provide primitive conditions for Assumption SC in the relatively
simple strictly stationary ergodic Markov case. In particular, we suppose that {(St, Xt) :

t > 1} is part of a double infinite strictly stationary ergodic sequence {(S,, X,): t=..,

0,1,..} and {St :t=..,0,1,..} is m—th order Markov for some integer m > 0. By def-
inition, {St 't=..0,1,..} is m—th order Markov if the conditional distribution of St
given F, = o(..., St—2’ S¢ 17 Xip Xt) equals the conditional distribution of S, given
St,m = (St-—m’ cny St—l) and Xt,m = (Xt—m’ ey Xt) for all t.

The Markov assumption yields the simplification that the summands log gt(él, bo)
in the log-likelihood function are strictly stationary and ergodic for t > m. Without the
Markov assumption this would not be the case, because the number of relevant observed

variables in the conditioning set, viz., S, ..., St-l' b ST Xt' would vary with t. Without
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the Markov assumption, one would need to verify Assumption SC using SLLNs and an
invariance principle for nonstationary rv’s, as in Andrews (1989, Assumptions A* and 1*
and Theorems A-1 and 1).

The following assumption is sufficient for Assumption SC:

ASSUMPTION SC1: (a) Il has closure contained in (0,1).

(b) © is compact and §, ks in the interior of ©.

() {(S;, X,):t=..,0,1, ...} is stationary and ergodic end {S, : t = ..., 0,1, ..} is m—h
order Markov.

(d)E 61€Ai1’1p2€A2|log g(6, &)l <w.
() 8,(6: &5) is continuous in (6, 65) on A x A, with probability one under 6.

(D) g, (4, 62) # gt(élo, bo) with positive probability under §, ¥(6;, 6,) € &, = A, such that
(8, &) # (810> Eag)-

(8) 8,(6;, &) is twice continuously partially differentiable in (6, 65) ¥(6}, 8,) € By > Byg
with probability one under 90, where AIO and A20 are compact sets that contain neighbor-

hoods of 610 and 620 respectively.

2
Ry “ ”Wa |
1 E ]
(h)EﬁleA “"‘32eA20“ 7,538 Bl )| <= Bligrgr gryio8 8l Gl <

10¢
5
E sup ” —rr 08 8, (65, &,)|| < », and
q87,05) &8;,85) 08 81l Y9 -

J= —Emr),ﬁza(—&mlog g.(8:n, 05n) 18 positive definite.
1% 1% t\ 10’ “20
LEMMA 4: Assumption SC1 implies Assumption SC.

Note that Assumption SC1 is quite similar to standard assumptions in the literature
for the comsistency and asymptotic normality of ML estimators in dependent contexts.
Under Assumption SCI, the test statistics Exp—Kqp for K= W, W*, LM, LM*, and LR

possess the null distribution and the optimality properties stated in Theorems 2 and 4.
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7.5. The Choice of c

Simulation results for the exponential test statistics are reported in Andrews, Lee
and Ploberger (1992) for two linear regression models each with intercept and one regres-
sor, sample size T = 120, and iid N(0, 02) errors. In the first "stationary" model, the
regressor X, equals (——l)t. In the second "time trend" model, the regressor X, equals
t —(T+1)/2. The results for the stationary model are relevant to all of the nonlinear
models that are covered under Assumption SC1 or SC. This is because all of these models
have asymptotic local power functions that equal that for the stationary linear regression
model.

Based on the results in Andrews, Lee, and Ploberger (1992), we make the recom-
mendation that a ¢ = » exponential test statistic be used for testing for structural change
in nonlinear models. This recommendation is based on (a) the finding that the choice of ¢
is not crucial in these applications and (b) the choice of ¢ = o is somewhat preferable to
smaller values of ¢ when change occurs early or late in the sample. We also note that the
only non—data—dependent values of ¢ that yield tests that are invariant under scale trans-
formations of the regression parameters in a linear regression model are ¢ = 0 and ¢ = w.

Of these two, ¢ = o seems to be mildly preferable in terms of power.



APPENDIX
Let wp » 1 denote "with probability that goes to one as T + o."

PROOF OF LEMMA 1: All probability calculations in this proof are made "under 90."
By Assumptions 1(b), 1(c), and 2 and the definition of the ML estimator & =),
Dé( #(x), ) = 0¥r e Il wp -+ 1. Hence, by one-term Taylor expansions of the elements of
DLr(b(w), 7) about §, we get, wp - 1,
-1 . -1 .
0=B DET(B(W),W) = By Dép(4y,m) — Iy p(m)By(8(7) — 00) VreIl, where
(A1)
I,g() =-J B'D24(d, + A(¥(r) - 8,), B
0

The matrix I, () satisfies
sup||Zyp(m) — Z(6;, Ml
mell 1T 0

< f,‘e‘ﬁ”ﬁ) [_135102%(90 + A(B(m) — 8), WBE — 2(6, + A(H(r) - ), 7r):| dA”
(A.2)

+ supl” 200y + A7) = ), 7) ~ H(Bm)1d)|
= 1
Op( ) ¥
where the inequality follows from the triangle inequality and the equality holds using

Assumptions 1(d) and 2 for the first term and Assumptions 1(e} and 2 for the second term.

Equation (A.2) and Assumption 1(f) yield
1 —1
A3 sup||Zin(m) =1 “(8,, m| =0_(1).
(A3) supllf31(n) ~ 170y, m)l = 0 1)
Equations (A.1) and (A.3) and Assumptions 1(f) and 1(g) yield

op(1) = supl[Br(H(r) - 4;) - 1 (mBLDLy(8, 7l

(A.4) ) .
= 1sr1€111_31||BT(9(7r)-90) ~1(6,, 1B Deg(6y, M| + o 5(1) o



PROOF OF LEMMA 2: All probability calculations in this proof are made "under 90."
For 0 < M < o, define

(A5)  LR(M)= -[I'IJHhI

<MfT(e + Bph, m)dQ L(0)dI(7)/i(4;) and
TRy(M) = | e {é@(wrrwo, o) |

™ [— @) — )16, 7)
(A.6)

« (1) - b)|4Q, (B)as(r) .
Note that for any ¢ > 0

P(|LRy — TRyp| > 3¢) ¢ P(|LRp — LR(M)| > €) + P(|LRG(M) — TR (M) > ¢)

(A.7)
+ P(|LRy - IR(M)| > ¢) .

Hence, it suffices to show that (1) given any 7> 0 we can choose T* <o and M < o
sufficiently large so that P({LRp ~ LRp(M)| > €) < 7and P(|L'I§T —ITHT(M)I >e€) <y
for all T > T* and (2) LR(M) = TR(M) 2 0¥0 < M < o.

We show (1) first. We have

-1

P(|LRy — LRp(M)| > €) ¢ € "E|LRq — LRp(M)]
-1 -1
¢ EJ J [ (6+Bp b, m)/Ap(6,)1dQ_(R)dI()

Wh>M T 0T 0

=l T
= jHJ“h"mdQ,r(h)dJ( ),

(A.8)

where the first equality uses Assumption 1(a) and the second holds by Fubini’s theorem
and the fact that E[fT(0 + BTlh w)/fT(ﬁo)] =1 Vh, Vx. The right—hand side (rhs) of
(A.8) can be made arbitrarily small for all T by taking M large by Assumption 3-.

Next, we have

IRy ~ IR (M)[ = Jn [exp [%DLT( g 1)’ ByL1 (8, 1)BT DLp(d,, 7r)]
._1 T — ’ T T) — Vi
(49) a2 [ 300 = 2000 1Rr) ~ )]0, 0 ()

< exp[g suplIB DLr(f, w)i‘z;srglpllll“l(ﬂo,w)||] -JHJ|Ih1|>MdQW(h)dJ(W),



where the inequality uses the assumption that I( 0y ) is positive definite. The first term
on the rhs of (A.9) is Op(l) by Assumptions 1(f) and 1{g) and the second term on the rhs
can be made arbitrarily small by taking M large using Assumption 3‘. In consequence,
P(|LRy ~ TR(M)| > ¢) can be made arbitrarily small for all T large by taking M suffi-
ciently large.

We now establish (2). A two term Taylor series expansion gives

(8, +BT1h x) — LT(

(A.10) - o .

where the remainder term rlT(h,r) satisfies

sup . m(h,7)||
wEHh"hF(M 1T

2 p=lp? —1_ 1.2
< M® sup D*p(6,m)Br" — By D4p(6,, By
mell 0||BT(6P—0 )[|<M By D4g(6mBT B Dy(f, BT |

< M2 sup sup [By D2&T(0,1r)BE1 + I7(6,7)|

(A.11) mell 65@0

2 - T
R 0]|B,;(0— 0)uuvxul(%’ )~ 167l

+M supl|BT1D2lT( , BT + (8, )]

= Op(]‘) !
where the equality uses Assumptions 1(d) and 1{e). In addition,

b’ B! D26, ©)BL h = ~h'I(4y, T)h + rop(h,7), where
(A.12)

sup |rgp(h,m)| =0 (1)
rell heffnflcm’ 2T

by Assumption 1(d). It follows from (A.11) and (A.12) that
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exp(ryp(h,7) + rgp(b,m)) =1 + sp(h,7) , where
(A.13)

7ell b ||hf<M'sT(11 Ml = op(1)

Combining (A.10) and (A.12) and using the definition of 8(x) yields
t(6, + Bk, 7) — &(8y) = b I8, 7)) — 3h* I(8, m)h + 7p(h,7) + Ty (b, 7)
= 19(m)* 208, m)B(x) ~ Z(B(m) — ) 285, ) (&) = ) + 1, (1, 7) + Ty,

where the second equality follows from some simple algebra.

Combining (A.5), (A.6), (A.13), (A.14), and Assumption 1(a) gives

_ -1
LR (M) —JHJ”h”SMexp(lT(B + BTh, 1) — £p(6,))dQ_(h)dI()

(A.14)

= JHJ][h||<MexP [%P(W)II(GO, ‘N)-o(?") - %(_ﬂ(r) - h)fj[(go, 'K)(?('lr) - h))
(A.15) <

« (1 + s(b,m)]dQ, (m)a3(x)
T(M) + Op(l) ,

where the third equality uses LR(M) = Op(l), which follows from a close analogue to
(A.9). This completes the proof. o

The following lemma. is used in the proof of Theorem 1:

LEMMA A-1: For each = € I1, the projection matriz P* onto the orthogonal complement V;

of V with respectto <-,-> is given by

I
P'(=P})=A H, where A_= P H=[I_:0],andI(d,7) = Tir Zor
oo LR S P P 0’ 1, |

PROOF OF LEMMA A-L: Let A denote A, Since HA =1, (AH)AH = A and AH is

an oblique projection matrix. Forv = (0',6')’ € V, AHv = 0, so AH projects onto a space



orthogonal to V. On the other hand, for m = (m{, m é)’ € V;, v/ I(6,, 7)m = 0 Vv € V iff
[0 : Iq]I(ﬂO, m)m = 0 iff [Ié Isw]m = 0 iff m, 1_11' iff m = Aml. In conse-
quence, AHm = AHAm1 = Am1 =m Ym € V;”r. That is, AH projects onto the entire

orthogonal complement of V with respect to <-,- > 0

PROOF OF THEOREM 1: Part (a) holds by Lemma 2. Next, consider part (b). Let
AwN(0,c(A’TA)™') and h=A), where A=A _and I=1(f, 7). Then, hoQ_
= N(0, cA(A’IA)_lA') as desired. The density of A is

(A.16) (27) P/ 2gest/ 2(A’IA/c)exp[-—— gEAfArzAA]

with respect to Lebesgue measure on RP.

For notational simplicity, let # = @(x) and I = I{ 6> 7). Then,

(A17) IRy = JHCT(w)dJ(w), where

(olm) = Jexp [%m - %(h—'ﬂ)f(h—'ﬂ)] 4Q,(h)
(A.18) = (27) P 2aet /%A 1A Jc)
; J.exp [%[v'rio — (AX=0)/ Z(AX-T) — (AA)'IAA/C]] dx .
Let P and P* denote the projection matrices with respect to <-,- >, onto V and V;
respectively. (Note that P and P* depend on  since <-,- >_and V; do.) The term in

square brackets in the exponent on the rhs of (A.18), with A) replaced by h for simplicity,

now simplifies as follows:

319 — (h-9)/ I(b—0) — h- Th/c

=919 [h -vﬁcr-é] '11%[11 -7)1-9—] ~ 710

_ C , C (pim’ pt 14+c¢ L
(A.19) = SPO) TPD + [S(P ) 7P 7 - [h p*?;m] poia [h-p 91%]
— 11<(P?) IPP

= 15:(P*?) 1P*7 [h P'@l—] 1+c[h p* ]
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where the second equality uses the fact that (P'B)'Ih =0Vhe V;fr.
Combining (A.18) and (A.19) gives

p(m) = (1+c)_p/ Zexp [% 1%(P*'0) 'IP*'G]
(A.20) xJ(?r)_p/2det1/2[A’IAlt—c]exp[ [AA va—] 1+°[AA P'ﬂi—]

= (1+¢)™ ~p/ 2exp[§ P9 IP"?]

where the second equality holds because the integral of a normal density equals one.

Using Lemma A-1, (P""B)'IP“'B = (H9)*A'JAH?. Hence, for part (b), it remains
to show that A’TA = [HT 'H’]"). By simple algebra, the left—hand side equals
I 1 —12 flg,lrléw. The right—hand side equals the in§erse of the upper p = p submatrix of
I( 8o 1r)—1, which equals 7;, —1 2,”15;,1'% by the formula for a partitioned inverse. The
proof of part (b) is now complete.

To establish part (¢) of the Theorem, note that HBTt?0 = 0. In consequence,

Lemma 1 implies that

(A.21) sup||HBT B(r) — Ho(m)|| -2+ 0.

In addition, we have

sup|IZp(8(n), =) — 2(6), )|

nell
(A.22) ¢ sup zggOIIIT(ﬂ,W) —I(6,7)| + ;gﬁllf(??(w), 7) = I(f,, )|
=0 (1),

where the inequality holds wp » 1 using Assumption 2 and the equality holds by Assump-
tions 1(d), 1(f), and 2. This establishes part (c).

For part (d), it suffices to show that

(A.23) sup | Wo(m) — LMT('n’)l-RoO.
mell



By (A.1) with #(r) replaced by #, we obtain
— . -1 .
(A.24) B Dep(8,m) = Bp Dep(fy, 1) — Iy (m)B(B— ) VaeII,

where I,(7) is defined with 8 in place of &(r). Note that (A.2) and (A.3) hold with
I 1T(1r) so defined using Assumption 4. In consequence,
- -1 . 1 — -
B75(8,7)B5 Dip(87) = HI(m)B3 Dig(B,m) + 0,(1)
= HI}(m)Bp Diy(8, 7) + HB (D - 4)) + 0p{1)

(A.25) 1 g1
= HI "6, By Dip(6y,m) + o, A1)

= HB(¥(7) - §)) + op,(1) = HB,8(7) + opa()

where the third equality uses HBTP = HBr§, = 0, the fourth equality holds by Lemma 1,
and by definition a sequence {D(7): T 2 1} is o (1) if sup||[Dm(7)|| = 0 (1). Equation
T pE mell L P

(A.25) yields

sup | Wop(m) — LM(m)| -2+ 0, where

(A.26) well
LMY(r) = (B Dey(8,m)) 171 (8,m)E- [HI—I(GW) ] HI_I(BW)BT DLr(Hr) .
Now, wp ~ 1,

(A.27) By Dig(8,m) = ~H'\() Vrell

for some random p-vector of Lagrange multipliers A(7). In consequence, LMT(vr)
= LMA(r) ¥7 € T wp = 1 and (A.27) implies (A.23).

Next, to establish part (e), we show that

(A.28) :EE|LMT(W) —LRp(m)| 0.

A two—term Taylor expansion of &T(b,w) about () gives

(A.29) L(B,m) = £ (B(x),m) + (B-H(m))’ Deg(¥(m),m) + 3 Um)-B) D2 (6 (m),m)(B(m)-D),
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where 01(1r) is such that sup||81(1r) =yl -B,0. Since DlT(b(w), m=0V¥rell wpo1,
mell
we obtain

LRy(r) = (By(¥r) — )[BT D24y(61(m), MBLIBL(A(m) - B) + o, (1)
a3 (B (¥r) = 0) Ig(BmB(Hm) - ) + 0 (1) .
One term Taylor expansions, as is (A.1), give
(A.31) B Dip(8,7) = By Dep(¥(x), ) ~ I, (1)By(3 = ¥(n)) ,
where T, .r(r) is as defined in (A.1) with () — 6 replaced by 9 — #(r). In consequence,
(A.32) B(¥(r) - 8) = I;1(m)B DLp(B,7) + 05,{1) = 77N (B,mB Dey(B,m) + 0,,(1)

Substituting this result in (A.30) yields (A.28) as desired. o

PROOF OF THEOREM 2: First consider part (a). By Assumption 5,

8-) | |77 BTy )| TGy, )G

:')
1 1 = 1 0
I_(B:') I (801 ) I_(ﬂ H )

(A.33) under 6, .

By Assumptions 1(e), 1(f), and 5, (1—1(8 , *)G(8, O, T 1(9 , -)) has bounded uniformly
continuous sample paths {as a function of = € II) with G(ﬂo, -}—probability one. In conse-
quence, using (5.12), the function m(-,-) that maps (I“I(B » *)G(6y, +), 1-1(6 , +)) into
x( By ¢) is continuous with G(#,, -)—probability one and the continuous mapping theorem
(e.g., see Pollard (1984, Thm. IV-12, pp. 66—70) or Billingsley (1968, Thm. 5.1, pp.
29—34)) gives the desired result:

(A.34) Exp-Wo = m(%(-), 7714y, ) -3 m(r71(8,, )G (G, ), T (6 +)) = x(6, ©).

Parts (b)—(e) of the Theorem follow from part (a) and Theorem 1. o

PROOF OF LEMMA 3: We make use of the following assertion, which is verified below:
If (i) LRy 4, x(0y,c) wunder §; and (ii) Ex(f, ¢} =1, then the densities



A-9

{JfT( by + B'T_lh, 7)dQ,(h)dJ(x) : T 2 1} are contiguous to the densities {f.(¢;): T > 1}.
Condition (i) holds by Theorem 2. Condition (ii) is obtained as follows: Let mgf(t) denote
the moment generating function of a chi—square rv with p degrees of freedom. We have

mgf(t) = (1~ 2t)_p/2. Then,

B8y, ) = 1+ /%[ B exp[3 rfo@T (m)G(m) (817 ) Y BT (m)G(n) a3 ()

(A.35) = (1+c)_p/ 2jnmgf [% T-‘lz-_c] dJ(n)
=1,

where I() and G(7) denote I( 0o 7) and G(HO, ), respectively, the first equality holds by
Fubini’s Theorem, and the second equality uses the fact that the quadratic form in the
exponent has chi—square distribution with p degrees of freedom for each fixed .

It remains to verify the assertion above. Let (0,4) be a measurable space. Let Pr
and Qp be a null distribution and an alternative distribution on (Q,4) for T > 1. Let
Eq = (9, 4, (PT’ Q). Eq is called a (binary) ezperiment and {Eq : T 2 ‘1} is a sequence
of experiments. One can define equivalent experiments and one can put a metric A2 on the
space 82/~ of equivalence classes of experiments, e.g., see Strasser (1985, pp. 74, 75). By
Theorem 18.11 of Strasser (1985), if A2(ET, E)+0 as T+ o for some experiment
E = (9, 4, (P,Q)), then {QT : T > 1} is contiguous to {PT : T> 1} if and only if Q is

{D
absolutely continuous with respect to P, i.e., if and only ifJ qu(dx) = 1, where MR is the
0

distribution of the likelihood ratio dQ/dP under P, £(dQ/dP |P).
Also, by Theorem 16.8 of Strasser (1985), (£,/~, A,) and (T) are homeomorphic,

where X is the set of all probability measures g or [0,m) with r xp(dx) < 1 and 7 is the
0

topology of weak convergence, with homeomorphism T defined by T(E) = £(dQ/dP|P),
where E is the equivalence class of experiments that contains E and E = (2, 4, (P,Q)). In

consequence, for any experiment E = ({1, 4, (P,Q)) and any sequence of experiments
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{Ep: T21} ={(Q, 4 (P, Qp)):T21}, AEp,E)+0 as T+o if and only if
£(dQp/dP | Pp) = L(dQ/ dP|P) as T -+ w, where "=" denotes weak convergence (or
equivalently, convergence in distribution). This result and the result of the previous para-

graph establish the assertion above. o

PROOF OF THEOREM 3: Part (b) holds by the proof of Theorem 1(b). For the
remaining parts, given any ¢>0, consider the sets {|LRp—IRy|> ¢},
{|Exp—Wq — Exp-Wp| > ¢}, etc. for T > 1. The probabilities of these sets converge to
zero as T + o under 00 by Theorem 1. Hence, by contiguity (Lemma 3), their probabilities

also converge to zero under the densities {JfT(HO + BElh, mdQ (h)dJ(m) : T 2 1}. D

PROOF OF THEOREM 4: Let ap be the rejection probability of ¢ under §,. Let

k’;T > 0 and X € [0,1] be constants such that the likelihood ratio test
- ,
1 if LRT > kaT
(A.36) p =1 A if LRp=k*

T
0 if LRy <kZT

has rejection probability ar, under 00. Then, by the Neyman—Pearson Lemma (e.g., see
Lehmann (1959, Thm. 3.1, p. 65)),
Ing UfT(BO + B7l, w)de(h)dJ(r)] du
(A.37)
< nyT UfT(HO + BT, w)dQN(h)dJ(r)] dug
forall T > 1.
By Corollary 15.11 of Strasser (1985), if Az(ET’ E)+ 0 as T + o, then the power of

a sequence of likelihood ratio tests of asymptotic size a is convergent. Since A2(ET, E)-+0
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by the proof of Lemma 3, the lim on the rhs of the inequality in the statement of

T5a

Theorem 4 is actually 1im.
Towm

This result, inequality (A.37), and Fubini’s Theorem yield
Tim FU'PT{T( g, + Br'h, r)duT]de(h)dJ('fr)
< lim [o] [, + BT, w)dQﬂ(h)dJ(ﬂ')]d/.ur

(A38) = lim [I(LRp > kp,) UfT(BO + Bp'h, r)er(h)dJ(w)] dpu

-y v

= lim ihl(Exp—WT > kp,) Uf'r("o +Bgl, w)dQ,’r(h)dJ(w)] djiy

= Lim J'UngT( g, + BT1h, 1r)de] 4Q_(R)di(r) ,

where the first equality holds because kZT - kTa_R" 0, and LRT has an absolutely con-

tinuous asymptotic distribution under JfT(HO + BElh, 7)dQ, (h)dJ(7), the second equality
holds because Exp—W.p, — LRy B 0 under JfT(ﬂo + B7'h, m)dQ_(h)dJ(r) by Theorem
3, and the third equality holds by Fubini’s Theorem. The proof is analogous for Exp—LMT

and Exp—LRT. a]

Next we show why the statistics W(r) and LM.}(W) of Section 7.1 are asymptotic-
ally equivalent to Wr(7) and LMp(w) under 6 (and hence under local alternatives as well
by Lemma 3). Let the subscript * be a deletion operator that deletes the last q rows and
columns of s x s matrices, the last q rows of s—vectors and s x p matrices, and the last g
columns of p x s matrices. By the formula for a partitioned inverse and some algebra,
when  I{( By r) is of the form in (7.17), we can show that
HI—l(ae, mH’ = H*[I(ﬂo, -,-r)*]_lH,;. Also, since Zm(6,7)y is of the form [g CSD]’ some
algebra shows that H*[IT(B,‘A‘)*]-IHI‘ =cl4+pl= [Zp(6y 'fr)ll]_1 + [Zp( Gy W‘)OO]_I.

In consequence, we obtain: Under 90,
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(A.39) supu HommE T = (I A,y + 15O R0

Similarly, for I ( ,m} of the form in (7.17), with some algebra, one can show that

BT Y6, mDeg(B,7) = Hal2(8y,m)a] " Der(Bm)a. Also, wp+1,  Dip(Bn)

= [E?Tw] +1 -a-‘g—,-log 8,(87,89),0 ] by the first order conditions for the restricted ML esti-
I |

- 1 . -
mator (5, 3,). Hence, HT (8, m)DLp(8,7) = HalZ(6y, 7)4] 1g,
x [ETT'X] +1 -a%log gt(31, 752)]. This result, the results of the previous paragraph with

#(7) replaced by 8, the equivalence of LM r(7) and LM%(vr) wp -+ 1 (see (A.26) and (A.27)}

combine to give the desired result that sulpl||LMT(1r) LMA(7)|| £ 0 under 4.
re

PROOF OF THEOREM 5: Assumption 1{a) holds automatically by the definition of
fr(6,7). Assumption 1(b) holds by (Assumption) SC(d). Assumption 1(c) holds by SC(e).
Assumption 1(d) holds by SC(a), SC(f), Lemma A-2 of Andrews (1989) (which converts
the a.s. convergence in SC(f) into uniform convergence in probability over = € II), and the
choice of B, = /TL,. Assumption 1{e) holds by SC(a) and (f).
Assumption 1(f) is verified as follows. Let L = [Ip - 0} ¢ RP*9. Then,
(1-7)L LJL: 0
(A.40) I(8,,m = . JI(1-m)L- - Iq] + 7(1-) o 0 and
q
A min(Z(0p7)) = inf - [((1~m)L'b; + b ) J((1-7)L"b; + by) + m(1-m)biLIL b, ]
)
I!bll"
(a4)) 2 inf o [I0-mL, + byll2 4 m(1-m)l|L b, ]2

1 ’ 2)
i

min(’)

inf
b (b”b21’ 2)':
lIbl=1

+ w(1=m)lIb, 1%| A ()

[(1——7‘r)b1 + by 1}
Y
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= dnf o [(1=m)(by4byy) (b +byy) + Tbg by + basboold (),

b=(b{,bj ,bgy)

IIbf|=1

where b € RP*9, b , by, € RP, by, € RIP, and by = (bs,, bs,)". The right-hand side
above is bounded away from zero for = € II by SC(a) and (g).

Assumption 1(g) holds by SC(h) and the continuous mapping theorem using the fact

-1 _[ 1T d 1T @

that By Diq(fy, 7) = [UTE[T'E]+1 78 &by Sy0) 711 737108 8 (6y00 Byo)
1T 8 ‘
7171 75308 By fy0r 520)] :

Assumption 2 is verified using Lemma A-1 of Andrews (1989). We need to verify
. .ps 1T T
its conditions (a) and (b) for Qq(f7) =~ Elw_log 8,(6; &) _ETvr+11°g g,(6,+5, 6,)
and Q(4,7) = -1rQ(61, 62) - (1-—1r)Q(61+ﬁ, 62), where 8= (5, 61, 65)'. Condition (a)

requires su% ®|QT(0,1r)—Q(0,1r)| -2, 0. The latter holds by SC(a) and (b) using
mell, Ge

Lemma A-2 of Andrews (1989). Condition (b) requires that for every neighborhood 9,

(c©) of 6, inf(inf Q(#,7)—Q(6), 7)) >0. This holds by SC(a) and (c). This
7ell 6c© 9,
completes the verification of Assumption 2 of Section 5.

Assumption 4(a) holds trivially by the definition of {1,(4,7) in (7.5). Assumption
4(b) is verified in exactly the same manner as Assumption 2 but with the parameter space
O replaced by the restricted parameter space ©.

Next, we verify Assumption 5. Let X, .721, and .122 be matrices such that

J%/Z 0 Ji/z 0ol
(A.42) K = =7.
Jor Joo| 921 Joo

That is, J, = J3/ 274, and Jy = J,,75, + Jpo75,. Then, Assumption 5 holds with
(A43)  G(8, 1) = (171 %(B, (1) - B, ()], W/A(BL(1)), 17,,B,(1) + JpoBo(1))]

where B() = (B,(7), B2(1r)')' is the g—vector Brownian motion of 5C(h), B,(7) € RP,
and By(7) € RY¥P.  To see that Assumption 5 holds, note that the definition of



A-14

B! Dty (6, 7) given above and SC(h) yield BT'DLy(dy, -) # G(by, +)- Also,

(-n), (- (em)p/ 2

(A44) EG(OymMG(p) =| (-m7, 7, Ay | =10,m,

1/2 1/2

(1"’)521’1/ -72111/ Ja1T91 + Ja9759

where the second equality uses (7.17) and the above expressions for Jo and Jq. G(6, -)

has bounded uniformly continuous sample paths with probability one because B(-) does.

PROOF OF LEMMA 4: (Assumption) SC1(2) implies SC(a). The Markov property
(SC1(c)) ensures that {log 8i(é;, 45) : t > m} is part of a double infinite stationary and
ergodic sequence. Thus, using SCi(c) and (d), the ergodic theorem implies that
1T .

7% (log g,(é,, 6,) —E log g,(é,, 6,)) + 0 a.s. under 0y ¥(6,,6)) e A x B, A generic
uniform SLLN (e.g., Assumptions TSE-1D, BD, DM, P-SLLN, and P—SLLN2 and
Theorem 6 of Andrews (1992)) strengthens this result to uniform convergence over
A, x A, as. using SCI(b), (c), (d), and (e). The same generic ULLN establishes the con-
tinuity of E log gt(él, &) on Ayx A, Since A;x A, is compact, this gives
sup |Q(4}, &)| < m, where Q(6), ;) = Elog g,(6}, &) for any t > m. Thus, SC(b) holds.
nell

Next, to establish SC(c), note that for (&), &) # (6,, b50),
Q(61; 62) - Q(aloy 620) = EO log[gt(él: 62)/gt(610, 620)]

(A.45)
< log Eogt(ﬁl’ 62)/51;(6101 520) =0,

where "EO" denotes expectation under 00 and the inequality is an application of Jensen’s
inequality and is strict by SC1(f). Equation (A.45) implies that Q(6;, &) is uniquely mini-
mized over A, x A, at (6,4, b,,). Since A, x A, is compact and Q(4;, §,) is continuous
on A; x A,, this gives SC(c).

Now, SC(d) holds by SC1(b), SC(e) holds by SC1{g), SC(f) holds by SC1(b), (c),
(g), and (h) using a generic uniform SLLN as above, and SC(g) holds by SC1(h).
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SC(h) is established as follows. Using the Markov property,
{-3(-5,—65,—)-1% gt(ﬁlo, 620) t> m} is part of a doubly infinite strictly stationary ergodic
1:72

sequence.  Also, {'3('61_66_]10“5 gt(ém, 20), (-1 t> m} is a martingale difference

sequehce (MDS), because
i} 0
E[wrrfd 6,5|f]=E[,, 5,als,x]
[3('5—6‘51, 2 og 8,(610: S39)|F1— E('b'_ﬁ‘]‘l, 7 08 8;(010 830) |5 m+ X4 m

i)
= | T 8o 050 = gy [Bulbrey Ban)intsy) = 0,

1

(A.46)

where the third inequality holds by the dominated convergence theorem using SC1(g) and
the first part of SC1(h). SC(h) now follows from a multivariate invariance principle for
stationary ergodic martingale difference sequences. Using Lemma A—5 of Andrews (1989),

the latter holds if {a'm-i—‘?-b-glog gt(élo, 620) > m} satisfies a univariate invariance

principle Yo € RY with a # 0 and (7)) = VTEI m—jlog gt(ém, é9) has asymptotic-
ally independent increments for # € II. Numerous univariate invariance principles exist
that are applicable in the present context. For example, the univariate invariance principle
of Heyde (see Hall and Heyde (1980, Thm. 5.5, pp. 141—145)), which is applied in Andrews
(1989, Proof of Theorem 1), will do. To verify that {nT(1r) : T > 1} has asymptotically
independent increments, see Andrews (1989, Proof of Theorem 1). (Note that it is not
possible to use directly a CLT for a stationarity ergodic MDS to establish this property —

some complications arise.) D



FOOTNOTES

s paper is an extension of an earlier working paper circulated under the title "Optimal
Tests of Parameter Constancy." The authors wish to thank Inpyo Lee for computing the
critical values given in Tables I and II. They also thank Christian Gourieroux and Bruce
Hansen for helpful comments. Andrews gratefully acknowledges research support from the
National Science Foundation through grant number SES—8821021. Ploberger gratefully
acknowledges research support from Fonds zur Férderung der wissenschaftlichen Forschung
under Schrédingerstipendium Project J-0469—PHY.

2Depending on the chosen parameterization of the model, the reason these models are not
covered is that either the aliernative hypothesis is one—sided, whereas we consider two-
sided alternatives in this paper, or the information matrix for & given = € II is singular for ¢
in the null, which violates one of our regularity conditions (Assumption 1(f)).
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1912
1914
1912
1812
1922
1930
1832
1937
1839
19.41

1945
1882
1960
1958
19.64
1965
19,66
97

1982
1981

1988
1985
1993

10%

117
1.23
13

11.31

11.386
11.38
11.43
11.51

11.66
11.62
11.72
11.81

11.92
1200
1202
1207
1213
1217
1224
1232
1234
1238
1241

1247
1258
1266
1269
1270
1278
1283
1294
1298
1302
1307
1312
1337

10%

14.20
1425
143
14.37
td 42
14.4%
1452
1458
1469
14.78
1488
1499
1509
1520
1525
1532
1539
1547
1855
1567
157
1574
1684
1588
1602
1611
1618
1621
1630
1541
16.48
1653
16358
1682
1667
1675

p=15§

1252
12.54

1259
1262
1266
1213
1274

1282
1286
12932
13.04
1318
1323
1326
1320
1333
134

1348
1353
1358
1382
1363
a7z
1377
1379
1387
1384
1388
1387
1401

1403
1410
1416
t418
1424
1428

5%

1559
15568
1576
1582
1590
1697
1600
1614
1625
16.3H
1642
16.51
16.60
16.67
1676
1680
16.90
17.00
1710
1713
1745
17.49
1723
17.34
17.43
17.52
17.57
17.61
17 66
17.73
17.80
17.84
17.82
17.92
1798
18.0C

1%

1527
1537
1546
15.49
1554
15.85
1561

1657
1568
1576
1582
15.78
1590
16,92
15.91

1592
1595
16.04
1611

1611

1618
1616
1618
1626
16728
1628
16.37
1644
1652
1660
1668
1664
1664
1666
1675
1678

1879
1890
18.94
19.00
1902
1906
1910
1822
1927
1927
19.29
19.43
19.47
1952
1961

19.57
1955
18.70
19.75
19.76
1979
1980
19.25
2003
2015
2010
2018
2023
Z035
2042
20.45
205z
z0.58
20.60
2365
237



495
480

478
A70

485
490
485
480
4TS
470
460
A50
440

460
450
140
120
100
080
060
050
.040
.020
020

1.000
1.041

1128
1174
122
1.272
1.378
1.4%4
1.620
1.907
2250
2662
3160
2449
3768
4516
5444
6612
8101
9.000
10.028
12570
16.000
20752
27.562
2111
37.735
53778
81.000
132.250
245 444
361.000
£76.000
1045 444
2401.000

1.000
1.641
1083
1128
1174
1222
1272
1378
1.489
1.620
1607
2.250
2662
3160
3449
3.768
4516
6444
6612
810
9.000
10028
12670
16 000
20753
27 862
M
A7 735
527178
81 000
132 250
245 4a4
361.000
576 000
1045 444
2401 00D

TABLE Il. ASYMPTOTIC CRITICAL VALUES FOR ¢=0 TEST

10%

276
275
276
276
272
270
2N

269
€66
264
259
257
254
z48
2.47
2.45
24

237
234
229
227
226
224
e
220
217
216
21§
212
209
206
203
202
200
1.98
197

10%

1051

1051

1048
1043
1040
1039
1034
1029
1c24
1018
1008

292
e85
878
875
o985
259
852
gas
94y
037
9327
920
212
eQ7
.02
200
892
-3-1)
878
B
887
864
861
B854

p=1
5%

384
gz
3o

388
368
<1}
381

377
374
370
362
356
350
343
341

3.40
332
324
320
311

310
307
302
297
292
290
288
285
28

277
273
2869
266
264
282

p=t
S%

12.32
123
1227
1224
121R
1214
1208
11,087
1188
1184
176
11.61
11.45
11.39
11.34
11.28
11.15
11.04
1096
1086
10.81
1074
1062
1080
10.38
1026
1019
1014
1003
281
2=}
87z
866
859
-E)
850

1%

678
672
570
570
666
656
6.50
6.41

6.35
[l

618
60

589

678
6.65
855
542
634
[ ¥14
524
620
$10
500
492
arg
472
467
456
443
420
418
415
410

388

16.58
16.59
167
16.63
1657
16.47
1643
1632
1622
1614
1580
1550
1519
1482
1482
1465
1437
1428
1409
1285
1368
1383
1246
1229
1315
1305
1292
1283
1264
12 45
1218
1201
11.92
11.78
1169
11.56

419

<23
ars
375
373
367
63
359
356
354
asz
50
Jag

10%

1201
11.79
11.79
1178
11.76
1.72
11.70
11.64
11.58
1155
1
11.33
1122
1113
11.08
11.04
10.86
1063
1079
1072
1066
1061
10.62
1044
10.28
1030
1028
1022
1015
1007
995
98B
98a
289
=):X3
a8

p=2
5%

542
687
583
G682
6877
673
&N

666
569
554
650
539
539
(X}

£29
.22
612
6506
803
6.00
495
a8

4.84
478
4N

485
a6

459
a53
4.46
439
431

429
424
422
a17

p=7
5%

1410
1379
1385
1364
1382
1376
1373
1373
1264
1247
1329
1310
1280
1278
1272
1270
12.56
1242
1225
1212
1208
1200
11.87
11.70
11.62
11.62
1n.ar
1.4
11.28
11.20
1112
11.03
1ger
10.98
1082
1086

%

o2
.06
a2

[.Y:14
aez
arz
853
851
843
837
a4
B.08
1%
7.85
n
156
7.42
73S
730
7.25
FAL
07
704
[.1-<]
680
672
.67
845

627
614
607
668%
554
1)

1826
1806
1805
17.97
17.88
17.78
1783
17.60
1748
173

1712
16,80
1656
16.22
1610
16.00
1679
16862
1538
1625
1518
1507
1490
1474
14.61

14481

1434
1426
1404
1380
1362
13,38
1323
13.22
1313
1302

10%

611
612
612
610
&or
6
6.01

509
585
580
5.85
679
&N

5.66
6.62
.50
6.56
58.50
S.44
528
534
632
6.28
s21

517
513
S10
6.07
&0z
497
4935
487
485
482
479
475

10%

1340
11.80
11.79
11.78
11.74
1173
1172
1165
11.58
11 .53
11.46
11.44
11.31
1i.28
114
1112
11.07
11,02
1058
10.89
1085
1079
1073
1067
106%
1056
1053
1050
1047
104
10.36
1630
1025
11.08
11.05
11.00

p=3
5%

762
763
7168
167
7.56
751

T.4%
T.41

735
132
T2

713
7.06
6.66
680
6.83
877
6.66
6.55
650
645
6.42
6.34
6.25
619
611

607
6.05
598
59

582
574

566
563
658

p=8
5%

15564
14.06
14.00
1387
1354
13,
1387
1382
1376
1367
1356
1335
1324
1304
1285
1284
12682
12m
1265
1246
1239
1233
1219
1210
11.99
11.80
1184
11.84
11.77
11.67
11.66
11.50
11.46
1227
1218
1213

1%

1.29
1499
1110
1.,
1085
10.82
10.72
1057
10.48
1038
1016
988
975
v.66
k3]
.46
a3
018

8.74

1%

2043
18.81

1878
18.65
1854
1849
1841

180

1814
1805
17.81

17.64
17.41

17.25
17.05
1682
16.64
16.28
1615
1590
1578
1667
1553
1541

152

1506
1502
1482
1474
1455
1429
14.05
1299
1488
1488
1474

10%

179
172
7.70
172
167
764
761
1.68
751
7.49
T45
7.40
7.30
124
12
718
709
1.02
4 4]
685
[ 14
480
872
666
460
853
650
647
642
6.36
6.30
6z2
619
6137
813
610

10%

1467
14.57
14565
1452
14.50
14.48
1444
14.38
14.31

14258
1413
14.02
1391

1379
1273
1367
1351

1243
1330
1324

1316
1309
1301

1285
1287
1278
127

1266
1261

1252
1241

1235
1230
1227
1222
1215

p=s
6%

Q46
934
aNn

929
928
924
922
913
208
9.00
893
881

865
847
842
833
834
8z7
819
812
809
805
.97
7.86
277
768
167
163
753
744
7.38
726
122
Ti7
FAL

705

p=9
5%

1689
16.87
16.83
1673
1675
1669
1662
1645
6

1627
1624
1611

15689
1565
15.58
15.48
1534
1518
14.96
14,82
1477
1470
1453
1445
1429
1419
1416
1410
1398
1282
123N

1359
13563
1346
1241

1334

1%

1335
132
13142
13.02
1303
1292
1292
12.84
1276
1269
1254
1242
1227
11.88
11.87
11.72
1.5
11.35
11.20
1.09
10897
10.84
1063
1050
1638
10.24
1048
10145
996
979
967
€356
851
B4
823
g2z

%

.35
.28
n.35
Faltcd
226
207
21 02
2090
2o/
2070
a4
2006
1982
1876
1965
1548
1837
10.05
18.83
1861
1850
1835
1811
1784
17.62
17 41
1720
17.20
1695
1675
1651
1620
1620
161432
1602
1588

10%

217
819
912
913
809
208
03
803
858
a4
884
B75
068
859

852
B 29
830
B25
B1T
813
B8.09
BD
797
788
760
1.76
7.74
766
7.60
754
7.49
746
7.42
7.38
734

10%

1572
1570
1589
1562
1559
1558
1555
154¢
1543
1535
1621

1511

1500
1490
1487
1480
1465
1454
1443
1424
1428
1424
1411

1400
1393
1385
1377
13275
1264
1357
1251

1343
1340
1233
1229
1323

p=5
5%

11.00
1ng2
1088
+0.85
1062
076
$10.74
o7

1062
10.85
1036
1027
to18
1001

et
281
069
961
950
.45
042
832
[k
015
k]
o)l
BgS
888
g7e
a0
B.59
853
g a7
g
835

p=10
5%

1800
17.99
17.91

1780
17.B5
17.79
1776
1758
1748
1740
17186
1686
1687
1678
1672
1662
1639
1627
1616
16.05
1507
15.88
1577
1563
1548
1636
1529
1620
1603
1494
1483
1473
1465
1460
1452
1444

i%

1459
1472
1469
1458
1445
14.49
14.42
1434
1447
1397
1374
13.66
13.35
13.21

1319
1308
1281

1263
1239
1226
1218
1212
14.87
1M

11.61

11.41

11.32
1.20
11.06
1080
1076
10.55
1062
1042
1034
1028

2300
2285
2278
2284
2262
22 5%
2244
2238
T30
&
21 BD
21.64
2148
2118
21.04
€06
X7z
n58
0.
2011
1908
1982
19.62
1928
1905
taB
LI s
1857
1832
1803
17.82
1781
17.41
1731
1TE
1710
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